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Highlights
� Dysregulated lipid metabolism is a key factor in the

hepatic pathology of sepsis.

� Liver LD overload correlates with increased sepsis
severity and liver injury.

� Sepsis-induced LDs contain increased levels of un-
saturated neutral lipids and lipoperoxides.

� Dampening synthesis of hepatic LDs by inhibiting
DGAT1 decreases inflammation, reduces lipid per-
oxidation, and improves liver function.

Impact and Implications
Sepsis is a complex life-threatening syndrome caused by
dysregulated inflammatory and metabolic host
responses to infection. The observation that lipid drop-
lets may contribute to sepsis-associated organ injury by
amplifying lipid peroxidation and inflammation pro-
vides a rationale for therapeutically targeting lipid
droplets and lipid metabolism in sepsis.
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Background & Aims: Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved
tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been
associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and
tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known.
Methods: Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver
injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic,
protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a
pharmacological inhibitor of DGAT1.
Results: We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of
steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and
oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of
unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed.
Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and
lipid peroxidation markers and ameliorates sepsis-induced liver injury.
Conclusions: Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD
accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation
decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that
LDs contribute to the pathogenesis of liver injury triggered by sepsis.
Impact and Implications: Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic
host responses to infection. Theobservation that lipiddropletsmaycontribute to sepsis-associatedorgan injury byamplifying lipid
peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Sepsis is a life-threatening multiorgan dysfunction caused by a dys-
regulated host response to infection1 that affects approximately 30
million individuals globally annually and remains the leading cause
of intensive care unitmortality.2,3Multiple organ dysfunctionduring
sepsis is directly linked to morbidity and mortality1,3 triggered by
multifactorial mechanisms, including maladaptive inflammation
and disrupted tissue tolerance, which contribute to tissue damage
and death.4,5 Recent studies have emphasised that sepsis-induced
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organ dysfunction is associated with substantial alterations in
organismal and cellular metabolism. Integrated metabolomics and
proteomics analyses have identified lipidmetabolism as the primary
metabolic alteration that predicts poor outcomes in patients with
sepsis compared to healthy individuals.6,7

Lipid droplet (LD) accumulation and oxidative stress are
recurrent consequences of sepsis-induced metabolic reprogram-
ming.8 In thisway, the liver is under intense overload since it is the
central organ in controlling lipid homeostasis.9 Liver injury is an
early outcomeof sepsis oftendetected in thefirst 24hafterdisease
onset that occurs concurrently with systemic metabolic remod-
elling.10,11 Hepatic steatosis is a commonly observed phenotype in
several hepatic injuries, including HCV infection, NAFLD (non-
alcoholic fatty liver disease) and NASH (non-alcoholic steatohe-
patitis).12,13 Moreover, NAFLD progression to NASH is character-
ized by the presence of oxidative stress and hepatic inflammatory
processes, which contribute to liver failure.13 However, the role
played by LDs in lipotoxic events that aremediated by peroxidised
lipids is still controversial.14,15 Although sepsis induces alterations
in lipid metabolism and increased LD accumulation, the involve-
ment of LDs in the mechanisms underlying disrupted tissue
tolerance and organ injury in sepsis are poorly understood. Here,
we investigated the mechanisms underlying LD formation and its
consequences in the liver during sepsis.
Materials and methods
Animals, sepsis induction and treatments
Female C57BL/6J mice were supplied by the Oswaldo Cruz
Foundation’s Central Animal House and used at 8–12 weeks of
age. Mice were maintained on a standard rodent diet (AIN-93 M)
with ad libitum access to water under a 12-h light/dark cycle and
controlled temperature (23 ±1 �C). Sepsis was induced by caecal
ligation and puncture (CLP) according to Reis et al. (2017).16 The
number of punctures performed was varied according to the
degree of severity sought, with either two perforations (moderate
sepsis) or nine perforations (severe sepsis) made using a 22-
gauge needle. Sham-operated animals underwent identical lap-
arotomy but without ligation and punctures. At 6 h and 24 h
postsurgery, sham and CLPmicewere orally treated with 3mg/kg
A922500. Animals were monitored for 48 h for survival, clinical
score, and body temperature analysis. The clinical evaluation was
based on a multifactorial SHIRPA protocol, with the modifications
made by Reis et al. (2017).16 All experiments were approved by the
Animal Welfare Committee of the Oswaldo Cruz Foundation un-
der licence numbers LW32/12 and L005/2020 (CEUA/FIOCRUZ).

Intravital confocal microscopy, histology and transmission
electron microscopy analysis
Intravital confocal imaging was performed as previously
described.17,18 For histological analysis, the tissue slices were
stained with H&E and scanned for analysis using the Panoramic
Viewer programme (3DHISTECH Ltd., Budapest, Hungary). For
transmission electron microscopy, the samples were fixed in PBS
containing 1% osmium tetroxide and 1.5% potassium ferricyanide.
The samples were analysed under a transmission electron micro-
scope (EMI, Zeiss). For details, see the supplementary CTAT table.

Mitochondrial respiration
Mitochondrial respiration (O2 flux) was measured in mouse liver
samples using an Oxygraph-2k (Oroboros Instruments, Inns-
bruck, Austria) as described by Cantó & Garcia-Roves (2015).19
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Western blotting and dot plot
The livers of mice were harvested using ice-cold lysis buffer pH
8.0 (1% Triton X-100, 2% SDS, 150 mM NaCl, 10 mM HEPES, 2 mM
EDTA containing protease inhibitor cocktail; Roche). Western
blot analyses were conducted according to the method described
by Teixeira et al. (2022).20 The dot plot assay was conducted
using 5 lg of liver homogenate protein applied to the blotting
apparatus (Bio-Rad) according to the manufacturer’s in-
structions. The densitometry values were analysed using Image
Studio Lite software.

Purification of hepatic LD
The livers of the mice were extracted and homogenised in a
Dounce tissue grinder at a ratio of 1 g tissue to 3 ml homoge-
nisation buffer (25 mM Tris-HCl, pH 7.5, 100 mM KCl, 1 mM
EDTA, 5 mM EGTA) supplemented with antioxidant (BHT, 0.1%),
protease and phosphatase inhibitor cocktail (Roche). Hepatic LDs
were purified by fractionation in sucrose density gradients ac-
cording to the method described by Bosh et al. (2020).21 As a
control for proper cell fractionation, the activity of the cyto-
plasmic enzyme lactate dehydrogenase (Promega, G1780) and
levels of the LD protein marker PLIN2 were analysed.

Measurement of total glyceride and 8-isoprostane levels in
isolated LDs
Total glyceride levels and 8-isoprostane levels in isolated LDs
were measured using an enzymatic glyceride liquiform kit
(Labtest, cat. # 87-2/100) and enzyme-linked immunoassay
(Cayman Chemical, Cat. # 516351), respectively, according to the
manufacturer’s instructions.

Lipid extraction, lipidomic analysis and data processing
For lipid extraction, we combined 800 ll of methanol with 200 ll
of purified LD. Subsequently, 4 ml of chloroform:ethyl acetate
(4:1) was added and thoroughly vortexed for 1 min and soni-
cated for 20 min. After centrifugation (2,000 × g for 6 min at 4 �C),
the lower phase containing the total lipid extract (TLE) was
collected and dried under N2 gas. The dried TLE was redissolved
in 100 ll of isopropanol, and the injection volume was set at 1 ll.
We analysed the TLE using an electrospray ionisation time-of-
flight mass spectrometer (ESI-TOFMS, Triple TOF 6600, Sciex)
interfaced with an ultra-high performance LC system (UHPLC
Nexera, Shimadzu). For detailed conditions, please refer to
Chaves-Filho et al. (2019),22 the supplementary CTAT table, and
Table S1.

Thin-layer chromatography
Hepatic lipid fractions from 1 mg of tissue sample were extracted
by applying the Bligh and Dyer method.23 Thin-layer chroma-
tography was performed on silica gel 60 plates (Merck) according
to Horwitz and Perlman (1987).24

Thiobarbituric acid-reactive species assay, myeloperoxidase
activity and measurements of inflammatory mediators
Thiobarbituric acid-reactive species levels were determined ac-
cording to the method described by Buege and Aust (1978).25

Myeloperoxidase activity was analysed using the method
described by Bradley et al. (1982).26 CXCL1/KC, CCL2/MCP-1, IFN-
c, IL-1b, IL-6, IL-10, and TNF levels were quantified in liver ho-
mogenates by ELISA following the manufacturer’s instructions
(R&D Systems). The protein concentrations were measured with
a BCA protein assay kit.
2vol. 6 j 100984



Statistical analysis
Statistical analyses were performed using GraphPad Prism soft-
ware version 8. One-way ANOVA followed by Tukey’s post hoc
test was used to compare differences among three groups. Lo-
gistic regression was used to analyse the association between
lipid droplet amounts and hepatic injury biomarkers. For lip-
idomic statistical analysis, the data were imported into Metab-
oAnalyst software (version 5.0; https://www.metaboanalyst.ca/)
following the protocol of Pang et al.27 All p values <0.05 were
considered statistically significant.
Results
LD accumulation in the hepatic tissue during experimental
sepsis occurred alongside liver injury
To evaluate the association between LD accumulation and liver
injury, we performed experimental sepsis in mice. Sepsis
severity was modulated through the number of punctures made
in the caecum. The accumulation of hepatic LDs was higher in
the severe sepsis model (9 punctures), with an increased
number (Fig. 1B) and droplet size (Fig. 1C), than in the mild
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model (2 punctures) (Fig. 1A-C). To characterize whether LDs are
potential pathophysiological contributors to liver injury during
sepsis, we evaluated levels of classic biomarkers of hepatic
damage and function, serum alanine aminotransferase (ALT),
aspartate aminotransferase (AST) and albumin. The levels of
these markers demonstrated the presence of hepatic injury in
the sepsis model, although no differences based on severity were
observed (Fig. 1D-F). Using logistic regression, we found that the
quantity of LDs in the liver was statistically correlated with AST
(Fig. 1G), ALT (Fig. 1H) and albumin levels (Fig. 1I). Thus, our
results show that LD accumulation is associated with the severity
of sepsis and correlates with the degree of sepsis-induced liver
injury.

Sepsis-induced hepatic steatosis is followed by an increase in
lipid peroxidation
On histological analysis, we detected a marked progression of
steatosis processes from 24 h to 48 h post-CLP, with hepatocytes
carrying large intracytoplasmic LDs that displaced the nucleus to
the cell periphery (macrovesicular steatosis) (Fig. 2A). Through
ultrastructural analysis of hepatic LDs, we confirmed size-related
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differences and detected an expressive change in the electron
densities of LDs over time during the septic process. At 24 h post-
CLP, the LDs were smaller, more numerous, and more electro-
clear, while at 48 h post-CLP, the LDs were larger and highly
electron dense (Fig. 2B-D). Changes in electron density may
imply a differential affinity of the cellular components to the
metals used in the sample contrasting process, which suggests a
change in the composition of the LDs.28

Increased levels of end products of lipid peroxidation occur
rapidly after sepsis diagnosis and are a strong predictor of severity
and mortality.29 Our next step was to evaluate whether the pro-
gression of sepsis-induced liver steatosis was associated with
oxidative stress. The evaluation of malondialdehyde (MDA) levels
JHEP Reports 2024
in the total liver homogenate showed that significantly increased
lipid peroxidation occurred 48 h after surgery (Fig. 2E). To assess
lipid accumulation and peroxidation in the LD content directly, we
purified hepatic LDs through sucrose gradient ultracentrifugation
and measured the levels of total glycerides along with the level of
8-isoprostane, a prostanoid-like eicosanoid of non-enzymatic
origin produced by free radical-catalysed peroxidation of arach-
idonic acid (AA) and a well-recognised biomarker of lipid perox-
idation. Consistent with the extent of hepatic steatosis, we
observed a significant increase in liver total glyceride content in
the CLP group compared to the sham group at both time points
analysed, whereas the total glyceride levels reached a maximum
at 48 h (Fig. 2F). Increased lipid peroxidation in LDs, inferred by 8-
4vol. 6 j 100984



isoprostane levels, was also observed only 48 h after the induction
of sepsis (Fig. 2G,H). These data suggest that the increase in LD
lipid peroxidation results from lipid overload in the liver.

The composition of hepatic LDs changes over time after
experimental sepsis induction
Our next step was to assess whether the differences found in the
electron density of LDs on electromagnetic analysis were
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associated with the changes found in LD composition after
experimental sepsis. To explore this, untargeted lipidomic anal-
ysis was performed in purified hepatic LDs obtained from the first
fraction (top-to-bottom) of the sucrose gradient (Fig. 3A). A total
of 114 individual lipid species were manually identified by lip-
idomic analysis. The identified lipids were classified into three
subclasses of neutral lipids, mainly triacylglycerols (TGs; n = 109)
(Fig. 3B). Moreover, TGs were also the lipid subclass most
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pentaenoic acid; LD, lipid droplet.
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susceptible to changes induced by sepsis (Fig. 3C). Using principal
component analysis, we observed spatial segregation between
experimental groups, mainly between the sham and CLP groups
at 48 h (Fig. 3D). Based on the degree of unsaturation, sepsis
triggered the accumulation of all lipid classes, but mono-
unsaturated and polyunsaturated fatty acids (MUFAs and PUFAs,
respectively) reached their highest concentrations 48 h after CLP
(both increased �six-fold compared to the sham group),
including eicosapentaenoic acid, docosahexaenoic acid and AA
(Fig. 3E). Through a more detailed analysis of the fatty acid
composition of TGs, species such as 16:0, 16:1, 18:1 and 18:2 were
found in significantly higher concentrations in the LDs of the
livers of septic mice after 48 h of CLP, relative to those seen at 24 h
(Fig. 3F).
JHEP Reports 2024
Dampening LD accumulation in septic mice through DGAT1
inhibition protects the liver from lipid peroxidation and
tissue damage
Since the main class of neutral lipids accumulated in liver LDs
during sepsis was TG, we proceeded to pharmacologically inhibit
the diacylglycerol O-acyltransferase 1 (DGAT1) enzyme. We
observed that treatment with the DGAT1 inhibitor A922500
(iDGAT1) prevented liver steatosis in septic animals 48 h after
CLP surgery (Fig. 4A, B). Thin-layer chromatography analysis
confirmed that iDGAT1 treatment reduced TGs, without
increasing diacylglycerol accumulation or decreasing cholesterol
ester levels in the livers of CLP mice (Fig. 4C, D). The inhibition of
LD accumulation in septic mice through DGAT1 blockage
reduced AST and ALT levels (Fig. 4E, F) in parallel with the
6vol. 6 j 100984
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recovery of albumin production (Fig. 4G). Accordingly, the
reduction in LD overload decreased the levels of oxidative stress
markers (MDA, 4-hydroxynonenal and 3-nitrotyrosine, Fig. 4H-
K) in the liver. For this scenario, one question remained. It was
still unknown what the fate of the excess fatty acids would be if
they were not channelled to esterification in LDs, as excess free
fatty acids also trigger lipotoxicity. As the inhibition of TG for-
mation does not result in the accumulation of precursors, we
evaluated the oxidation of fatty acids. Initially, we evaluated the
expression of PLIN5, a perilipin protein that regulates LD hy-
drolysis,30 and of carnitine palmitoyltransferase 1A (CPT1), a
rate-limiting enzyme in fatty acid oxidation. The iDGAT1 treat-
ment caused a trend towards an increase in Plin5 expression
compared only to the sham group (Fig. 5A, B). Conversely,
treatment with iDGAT1 reestablished the hepatic expression of
CPT1, which had been diminished by sepsis (Fig. 5A, C). Once
JHEP Reports 2024
inside the mitochondria, fatty acyl-CoA esters undergo b-oxida-
tion. The oxidation of long-chain fatty acids starts with dehy-
drogenation catalysed by the VLCAD (also known as ACADVL)
enzyme, which is also the rate-limiting step in mitochondrial
fatty acid catabolism. No difference in VLCAD expression was
observed between the groups (Fig. 5D), suggesting that the
impact of DGAT1 inhibition on lipid catabolism relies more on
fatty acid transportation to the mitochondria than on b-oxidation
itself. We also investigated the expression of proteins associated
with the mitochondrial oxidative phosphorylation system (CV-
ATP5A, CIII-UQCRC2, CIV-MTCO1, CII-SDHB and CI-NDUB8)
(Fig. 5D), and no differences were observed between the exper-
imental groups at 48 h. As previously observed, sepsis triggers
mitochondrial respiratory uncoupling; however, DGAT1 inhibi-
tion did not modify changes induced by sepsis in respirometry
assays using octanoyl-L-carnitine (Fig. 5E, F). Together, these
7vol. 6 j 100984
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resus suggest that iDGAT1 treatment has limited direct effects on
mitochondrial activity.lt.

Inhibition of DGAT1 decreases liver inflammation but does
not improve survival
LDs participate in key mechanisms of the immune response,
integrating several immunometabolic signalling pathways, the
production of inflammatory mediators, and microbial killing.31

Since sepsis is fundamentally a disease related to an imbalance
in the inflammatory response, we evaluated the effects of
pharmacological inhibition of DGAT1 on sepsis-induced liver
inflammation. A922500 treatment inhibited sepsis-induced LD
formation and 8-isoprostane generation (55% inhibition). More-
over, the treatment also reduced the levels of CCL2/MCP1
(Fig. 6A) and CXCL1/KC (Fig. 6B), chemokines responsible for the
recruitment of macrophages and neutrophils. Accordingly, we
detected a decrease in myeloperoxidase activity in the livers of
iDGAT1-treated mice, indicative of a decrease in leukocyte
infiltration of the liver (Fig. 6C). Moreover, treatment with
A922500 also significantly reduced the sepsis-induced increases
in IFN-c (Fig. 6D) and IL-1b levels (Fig. 6E) in hepatic tissue.
Notably, IL-6, IL-10, and TNF-a levels were not altered by iDGAT1
treatment (Fig. 6F-H). Systemic treatment did not change the
sepsis-induced pattern of circulating lipids after 48 h (Fig. 7A-D).
However, septic mice treated with iDGAT1 developed persistent
hypothermia that probably contributed to their poor outcomes
(Fig. 7E). Treatment with iDGAT1 worsened clinical conditions
assessed by different markers that composed severity scores
(Fig. 7F) and failed to protect mice from mortality at 48 h
(Fig. 7G). These data demonstrate that although the inhibition of
TG synthesis and LD formation is beneficial for liver preservation,
it was not sufficient to protect against sepsis-induced lethality.
JHEP Reports 2024
Discussion
LD accumulation in non-adipose tissues and oxidative stress are
recurrent consequences of sepsis-induced metabolic reprog-
ramming.32 In this sense, the liver is under intense overload as
the central organ in controlling lipid homeostasis.9 Often
detected in the first 24 h after disease onset, liver injury is an
early outcome of sepsis that occurs concurrently with systemic
metabolic remodelling.33 Although pronounced alterations in
lipid metabolism and LD accumulation are observed during
sepsis, their involvement in the mechanisms of disrupted tissue
tolerance and organ injury in sepsis is poorly understood. We
propose that under an environment of heightened inflammation
and oxidative stress, this mechanism of tissue tolerance is dis-
rupted and that LDs contribute to the amplification of lipid
peroxidation and inflammation.

The current view places LD accumulation as an evolutionarily
conserved mechanism of tolerance to avoid lipid-induced
toxicity34 due to the ability of LDs to buffer excess free fatty
acids in stressful situations and release them gradually to meet
cellular needs.35 Herein,we report that the accumulation of LDs in
the liver is a feature of the pathophysiology of sepsis and is asso-
ciated with the severity of sepsis and the increase in levels of
markers of liver injury. We also demonstrated that with the pro-
gression of hepatic steatosis, LD accumulation could contribute to
sepsis-induced inflammation and lipid peroxidation. The increase
in end products of lipid peroxidation occurs rapidly after the
diagnosis of sepsis and is a strong predictor of severity and mor-
tality.29 Organs and systems are differentially affected by the
overload of peroxidised lipids, and the hepatic system has been
shown to be one of the most highly susceptible.36,37

In sepsis, tissue damage results from a maladaptative inflam-
matory and metabolic response mounted to resist infection; this is
8vol. 6 j 100984
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associated with inadequate mechanisms of tissue tolerance.38

Moreover, inflammatory activation of the immune system,
together with mitochondrial dysfunction, are the most potent
sources of reactive species during sepsis,39 contributing to sepsis-
induced lipid peroxidation. We demonstrate that inhibiting he-
patic LD accumulation by targeting the enzyme DGAT1 reduces
levels of inflammatory mediators and lipid peroxidation while
improving liver function in sepsis. Our findings support the well-
established role of LDs in inflammatory mediator production, be-
ing a site for AA accumulation and a platform for eicosanoid syn-
thesis.40 In this context, lipidomic analysis of purified LDs showed
increased levelsofAAduringsepsis compared to thoseseen in sham
animals. Moreover, our results show that sepsis-induced LDs are
sites of 8-isoprostane generation, a non-enzymatic eicosanoid
produced by oxidative stress-induced AA peroxidation, as well as a
biomarker of lipid peroxidation. 8-isoprostane is also a proin-
flammatory mediator41 involved in the activation and recruitment
of neutrophils.42,43 Conversely, impairment of sepsis-triggered LD
biogenesis by DGAT1 inhibitionwas accompanied by a reduction in
8-isoprostane formation in the liver, decreased myeloperoxidase
activity and reduced levels of CXCL1 and CCL2, suggesting a role for
LDs in lipidperoxidation, inflammationand leukocyte infiltration in
the liver. Moreover, reductions in CXCL1, CCL2, IL-1b, IL-6 and IFN-c
levels have been shown to protect against sepsis-induced multiple
organ dysfunction.44–46

Oral iDGAT1 treatment completely reversed sepsis-induced
hepatic steatosis and reduced tissue MDA levels. However, DGAT1
inhibition did not result in the accumulation of diacylglycerol, a
cytotoxic lipid. TheabsenceofTGprecursoraccumulation following
JHEP Reports 2024
DGAT1 inhibition may be linked to the restoration of CPT1 expres-
sion, which facilitates fatty acid transport for b-oxidation. Indeed,
the deletion of DGAT1 has been demonstrated to enhance the
expression of genes related to fatty acid oxidation while reducing
the expression of those associated with adipogenesis.47

Despite its protective effect against liver injury, the inhibition
of LD accumulation did not protect against sepsis mortality. This
result could be associated in part with the increase in basal en-
ergy expenditure induced by systemic DGAT1 inhibition, a
phenotype also observed in Dgat1 knockout mice.48 Given that
resisting a systemic infection entails significant energy expen-
diture, this elevation in basal energy consumption compromises
the maintenance of fundamental homeostatic functions, as evi-
denced by the loss of control over body temperature. Therefore,
the exacerbated increase in energy demand in CLP mice treated
with iDGAT1 may explain the negative survival outcomes. Future
studies will be necessary to better characterize the metabolic
regulation by DGAT1 during sepsis.

In conclusion, our results demonstrate that sepsis triggers
lipid metabolism reprogramming that culminates with increased
LD accumulation in the liver. Increased abundance of LDs is
associated with disease severity and liver injury in sepsis.
Conversely, blocking LD accumulation through DGAT1 inhibition
improved liver function through mechanisms that involve, at
least in part, decreased inflammation and lipid peroxidation in
the liver. By identifying that LDs may contribute to the patho-
genesis of liver injury triggered by sepsis, our observations
provide a rationale for therapeutic targeting of LDs and lipid
metabolism in sepsis.
9vol. 6 j 100984
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