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Abstract
Weextend to the infinite dimensional context the link between two completely different topics
recently highlighted by the authors: the classical eigenvalue problem for real square matrices
and the Brouwer degree for maps between oriented finite dimensional real manifolds. Thanks
to this extension, we solve a conjecture regarding global continuation in nonlinear spectral
theory that we have formulated in a recent article. Our result (the ex conjecture) is applied to
prove a Rabinowitz type global continuation property of the solutions to a perturbed motion
equation containing an air resistance frictional force.
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1 Introduction

Given a linear operator L : R
k → R

k , consider the Classical Eigenvalue Problem{
Lx = λx,

x ∈ S,
(1.1)

where S is the unit sphere of R
k and λ ∈ R. The solutions of (1.1) are pairs (λ, x) ∈ R×S,

hereafter called eigenpoints,whereλ is a real eigenvalue of L and x is one of the corresponding
unit eigenvectors. Since the eigenpoints of (1.1) are the zeros of the C∞-map

� : R×S → R
k, (λ, x) �→ Lx − λx,

in [8] we have shown that there is a link between the above purely algebraic problem and the
Brouwer degree, deg(�, U , 0), of � with target 0 ∈ R

k on convenient open subsets U of the
cylinder R×S, which is a smooth k-dimensional real manifold with a natural orientation.

Roughly speaking, in [8] we have shown that

• if λ∗ ∈ R is a simple eigenvalue of L , and x∗ and −x∗ are the two corresponding
unit eigenvectors, then the “twin” eigenpoints p∗ = (λ∗, x∗) and p̄∗ = (λ∗,−x∗) are
isolated zeros of � and give the same contribution to the Brouwer degree, which is either
1 or −1, depending on the sign jump at λ∗ of the (real) characteristic polynomial of L .

Still roughly speaking, here we extend this fact to the infinite dimensional case by con-
sidering a problem of the type {

Lx = λCx,

x ∈ S,
(1.2)

in which λ ∈ R, L andC are bounded linear operators acting between two real Hilbert spaces
G and H , C is compact, L − λC is invertible for some λ ∈ R, and S is the unit sphere of the
source space G.

Even in the special case G = H and L the identity, Problem (1.2) cannot be treated
using the degree of Leray and Schauder which, unlike that of Brouwer, does not hold in the
context of smoothmanifolds. Therefore, we apply the degree introduced in [9] for orientedC1

Fredholm maps of index zero between real differentiable Banach manifolds, which extends
the Brouwer degree for maps between oriented finite dimensional smooth manifolds, as well
as the Leray-Schauder degree for C1 compact vector fields in Banach spaces. To apply this
degree we need the unit sphere S to be a smooth manifold. This is the reason of our restriction
to Hilbert spaces instead of the more general Banach environment.

Here the degree regards the smooth map

� : R×S → H , (λ, x) �→ Lx − λCx,

acting between the 1-codimensional submanifold R×S of the Hilbert space R×G and the
target space H , whose zeros are called the eigenpoints of (1.2). The result obtained here,
Theorem 3.6 below, extends, to the infinite dimensional case, the one in [8] concerning the
Classical Eigenvalue Problem (1.1), provided that one calls λ∗ ∈ R a simple eigenvalue of
(1.2) if there exists x∗ ∈ S such that Ker(L −λ∗C) = Rx∗ and H = Img(L −λ∗C)⊕RCx∗.
In fact, we obtain that
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• if λ∗ is a simple eigenvalue of (1.2) and x∗ and −x∗ are the two corresponding unit
eigenvectors, then the “twin” eigenpoints p∗ = (λ∗, x∗) and p̄∗ = (λ∗,−x∗) are isolated
zeros of � and give the same contribution to the degree, which is either 1 or −1,
depending on the orientation of �.

As in [8], this crucial result regarding the “fair contribution to the degree of the twin
eigenpoints” is applied to the study of the behaviour of the solution triples (s, λ, x) of the
following perturbation of (1.2): {

Lx + s N (x) = λCx,

x ∈ S,
(1.3)

in which N : S → H is a compactC1-map. Precisely, if we denote by� the subset ofR×R×S
of the solutions (s, λ, x) of (1.2) and we call trivial those having s = 0, our main result,
Theorem 4.5 below, yields the following Rabinowitz type global continuation result that was
conjectured in [7].

• If q∗ = (0, λ∗, x∗) is a trivial solution of (1.3) corresponding to a simple eigenvalue λ∗
of the unperturbed problem (1.2), then the connected component of � containing q∗ is
either unbounded or encounters a trivial solution q∗ = (0, λ∗, x∗) with λ∗ �= λ∗.

The result obtained in [7] differs from this one in the final assertion and the additional
assumption that G and H are separable. In fact, in [7], without any degree theory and with
arguments of differential topology, we proved that

• the connected component of � containing q∗ = (0, λ∗, x∗) is either unbounded or
encounters a trivial solution q∗ = (0, λ∗, x∗) different from q∗.

Notice that this assertion does not exclude the case λ∗ = λ∗ and, consequently, x∗ = −x∗,
since λ∗ is simple.

We believe that our global continuation result, Theorem 4.5, could be extended to the
more general situation in which Ker(L − λ∗C) is odd dimensional and

H = Img(L − λ∗C) ⊕ C(Ker(L − λ∗C)).

Our belief is supported by the fact that in [5], under these assumptions, we have shown that

• the projection of � into the sλ-plane has a connected set which contains (0, λ∗) and is
either unbounded or includes a “trivial eigenpair” (0, λ∗) different from (0, λ∗).

Moreover, our belief is also based on the fact that in [8], by means of the Brouwer degree for
maps between oriented smooth manifolds, we obtained that

• if G = H = R
k , C is the identity, and x∗ is a unit eigenvector of L corresponding to

an eigenvalue λ∗ with odd algebraic multiplicity, then the connected component of �

containing (0, λ∗, x∗) is either unbounded or includes a trivial solution (0, λ∗, x∗) with
λ∗ �= λ∗.

So far, our effort to obtain the supposed extension of Theorem 4.5 has proved unsuccessful.
Theorem 4.5 falls into the subject of nonlinear spectral theory, which finds applications

to differential equations (see e.g. [3,16] and references therein).
Here we mention the work of R. Chiappinelli [14], which inspired some of our recent

articles. In [14] a sort of “local persistence property” for a perturbed eigenvalue problem
similar to (1.3) was proved. Precisely, under the assumptions
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• L : G → G is a self-adjoint operator,
• C = I is the identity of G,
• N : S → G is Lipschitz continuous,
• λ∗ ∈ R is an isolated simple eigenvalue of L ,
• x∗ ∈ S is an eigenvector corresponding to λ∗,

it was shown that

• in a neighborhood V of 0 ∈ R a Lipschitz continuous function ε �→ (λε, xε) ∈ R×S is
defined with the properties that (λ0, x0) = (λ∗, x∗) and that Lxε + εN (xε) = λεxε for
any ε ∈ V .

When G is infinite dimensional, the hypotheses of our global continuation result seem
incompatible with the assumptions of Chiappinelli, due to the fact that the identity is not a
compact operator. However, Theorem 4.5 does apply to the equation

Lx + εN (x) = λx,

provided that N is C1 and compact, and L is of the type λ∗ I + C , with λ∗ ∈ R and C
compact. In fact, putting ε = −σ/μ and λ = λ∗ + 1/μ, the above equation becomes
x + σ N (x) = μCx , which is as in our problem (1.3) with L = I .

For results regarding the local as well as global persistence property when the eigenvalue
λ∗ is not necessarily simple we mention [4–8,15,17–21].

The last section of the paper contains three examples illustrating our main result, as well
as an application to the study of the solutions (s, λ, x) of the boundary value problem{

x ′′(t) + sg(x ′(t)) + λx(t) = 0,
x(0) = 0 = x(π), x ∈ S,

(1.4)

in which S is the unit sphere of the Hilbert space H2(0, π), and g : R → R is an odd
increasing C1-function (such as the air resistance force g(v) = v|v|). From our result, with
the help of the well-known notion of winding number of a self-map of the circle S1, we
deduce that, given any trivial solution q∗ of (1.4), the connected component of � containing
q∗ is unbounded and does not encounter other trivial solutions.

For pioneering articles regarding the use of the winding number in order to study the
behavior of solutions to ordinary differential equations we mention [13,22,23].

2 Notation and Preliminaries

We introduce some notation, preliminaries, and known or unknown concepts that we will
need in subsequent sections. In particular, we will outline the main notions related to the
topological degree for oriented C1 Fredholm maps of index zero between real differentiable
Banach manifolds introduced in [9] (see also [10,11] for additional details). Actually, some
notions and results are new: we consider them necessary for a better understanding of the
topics in Sects. 3 and 4, the proof of Theorem 3.6 in particular.

2.1 Algebraic Preliminaries

Let, hereafter, E and F be two real vector spaces. By L(E, F) we shall denote the vector
space of the linear operators from E into F . The same notation will be used if, in addition,
E and F are normed. In this case, however, we will tacitly assume that all the operators of
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L(E, F) are bounded, and that this space is endowedwith the usual operator norm. If E = F ,
we will write L(E) instead of L(E, E). By Iso(E, F) we shall mean the subset of L(E, F)

of the invertible operators, and we will write GL(E) instead of Iso(E, E). The subspace of
L(E, F) of the operators having finite dimensional image will be denoted by F(E, F), or
simply by F(E) when E = F .

Let I ∈ L(E) indicate the identity of E . If T ∈ L(E) has the property that I −T ∈ F(E),
we shall say that T is an admissible operator (for the determinant). The symbol A(E) will
stand for the affine subspace of L(E) of the admissible operators.

It is known (see [25]) that the determinant of an operator T ∈ A(E) is well defined as
follows: det T := det T |Ê , where T |Ê is the restriction (as domain and as codomain) to

any finite dimensional subspace Ê of E containing Img(I − T ), with the understanding that
det T |Ê = 1 if Ê = {0}.

As one can easily check, the function det : A(E) → R inherits most of the properties of
the classical determinant. Some of them are stated in the following

Remark 2.1 Let T , T1, T2 ∈ A(E). Then

• det T �= 0 if and only if T is invertible;
• R ∈ Iso(E, F) implies RT R−1 ∈ A(F) and det(RT R−1) = det T ;
• T2T1 ∈ A(E) and det(T2T1) = det(T2) det(T1).

See, for example, [12] for a discussion about other properties of the determinant.
We will need the following remark, whose easy proof is left to the reader:

Remark 2.2 Let T ∈ L(E) and let E = E1 ⊕ E2 with dim E2 < +∞. Assume that, with
respect to the above decomposition, T can be represented in a block matrix form

T =
(

I11 T12
0 T22

)
,

where I11 is the identity of E1. Then T ∈ A(E) and det T = det T22.

Recall that an operator T ∈ L(E, F) is said to be (algebraic) Fredholm if its kernel,
Ker T , and its cokernel, coKer T = F/T (E), are both finite dimensional.

The index of a Fredholm operator T is the integer

ind T = dim(Ker T ) − dim(coKer T ).

In particular, any invertible linear operator is Fredholm of index zero. Observe also that, if
T ∈ L(Rk , R

s), then ind T = k − s.
The subset of L(E, F) of the Fredholm operators will be denoted by �(E, F); while

�n(E, F) will stand for the set {T ∈ �(E, F) : ind T = n}. Obviously, �(E) and �n(E)

designate, respectively, �(E, E) and �n(E, E).
One can easily check thatA(E) is a subset of �0(E). This is also a consequence of a well

known property regarding Fredholm operators. Namely,

(1) if T ∈ �n(E, F) and K ∈ F(E, F), then T + K ∈ �n(E, F).

Another fundamental property states that

(2) the composition of Fredholm operators is Fredholm and its index is the sum of the indices
of all the composite operators.

An useful consequence of property (2) is the following:
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• If T ∈ �n(E, F) and k ∈ N, then the restriction of T to a k-codimensional subspace of
E is Fredholm of index n − k.

Let T ∈ �0(E, F). In [9], an operator K ∈ F(E, F) was called a corrector of T if
T + K is invertible. Since, during a conference, someone has critically observed that it is not
necessary to correct an invertible operator, hereafter we will use the more appropriate word
companion instead of corrector.

Notice that any T ∈ Iso(E, F) has a natural companion: the trivial element of L(E, F).
This fact was crucial in [9] for the construction of the degree theory that we will apply here.

Given T ∈ �0(E, F), let us denote by C(T ) the subset of F(E, F) of all the companions
of T . As one can easily check, this set is nonempty. Moreover, C(T ) admits a partition in two
equivalence classes according to the following

Definition 2.3 (Equivalence relation) Two companions K1 and K2 of an operator T ∈
�0(E, F) are equivalent (more precisely, T -equivalent) if the admissible operator (T +
K2)

−1(T + K1) has positive determinant.

Given two companions K1 and K2 of T ∈ �0(E, F), the admissible automorphism
(T + K2)

−1(T + K1) is not the unique one that can be used to check whether or not K1 and
K2 are equivalent. In fact, one has the following

Remark 2.4 Let T ∈ �0(E, F) and K1, K2 ∈ C(T ). Then, the determinants of the invertible
operators

(T + K2)
−1(T + K1), (T + K1)(T + K2)

−1, (T + K1)
−1(T + K2),

(T + K2)(T + K1)
−1

have the same sign. In fact, from the second property of Remark 2.1 one gets that the first two
operators have the same determinant, while the third property implies the statement regarding
the last two operators, being the inverses of the first two.

Thanks to the above equivalence relation, the following definition was introduced in [9].

Definition 2.5 (Orientation) An orientation of T ∈ �0(E, F) is one of the two equivalence
classes of C(T ), denoted by C+(T ) and called the class of positive companions of the oriented
operator T . The set C−(T ) = C(T ) \ C+(T ) of the negative companions is the opposite
orientation of T .

Some further definitions are in order.

Definition 2.6 (Natural orientation) Any T ∈ Iso(E, F) admits the natural orientation: the
one given by considering the trivial operator of L(E, F) as a positive companion.

Definition 2.7 (Canonical orientation) Any admissible operator T ∈ A(E) admits the
canonical orientation: the one given by choosing as a positive companion any K ∈ F(E)

such that det(T + K ) > 0. In particular, this applies for any T ∈ L(E), with dim E < ∞.

Definition 2.8 (Associated orientation) Let E and F have the same finite dimension. Assume
that they are oriented up to an inversion of both the orientations or, equivalently, assume that
E × F has an orientation, say O. Then any T ∈ L(E, F) admits the orientation associated
with O: the one given by choosing as a positive companion any K ∈ F(E, F) such that
T + K is orientation preserving.
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Definition 2.9 (Oriented composition) The oriented composition of two oriented operators,
T1 ∈ �0(E1, E2) and T2 ∈ �0(E2, E3), is the operator T2T1 with the orientation given by
considering K = (T2 + K2)(T1 + K1) − T2T1 as a positive companion, where K1 and K2

are positive companions of T1 and T2, respectively.

Observe that the oriented composition is associative. Indeed, if T1 ∈ �0(E1, E2), T2 ∈
�0(E2, E3) and T3 ∈ �0(E3, E4), and K1, K2 and K3 are, respectively, companions of T1,
T2 and T3, one has (

(T3 + K3)(T2 + K2)
)
(T1 + K1) − (

T3T2
)
T1

= (T3 + K3)
(
(T2 + K2)(T1 + K1)

) − T3
(
T2T1

)
.

The following result implies an important property of the oriented composition (see Corol-
lary 2.13 below). Moreover, it shows that Definition 2.9 is well-posed.

Lemma 2.10 Given T1 ∈ �0(E1, E2), T2 ∈ �0(E2, E3), K1, K ′
1 ∈ C(T1) and K2, K ′

2 ∈
C(T2), consider the following companions of T2T1:

K = (T2 + K2)(T1 + K1) − T2T1 and K ′ = (T2 + K ′
2)(T1 + K ′

1) − T2T1.

Then K is equivalent to K ′ if and only if K1 and K2 are both equivalent or both not equivalent
to K ′

1 and K ′
2, respectively.

Proof According to Definition 2.5, we need to compute the sign of

det
(
(T2T1 + K )−1(T2T1 + K ′)

)
.

We have

(T2T1 + K )−1(T2T1 + K ′) = (
(T2 + K2)(T1 + K1)

)−1(
(T2 + K ′

2)(T1 + K ′
1)

)
.

Thus, because of the second property in Remark 2.1, we obtain

det
(
(T2T1 + K )−1(T2T1 + K ′)

)
= det

(
(T1 + K ′

1)
(
(T2 + K2)(T1 + K1)

)−1(
(T2 + K ′

2)(T1 + K ′
1)

)
(T1 + K ′

1)
−1

)
= det

(
(T1 + K ′

1)(T1 + K1)
−1(T2 + K2)

−1(T2 + K ′
2)

)
.

Therefore, applying the third property of the same remark, we get

det
(
(T2T1 + K )−1(T2T1 + K ′)

)
= det

(
(T1 + K ′

1)(T1 + K1)
−1)

)
det

(
(T2 + K2)

−1(T2 + K ′
2)

)
,

and the assertion follows. 
�
Definition 2.11 (Sign of an oriented operator) Let T ∈ �0(E, F) be an oriented operator.
Its sign is the integer

sign T =
⎧⎨
⎩

+1 if T is invertible and naturally oriented,
−1 if T is invertible and not naturally oriented,
0 if T is not invertible.

As a straightforward consequence of Remark 2.4, and taking into account Definitions 2.3,
2.5, 2.6, 2.11, we get the following
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Remark 2.12 Let T ∈ Iso(E, F) be oriented. Then,

sign T = sign det
(
(T + K )−1T

) = sign det
(
T (T + K )−1)

= sign det
(
T −1(T + K )

) = sign det
(
(T + K )T −1),

where K is a positive companion of T .

Lemma 2.10 shows that, in the oriented composition, the inversion of the orientation of
one (and only one) of the operators yields the inversion of the orientation of the composition.
Hence, one gets the following

Corollary 2.13 Let T1 ∈ �0(E1, E2) and T2 ∈ �0(E2, E3) be oriented. Then, sign(T2T1) =
sign T2 sign T1, where T2T1 is the oriented composition of T1 and T2.

Proof If one of the two operators is not invertible, then the assertion is obvious. Assume,
therefore, that T1 and T2 are isomorphisms. If both the operators are naturally oriented,
then the assertion follows from the definition of oriented composition. The other cases are a
consequence of Lemma 2.10. 
�

Given R1 ∈ Iso(E1, F1) and R2 ∈ Iso(E2, F2), observe that the function

	 : L(E1, E2) → L(F1, F2), T �→ R2T R−1
1

is a linear isomorphism (whose inverse is given by T̃ �→ R−1
2 T̃ R1). One can see that 	

establishes a correspondence between certain pairs of subsets of L(E1, E2) and L(F1, F2).
For example, Iso(E1, E2) and Iso(F1, F2), F(E1, E2) and F(F1, F2), �0(E1, E2) and
�0(F1, F2). Moreover if, in particular, T ∈ �0(E1, E2), then 	 sends the set C(T ) onto
the set C(	(T )), and if K1, K2 ∈ C(T ) are equivalent (according to Definition 2.3), so are
	(K1),	(K2) ∈ C(	(T )).

Since the oriented composition is associative, this notion can be extended to the compo-
sition of three (or more) oriented operators.

2.2 Topological Preliminaries

Let, hereafter, X denote a metric space. We recall that a subset A of X is locally compact
if any point of A admits a neighborhood, in A, which is compact. Therefore, any compact
subset of X is locally compact, as is any relatively open subset of a locally compact set.
However, the union of two locally compact subsets of X may not be locally compact.

We recall also that a continuous map between metric spaces is said to be proper if the
inverse image of any compact set is a compact set, while it is called locally proper if its
restriction to a convenient closed neighborhood of any point of its domain is proper. Thus,
level sets of locally proper maps are locally compact.

One can check that proper maps are closed, in the sense that the image of any closed set
is a closed set.

Notation 2.14 Let D be a subset of the product X ×Y of two metric spaces. Given x ∈ X ,
we call x-slice of D the set Dx = {y ∈ Y : (x, y) ∈ D}.

Assume, from now on, that the vector spaces E and F are actually Banach. In this frame-
work, anyFredholmoperator is assumed to be bounded. Therefore, in addition to the algebraic
properties (1) and (2) stated in Sect. 2.1, one has the following topological ones (see e.g.
[29]):
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(3) if T ∈ �(E, F), then Img T is closed in F ;
(4) if T ∈ �(E, F), then T is proper on any bounded closed subsets of E ;
(5) for any n ∈ Z, the set �n(E, F) is open in L(E, F);
(6) if T ∈ �n(E, F) and K ∈ L(E, F) is compact, then T + K ∈ �n(E, F).

Let us now sketch the construction and summarize the main properties of the degree
introduced in [9].

The basic fact is that, in the context of Banach spaces, the orientation of an operator
T∗ ∈ �0(E, F) induces an orientation to the operators in a neighborhood of T∗. Indeed, due
to the fact that Iso(E, F) and �0(E, F) are open in L(E, F), any companion of T∗ remains
a companion of all T sufficiently close to T∗.

Therefore, the following definition makes sense.

Definition 2.15 Let 
 : X → �0(E, F) be a continuous map defined on a metric space X . A
pre-orientation of 
 is a function that to any x ∈ X assigns an orientation ω(x) of 
(x). A
pre-orientation (of 
) is an orientation if it is continuous, in the sense that, given any x∗ ∈ X ,
there exist K ∈ ω(x∗) and a neighborhood W of x∗ such that K ∈ ω(x) for all x ∈ W .
The map 
 is said to be orientable if it admits an orientation, and oriented if an orientation
has been chosen. In particular, a subset Y of �0(E, F) is orientable or oriented if so is the
inclusion map Y ↪→ �0(E, F).

Observe that the set �̂0(E, F)of the orientedoperators of�0(E, F)has a natural topology,
and the natural projection π : �̂0(E, F) → �0(E, F) is a 2-fold covering space (see [10]
for details). Therefore, an orientation of a map 
 as in Definition 2.15 could be regarded as
a lifting 
̂ of 
. This implies that, if the domain X of 
 is simply connected and locally path
connected, then 
 is orientable.

Let f : U → F be aC1-map defined on an open subset of E , and denote by d fx ∈ L(E, F)

the Fréchet differential of f at a point x ∈ U .
We recall that f is said to be Fredholm of index n, from now on written f ∈ �n , if

d fx ∈ �n(E, F) for all x ∈ U . Therefore, if f ∈ �0, Definition 2.15 and the continuity of
the differential map d f : U → �0(E, F) suggest the following

Definition 2.16 (Orientation of a �0-map in Banach spaces) Let U be an open subset of E
and f : U → F a Fredholm map of index zero. A pre-orientation or an orientation of f are,
respectively, a pre-orientation or an orientation of d f , according to Definition 2.15. The map
f is said to be orientable if it admits an orientation, and oriented if an orientation has been
chosen.

Remark 2.17 A very special �0-map is given by an operator T ∈ �0(E, F). Thus, for T
there are two different notions of orientations: the algebraic one, according to Definition 2.5;
and the one regarding T as a C1-map (according to Definition 2.16). In each case T admits
exactly two orientations (in the second one this is due to the connectedness of the domain
E). Hereafter, we shall tacitly assume that the two notions agree. Namely, T has an algebraic
orientation ω if and only if its differential dTx : ẋ �→ T ẋ has the ω orientation for all x ∈ E .

We will show how the notion of orientation in Definition 2.16 can be extended to the
case of maps acting between real Banach manifolds. To this purpose, we need some further
notation.

For short, by a manifold we shall mean a smooth Banach manifold embedded in a real
Banach space.
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Given a manifold M and a point x ∈ M, the tangent space of M at x will be denoted
by TxM. If M is embedded in a Banach space Ẽ , TxM will be identified with a closed
subspace of Ẽ , for example by regarding any tangent vector of TxM as the derivative γ ′(0)
of a smooth curve γ : (−1, 1) → M such that γ (0) = x .

Assume that f : M → N is a C1-map between two manifolds, respectively embedded
in Ẽ and F̃ and modelled on E and F . As in the flat case, f is said to be Fredholm of index
n (written f ∈ �n) if so is the differential d fx : TxM → T f (x)N , for any x ∈ M.

Given f ∈ �0, suppose that to any x ∈ M it is assigned an orientation ω(x) of d fx (also
called orientation of f at x). As above, the function ω is called a pre-orientation of f , and
an orientation if it is continuous, in a sense to be specified (see Definition 2.19).

Definition 2.18 The pre-oriented composition of two (or more) pre-oriented maps between
manifolds is given by assigning, at any point x of the domain of the composite map, the
composition of the orientations (according to Definition 2.9) of the differentials in the chain
representing the differential at x of the composite map.

Assume that f : M → N is a C1-diffeomorphism. Then, in particular, given any x ∈ M,
the differential d fx is an isomorphism. Thus, for any x ∈ M, wemay take asω(x) the natural
orientation of d fx (recall Definition 2.6). This pre-orientation of f turns out to be continuous
according to Definition 2.19 below (it is, in some sense, constant). From now on, unless
otherwise stated, any diffeomorphism will be considered oriented with the natural orientation.
In particular, in a composition of pre-oriented maps, all charts and parametrizations of a
manifold will be tacitly assumed to be naturally oriented.

Definition 2.19 (Orientation of a �0-map between manifolds) Let f : M → N be a �0-
map between two manifolds modelled on E and F , respectively. A pre-orientation of f is an
orientation if it is continuous in the sense that, given any two charts, ϕ : U → E of M and
ψ : V → F of N , such that f (U ) ⊆ V , the pre-oriented composition

ψ ◦ f ◦ ϕ−1 : U → V

is an oriented map according to Definition 2.16.
Themap f is said to be orientable if it admits an orientation, and oriented if an orientation

has been chosen.

Perhaps, the simplest example of non-orientable �0-map is given by a constant map from
the 2-dimensional projective space into R

2 (see [10]).

Remark 2.20 One can check that the pre-oriented composition of orientations is an orienta-
tion.

Remark 2.21 Regarding the attribution that we will assign to some particular orientations of
�0-maps between manifolds, whenever it makes sense, we will adapt the terminology for
�0-operators, such as “natural orientation”, “associated orientation”, “canonical orientation”.

For example any local diffeomorphism f : M → N admits the natural orientation, given
by assigning the natural orientation to the operator d fx , for any x ∈ M (see Definition
2.6). As another example, assume the manifolds M and N have the same finite dimension
and are oriented, then any C1-map between them admits the associated orientation (see
Definition 2.8). A third example is given by a C1-map f : R

k → R
k : it can be given the

canonical orientation (see Definition 2.7).
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The concept of canonical orientation of a C1-map f : R
k → R

k can be extended to a
more general situation that we shall need in the next section. In fact, if E is a real Banach
space, in spite of the fact that the function det : A(E) → R can be discontinuous (see e.g.
[12]), one has the following

Remark 2.22 Let X be a metric space and E = E1×E2 a real Banach space, with dim E2 <

+∞. Assume that 
 : X → A(E) is a continuous map that can be represented in a block
matrix form as follows:


 =
(

I11 
12

0 
22

)
,

where I11 is the identity of E1, 
12 : X → L(E2, E1), and 
22 : X → L(E2). Then,
according to Remark 2.2, one has det 
(x) = det 
22(x), for all x ∈ X . Moreover, the
pre-orientation of 
 given by assigning, to any x ∈ X , the canonical orientation of the oper-
ator 
(x) is actually an orientation, and has the property that sign
(x) = sign det 
(x) for
all x ∈ X .

Similarly to the case of a single map, one can define a notion of orientation of a continuous
family of�0-maps depending on a parameter s ∈ [0, 1]. To be precise, one has the following
Definition 2.23 (Oriented �0-homotopy) A �0-homotopy between two Banach manifolds
M and N is a C1-map h : [0, 1]×M → N such that, for any s ∈ [0, 1], the partial map
hs = h(s, ·) is Fredholm of index zero. An orientation of h is a continuous function ω

that to any (s, x) ∈ [0, 1]×M assigns an orientation ω(s, x) to the differential d(hs)x ∈
�0(TxM, Th(s,x)N ). Where “continuous” means that, given any chart ϕ : U → E of M,
a subinterval J of [0, 1], and a chart ψ : V → F of N such that h(J ×U ) ⊆ V , the
pre-orientation of the map 
 : J ×U → �0(E, F) that to any (s, x) ∈ J ×U assigns the
pre-oriented composition

d(ψ ◦ hs ◦ ϕ−1)x = dψh(s,x)d(hs)x (dϕx )
−1

is an orientation, according to Definition 2.15.
The homotopy h is said to be orientable if it admits an orientation, and oriented if an

orientation has been chosen.

If a �0-homotopy h has an orientation ω, then any partial map hs = h(s, ·) has a com-
patible orientation ω(s, ·). Conversely, on has the following
Proposition 2.24 ([9,10]) Let h : [0, 1]×M → N be a �0-homotopy, and assume that one
of its partial maps, say hs , has an orientation. Then, there exists and is unique an orientation
of h which is compatible with that of hs . In particular, if two maps from M to N are �0-
homotopic, then they are both orientable or both non-orientable.

As a consequence of Proposition 2.24, one gets that any C1-map f : M → M which is
�0-homotopic to the identity is orientable, since so is the identity (even when M is finite
dimensional and not orientable).

The degree for oriented �0-maps defined in [9] satisfies the three fundamental properties
stated below and calledNormalization, Additivity and Homotopy Invariance. By an axiomatic
approach similar to the one due to Amann-Weiss in [2] for the Leray–Schauder degree, in
[11] it is shown that the degree constructed in [9] is the only possible integer valued function
that satisfies these three properties.
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To be more explicit, let us define, first, the domain of this degree function. Given an
oriented �0-map f : M → N , an open (possibly empty) subset U ofM, and a target value
y ∈ N , the triple ( f , U , y) is said to be admissible for the degree provided that U ∩ f −1(y)

is compact. From the axiomatic point of view, the degree is an integer valued function, deg,
defined on the class of all the admissible triples, that satisfies the following three fundamental
properties:

• (Normalization) If f : M → N is a naturally oriented diffeomorphism onto an open
subset of N , then

deg( f ,M, y) = 1, ∀y ∈ f (M).

• (Additivity) Let ( f , U , y) be an admissible triple. If U1 and U2 are two disjoint open
subsets of U such that U ∩ f −1(y) ⊆ U1 ∪ U2, then

deg( f , U , y) = deg( f |U1 , U1, y) + deg( f |U2 , U2, y).

• (Homotopy Invariance) Let h : [0, 1]×M → N be an oriented �0-homotopy, and
γ : [0, 1] → N a continuous path. If the set{

(s, x) ∈ [0, 1]×M : h(s, x) = γ (s)
}

is compact, then deg(h(s, ·),M, γ (s)) does not depend on s ∈ [0, 1].
Other properties can be deduced from the fundamental ones (see [11] for details). We

mention only some of them. One of these is the

• (Localization) If ( f , U , y) is an admissible triple, then

deg( f , U , y) = deg( f |U , U , y).

Another one is the

• (Excision) If ( f , U , y) is admissible and V is an open subset of U such that f −1(y) ∩
U ⊆ V , then

deg( f , U , y) = deg( f , V , y).

A significant one is the

• (Existence) If ( f , U , y) is admissible and deg( f , U , y) �= 0, then the equation f (x) = y
admits at least one solution in U .

Roughly speaking, given an admissible triple ( f , U , y), the integer deg( f , U , y) is an
algebraic count of the solutions in U of the equation f (x) = y. More precisely, as a conse-
quence of the fundamental properties, one gets the following

• (Computation Formula) If ( f , U , y) is admissible and y is a regular value for f in U ,
then the set U ∩ f −1(y) is finite and

deg( f , U , y) =
∑

x∈U∩ f −1(y)

sign(d fx ).

Another property that can be deduced from the fundamental ones is a generalization of
the Homotopy Invariance Property, that we will need in Sect. 4. This requires the following
extension of the concept of �0-homotopy:
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Definition 2.25 (Extended �0-homotopy) An extended �0-homotopy fromM toN is a C1-
map h : I×M → N , where I is an arbitrary (nontrivial) real interval, such that any partial
map hs = h(s, ·) of h is a �0-map.

The notion of orientation for an extended �0-homotopy is practically identical to the one
in Definition 2.23 and its formulation is left to the reader.

As a consequence of the Excision and the Homotopy Invariance properties of the degree
we get the following

• (Generalized Homotopy Invariance) Let h : I×M → N be an oriented extended �0-
homotopy, γ : I → N a continuous path, and W an open subset of I ×M. Given
any s ∈ I, denote by Ws = {x ∈ M : (s, x) ∈ W } the s-slice of W . If the set{
(s, x) ∈ W : h(s, x) = γ (s)

}
is compact, then deg(hs, Ws, γ (s)) does not depend on

s ∈ I.

The easy proof of this property can be performed by showing that the integer valued
function s ∈ I �→ ν(s) := deg(hs, Ws, γ (s)) is locally constant. In fact, given any s∗ ∈ I,
because of the compactness of the set{

(s, x) ∈ W : h(s, x) = γ (s)
}
,

one can find a box J ×V ⊆ W , with V open in M and J an open interval containing s∗,
such that Ws ∩ h−1

s (γ (s)) ⊆ V for all s ∈ J ∩ I. Thus, from the Excision Property, one gets
ν(s) = deg(hs, V , γ (s)) for all s ∈ J ∩ I. Moreover, because of the Homotopy Invariance
Property, ν(s) does not depend on s ∈ J ∩ I. Hence, since I is connected and s∗ ∈ I is
arbitrary, one gets the assertion.

3 The Eigenvalue Problem and the Associated Topological Degree

Hereafter, G and H will be two real Hilbert spaces, with inner product and norm denoted by
〈·, ·〉 and ‖ · ‖, respectively.

Consider the eigenvalue problem {
Lx = λCx

x ∈ S,
(3.1)

where λ ∈ R, L, C ∈ L(G, H), C is compact, and S is the unit sphere of G. We assume
that the operator L − λC ∈ L(G, H) is invertible for some λ ∈ R. Therefore, because of the
compactness of C , L − λC is Fredholm of index zero for any λ ∈ R (recall property (6) of
Fredholm operators in Sect. 2.2). In particular, Ker(L − λC) is always finite dimensional,
and nontrivial if and only if λ ∈ R is an eigenvalue of (3.1). Moreover, the set of all the real
eigenvalues of (3.1) is discrete.

A pair (λ, x) belonging to the cylinder R×S will be called an eigenpoint of (3.1) if it
satisfies the equation Lx = λCx . In this case, x is a unit eigenvector of (3.1) corresponding
to the eigenvalue λ.

The set of the eigenpoints of (3.1) will be denoted by S. Hence, given any λ ∈ R, the
λ-slice Sλ = {x ∈ S : (λ, x) ∈ S} of S coincides with S ∩ Ker(L − λC).

Observe that Sλ is nonempty if and only if λ is an eigenvalue of (3.1). In this case Sλ will
be called the eigensphere of (3.1) corresponding to λ. In fact, it is a sphere whose (finite)
dimension equals that of Ker(L − λC) minus one.
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If λ ∈ R is an eigenvalue of (3.1), the nonempty subset {λ}×Sλ of S will be called the
λ-eigenset of (3.1).

It is convenient to regard R×S as the subset of the Hilbert space R×G satisfying the
equation g(λ, x) = 1, where g : R×G → R is defined by g(λ, x) = 〈x, x〉. The differential
dgp ∈ L(R×G, R) of g at a point p = (λ, x) is given by (λ̇, ẋ) �→ 2〈x, ẋ〉. Therefore, the
set of the critical points of g is the λ-axis x = 0 and, consequently, the number 1 is a regular
value for g. This shows that R×S is a smooth manifold of codimension one in R×G and,
given any p = (λ, x) ∈ g−1(1), the tangent space of R×S at p is the kernel of dgp , namely

T(λ,x)(R×S) = {
(λ̇, ẋ) ∈ R×G : 〈x, ẋ〉 = 0

} = R×x⊥.

Observe that, if dim G = 1 and (λ, x) ∈ R×S, then x⊥ = {0} and the tangent space
T(λ,x)(R×S) is the subspace R×{0} of R×R. Moreover, the cylinder R×S is disconnected:
it is the union of two horizontal lines, R×{−1} and R×{1}. Due to this fact, in order to write
some statements in a simpler form, hereafter, unless otherwise stated, we will assume that
the dimensions of the Hilbert spaces G and H are bigger than 1, so that the cylinder R×S
is connected.

Define the smooth map

� : R×G → H by (λ, x) �→ Lx − λCx

and observe that it is Fredholm of index one. Therefore, its restriction

� : R×S → H

to the 1-codimensional submanifold R×S of R×G is Fredholm of index zero. To see this,
recall that the differential of � at p ∈ R×S is the restriction of d� p to the 1-codimensional
subspace Tp(R×S) of R×G.

The map � will play a fundamental role in this paper. Notice that its zeros are the eigen-
points of (3.1). That is, S = �−1(0).

We point out that� is orientable and, because of the connectedness of the manifold R×S,
admits exactly two orientations. In fact, in the finite dimensional case, an orientation of �

is equivalent to a pair of orientations, one of the domain and one of the codomain, up to
an inversion of both of them (see Definition 2.8); while, if dim G = +∞, the orientability
of � is a consequence of the fact that the cylinder R×S is simply connected (it is actually
contractible). Therefore, from now on, we shall assume that � is oriented. No matter which
one of the two orientations one selects, all the statements in this paper hold true.

Definition 3.1 Let X be a metric space and K ⊆ A ⊆ X . We shall say that K is an isolated
subset of A if it is compact and relatively open in A. Thus, there exists an open subset U of
X such that U ∩ A = K, which will be called an isolating neighborhood of K among (the
elements of) A.

Definition 3.2 Let K ⊂ R×S be an isolated subset of �−1(0). By the �-degree of K we
mean the integer�-deg(K) := deg(�, U , 0), whereU ⊆ R×S is any isolating neighborhood
of K among �−1(0). If p is an isolated zero of �, we shall simply write �-deg(p) instead
of �-deg({p}).

Notice that this definition is well-posed, thanks to the Excision Property of the degree.

Remark 3.3 If p ∈ �−1(0) is such that the differential d�p is an isomorphism, then, as a
consequence of the Local Inverse Function Theorem, � maps diffeomorphically a neighbor-
hood of p in R×S onto a neighborhood of 0 in H . Thus, {p} is isolated among �−1(0) and,
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because of the Computation Formula of the degree (see Sect. 2), �-deg(p) = sign(d�p),
which is either 1 or −1, depending on whether or not the orientation of d�p is the natural
one.

Definition 3.4 An eigenpoint (λ∗, x∗) of (3.1) will be called simple if the associated �0-
operator T = L − λ∗C satisfies the following conditions:

(1) Ker T = Rx∗,
(2) Cx∗ /∈ Img T .

Notice that, if p∗ = (λ∗, x∗) is a simple eigenpoint, then the eigenset {λ∗}×Sλ∗ has
only two elements: p∗ and its twin eigenpoint p̄∗ = (λ∗,−x∗), which is as well simple.
Moreover, since T = L − λ∗C is Fredholm of index zero, its image has codimension one in
H . Therefore one has the following

Remark 3.5 If (λ∗, x∗) is a simple eigenpoint of (3.1), then H = Img T ⊕ RCx∗. Thus, λ∗
is a simple eigenvalue of the equation Lx = λCx .

The following result is the key to the proof of Theorem4.5. Despite the fact that we
have assumed dim G > 1, Theorem4.5 holds true in any dimension: its assertion in the
1-dimensional case will be verified in Example5.1.

Theorem 3.6 Let p∗ = (λ∗, x∗) and p̄∗ = (λ∗,−x∗) be two simple twin eigenpoints of
(3.1). Then, �-deg(p) = �-deg( p̄) = ±1. Consequently, the �-degree of the λ∗-eigenset
{λ∗}×Sλ∗ is non-zero.

Proof It is enough to prove that �-deg(p) = �-deg( p̄) = ±1: the last assertion follows
from the Additivity Property of the degree.

Since p∗ is simple, the λ∗-eigensphere Sλ∗ of (3.1) consists of two antipodal points: x∗
and −x∗. Both the tangent spaces of S at these points coincide with the 1-codimensional
subspace x⊥∗ of G. Thus, the tangent spaces of the cylinder R×S at the twin eigenpoints p∗
and p̄∗ are equal to the 1-codimensional subspace R×x⊥∗ of the Hilbert space R×G. The
differentials d�p∗ and d� p̄∗ (acting from R×x⊥∗ to H ) are given, respectively, by

(λ̇, ẋ) �→ T ẋ − λ̇Cx∗ and (λ̇, ẋ) �→ T ẋ + λ̇Cx∗,

where T , as in Definition 3.4, denotes the operator L − λ∗C .
As one can check (see, for example, [7, Lemma 3.2])), the fact that the eigenpoints p∗

and p̄∗ are simple implies that the differentials d�p∗ and d� p̄∗ are invertible. Consequently,
according to Remark 3.3, the�-degrees of p∗ and p̄∗ coincide, respectively, with sign(d�p∗)
and sign(d� p̄∗), which are both non-zero.

Thus, it remains to prove that these two signs are equal, which means that the orientations
of � at these points are both natural or both not natural.

For this purpose, it is convenient to fix an orientation of � at one of the two eigenpoints
p∗ and p̄∗ (for example by choosing the natural orientation of d� p̄∗ ) and to transport it,
continuously, along a curve, up to the other eigenpoint.

A suitable curve is a λ∗-meridian. That is, a geodesic in R×S of the type

G = {
(λ∗, x) ∈ R×S : x = sin θ x∗ + cos θ xe, θ ∈ [−π/2, π/2]},

where xe is an element of the equator S ∩ x⊥∗ of S (recall that dim G > 1) and θ may be
regarded as a latitude.
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Having chosen xe, and the consequent λ∗-meridian, we will “observe” the differential of
�, along G, from the point of view of a self-map defined on a convenient “flat space”; namely,
the Hilbert space G∗ ×R×R, where G∗ is the 2-codimensional subspace x⊥∗ ∩ x⊥

e of G,
which is nonempty because of the assumption dim G > 1, even if trivial when dim G = 2.

We will “observe” the map � by means of a convenient composition �̃ = σ−1◦ � ◦ η,
where η : W → R×S is a parametrization (i.e. the inverse of a chart) defined on an open
subset W of G∗×R×R and σ : G∗×R×R → H is an invertible bounded linear operator (a
global parametrization of H ).

Let us define η, first. Consider the open subset

W = {
(y, θ, λ) ∈ B×(−π, π)×R

}
of G∗×R×R, where B stands for the open unit ball of G∗, and let η : W → R×S be the
map given by

η(y, θ, λ) = (
λ, y +

√
1 − ‖y‖2(sin θ x∗ + cos θ xe)

)
.

Notice that, under η, the eigenpoints p̄∗ and p∗ correspond to ū∗ = (0,−π/2, λ∗) and
u∗ = (0, π/2, λ∗), respectively. One can check that η is a diffeomorphism onto an open
subset of R×S containing the meridian G.

We now define σ . From Remark 3.5 we get the splitting

H = T (x⊥∗ ) ⊕ RCx∗ = (T (G∗) ⊕ RT xe) ⊕ RCx∗. (3.2)

Thus, H can be identified with G∗×R×R by means of the isomorphism

σ : G∗×R×R → H , (y, a, b) �→ T y + aT xe + bCx∗.

We assume that η and σ−1 are naturally oriented and that �̃ has the composite orientation.
Therefore, recalling Corollary 2.13,

sign(d�̃ū∗) = sign(d� p̄∗) and sign(d�̃u∗) = sign(d�p∗), (3.3)

whatever the orientation of �.
Hence, it remains to prove that sign(d�̃ū∗) = sign(d�̃u∗), nomatterwhat is the orientation

of �̃.
To this purpose, consider the straight path γ : [−π/2, π/2] → W defined by γ (θ) =

(0, θ, λ∗). This path joins γ (−π/2) = ū∗ with γ (π/2) = u∗, therefore it is suitable for
the continuous transport of the orientation of �̃ from ū∗ to u∗. Notice that the image of the
simple arc θ �→ η(γ (θ)) is the λ∗-meridian G.

Taking into account that �(λ, x) = T x − (λ − λ∗)Cx and that T x∗ = 0, given any
θ ∈ [−π/2, π/2], we get

d(� ◦ η)γ (θ)(ẏ, θ̇ , λ̇) = T ẏ − θ̇ sin θ T xe − λ̇ sin θ Cx∗ − λ̇ cos θ Cxe.

Therefore, recalling that σ−1, being linear, coincides with its differential, we obtain

d(�̃)γ (θ)(ẏ, θ̇ , λ̇) = σ−1(T ẏ − θ̇ sin θ T xe − λ̇ sin θ Cx∗ − λ̇ cos θ Cxe
)
.

Since, according to the splitting (3.2), Cxe can be written as T y∗ + αT xe + βCx∗ for some
y∗ ∈ G∗ and α, β ∈ R, we have

d(�̃)γ (θ)(ẏ, θ̇ , λ̇) = (
ẏ,−θ̇ sin θ,−λ̇ sin θ

) − λ̇ cos θ
(
y∗, α, β

)
,
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which can be represented as

d�̃γ (θ)(ẏ, θ̇ , λ̇) =
⎛
⎝ I11 0 − cos θ y∗

0 − sin θ −α cos θ

0 0 −(sin θ + β cos θ)

⎞
⎠

⎛
⎝ ẏ

θ̇

λ̇

⎞
⎠ ,

where I11 is the identity on G∗.
Thus, the continuous map 
 : [−π/2, π/2] → A(G∗×R×R), given by θ �→ d�̃γ (θ), is

in block matrix form as in Remark 2.22. Consequently, up to an inversion of the orientation
of �, we may assume that 
 has the canonical orientation, which is such that

sign(d�̃γ (θ)) = sign det(d�̃γ (θ)) = sign
(
sin θ(sin θ + β cos θ)

)
.

Recalling that ū∗ = γ (−π/2) and u∗ = γ (π/2), we finally obtain sign(d�̃ū∗) =
sign(d�̃u∗), and the assertion “�-deg(p) = �-deg( p̄) = ±1” follows from (3.3). 
�

4 The Perturbed Eigenvalue Problem and Global Continuation

Given, as before, two real Hilbert spaces G and H , consider the problem{
Lx + s N (x) = λCx

x ∈ S,
(4.1)

where s, λ ∈ R, L, C ∈ L(G, H), C is compact, and N : S → H is a C1 compact map
defined on the unit sphere of G. As in the unperturbed problem (3.1), we assume that L −λC
is invertible for some λ ∈ R.

A triple (s, λ, x) ∈ R×R×S is a solution of (4.1) if it satisfies the equation Lx + s N (x) =
λCx . The third element x ∈ S is said to be a unit eigenvector corresponding to the eigenpair
(s, λ). The set of all the solutions of (4.1) is denoted by �, while E stands for the subset of
R
2 of the eigenpairs of (4.1).
Observe that E is the projection of � into the sλ-plane, and that the s = 0 slice �0 of �

coincides with the set S = �−1(0) of the eigenpoints of (3.1).
A solution of (4.1) is said to be trivial if it is of the type (0, λ, x). In this case p = (λ, x)

is the corresponding eigenpoint (of the unperturbed problem (3.1)). When p is simple, the
solution (0, λ, x) will be as well said to be simple. Therefore, any simple solution is trivial,
but not viceversa.

Consider the C1-map

�+ : R×R×S → H , (s, λ, x) �→ �(λ, x) + s N (x),

where, we recall, � : R×S → H is defined by �(λ, x) = Lx − λCx . Notice that the zeros
of �+ are the solutions of (4.1); that is, � = (�+)−1(0).

Since � is Fredholm of index zero, because of the compactness of N , any partial map
�+

s = �+(s, ·, ·) of �+ is a �0-map from R×S to H . In fact, in Banach spaces, the
differential at any point of the domain of a compact C1-map is a compact linear operator, and
this holds true also in Banach manifolds, due to the fact that they are locally diffeomorphic
to open sets of Banach spaces.

Therefore, according to Definition 2.25, �+ is an extended �0-homotopy from R×S into
H .

Due to the fact that the partial map�+
0 of�+ coincides with the orientedmap�, thanks to

Proposition 2.24, the extended�0-homotopy�+ admits an orientation (a unique one) which
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is compatible with that of �. Therefore, from now on, �+ will be considered an oriented
extended �0-homotopy.

Since the set� = (�+)−1(0) has a distinguished (trivial) subset, namely {0}×�0, it makes
sense to consider the notion of bifurcation point. A trivial solution q∗ = (0, λ∗, x∗) of (4.1)
is a bifurcation point provided that any neighborhood of q∗ contains nontrivial solutions.

A bifurcation point q∗ is said to be global (in the sense of Rabinowitz [27]) if there exists
a connected set of nontrivial solutions whose closure contains q∗ and it is either unbounded
or meets a bifurcation point q∗ different from q∗.

Particularly meaningful is the study of bifurcation points belonging to a set of trivial
solutions of the type {0}×{λ∗}×Sλ∗ , whose eigensphere Sλ∗ is nontrivial (that is, with
positive dimension). Since, in this case, 0 and λ∗ are given, one can simply say that a point
x∗ ∈ Sλ∗ , regarded as an alias of q∗ = (0, λ∗, x∗), is a bifurcation point if so is q∗.

For a necessary condition and some sufficient conditions for a point x∗ of a nontrivial
eigensphere to be a bifurcation point see [17]. Results regarding the existence of (global or
non-global) bifurcation points belonging to even-dimensional eigenspheres can be found in
[4–8,18,19,21].

Theorem 4.2 below, which is crucial for our main result (Theorem 4.5), provides, in
particular, a sufficient condition for an isolated subset of trivial solutions of (4.1) to contain at
least one bifurcation point. To prove it, we need the following lemma of point-set topology,
which is particularly suitable to our purposes and is obtained from general results by C.
Kuratowski (see [26], Chapter 5, Vol. 2). For an interesting paper on connectivity theory we
also recommend [1].

Lemma 4.1 ([24]) Let K be a compact subset of a locally compact metric space X. If every
compact subset of X containing K has nonempty boundary, then X \K contains a connected
set whose closure in X is non-compact and intersects K.

Recall that, according to Notation 2.14, given a subset D of R×R×S and s ∈ R, the
symbol Ds stands for the s-slice of D. Namely,

Ds = {
(λ, x) ∈ R×S : (s, λ, x) ∈ D

}
.

Theorem 4.2 Let � be an open subset of R×R×S. If deg(�,�0, 0) �= 0, then � has a
connected set of nontrivial solutions whose closure in � is non-compact and contains at least
one bifurcation point.

Proof Since, by definition, a trivial solution of (4.1) is a bifurcation point if it is in the
closure of the set of nontrivial solutions, the assertion is the same as that of Lemma 4.1
provided that X is the set of the solutions in � andK is its subset of the trivial ones. Namely,
X = (�+)−1(0) ∩ � and K = {0}×X0, where X0 is the s = 0 slice of X , which coincides
with �−1(0) ∩ �0 = �0 ∩ �0.

Thus, it is enough to prove that the metric pair (X ,K) satisfies the assumptions of Lemma
4.1.

Let us show first that X is locally compact. Recall that � : R×S → H is a Fredholm map
of index zero. Therefore, its extension (s, λ, x) �→ �(λ, x) is Fredholm of index one, being
obtained by composing � with the projection (s, λ, x) �→ (λ, x), which is a �1-map (recall
the property about the index of the composition of Fredholm operators in Sect. 2.1). Since
�+ is obtained by adding to this extension of � the compact C1-map (s, λ, x) �→ s N (x),
we get that�+ is as well Fredholm of index one. Therefore,�+, being Fredholm, is a locally
proper map (see [28]). This implies that the set � = (�+)−1(0) is locally compact, and so
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is its relatively open subset X . Moreover, K = {0}×X0 is compact, since X0 coincides with
the set �−1(0) ∩ �0, whose compactness is implicit in the assumption that deg(�,�0, 0) is
defined.

It remains to prove that any compact subset of X containingK has nonempty boundary in
X . Assume, by contradiction, that this is not the case. Hence there exists a compact subset D
of X containingK whose boundary, in X , is empty. Therefore, D is relatively open in X and,
consequently, there exists an open subset W of � such that X ∩ W = D. Incidentally we
observe that, according to Definition 3.1, the compact set D is isolated among the elements
of X .

Notice that, sinceW ⊆ �, one has D = {
(λ, s, x) ∈ W : �+(λ, s, x) = 0

}
. Thus, accord-

ing to the Generalized Homotopy Invariance Property, deg(�+
s , Ws, 0) does not depend on

s ∈ R.
Because of the Excision Property, for s = 0 one has

deg(�+
0 , W0, 0) = deg(�+

0 ,�0, 0).

Therefore, since the partial map �+
0 of �+ coincides with �, one gets

deg(�+
s , Ws, 0) = deg(�,�0, 0) �= 0, ∀s ∈ R.

Now, the compactness of D implies that there exists s∗ ∈ R such that the set Ds∗ =
(�+

s∗)
−1(0) ∩ Ws∗ is empty. Consequently, because of the Existence Property one gets

deg(�+
s∗ , Ws∗ , 0) = 0, and the assertion follows from the contradiction. 
�

Corollary 4.3 below provides a sufficient condition for the existence of bifurcation of a
global branch emanating from a point in an isolated subset of trivial solutions.

In order to deduce it from Theorem 4.2, we need to show that the map �+ is more than
locally proper. Actually,

• �+ is proper on any bounded and closed subset of its domain.

To check this, observe that�+ is the sum of twomaps: one is the restriction L̂ to the manifold
R×R×S of the linear operator

L̄ : R×R×G → F, (s, λ, x) �→ Lx,

which is Fredholm of index two; the other one is the map (s, λ, x) �→ s N (x) − λCx , which
sends bounded sets into relatively compact sets. The linear operator L̄ , being Fredholm, is
proper on bounded and closed subsets of its domain. Therefore, the same property is inherited
by L̂ to the closed subset R×R×S of R×R×G. One can check that this property is preserved
by adding to L̂ a compact map.

From Theorem 4.2 we get a sufficient condition for the existence of a global bifurcation
point. Recall that the slice �0 of the set � = (�+)−1(0) of the solutions of (4.1) coincides
with the set S = �−1(0) of the eigenpoints of (3.1).

Corollary 4.3 Let K be an isolated subset of �0 such that �-deg(K) �= 0. Then, there exists
a connected set of nontrivial solutions of (4.1) whose closure contains a bifurcation point
q∗ ∈ {0}×K and it is either unbounded or encounters a bifurcation point q∗ /∈ {0}×K.
Consequently, q∗ is a global bifurcation point.

Proof Let� be the open subset ofR×R×S obtained by removing the closed set of the elements
of {0}×�0 which are not in {0}×K (recall that K, according to Definition 3.1, is relatively
open in �0). Thus, �0 is an isolating neighborhood of K among �0 and, consequently,
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deg(�,�0, 0) = �-deg(K) �= 0. Because of Theorem 4.2, there exists a connected set C of
nontrivial solutions whose closure in �, call it C+, is non-compact and contains at least one
bifurcation point q∗, which, necessarily, belongs to �.

It is enough to prove that C satisfies the first assertion: the second one is a consequence
of the fact that the closure of a connected set is as well connected. To this purpose, we need
to show, first, that q∗ ∈ {0}×K and, after this, we may assume that C+ is bounded.

The point q∗ belongs to {0}×K, since, because of the definition of �, one has � ∩ ({0}×
�0) = {0}×K.

Assume now that C+ is bounded. Then, so is the closure C of C (in R×R×S). It remains
to show that C contains a trivial solution q∗ which does not belong to {0}×K.

Recall that �+ is proper on bounded closed subsets of its domain. Therefore, the subset
C of (�+)−1(0) is compact. Moreover, C contains C+, which is not compact. This implies
that C has at least one point q∗ which is not in C+. The fact that q∗ is a bifurcation point not
in {0}×K follows from the definition of �. 
�
Corollary 4.4 If D is a compact component of �, then �-deg(D0) = 0.

Proof Observe that D0 is an isolated subset of �0, due to the fact that the set of all the
eigenvalues of (3.1) is discrete.

Suppose, by contradiction, that�-deg(D0) �= 0. Then, Corollary 4.3 applies ensuring the
existence of a connected set C of nontrivial solutions of (4.1) whose closure C, which is as
well connected, contains at least two trivial solutions: one, say q∗, belonging to {0}×D0, and
one, call it q∗, outside {0}×D0.

Since q∗ belongs to both the connected set C and the component D, one gets C ⊆ D.
Therefore, q∗ belongs to D and, consequently, being trivial, belongs as well to {0}× D0,
which is a contradiction yielding the assertion. 
�

We are ready to prove our main achievement (Theorem 4.5). Its proof is based on previous
results requiring the notion of degree for the oriented map � and the convenient hypothesis
dim G > 1. In spite of this, its assertion is still valid when the space G has dimension one,
as Example 5.1 shows.

Theorem 4.5 Let (λ∗, x∗) be a simple eigenpoint of problem (3.1). Then, in the set � of the
solutions of (4.1), the connected component containing (0, λ∗, x∗) is either unbounded or
includes a trivial solution (0, λ∗, x∗) with λ∗ �= λ∗.

Proof We may assume that the connected component D of � containing (0, λ∗, x∗) is
bounded, and we need to show that its slice D0 is not contained in {λ∗}×Sλ∗ .

Recalling that � = (�+)−1(0) and that �+ is proper on bounded closed subsets of
its domain, we get that D is compact. Then, Corollary 4.4 implies �-deg(D0) = 0 and,
consequently, because of Theorem 3.6, D0 � {λ∗}×Sλ∗ . 
�

5 Some Illustrating Examples and an Application

We give now three examples illustrating the assertion of Theorem 4.5. The last one shows
also that, in this theorem, the assumption that the solution (0, λ∗, x∗) is simple cannot be
removed.

After the examples, we will give an application of Theorem 4.5 to a motion equation
containing a nonlinearity like an air resistance force.
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5.1 Examples

The first example regards an exhaustive discussion of the solutions of problem (4.1) in the
case when dim G = 1. As we shall see, the assertion of Theorem 4.5 holds true also in this
minimal dimension.

Example 5.1 Let G = H = R and consider the problem{
lx + s N (x) = λcx,

|x | = 1,
(5.1)

in which l and c are two given real numbers, and N is an arbitrary real function.
We assume c �= 0, so that the unperturbed problem (obtained by putting s = 0) has a

unique eigenvalue, λ∗ = l/c, and two corresponding twin eigenpoints:

p = (λ∗, x∗) = (l/c, 1), p̄ = (λ∗,−x∗) = (l/c,−1),

both simple. We will interpret the assertion of Theorem 4.5 in this extreme situation.
For a solution (s, λ, x) of problem (5.1) we have two possibilities: x = 1 or x = −1.
For x = 1 one has λ = (l + s N (1))/c. Thus, the set of solutions of this type is given by

the straight line

�+ = {(
s, (l + s N (1))/c, 1

) ∈ R
3 : s ∈ R

}
.

Analogously, for x = −1 one gets

�− = {(
s, (l − s N (−1))/c,−1

) ∈ R
3 : s ∈ R

}
.

Therefore, the set � of all the solutions of (5.1) is �+ ∪ �−, and the assertion of Theorem
4.5 is satisfied for both the simple eigenpoints (λ∗, x∗) and (λ∗,−x∗).

The following example concerns a differential equation with an evident physical mean-
ing, and the parameter 2s, when positive, can be regarded as a frictional coefficient. Its
abstract formulation has infinitely many eigenpoints, all of them simple. The set � of the
solution triples (s, λ, x) is the union of infinitely many unbounded components, each of them
corresponding to one and only one eigenpoint.

Example 5.2 Let us show howTheorem 4.5 agreeswith the structure of the non-zero solutions
of the following boundary value problem:{

x ′′(t) + 2sx ′(t) + λx(t) = 0,
x(0) = 0 = x(π).

(5.2)

For this purpose, we will interpret it as an abstract problem of the type (4.5) by specifying
what are here the spaces G and H , the linear operators L and C , and the map N .

Let H1(0, π) be the Hilbert space of the absolutely continuous real functions defined in
[0, π] with derivative in L2(0, π), and denote by H2(0, π) the Hilbert space of the C1 real
functions in [0, π] with derivative in H1(0, π).

Clearly H1(0, π) is a subset of the Banach spaceC[0, π], and the inclusion, we recall, is a
compact operator. Therefore the injection of H1(0, π) into L2(0, π) is as well compact, due
to the bounded injection of C[0, π ] into L2(0, π). Analogously, the inclusion of H2(0, π)

into C1[0, π] is compact and the inclusion of C1[0, π ] into H1[0, π] is continuous.
As a source space G we take the 2-codimensional closed subspace of H2(0, π) consisting

of the functions x satisfying the boundary condition x(0) = 0 = x(π). The target space H
is L2(0, π).
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Observe that the secondderivative x �→ x ′′, as a linear operator from H2(0, π) to L2(0, π),
is bounded and Fredholm of index 2, being surjective with 2-dimensional kernel. Therefore,
its restriction L ∈ L(G, H) is a �0-operator (recall the property about the composition of
Fredholm operators).

Here C associates to any x ∈ G the element −x ∈ H . Thus, C is a compact linear
operator, since so is the injection of H2(0, π) into L2(0, π). The map N transforms x ∈ G
in 2x ′ ∈ H and, therefore, it is as well compact, as composition of a bounded linear operator
into H1(0, π) with the compact injection into L2(0, π).

Among the infinitely many equivalent norms in H2(0, π) and, consequently, in G we
choose the one associated with the inner product

〈x, y〉 = 1

π

∫ π

0

(
x(t)y(t) + x ′′(t)y′′(t)

)
dt .

As in the previous sections, S denotes the unit sphere of G. Since we are interested in the
non-zero solutions of (5.2), the linearity of N justifies the condition x ∈ S in the following
abstract formulation of our problem:{

Lx + s N (x) = λCx

x ∈ S.
(5.3)

Elementary computations show that the eigenvalues of the unperturbed problem (obtained
with s = 0) are λ1 = 1, λ2 = 4, . . . , λn = n2, . . . and to any λn corresponds the 1-
dimensional eigenspace Rxn = Ker(L − λnC), with xn ∈ S given by

xn(t) =
√

2

1 + n4 sin(nt).

Let us show that pn = (λn, xn) and p̄n = (λn,−xn) are simple eigenpoints, according to
Definition 3.4. Since C is compact, the operator Tn = L − λnC is Fredholm of index zero.
Therefore, we need only to prove that Cxn does not belong to Tn(G), which means that the
equation Tn(x) = Cxn has no solutions in G. In fact, there are no solutions of the resonant
problem {

x ′′(t) + n2x(t) = sin(nt),
x(0) = 0 = x(π).

With standard computations one can prove that, given s ∈ R, the differential equation
x ′′(t) + 2sx ′(t) + λx(t) = 0 has a non-zero solution verifying the boundary condition
x(0) = 0 = x(π) if and only if λ = n2 + s2, with n ∈ N. Therefore, the subset E of
the sλ-plane of the eigenpairs of (5.3) is composed of the disjoint union of infinitely many
parabolas of equation λ = n2 + s2, n ∈ N. Moreover, given (s, n2 + s2) ∈ E , any solution
in G of the differential equation

x ′′(t) + 2sx ′(t) + (s2 + n2)x(t) = 0

belongs to the straight line Rxs,n , where xs,n(t) = exp(−st) sin(nt).
As a consequence of this, given any eigenpoint pn = (λn, xn), the connected component,

in �, containing the corresponding trivial solution (0, λn, xn) is the unbounded curve{
(s, s2 + n2, xs,n/‖xs,n‖) : s ∈ R

}
.

Obviously, for the twin eigenpoint p̄n = (λn,−xn), one gets{
(s, s2 + n2,−xs,n/‖xs,n‖) : s ∈ R

}
.
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In conclusion, for any eigenpoint the assertion of Theorem 4.5 is verified.

Example 5.3 below has already been considered in [7] in relation to the conjecture formu-
lated there and solved by Theorem 4.5 above. It concerns a system of two ordinary differential
equations with periodic boundary conditions, and the set � of its solutions (s, λ, x) has a
component which is diffeomorphic to a circle and contains exactly four trivial solutions, all
of them simple. These four solutions are associated with two eigenvalues of the unperturbed
problem: a pair of twins for each eigenvalue. The other components of � are infinitely many
1-dimensional spheres (geometric circles). The projection of each of them into the sλ-plane
is a singleton {(0, λ)}, with λ an eigenvalue of the unperturbed problem.

Example 5.3 We are interested in the non-zero solutions of the following system of coupled
differential equations with 2π -periodic boundary conditions:⎧⎪⎨

⎪⎩
x ′
1(t) + x1(t) − sx1(t) = λx2(t),

x ′
2(t) − x2(t) − sx2(t) = −λx1(t),

x1(0) = x1(2π), x2(0) = x2(2π).

(5.4)

As in Example 5.2, we interpret our problem in the abstract form{
Lx + s N (x) = λCx

x ∈ S,
(5.5)

where L , C and N are operators to be defined below, together with the source and the target
spaces G and H .

Let H1((0, 2π), R
2) be the Hilbert space of the absolutely continuous functions x =

(x1, x2) : [0, 2π] → R
2 with derivative in L2((0, 2π), R

2).
We take as G the closed subspace of H1((0, 2π), R

2) of the functions satisfying the
periodic condition x(0) = x(2π), and as H the space L2((0, 2π), R

2). Observe that G has
codimension 2 in H1((0, 2π), R

2). Therefore, the operator L : G → H , given by (x1, x2) �→
(x ′

1 + x1, x ′
2 − x2), is Fredholm of index zero.

The operators N and C , given by (x1, x2) �→ (−x1,−x2) and (x1, x2) �→ (x2,−x1)
respectively, are compact, since so is the injection

H1((0, 2π), R
2) ↪→ L2((0, 2π), R

2).

The norm in G is the one associated with the inner product

〈x, y〉1 = 1

2π

∫ 2π

0

(
x(t) · y(t) + x ′(t) · y′(t)

)
dt,

where, given two vectors a = (a1, a2) and b = (b1, b2) in R
2, a · b denotes the standard dot

product. As in the previous sections, S is the unit sphere in G.
The eigenvalues of the unperturbed problem (obtained by putting s = 0 in (5.5)) are

λ = ±√
1 + n2, n = 0, 1, 2, . . . and the set E of the eigenpairs of (5.5) is the disjoint union

of two sets: the circle

C = {
(s, λ) ∈ R

2 : s2 + λ2 = 1
}

and the isolated eigenpairs{
(0, λ) ∈ R

2 : λ = ±
√
1 + n2, n = 1, 2, 3, . . .

}
.
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Notice in fact that, if (s, λ, x) satisfies (5.4) with s �= 0, then x must be constant. Thus, the
non-zero solutions of the periodic boundary value problem (5.4) are of two types: the constant
ones, corresponding to the eigenpairs of the circle C, and the oscillating ones associated with
the isolated eigenpairs.

Let us examine first the case (s, λ) ∈ C. One has (s, λ) = (cos θ, sin θ), with θ ∈ [0, 2π],
and the kernel of the linear operator

L + (cos θ)N − (sin θ)C ∈ L(G, H)

is the straight line Rxθ , where xθ ∈ S is the constant function

xθ : [0, 2π ] → R
2, t �→ (cos(θ/2), sin(θ/2)).

Therefore, the connected component D of � containing the trivial solution

q∗ = (0, λ∗, x∗) = (0, 1, xπ/2)

of (5.5) is diffeomorphic to a circle, as its parametrization

θ ∈ [0, 4π ] �→ (cos θ, sin θ, xθ ) ∈ R × R × S

shows. This component contains four trivial solutions: two of them associated with the
eigenvalue λ∗ = 1 and the others with λ∗ = −1. They are all simple solutions, and the
component D agrees with the statement of Theorem 4.5.

Incidentally, we observe that the projection of D onto the circle C is a double covering
map, and the above parametrization of D is just a lifting of the map θ �→ (cos θ, sin θ) ∈ C,
θ ∈ [0, 4π].

Let us consider now the isolated eigenpairs. That is, the ones having |λ| > 1. In this case
(5.4) admits non-zero solutions if and only if s = 0 and λ = ±√

1 + n2, with n = 1, 2, 3, . . .
More precisely, these solutions are oscillating and, given any isolated eigenpair (0, λ∗), the
corresponding solutions of (5.4), plus the zero one, form a two-dimensional subspace of
H1((0, 2π), R

2). This implies that the eigensphere Sλ∗ of the unperturbed problem is the
geometric circleKer(L−λ∗C)∩S. Therefore, if x∗ is any element of this circle, the connected
component in � containing the corresponding trivial solution (0, λ∗, x∗) does not satisfy the
assertion of Theorem 4.5. Thus, the assumption that the eigenpoint (λ∗, x∗) is simple cannot
be removed.

5.2 An Application

We close by showing how both Theorem 4.5 and the well-known notion of winding number
allow us to deduce theoretically, without explicitly solving the differential equation, that the
structure of set � of solutions (s, λ, x) of the nonlinear boundary value problem{

x ′′(t) + sg(x ′(t)) + λx(t) = 0,
x(0) = 0 = x(π), x ∈ S

is essentially the same as in Example 5.2. Here g : R → R is an increasing odd C1-function,
as is the classical air resistance force g(v) = v|v|, and the sphere S is as in Example 5.2. The
parameter s, when positive, may be regarded as a frictional coefficient.

The problem can be rewritten in the abstract form as follows:{
Lx + s N (x) = λCx

x ∈ S.
(5.6)
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The spaces G and H are the same as in Example 5.2, and so are the operators L and C .
The compact map N : G → H sends x into the function N (x) : t �→ g(x ′(t)). It is not
difficult to prove that N is C1 and its Fréchet differential at x ∈ G is given by d Nx (h) : t �→
g′(x ′(t))h′(t).

The unperturbed problem is the same as in Example 5.2. Therefore, its eigenvalues are
λ1 = 1, λ2 = 4, . . . , λn = n2, . . . They are all simple and, consequently, each of them
corresponds to a pair of isolated unit eigenpoints.

We will prove that the set � of the solutions (s, λ, x) of (5.6) contains infinitely many
unbounded components, each of them corresponding to one and only one eigenpoint.

Let S1 denote the unit circle of C and let w : C(S1) → Z stand for the winding number
function, defined on the set of the continuous maps from S1 into itself. Recall that, given
γ ∈ C(S1), w(γ ) is the same as the Brouwer degree of γ and, speaking loosely, denotes the
number of times that γ travels counterclockwise around the origin of C, and it is negative if
the curve travels clockwise.

Call wj the integer valued function that to any non-zero solution x of the parametrized
differential equation

x ′′(t) + sg(x ′(t)) + λx(t) = 0, (5.7)

depending on s, λ ∈ R, assigns the winding number wj(x) of the closed curve j(x) ∈ C(S1)

defined by

z = eiθ �→
(
x ′(θ/2) + i x ′(0)x(θ/2)

)2
x ′(θ/2)2 + x ′(0)2x(θ/2)2

, θ ∈ [0, 2π].

Notice that, given any non-zero solution x of (5.7), j(x) is well defined, since x(t) and x ′(t)
cannot be simultaneously zero, due to the uniqueness of the Cauchy problem. Observe also
that j(x) is a closed curve, since both the endpoints coincide with 1 ∈ C.

It is convenient to extend the map x �→ j(x) to the symmetric set of all the functions
x ∈ G having the property that x(t)2 + x ′(t)2 > 0 for all t ∈ [0, π]. We denote this set by
X and we observe that it is open, because of the bounded inclusions H2(0, π) ↪→ C1[0, π]
and H1(0, π) ↪→ C[0, π ].

One can check that, for example, if x(t) = sin(nt) with n ∈ Z, then j(x) is the map
z �→ zn , whose winding number is n.

One can also check that, if a is a positive constant and x ∈ X , then j(x) and j(ax) are
homotopic, therefore they have the same winding number. Moreover, if x ∈ X , then j(−x) =
1/j(x), which is the same as the conjugate map j(x) of j(x). Therefore, the winding numbers
of j(x) and j(−x) are opposite each other, and this happens for the two unit eigenvectors
corresponding to any eigenvalue λn = n2 of our problem. In fact, this number is n for the
unit eigenfunction

xn(t) =
√

2

1 + n4 sin(nt),

and −n for the opposite one.
Observe that, due to the fact that X is open in G, if two functions of X are sufficiently

close, then the segment joining them lies in X . Therefore, the corresponding two images
under j : X → C(S1) are homotopic and, consequently, they have the same winding number.
Thus, the integer valued function wj : X → Z is locally constant.

Since the projection map p : � → X that to any solution (s, λ, x) of (5.6) assigns the
function x is continuous, we have the following
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Remark 5.4 The map wjp : � → Z that to any solution (s, λ, x) of (5.6) assigns the winding
number of the closed curve j(x) is locally constant.

Let q∗ = (0, λ∗, x∗) be any trivial solution of (5.6). We want to prove that the connected
component D∗ of � containing q∗ is unbounded and does not meet other trivial solutions.

To this purpose, observe first that, since D∗ is connected, Remark 5.4 implies wjp(q) =
wjp(q∗) for all q ∈ D∗. In particular, if λ∗ = λn = n2, then wjp(q∗) is n or−n, depending on
whether x∗ is the above function xn or its opposite. Thus, D∗ does not contain trivial solutions
different from q∗, consequence of the fact that the function that to any trivial solution q assigns
the integer wjp(q) is injective.

Finally, fromTheorem 4.5we get that D∗ is unbounded, since otherwise D∗ would contain
a trivial solution different from q∗.
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