
Data-Driven Determination of the Light-Quark Connected Component of the
Intermediate-Window Contribution to the Muon g− 2

Genessa Benton ,1 Diogo Boito ,2 Maarten Golterman ,1 Alexander Keshavarzi ,3

Kim Maltman ,4,5 and Santiago Peris 1,6

1Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132, USA
2Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil

3Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
4Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada

5CSSM, University of Adelaide, Adelaide, SA 5005 Australia
6Department of Physics and IFAE-BIST, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain

(Received 7 July 2023; accepted 27 November 2023; published 21 December 2023)

We present the first data-driven result for awin;lqcμ , the isospin-limit light-quark connected component of
the intermediate-window Hadronic-vacuum-polarization contribution to the muon anomalous magnetic
moment. Our result, ð198.8� 1.1Þ × 10−10, is in significant tension with eight recent mutually compatible
high-precision lattice-QCD determinations, and provides enhanced evidence for a puzzling discrepancy
between lattice and data-driven determinations of the intermediate-window quantity, one driven largely by
a difference in the light-quark connected component.
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Since the pioneering work of Schwinger [1], and the
subsequent experimental confirmation of his result [2], the
study of the lepton magnetic moments, μ⃗, has played a
central role in the development of QED and, later, in that of
the standard Model (SM) of particle physics. The anoma-
lous magnetic moment of the muon, aμ ¼ ðgμ − 2Þ=2,
defined in terms of the muon charge q, mass mμ, and spin
s⃗ as

μ⃗ ¼ gμ

�
q

2mμ

�
s⃗ ð1Þ

is, at present, one of the most accurately known quantities
in physics. The new 2021 and 2023 Fermilab E989 mea-
surements of aμ, performed by the Muon g − 2

Collaboration, reached a precision of 0.20 ppm [3–5],
and are fully compatible with the previous Brookhaven
National Laboratory E821 experiment results [6]. As a
consequence, the experimental average of aμ is known
nowadays to 0.19 ppm. In order to stringently test the SM,
the theory prediction for this quantity must reach a similar
level of accuracy.
In 2020, the g − 2 Theory Initiative released a white

paper (WP) [7] where, based on the works of Refs. [8–31],

the SM expectation for aμ was determined to 0.37 ppm. The
SM result is a sum of pure QED, electroweak and Higgs
physics, hadronic vacuum polarization (HVP), and had-
ronic light-by-light scattering contributions. The latter two,
which involve QCD, are particularly difficult to assess. The
final uncertainty in the WP SM result for aμ is strongly
dominated by the HVP contribution, aHVPμ . It is thus a
fundamental task to control this contribution as well as
possible.
The aμ assessment of the WP is based on data-driven

evaluations of the HVP contribution [12–15]. As is well
known, this result showed a 4.2σ tension with the then-
current experimental average, motivating many works
aimed at finding potential beyond-the-SM explanations
for this disagreement. Many developments, however, have
taken place since the publication of the WP assessment. In
particular, the Budapest-Marseille-Wupertal (BMW)
Collaboration has published a complete, subpercent lat-
tice-QCD evaluation of aHVPμ [32]. If this result is used in
the SM assessment of aμ, the outcome is compatible with
the experimental average at the 1.5σ level. In this situation,
in order to conclude whether the discrepancy between the
SM assessment(s) of aμ and experimental results is due to
beyond-the-SM effects, it is, first of all, crucial to under-
stand the discrepancy between data-driven and lattice-
QCD–based HVP results.
The complete computation of the HVP in lattice QCD is

a very challenging task and, as of today, only the BMW
result is sufficiently precise to allow for a detailed com-
parison with data-driven HVP determinations. This has
motivated the introduction of the window quantities by the
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RBC-UKQCD Collaboration [33]. The so-called inter-
mediate window, which cuts out short- and long-distance
regions of the aHVPμ integral on the lattice-QCD side, is of
particular importance because it significantly suppresses
the associated systematic lattice uncertainties related to
continuum limit extrapolation and finite volume effects.
The intermediate-window contribution to aHVPμ , henceforth
awinμ , is now known, with excellent precision and very good
agreement between results from different groups, from four
different lattice-QCD collaborations [32,34–36]. A recent
data-driven assessment of awinμ using electroproduction
input [37], however, shows an important tension with these
lattice results (see, e.g., Ref. [38]). (This tension is reduced
if, instead, one uses τ data for the two-pion contribution
[39], estimating the required model-dependent isospin-
breaking (IB) corrections with the models discussed
in Ref. [40].)
The lattice evaluation of aHVPμ is split into several

building blocks with the dominant contributions arising
from the isospin-limit (defined by taking mπ ¼ mπ0) light-
and strange-quark connected and disconnected parts, with
additional, smaller, contributions from charm and bottom
quarks. IB effects, both of electromagnetic (EM) and strong
(SIB) origin, are accounted for perturbatively, keeping
terms to first order in an expansion in the fine-structure
constant α and the up-down quark-mass difference
mu −md. The light-quark connected (lqc) contribution to

awinμ in the isospin symmetric limit, denoted awin;lqcμ , is
known now with very good precision from eight different
lattice determinations (see the blue data points in Fig. 1).
These eight determinations are all in excellent agreement
and have small relative errors, ranging from 0.3% to 1.1%.
Since this contribution gives about 87% of awinμ , and
appears to be under good control, given the agreement
among the eight different lattice determinations, it is highly

desirable to obtain a precise data-driven estimate of awin;lqcμ

in order to further scrutinize the discrepancy between
lattice-QCD and data-driven determinations of aHVPμ . It is
the aim of this Letter to present this estimate.
We turn now to a short review of the theoretical

framework for our data-driven determination of awin;lqcμ .
To be able to compute aHVPμ on the lattice-QCD side, one
determines the Euclidean-time zero-momentum two-point
correlation function given by

CðtÞ ¼ 1

3

X3
i¼1

Z
d3xhjEMi ðx⃗; tÞjEMi ð0Þi

¼ 1

2

Z
∞

m2
π

ds
ffiffiffi
s

p
e−

ffiffi
s

p
tρEMðsÞ ðt > 0Þ; ð2Þ

where mπ is the neutral pion mass, jEMμ ðxÞ is the EM
current, and ρEM is the associated inclusive hadronic

spectral function. In terms of CðtÞ, the intermediate-
window contribution to aHVPμ is given by

awinμ ¼ 2

Z
∞

0

dtwðtÞWwinðtÞCðtÞ; ð3Þ

where the function wðtÞ can be obtained from its counter-
part in s space [45] and WwinðtÞ is the weight function
associated with the RBC-UKQCD intermediate-window
[33], defined as

WwinðtÞ ¼
1

2

�
tanh

t − t0
Δ

− tanh
t − t1
Δ

�
; ð4Þ

with t0 ¼ 0.4 fm, t1 ¼ 1.0 fm, and Δ ¼ 0.15 fm. The
corresponding expression for aHVPμ is obtained by removing
the factorWwinðtÞ from Eq. (3). Because of the presence of
WwinðtÞ in Eq. (3) the short- and long-distance contribu-
tions to the integral are strongly suppressed.
Since we are concerned with the data-driven determi-

nation of awin;lqcμ , we need the data-driven (or dispersive)
counterpart to Eq. (3), which is

awinμ ¼ 4α2m2
μ

3

Z
∞

m2
π

ds
K̂ðsÞ
s2

W̃winðsÞρEMðsÞ; ð5Þ

where K̂ðsÞ is a well-known, slowly varying kernel
function [46,47] (see Ref. [7] for the explicit expression)
and W̃winðsÞ is the s-space representation of WwinðtÞ,

W̃winðsÞ ¼
R
∞
0 dtWwinðtÞwðtÞe−

ffiffi
s

p
tR∞

0 dt wðtÞe− ffiffi
s

p
t

: ð6Þ

Here, when evaluating the different contributions to Eq. (5)
in the exclusive-mode region, we employ the data compi-
lation of Refs. [13,15] (KNT19 in what follows).
Our goal is to isolate the lqc contribution to the full result

of Eq. (5). This can be achieved employing an idea first
implemented with sufficient precision in Refs. [48,49],
where the foundations of our method are laid out in detail.
We start from the usual decomposition of the three-flavor
EM current into its I ¼ 1 and I ¼ 0 parts, which produces
analogous decompositions of CðtÞ and ρEM into I ¼ 1, I ¼
0 and mixed-isospin (MI) parts. In the isospin limit, the
contribution associated with the I ¼ 1 current contains only
light-quark connected contributions and one has

ρlqcEM ¼ 10

9
ρI¼1
EM ðsÞ: ð7Þ

The data-driven estimate of awin;lqcμ thus requires the
identification of the I ¼ 1 component of ρEM. This can
be accomplished, assuming isospin symmetry and using
KNT19 data, on a channel-by-channel basis, in the KNT19
exclusive-mode region,

ffiffiffi
s

p
≤ 1.937 GeV.

There are two classes of such contributions. The first,
and dominant one, consists of contributions from modes
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with well-defined, positive G parity. Such modes have I ¼
1 and thus contribute to the lqc component in the isospin
limit. Contributions from such “unambiguous” modes
constitute the main ingredient in our determination of
awin;lqcμ . The remaining contributions come from higher-
threshold modes with no well-defined G parity. For these
“ambiguous” modes, and especially for the dominant such
channels—KK̄ and KK̄π—one resorts to external informa-
tion, whenever available, in order to identify, as accurately
as possible, the I ¼ 1 component of the experimental I ¼
0þ 1 sum. The third ingredient is perturbative QCD
supplemented with an estimate of duality violation
contributions, which we use in the inclusive region,ffiffiffi
s

p
> 1.937 GeV. Finally, to the sum of the results thus

obtained one must apply IB corrections since the exper-
imental data, inevitably, contain IB contributions. Only
after these corrections have been applied can the data-based
result be compared directly with isospin-limit lattice awin;lqcμ

results. We now detail how we treat each of the four
aforementioned contributions.
We start with the unambiguous modes, which give the

dominant contribution to awin;lqcμ . The results are obtained
with Eq. (5) using the KNT19 spectra for the different
exclusive-mode contributions to ρEMðsÞ. There are 13 such
I ¼ 1 channels, with the largest contribution, by far, arising
from the πþπ− channel, which contributes 144.15ð49Þ ×
10−10 to ½awinμ �I¼1. The results for the different modes are
given in Table I. The sum over all G-parity-unambiguous
modes gives a total I ¼ 1 contribution to awinμ of
168.24ð72Þ × 10−10. From Eq. (7), the final contribution
of all unambiguous channels to awin;lqcμ is then

½awin;lqcμ �G−par ¼ 186.93ð80Þ × 10−10: ð8Þ

We turn next to our treatment of ambiguous-mode
contributions, which follows the general strategy outlined
in Sec. IV of Ref. [49]. For some of these contributions,
notably those of the numerically dominant KK̄ and KK̄π
channels, external experimental information can be used in
separating the desired I ¼ 1 component from the exper-
imental I ¼ 0þ 1 sum. Modes for which external exper-
imental information is not available have much smaller
contributions. For these modes, one employs a maximally
conservative I ¼ 1=0 separation, based on the observation
that the I ¼ 1 part of the mode-X contribution to ρEMðsÞ
must lie between 0 and the full I ¼ 0þ 1 contribution
obtained from the KNT19 spectrum for that mode. The
contribution of ambiguous-mode X to awin;lqcμ lies, there-
fore, in the following range:

½awin;lqcμ �X ¼ 10

9

�
1

2
� 1

2

�
½awinμ �X ¼

�
5

9
� 5

9

�
½awinμ �X: ð9Þ

Let us discuss in some detail the significant ambiguous-
mode contribution arising from the KK̄ channels, KþK−

and K0K̄0. Independent experimental information on the
KK̄ contribution to the purely I ¼ 1 spectral function can
be obtained from the BABAR spectrum for the decay τ →
K−K0ντ [50]. Using the conserved vector current relation,
these results can be used to determine the I ¼ 1 KK̄
contribution to ρEMðsÞ up to s ¼ 2.7556 GeV2, and hence
the associated contribution to ½awin;lqcμ �KK̄ , which, using
Eq. (7), is found to be 10=9 × 0.465ð29Þ × 10−10. For
s > 2.7556 GeV2, the I ¼ 1 part is found using KNT19
data and the maximally conservative treatment of Eq. (9).
We find, for s > 2.7556 GeV2, a contribution of 10=9 ×
0.055ð55Þ × 10−10 to ½awin;lqcμ �KK̄ . From these results one
obtains, for the full exclusive-region KK̄ contribution,

½awin;lqcμ �KK̄ ¼ 0.578ð69Þ × 10−10: ð10Þ
A similar treatment of the KK̄π modes is possible thanks to
the Dalitz plot analysis of BABAR, which provides a
separation of the I ¼ 1 and I ¼ 0 contributions to the
KK̄π cross sections [51]. Integrating the BABAR I ¼ 1
result, we find

½awin;lqcμ �KK̄π ¼ 0.521ð86Þ × 10−10: ð11Þ
For the KK̄2π modes, only a small improvement is possible
over the maximally conservative treatment. This is obtained
by first subtracting the small I ¼ 0 ϕ½→ KK̄�ππ contribu-
tion implied by BABAR eþe− → ϕππ cross sections [52],
and applying the maximally conservative treatment only to
the residual I ¼ 0þ 1 sum. This leads to the result

½awin;lqcμ �KK̄2π ¼ 0.60ð60Þ × 10−10: ð12Þ

The very small (often completely negligible) contributions
of the remaining ambiguous modes [KK̄3π, ωð→ nppÞKK̄,

TABLE I. Contributions from G-parity unambiguous modes to
awinμ for

ffiffiffi
s

p
≤ 1.937 GeV obtained from KNT19 [15] exclusive-

mode spectra. All entries in units of 10−10.

I ¼ 1 modes X ½awinμ �X × 1010

Low-s πþπ− 0.02(00)
πþπ− 144.13(49)
2πþ2π− 9.29(13)
πþπ−2π0 11.94(48)
3πþ3π− (no ω) 0.14(01)
2πþ2π−2π0 (no η) 0.83(11)
πþπ−4π0 (no η) 0.13(13)
ηπþπ− 0.85(03)
η2πþ2π− 0.05(01)
ηπþπ−2π0 0.07(01)
ωð→ π0γÞπ0 0.53(01)
ωð→ nppÞ3π 0.10(02)
ωηπ0 0.15(03)

Total 168.24(72)
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ηð→ nppÞKK̄ (no ϕ), pp̄, nn̄, and low-s π0γ and ηγ]
(npp ¼ nonpurely pionic) are obtained from the KNT19
spectra using the maximally conservative separation of
Eq. (9). The total contribution from allG-parity-ambiguous
exclusive modes is, finally,

½awin;lqcμ �amb ¼ 1.74ð61Þ × 10−10; ð13Þ
with 1.70ð61Þ × 10−10 from KK̄, KK̄π, and KK̄2π.
In the inclusive region,

ffiffiffi
s

p
> 1.937 GeV, we use QCD

perturbation theory, which is known to Oðα4sÞ, supple-
mented with an estimate for the Oðα5sÞ coefficient, as
described in Refs. [48,49]. To this result, we add an
estimate of the duality violation (DV) contribution,
obtained from our previous study of the I ¼ 1 hadronic
spectral function in τ → hadronsþ ντ [53], using the
parametrization of DVs discussed in Refs. [54–56].
Since DVs represent a fundamental limitation of perturba-
tion theory, we use the resulting central value as the total
uncertainty on the perturbative contribution. This enlarges
the uncertainty of the perturbative contribution without
DVs by a factor of about 10, and should provide a very
conservative assessment. The resulting inclusive-region
contribution is then

½awin;lqcμ �pt:QCDþDVs ¼ 11.06ð16Þ × 10−10: ð14Þ
The fourth and final ingredient in the determination of

awin;lqcμ is an evaluation of the EM and SIB contributions to
be subtracted from the data-based results obtained above
before comparison with isospin-symmetric lattice-QCD
results. The general strategy employed for this subtraction
is detailed in Refs. [48] and [48,49]. The main observation
is that, to first order in IB, SIB is present only in the MI
component of ρEMðsÞ. EM IB, on the other hand, occurs in
all of the pure I ¼ 1=0 and MI components. The IB
correction to awin;lqcμ then contains two parts. The first,
which appears in the pure I ¼ 1 component, is of EM
origin. No breakdown of this correction into individual
exclusive-mode contributions is required; an inclusive
determination is sufficient. The situation for the MI con-
tribution is different since we must estimate the MI
contamination on a channel-by-channel basis, removing
from the “nominally” I ¼ 1 results above the component
that arises from ρMI

EMðsÞ. These contributions are expected to
be dominated by the 2π mode through ρ − ω mixing in the
process eþe− → ω → ρ → 2π.
At present, given the absence of complete data-driven

estimates for some potentially important components of the
pure I ¼ 1 EM IB contribution (see, e.g., the discussion in
the Appendix of Ref. [48]), we are forced to rely on the
lattice, and employ for this correction the result obtained by
BMW in Ref. [32],

ΔEMa
win;lqc
μ ¼ 0.035ð59Þ × 10−10: ð15Þ

This correction is very small, given the size of other
uncertainties, and we will neglect it in what follows.
The MI contamination to the 2π exclusive mode was

obtained in Ref. [57] from 2π electroproduction data fitting
a dispersive representation of the pion form factor that
includes ρ − ω mixing. The 2π MI component is found to
be ½awinμ �MI

ππ ¼ 0.83ð6Þ × 10−10, which is about 0.6% of the
total 2π contribution to awinμ . Since the MI components of
other nominally I ¼ 1 modes have no analogous narrow-
resonance enhancements, we consider it very safe to
assume that their MI total will not exceed 1% of the
sum, 25.68 × 10−10, of their contributions. To account for
the total of the non-2π-mode MI contaminations we thus
add an uncertainty of 0.26 × 10−10 to the 2π results of
Ref. [57]. Using Eq. (7), this leads to a MI correction of

ΔMIawin;lqcμ ¼ −0.92ð7Þ2πð29Þnon−2π × 10−10: ð16Þ
We are now in a position to obtain our final data-driven

estimate for awin;lqcμ . Adding the contributions from Eqs. (8),
(13), (14), and applying the IB correction of Eq. (16), we
find, as our final result,

awin;lqcμ ¼ 198.8ð1.1Þ × 10−10: ð17Þ
In Fig. 1, we compare our data-driven estimate with the
lattice-QCD results from eight different collaborations.
The tension between the data-driven and lattice results is
striking. Assuming, for simplicity, all errors to be Gaussian,
we find tensions ranging from 3.3σ to 6.1σ. Our result
indicates that the discrepancy between data-driven and
lattice-QCD results for awinμ is almost entirely due to the
light-quark connected contribution, which, in turn, is
strongly dominated by the 2π channel, accounting for
about 81% of the result of Eq. (17). Given this 2π
dominance, it is relevant to note that recent CMD-3 results
for the eþe− → πþπ− cross sections [58], which are in

FIG. 1. Comparison of our final result (BBGKMP 23), Eq. (17),
with lattice results for awin;lqcμ from [32] (BMW 20), [41] (LM 20),
[42] (χQCD 23), [43] (ABGP 22), [34] (Mainz-CLS 22), [35]
(ETMC 22), [44] (FHM 23), and [36] (RBC-UKQCD 23).
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significant tension with those of earlier experiments, and
known to significantly increase the 2π contribution to aHVPμ ,

would similarly increase our result for awin;lqcμ , making it
more compatible with lattice determinations. Since the
source of the disagreements between the previously pub-
lished and new CMD-3 2π results is both presently unclear
and the subject of ongoing study, we refrain from address-
ing this issue more quantitatively for now.
We note that our final result is based on the KNT19 data

compilation. An equivalent analysis using other dispersive
evaluations (e.g., DHMZ data [12,14]) would be desirable.
We remark, however, that for the lqc contribution to aHVPμ ,
which can be obtained based on publicly available results,
KNT19- and DHMZ-based estimates are in very good
agreement [48].
In a forthcoming publication we will present results for

several other window quantities, including both the light-
quark-connected and strange-quark-plus-all-disconnected
contributions. The latter require the treatment of the I ¼
0 sector. The impact of new phenomenological estimates of
MI IB corrections in the 3π channel [59] will be discussed
and we will present a comparison between lattice-QCD and
phenomenological IB corrections. A preliminary estimate
of the potential impact of new CMD-3 results for eþe− →
πþπ− cross section [58] will also be given.
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