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Abstract: Integrating Light Detection And Ranging (LiDAR) and Hyperspectral Imaging (HSI)
enhances the assessment of tropical forest degradation and regeneration, which is crucial for conser-
vation and climate mitigation strategies. This study optimized procedures using combined airborne
LiDAR, HSI data, and machine learning algorithms across 12 sites in the Brazilian Amazon, covering
various environmental and anthropogenic conditions. Four forest classes (undisturbed, degraded,
and two stages of second-growth) were identified using Landsat time series (1984–2017) and auxiliary
data. Metrics from 600 samples were analyzed with three classifiers: Random Forest, Stochastic
Gradient Boosting, and Support Vector Machine. The combination of LiDAR and HSI data improved
classification accuracy by up to 12% compared with single data sources. The most decisive metrics
were LiDAR-based upper canopy cover and HSI-based absorption bands in the near-infrared and
shortwave infrared. LiDAR produced significantly fewer errors for discriminating second-growth
from old-growth forests, while HSI had better performance to discriminate degraded from undis-
turbed forests. HSI-only models performed similarly to LiDAR-only models (mean F1 of about 75%
for both data sources). The results highlight the potential of integrating LiDAR and HSI data to
improve our understanding of forest dynamics in the context of nature-based solutions to mitigate
climate change impacts.

Keywords: forest disturbance; forest recovery; successional stages; airborne laser scanning (ALS);
hyperspectral remote sensing; multisensor analysis; machine learning

1. Introduction

Reducing deforestation and forest degradation and promoting their large-scale restora-
tion are promising nature-based solutions to combat climate change [1]. Several gov-
ernments, private companies, non-governmental organizations (NGOs), and multilateral
organizations have made ambitious pledges to promote forest protection and restoration at
unprecedented scales, putting these activities at the core of United Nations’ Sustainable
Development Goals and Decade on Ecosystem Restoration (2021–2030) [2]. One major
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challenge for integrating deforestation, forest degradation, and restoration as part of climate
mitigation initiatives, such as those based on payments for ecosystem services (PESs), is
to accurately differentiate forests under degradation or regeneration processes and rela-
tively intact forests. Depending on the stage of degradation and regeneration processes,
degraded and secondary forests can be structurally similar but play different ecological
functions, such as their potential to store carbon [3]. Thus, the discrimination of forests
under anthropogenic influences is essential for reliable accountability of climate mitigation
interventions, reducing the uncertainties of carbon stock estimates [4]. One of the most
promising ways to better characterize land use and land cover (LULC) is through advanced
remote sensing approaches.

Remote sensing is an effective source of information on forest traits on the landscape
scale. Specifically, data from passive multispectral sensors have been commonly used to
differentiate LULC types [5,6]. Despite the potential of such data in LULC studies, the great
heterogeneity and complexity of tropical forests pose a challenge in obtaining accurate
information on vegetation disturbance through conventional approaches. Thus, advanced
remote sensing technologies, such as Hyperspectral Imaging (HSI) and Light Detection
And Ranging (LiDAR), provide new opportunities to answer complex ecological questions
in tropical forests experiencing degradation and regeneration processes.

HSI systems acquire data in many narrow and contiguous spectral bands, generating
high-resolution reflectance spectra per pixel [7]. The ability of HSI to extract more accurate
and detailed information compared with other passive remote technologies makes it
suitable for a wide variety of applications. Examples include the classification of tree
species or LULC classes [8–11], the identification of physiological responses to stress [12],
the estimation of biochemical attributes [13], the detection of burned areas [14], and the
study of the canopy phenology [15,16]. According to Thenkabail et al. [17], there are
advantages of using hyperspectral data over multispectral imagery for improving the
classification accuracy of complex rainforests such as those from southern Cameroon.

Active LiDAR sensors produce three-dimensional measurements of forests, allowing
the quantification of important structural attributes such as canopy height, Leaf Area Den-
sity, and biomass [18]. That accurate structural information has allowed the discrimination
of successional stages in tropical forests [19,20]. However, LiDAR systems currently capture
limited spectral information, which creates difficulties in distinguishing structurally similar
forests with distinct species composition or under stress conditions. Thus, the spectral
information from HSI can complement the structural information provided by LiDAR. As
reported by Almeida et al. [21], the combination of LiDAR and hyperspectral data is useful
to increase the accuracy of aboveground biomass (AGB) estimates over heterogeneous
human-modified landscapes of the Brazilian Amazon. In this context, the integration of
LiDAR and hyperspectral data can potentially improve the characterization of the degrada-
tion and regeneration status of tropical forests. Despite the potential of this synergism, few
studies have tested the combined use of LiDAR and HSI data for the classification of land
cover types and successional stages in tropical ecosystems. For instance, in the tropical dry
forests of Costa Rica, Sun et al. [22] used different airborne remote sensing data (waveform
LiDAR, HSI, and their combination) and machine learning classifiers to map secondary
forest age. The best result was found with the combination of LiDAR and HSI data (overall
accuracy of 83%).

The Brazilian Amazon concentrates a large share of Reducing Emissions from Defor-
estation and Forest Degradation (REDD) initiatives and is broadly recognized for its key
role in providing critical ecosystem services to local, regional, and global socio-ecological
systems [23]. The deforestation of native vegetation in the Brazilian Amazon has been
monitored over the past decades using remote sensing approaches [24]. In contrast, assess-
ing the status of secondary vegetation (regrowth after complete clearing) and more subtle
forest disturbances (e.g., selective logging and fire) is more challenging [25,26]. Advancing
this characterization is critically needed for improving conservation, management, and
restoration strategies.
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In this study, we evaluated the potential of integrating airborne LiDAR and HSI
data acquired over tropical forests of the Amazon to distinguish four classes of vegetation
degradation and regeneration. The classes were previously defined with the use of historical
Landsat data and auxiliary information: undisturbed old-growth forests (UFs), degraded
old-growth forests (DFs), younger second-growth forests (SF1–15yr), and older second-
growth forests (SF16–32yr). To achieve this goal, several LiDAR and HSI metrics related to
structural and functional characteristics were calculated and submitted to three machine
learning classifiers: Random Forest (RF), Stochastic Gradient Boosting (SGB), and Support
Vector Machine (SVM). Finally, we investigated the effect of the data source and classifiers
to better characterize these forest classes, as well as the ability to transfer the predictions
of the best models to new sites. With this approach, we aimed to address the following
research questions:

1. What LiDAR and HSI metrics are most effective for distinguishing the forest classes,
and how do these metrics vary among them?

2. How do the choice of remote sensing data sources (single LiDAR, single HSI, or their
combination) and machine learning classifiers impact the accuracy of classifying forest
degradation and regeneration stages in tropical forests?

3. What is the capacity of regional models to generalize and accurately predict forest
classes in new sites?

To the best of our knowledge, this study is the first to discriminate forest degradation
and regeneration classes in the Brazilian Amazon by using a large set of LiDAR and HSI
metrics. Although extensive airborne LiDAR datasets have been utilized to support signifi-
cant research on forest structure in the Amazon [27,28], no previous studies have combined
these data with hyperspectral imagery across such a broad spatial scale to specifically
enhance the assessment of degradation and regeneration processes. By integrating both
structural and compositional vegetation information, this study sought to advance the
current understanding of Amazonian forest dynamics, providing new insights into remote
sensing methodologies for tropical forest monitoring.

2. Materials and Methods
2.1. Study Area

Twelve sites distributed throughout the Brazilian Amazon were considered in this
study (Table 1). Each site is represented by one (most sites) or two (three sites) transects of
approximately 12.5 km by 0.3 km, where the airborne remote sensing data were collected
(Figure 1). The sites encompass a wide variety of anthropogenic, climatic, geological, and
edaphic conditions.

Table 1. Description of the study sites. Altitudes are from the LiDAR Digital Terrain Model. MAT (Mean
Annual Temperature) and MAP (Mean Annual Precipitation) are from WorldClim version 2 [29].

Site Description Latitude Longitude Altitude MAT MAP

(◦) (◦) (m) (◦C) (mm·yr−1)

MAM Mamirauá Sustainable Development Reserve −2.76 −65.10 36.7 26.7 3406
ZF2 Cuieiras Biological Reserve −2.60 −60.21 61.6 26.4 2356

DUC Adolpho Ducke Reserve −2.95 −59.94 86.2 26.5 2308
AUT Autazes municipality −3.51 −59.26 25.7 27.0 2293
TAP Tapajós National Forest −3.12 −54.95 123.0 25.8 1848
PAR Paragominas municipality −3.28 −47.52 128.8 25.9 1915
JAM Jamari National Forest −9.12 −63.01 93.6 25.2 2388
ALF Alta Floresta/Novo Mundo municipality −9.58 −55.90 254.0 26.6 2216
SFX1 São Félix do Xingu municipality −6.43 −52.11 205.3 24.9 1981
SFX2 São Félix do Xingu municipality −6.56 −51.81 289.1 24.6 1964
FN1 Feliz Natal municipality −12.00 −54.20 320.0 24.7 1815
FN2 Feliz Natal municipality −12.26 −55.10 338.7 24.7 1807
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Figure 1. Distribution of the 12 sites in the Brazilian Amazon. The images obtained in 2017 are 
OLI/Landsat-8 color composites with bands 6 (red), 5 (green), and 4 (blue). The transects in white 
(12.5 × 0.3 km) represent the HSI and LiDAR superposed flight lines. The acronyms represent the 
site names (see Table 1 for details). 

From the sites used in this study, MAM, ZF2, DUC, AUT, and TAP are part of the so-
called Central Amazonia region, comprising old sedimentary substrates and low soil 
fertility [30]. On the other hand, the sites PAR, JAM, ALF, SFX1, SFX2, FN1, and FN2 are 
located over the Brazilian Shield composed of Pre-Cambrian rocks with related high-
fertility soils. The predominant soil types are Acrisols and Ferralsols, with Gleysols 
occurring in the seasonal floodplains of the MAM site [30]. From a topographic point of 
view, all sites are considered lowlands, having altitudes lower than 500 m. The AUT and 
MAM sites present the lowest altitude (<50 m), while the southeastern sites (SFX1, SFX2, 
ALF, FN1, and FN2) have the highest values (200 to 500 m). 

The rainfall gradient ranges from wetter conditions on the MAM, ZF2, DUC, and 
AUT sites to drier conditions on the PAR, SFX1, SFX2, ALF, FN1, and FN2 sites. The long-
term (1973–2013) annual rainfall reported for the Brazilian Legal Amazon (BLA) is 
approximately 2100 mm [31]. In the studied sites, annual rainfall ranges from 1800 mm at 
the FN2 site to more than 3000 mm at the MAM site. The mean annual temperature over 
the BLA is 26.5 °C, varying in the sites from 24.6 °C at SFX2 to 27.0 °C at AUT. 

The forest types over the studied sites encompass seasonally flooded ombrophilous 
forests (MAM site), terra firme (unflooded) transitional forests (ecotones between 
ombrophilous and seasonal forests in the FN1 and FN2 sites), and terra firme 
ombrophilous forests (other sites). Undisturbed forests are mainly located in protected 
areas (sites MAM, ZF2, DUC, TAP, and JAM), with few relatively intact forests on other 
sites (AUT, ALF, and FN2). Secondary forests usually occur in small areas that were 

Figure 1. Distribution of the 12 sites in the Brazilian Amazon. The images obtained in 2017 are
OLI/Landsat-8 color composites with bands 6 (red), 5 (green), and 4 (blue). The transects in white
(12.5 × 0.3 km) represent the HSI and LiDAR superposed flight lines. The acronyms represent the
site names (see Table 1 for details).

From the sites used in this study, MAM, ZF2, DUC, AUT, and TAP are part of the
so-called Central Amazonia region, comprising old sedimentary substrates and low soil
fertility [30]. On the other hand, the sites PAR, JAM, ALF, SFX1, SFX2, FN1, and FN2 are
located over the Brazilian Shield composed of Pre-Cambrian rocks with related high-fertility
soils. The predominant soil types are Acrisols and Ferralsols, with Gleysols occurring in
the seasonal floodplains of the MAM site [30]. From a topographic point of view, all sites
are considered lowlands, having altitudes lower than 500 m. The AUT and MAM sites
present the lowest altitude (<50 m), while the southeastern sites (SFX1, SFX2, ALF, FN1,
and FN2) have the highest values (200 to 500 m).

The rainfall gradient ranges from wetter conditions on the MAM, ZF2, DUC, and AUT
sites to drier conditions on the PAR, SFX1, SFX2, ALF, FN1, and FN2 sites. The long-term
(1973–2013) annual rainfall reported for the Brazilian Legal Amazon (BLA) is approximately
2100 mm [31]. In the studied sites, annual rainfall ranges from 1800 mm at the FN2 site
to more than 3000 mm at the MAM site. The mean annual temperature over the BLA is
26.5 ◦C, varying in the sites from 24.6 ◦C at SFX2 to 27.0 ◦C at AUT.

The forest types over the studied sites encompass seasonally flooded ombrophilous
forests (MAM site), terra firme (unflooded) transitional forests (ecotones between om-
brophilous and seasonal forests in the FN1 and FN2 sites), and terra firme ombrophilous
forests (other sites). Undisturbed forests are mainly located in protected areas (sites MAM,
ZF2, DUC, TAP, and JAM), with few relatively intact forests on other sites (AUT, ALF, and
FN2). Secondary forests usually occur in small areas that were previously cleared near
highways or rivers. They were also commonly found around small communities adjacent
to conservation units. Specifically, they were observed near the northern borders of the
Adolpho Ducke Reserve (DUC site) and in São Jorge, a community located between the
boundaries of the Tapajós National Forest (TAP site). These areas are characterized by a mix
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of residential settlements and small-scale agricultural activities, contributing to localized
deforestation pressures along the conservation boundaries.

Much of the studied forests have been degraded by fire, selective logging, and/or
fragmentation. Understory fires were responsible for the degradation in sites SFX1, SFX2,
and ALF, especially in fragmented areas. The Central Amazonian forests of the sites
AUT [32] and TAP were affected by extensive fires under the effect of the El Niño Southern
Oscillation (ENSO) in 1998/99, 2010, and 2015/16. Major fires were also common in
previously logged areas, such as the TAP, PAR, FN1, and FN2 sites. Conventional operations
of selective logging were also observed without the occurrence of fires in the sites FN1 and
FN2. At the JAM site, reduced-impact logging was authorized by forest concession [33].

2.2. Forest Classes Identification and Sampling

To properly assess tropical forest dynamics, it is important to differentiate between
deforestation and degradation. Lapola et al. [34] proposed a framework in which deforesta-
tion is defined as the conversion of forest to non-forest land cover, often accompanied by
changes in land use, such as agriculture or pasture. Additionally, deforestation can result
from successive or severe disturbances that reduce forest cover below a critical threshold,
even if land-use change does not occur. In contrast, degradation involves a deterioration in
forest condition, such as reduced carbon storage or biodiversity, but without a change in
land cover (i.e., the forest remains a forest). This study focused on four key human-induced
drivers of tropical forest degradation: habitat fragmentation, timber extraction, forest fires,
and extreme droughts.

Following this framework, we categorized forest dynamics of degradation/regeneration
into four distinct classes (Figure 2A): undisturbed old-growth forests (UFs), degraded old-
growth forests (DFs), younger second-growth forests (SF1–15yr), and older second-growth
forests (SF16–32yr). Old-growth classes are those where no deforestation was observed
between 1984 (the first year from which we tracked the historical Landsat time series) and
2017, while second-growth classes were considered as forests regenerating after defor-
estation occurred at some point during this period. Undisturbed forests were defined as
old-growth forests that showed no evidence of disturbance by fire or selective logging and
that were at least 300 m away from forest edges. In contrast, degraded old-growth forests
presented at least one of these types of disturbance.

Second-growth forests in the Amazon are commonly separated into three successional
stages based on the stand age [8,35]: initial (<5 years), intermediate (5–15 years), and
advanced (>15 years) stages. Here, due to the limited spatial coverage of the initial stages
across the study sites, we grouped the initial and intermediate successional stages into a
broader class of younger second-growth forests. This choice was made to ensure sufficient
sample representation and statistical robustness, as the initial stage alone did not occupy
a large enough area for reliable analysis. Therefore, we considered two stages of second-
growth forests: the class SF1–15yr consisted of areas where the last deforestation event
occurred between 2002 and 2016, while the class SF16–32yr included areas where such an
event was observed between 1984 and 2001.

To reconstruct the history of forest degradation and regeneration over the sites,
we conducted a visual inspection of Landsat images from 1984 to 2017 (TM/Landsat-
5, ETM+/Landsat-7, and OLI/Landsat-8) on the Google Earth Engine (GEE) platform. To
facilitate our visual interpretation, we plotted the time series of two key spectral indices:
the Normalized Difference Vegetation Index (NDVI [36]) and the Normalized Burn Ratio
(NBR [37]). By examining fluctuations in these indices over time, we were able to visually
identify periods of degradation (e.g., sudden drops in NDVI and NBR following fire events)
and regeneration (e.g., gradual increases in NDVI and NBR after a deforestation event).
These trends, combined with the spatial patterns visible in the imagery, enabled the classifi-
cation of forest areas into the four defined categories of degradation and regeneration.
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Figure 2. (A) Schematic representation of the variation of a hypothetical remote sensing (RS) metric
from LiDAR and HSI in the four classes of vegetation degradation and regeneration considered in this
study: undisturbed old-growth forests (UFs); degraded old-growth forests (DFs); younger second-
growth forests (SF1–15yr); and older second-growth forests (SF16–32yr). We highlight that some RS
metrics may present different patterns of variation; for example, albedo presents an inverse variation
of that shown in the figure. (B) Example of time series of the Normalized Burn Ratio (NBR) calculated
from Landsat data (1984–2017), indicating clearing events in 1988 and 2003, followed by vegetation
recovery in the subsequent years. The inset images are TM/Landsat-5 and OLI/Landsat-8 color
composites with bands 6 (red), 5 (green), and 4 (blue). The Landsat band number was standardized
to the Landat-8 pattern for consistent comparison between the sensors.

Specific visual patterns were considered for each of the four forest classes. Undis-
turbed old-growth forests (UFs) exhibited consistently high NDVI and stable NBR values
throughout the time series. Degraded old-growth forests (DFs), on the other hand, showed
declines in these indices in response to events such as selective logging or fire. In some
instances, index changes were subtle or absent, but visual inspection of spatial context, such
as proximity to fragment edges (within 300 m), revealed degradation pressures. Second-
growth forests displayed gradual recovery, marked by increasing NDVI and NBR values
following deforestation events identified by initially low values in both indices. The age
of second-growth forests was determined based on the year when deforestation was last
observed. For instance, in Figure 2B, two events of vegetation clearing corresponded
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to strong decreases in NBR values in 1988 and 2003, followed by subsequent vegetation
regrowth. We also accounted for potential confounding factors, such as index drops caused
by residual cloud cover. To confirm possible small-scale deforestation/degradation events,
we also checked historical high-resolution images from Google Earth Pro when available.
For the JAM site, we obtained geospatial data from the Annual Operative Plans for selective
logging [33] to discriminate areas of degraded forest.

Furthermore, to assist in the visual identification of the forest disturbance classes and
provide additional proof of the quality of our training samples, we inspected auxiliary
data from three other disturbance-related maps: i. Primary humid tropical forest map for
the year 2001, from Turubanova et al. [38]; ii. Brazilian secondary forest age map for the
year 2017, from Silva Junior et al. [39]; iii. Map of global forest loss due to fire and other
disturbance drivers for 2001–2019, from Tyukavina et al. [40]. Due to uncertainties and
occasional discordant results from these data sources, the visual interpretation of Landsat
images was used as the primary reference for determining the class of a sample.

To collect data for training and testing the separability of the forest classes using the
machine learning classifiers, we allocated 50 samples per each of the 12 sites, totaling
600 samples in the Amazon biome. At each site, the 50 samples were randomly distributed
along the remote sensing flight line, with a minimum distance of 100 m from each other, to
avoid spatial autocorrelation. To capture the spatial variation of forest canopies within a
stand, the sample unit chosen was a square plot of 0.25 ha (50 m × 50 m). Plots of 0.25 ha
have an adequate size to represent the structural variability of tropical forests, as shown in
previous studies [41,42]. Using the identification from the visual interpretation of Landsat
time-series supported by auxiliary data, we detected 53 samples in the SF1–15yr class, 41 in
the SF16–32yr class, 317 in the DF class, and 189 in the UF class (Table 2). The distribution
of samples over the sites, as well as the information that supported the forest classes
identification for the training and testing samples, can be consulted on the interactive map
at https://catherine-almeida.github.io/forestmap/.

Table 2. Distribution of samples (0.25 ha) per site and disturbance class (50 samples per site ×
12 sites = 600 samples) for the inspection of Landsat time series (1984–2017) and auxiliary data.
The disturbance classes are younger second-growth forests (SF1–15yr), older second-growth forests
(SF16–32yr), degraded old-growth forests (DFs), and undisturbed old-growth forests (UFs).

Site SF1–15yr SF16–32yr DF UF Total

MAM 0 0 0 50 50
ZF2 0 0 0 50 50

DUC 3 18 0 29 50
AUT 18 4 21 7 50
TAP 10 4 31 5 50
SFX1 3 0 47 0 50
SFX2 2 0 48 0 50
PAR 8 10 32 0 50
JAM 0 0 35 15 50
ALF 1 1 18 30 50
FN1 8 1 41 0 50
FN2 0 3 44 3 50

Total 53 41 317 189 600

2.3. Airborne LiDAR Data

Airborne LiDAR data were obtained by the Trimble HARRIER 68i system between
January 2016 and April 2017 as part of the project EBA (Estimation of Biomass in Ama-
zon) [43]. The LiDAR sensor recorded multiple discrete returns with a small footprint
(nearly 30 cm) and a minimum point density of four points.m−2. This minimum point
density is considered sufficient for capturing essential forest attributes, such as canopy
height and biomass [44,45].

https://catherine-almeida.github.io/forestmap/
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The raw point cloud was denoised with the lasnoise function of the LAStools software,
version 171030 [46]. For the subsequent preprocessing steps, we used the functions Ground-
Filter, TINSurfaceCreate, Clipdata, and PolyClipData of the FUSION/LDV software [47].
In short, the ground points were filtered from the denoised point cloud and interpolated
into a 1 m Digital Terrain Model (DTM), which was subtracted from point elevations to
obtain the height above the ground of each point. The resulting normalized point clouds
were clipped to the 600 samples to calculate the LiDAR metrics of each sample.

A total of 34 area-based LiDAR metrics were considered, including metrics related to
height distribution (maximum, mean, percentiles of height, standard deviation, coefficient
of variation, skewness, and kurtosis), canopy cover (Leaf Area Density in a specific height
interval and proportion of first returns respective the number of all returns), structural
complexity (Shannon and Simpson diversity indices), and topography (terrain roughness).

To obtain the metrics related to height and LAD (Leaf Area Density), we tested both
using all returns and only the first returns. Since the two approaches produced highly
correlated metrics (r > 0.9), we chose the metrics calculated only from the first returns,
which have been considered more stable across different LiDAR acquisition settings [48].
Additionally, the first returns effectively capture the top-of-canopy structure, reducing noise
from lower vegetation and enhancing measurement consistency for cross-site comparisons.
This method also alleviates computational challenges by lowering data volume while
maintaining essential structural attributes for forest assessments [45].

The height and LAD metrics also considered just the points above a 2 m height to
avoid low vegetation points. The LAD profile was calculated with the LAD function of the
lidR package [49] using a height bin of 2 m and the extinction coefficient k of 0.695 based
on the study by Stark et al. [50] in central Amazon.

The HSCI and DSCI metrics are related to canopy structural complexity, based on
the commonly used entropy measures of Shannon (H’) and Simpson (D) indices, respec-
tively [51]. These metrics were normalized between 0 and 1 by considering a fixed number
of 30 height bins.

The terrain roughness was defined as the difference between the highest and lowest
altitude in a 3 × 3 moving window [52]. To mitigate extreme localized roughness values, the
altitude data were averaged from a 1 m DTM to a 10 m DTM. The 10 m spatial resolution
was selected as it aligned with our objective of capturing local topographic variability
within the sample areas. More details on LiDAR data processing and metrics calculation
can be found in Almeida et al. [21].

2.4. Airborne HSI Data

Airborne HSI data were collected by the EBA project between September and October
2017 using the AISAFenix sensor (Specim, Spectral Imaging, Ltd., Oulu, Finland). The flight
lines were oriented close to the N-S direction to reduce variations in viewing–illumination
geometry. In addition, data acquisition was carried out on sunny days, between 10 a.m.
and 1 p.m. (local time), with an average solar zenith angle of 30◦ and a standard deviation
of 7◦. The AISAFenix sensor provided images at a spatial resolution of 1 m in 361 bands
covering the spectral range of 380–2500 nm. Of these, 87 bands in the VNIR (visible
and near-infrared) had a bandwidth of approximately 6.8 nm, while the other 274 bands
in the SWIR (shortwave infrared) had a bandwidth of about 5.7 nm. We reduced the
total number of bands to 232 to remove the noise outside the range of 460–2330 nm
and around the spectral intervals of 1400 and 1900 nm (major atmospheric water vapor
absorptions). Surface reflectance images were obtained from the at-sensor radiance by
using the Atmospheric/Topographic Correction for Airborne Imagery tool (ATCOR-4;
version 6.3). The water vapor estimates were based on the 940 nm absorption feature. For
geometric correction, we used the data provided by a GNSS (Global Navigation Satellite
System) receiver onboard the aircraft.

We considered a total of 278 potential metrics from the HSI data: 232 reflectance bands;
30 vegetation indices (Table 3); 10 continuum-removal absorption band parameters; and
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6 sub-pixel metrics derived from linear spectral mixture analysis. The continuum-removed
features were characterized by the depth at the absorption center (Dc) and the width at the
half depth (Wc) from five fixed absorption bands: chlorophyll band at 495 nm (461–536 nm);
chlorophyll band at 670 nm (556–749 nm); leaf water band at 980 nm (893–1074 nm); leaf wa-
ter band at 1200 nm (1097–1265 nm); and lignin-cellulose band at 2100 nm (2039–2199 nm).
To generate the continuum-removed spectrum, the original reflectance was first smoothed
for noise reduction using a Savitzky–Golay filter with a window size of five bands and a
first polynomial order. Then, the smoothed reflectance values within each absorption band
were divided by the values of a continuum line between the band edges [53].

Table 3. Hyperspectral vegetation indices from the AISAFenix surface reflectance data.

Abbr. Vegetation Index Equation Reference

ARI1 Anthocyanin Reflectance Index 1 (1/R549) − (1/R701) [54]
ARI2 Anthocyanin Reflectance Index 2 [(1/R549) − (1/R701)] ∗ R797 [54]
CAI Cellulose Absorption Index 0.5 (R2039 + R2199) − R2100 [55]
CRI1 Carotenoid Reflectance Index 1 (1/R515) − (1/R549) [54]
CRI2 Carotenoid Reflectance Index 2 (1/R515) − (1/R701) [54]
DLAI Difference for Leaf Area Index R1724 − R969 [56]

DWSI1 Disease Water Stress Index 1 R797/R1662 [57]
DWSI2 Disease Water Stress Index 2 R1662/R549 [57]
DWSI3 Disease Water Stress Index 3 R1662/R680 [57]
DWSI4 Disease Water Stress Index 4 R549/R680 [57]
DWSI5 Disease Water Stress Index 5 (R797 + R549)/(R1662 + R680) [57]

EVI Enhanced Vegetation Index 2.5 (R797 − R673)/(R797 + 6 R673 − 7.5 R474 +1) [58]
GNDVI Green Normalized Difference Vegetation Index (R797 − R549)/(R797 + R549) [59]
LWVI1 Leaf Water Vegetation Index 1 (R1096 − R983)/(R1096 + R983) [60]
LWVI2 Leaf Water Vegetation Index 2 (R1096 − R1204)/(R1096 + R1204) [60]
NDBleaf Normalized Difference for Leaf Biomass (R2160 − R1540)/(R2160 + R1540) [56]
NDchl Normalized Difference for Leaf Chlorophyll (R927 − R708)/(R927 + R708) [56]

NDLI Normalized Difference Lignin Index [log(1/R1751) − log(1/R1679)]/[log(1/R1751) +
log(1/R1679)] [61]

NDNI Normalized Difference Nitrogen Index [log(1/R1512) − log(1/R1679)]/[log(1/R1512) +
log(1/R1679)] [61]

NDVI Normalized Difference Vegetation Index (R797 − R680)/(R797 + R680) [36]
NDWI Normalized Difference Water Index (R859 − R1237)/(R859 + R1237) [62]

PRI Photochemical Reflectance Index (R529 − R570)/(R529 + R570) [63]
PSRI Plant Senescence Reflectance Index (R680 − R502)/R749 [64]
PWI Plant Water Index R900/R969 [65]
REP Red-Edge Position 700 + 40 [(Rre − R701)/(R742 − R701)] [66]

Rre = (R673 + R783)/2
RVSI Red-Edge Vegetation Stress Index [(R714 + R749)/2] − R735 [67]

SR Simple Ratio R797/R680 [68]
VIgreen Vegetation Index green (R549 − R680)/(R549 + R680) [69]
VOG1 Vogelmann Index 1 R742/R721 [70]
VOG2 Vogelmann Index 2 (R735 − R749)/(R714 + R728) [70]

We used the linear spectral mixture analysis from the unmix function of the hs-
dar R package [71] to calculate the fractions of green vegetation (GV), shade, and non-
photosynthetic vegetation/soil (NP) endmembers. NP represents a mixture of bright soils
and non-photosynthetic vegetation since these components could not be easily distin-
guished from each other in the scenes. To select reference endmembers for GV and NP,
we applied the minimum noise fraction (MNF) followed by the pixel purity index (PPI)
technique in the ENVI software, version 5.3 (Harris Geospatial Solutions, Inc., Boulder,
CO, USA). To pick the purest pixels at each site, the endmembers detected by the PPI
were projected over an n-dimensional scatterplot. The final GV and NP endmembers were
then obtained by averaging the purest pixels of all sites. For the shade endmember, a
photometric shade with a uniform reflectance of zero was considered [72].
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For each metric (reflectance, vegetation indices, absorption features, and endmember
fractions), we averaged the pixel values within each of the 600 samples to calculate the
plot-level metrics. For the shade endmember fraction, we also calculated the proportion
of pixels with a shade fraction below 30% (S0_30), between 30 and 60% (S30_60), and above
60% (S60).

2.5. Feature Selection and Importance

To maximize the information extracted from LiDAR and HSI data, we initially calcu-
lated a large set of metrics. However, this high data dimensionality might cause overfitting
in the modeling process. To address this issue, we implemented a feature selection process
to reduce the number of metrics and avoid redundancy, simplifying the dataset while
preserving its informative value.

First, we eliminated highly correlated metrics using the findCorrelation function from
the R package caret [73]. This function evaluates the absolute values of pairwise Pearson’s
correlations between metrics, and if two metrics have a correlation greater than 0.95, it
removes the one with the largest mean absolute correlation. Even though some remote
sensing metrics had skewed distribution, Pearson’s correlation is recognized as robust
against extreme violations of assumptions of normality [74], effectively fulfilling its purpose
of reducing data redundancy.

Next, we inspected the metrics for linear dependencies with the findLinearCombos
function from the same package. These two steps resulted in 20 LiDAR metrics and
42 HSI metrics (Figure 3 and Table 4) selected from the original set of variables (34 LiDAR
metrics and 278 HSI metrics). These refined set of metrics were then used as predictors for
the machine learning classification (RF, SGB, and SVM) of the four forest classes (UF, DF,
SF1–15yr, and SF16–32yr) by considering three different scenarios of datasets: a LiDAR-only
dataset (20 metrics), an HSI-only dataset (42 metrics), and the combination of both data
sources (62 metrics).
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Figure 3. Flowchart representing the steps involved in dataset preparation for machine learning
classification using three classifiers: Random Forest (RF), Stochastic Gradient Boosting (SGB), and
Support Vector Machine (SVM).

Although the remaining number of metrics still produces a high-complexity model,
which may be more difficult to apply in practice, our main purpose here was to understand
the full potential of each data source. Mainly, we aimed to identify which metrics related
to structural and functional characteristics were most important to differentiate the four
classes of forests. Therefore, to further explore the discriminative power of metrics, we
applied the Kruskal–Wallis test to evaluate differences in metric values across the forest
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classes. We then calculated the eta squared based on the H statistic from the Kruskal–Wallis
test (Equation (1)):

η2[H] =
H − k + 1

n − k
, (1)

where H is the value obtained in the Kruskal–Wallis test, k is the number of classes, and n
is the total number of observations. The non-parametric Kruskal–Wallis test was chosen
because some remote sensing metrics had skewed distribution, violating the assumptions
of parametric methods. In this context, the eta squared indicates the proportion of total
variation in the metric explained by the forest classes, serving as a univariate measure
of metric importance. Additionally, we ranked the final set of selected metrics using
the importance measures provided by the RF and SGB classifiers, further refining our
understanding of which metrics were most informative for the classification task.

Table 4. Description of LiDAR and HSI metrics used as predictors to the machine learning classifica-
tion models after the feature selection process.

Data Source Metric Type Selected Metrics Description

LiDAR

Height statistics H.max, H.mean, H.p05, H.p95, H.sd,
H.cv, H.skew, H.kurt

Statistics (maximum, mean, 5% percentile,
95% percentile, standard deviation,

coefficient of variation, skewness, and
kurtosis, respectively) of the height

distribution (H).

Canopy cover PD1st Number of first returns above 2 m divided by
the number of all returns above 2 m.

LAD2_10, LAD10_20, LAD20_30
LAD (Leaf Area Density in m2 m−3) between
the height intervals 2–10, 10–20, or 20–30 m.

LAD2, LAD6, LAD14, LAD22, LAD26
LAD (Leaf Area Density in m2 m−3) above

the height 2, 6, 14, 22, or 26.

Structural
complexity indices HSCI, DSCI

Shannon (H) and Simpson (D) Structural
Complexity Indices calculated from the

LAD profile.
Topography Roughness Mean terrain roughness from 10 m DTM.

HSI

Reflectance bands R461, R549, R673, R852, R1181, R1735,
R2149, R2265

Reflectance (R) at the respective wavelength
band center.

Vegetation indices

ARI1, ARI2, CAI, DLAI, DWSI2,
DWSI3, DWSI4, DWSI5, LWVI1,

LWVI2, NDBleaf, NDchl, NDLI, NDNI,
NDVI, NDWI, PRI, PSRI, PWI, REP,

RVSI, SR

Vegetation indices calculated from the
AISAFenix reflectance (see Table 3 for the full

names and equations).

Continuum-removal
absorption features D495, D980, D1200, D2100

Depth (D) at the absorption centers of 495,
980, 1200, and 2100 nm, respectively.

W495, W670, W980, W1200, W2100

Width at the half depth (W) at the absorption
centers of 495, 670, 980, 1200, and 2100 nm,

respectively.

Sub-pixel fractions NP Fraction of non-photosynthetic
vegetation/soil endmember.

S30_60, S60

Proportion of pixels with shade fraction (S)
between 30–60% and above 60%,

respectively.

2.6. Model Validation, Optimization, and Generalization

The machine learning approach was used to investigate the potential of LiDAR and
HSI metrics, used separately and together, for the discrimination of the four forest classes.
To validate the machine learning models, we first split the dataset (n = 600 samples) into
training and test sets, in which the test set was composed of a given site (n = 50) and the
training set by the remaining 11 sites (n = 550). Thus, this procedure was repeated 12 times,
always leaving one of the 12 sites out to serve as a test set. The training set results were used
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to evaluate the models’ performance in a regional context by considering different sites
throughout the Amazon. In contrast, the test set results evaluated the model generalization
capability, that is, its ability to accurately predict outcomes for a completely new site not
included in the training data.

We used the train function of the caret package to train each classifier (RF, SGB, and
SVM) in the training sets and calculate an unbiased performance measure via 11-fold
cross-validation (each fold had approximately 50 samples for the model validation). For
each classifier, we evaluated different tuning parameters to select the optimal model from
those parameters. For the RF classifier, the mtry parameter was tuned from the values 2, 4,
6, 8, and 10, and the ntree parameter was set to 1000. For the SGB, tuning parameters were
n.trees (50, 100, and 150) and interaction.depth (1, 2, and 3). The parameters shrinkage and
n.minobsinnode were set to the default values (0.1 and 10, respectively). For SVM, we used
the Radial Basis Function Kernel by tuning the parameters cost (0.5, 1, 2, and 4) and setting
the sigma value with the sigest function from the R package kernlab [75].

We considered the overall F1 score (F1 average of the four classes) as the performance
measure to select the optimal model. The F1 score combines precision (also known as
user’s accuracy) and recall (aka producer’s accuracy or sensitivity) by calculating its har-
monic mean (Equation (2)), thus providing a single performance measurement for a given
class [76]:

F1 =
2 × precision × recall

precision + recall
(2)

The overall F1 score is known to be better suited for imbalanced data because it gives
the same weight to every class. However, to be able to evaluate the performance for each
class, we also provided the confusion matrices with the precision and recall values of each
class (see Tables S1–S9 in the Supplementary Material) and calculated the by-class F1. In
addition to the overall and by-class F1, the overall accuracy (OA) was also reported. Even
though OA tends to undervalue the performance of classifiers on smaller classes, this
measure is widely used and may be useful for comparison among other studies.

A two-way analysis of variance (ANOVA), followed by a Tukey test, was used to
assess whether there were any differences in performance measures from cross-validation
(OA and overall/by-class F1) among the three datasets (LiDAR, HSI, and its combination),
three classifiers (RF, SGB, and SVM), and interaction between data and classifiers. To
examine the effect size of these factors (data source, classifier, and their interaction) on the
overall model performance (OA and F1), we also calculated the eta squared (η2). From the
ANOVA results, the η2 is the ratio of the sum of the squares of the factor by the total sum
of squares and can be considered as a large effect size when greater than 0.14 [77].

Finally, we chose the best model (among data sources and classifiers) for each of the
12 training sets and used it to predict the forest classes on its corresponding test set. Thus,
we calculated the overall accuracy and F1 for each test set, allowing us to analyze the ability
of the best model to generalize to sites that were not used in its training.

All statistical analyses were performed in the R software, version 4.3.1, and considered
a significance level of 0.05. The data processing and analysis were conducted on a computer
equipped with an Intel Core i7-1255U processor (10 cores, 4.7 GHz) and 16 GB of RAM
(Random Access Memory). For storage, a 4 TB external hard drive was used to store the
datasets and results.

3. Results
3.1. Importance of LiDAR and HSI Metrics for Separating the Forest Classes

The LiDAR and HSI metrics that explained most of the forest classes’ variability
(highest η2[H]) are presented in Figure 4. Most of these metrics were also ranked as the
most important for the RF and SGB models (Figure 5). Table 5 summarizes the main
structural and functional characteristics associated with the LiDAR and HSI metrics useful
for discriminating the forest disturbance classes.
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From the LiDAR dataset, metrics related to the upper canopy density (LAD20_30,
LAD22, and LAD14) were the most important for classification. The upper canopy density
exhibited a significant increase from the SF1–15yr to the UF (Table 5 and Figure 6). The
LAD between the height interval of 20 and 30 m (LAD20_30) presented the highest η2[H]
(0.50) and high relative importance for the RF and SGB classifiers, either in single or hybrid
models. Such height interval represents the canopy height distribution of old-growth
forests (DF and UF), which showed a mean canopy height (H.mean) of around 20 m and
a top of canopy height (H.p95) of around 30 m (Table 5). Very tall trees (>30 m) were
rare in second-growth forests. When they occurred, such tall trees may be remnants of
the native vegetation. Thus, metrics related to the top of canopy height, such as H.max
and H.p95, showed good separability between second and old-growth forests. Canopy
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structural complexity and heterogeneity, as measured by metrics such as HSCI and H.sd,
were also good indicators of vegetation regrowth. Consequently, second-growth forests
had homogeneous canopies with little height variation, while old-growth forests had
heterogeneous and complex canopies, commonly presenting several vertical strata. The
terrain roughness had the lowest η2[H] (0.03), indicating a poor ability to explain alone
the variability between the disturbance classes. However, RF and SGB using only LiDAR
data ranked this metric among the three most important. This result suggests that terrain
roughness, when combined with other LiDAR variables, contributes to improving model
performance by accounting for additional variability among forest classes.

Table 5. Comparison of the average structural and functional characteristics derived from LiDAR
and HSI data among the forest classes. See Table 4 for the description of metrics. Distinct letters in a
row indicate significant differences in the characteristics among classes from a pairwise Wilcoxon test
with a Holm correction.

Characteristic Metric Unit Class
SF1–15yr SF16–32yr DF UF

LiDAR
Upper canopy density LAD20_30 m2 m−3 0.00 a 0.10 b 0.28 c 0.68 d
Mean canopy height H.mean m 6.69 a 12.10 b 16.68 c 21.51 d
Top of canopy height H.p95 m 11.12 a 16.95 b 28.83 c 31.35 d
Structure complexity HSCI unitless 0.38 a 0.56 b 0.67 c 0.74 d

Canopy heterogeneity H.sd m 2.63 a 3.27 b 7.20 d 6.76 c

HSI
Canopy moisture/LAI D1200 % 17.84 a 18.96 c 18.61 b 20.04 d

Canopy moisture/LAI and
non-photosynthetic biochemical W2100 nm 51.41 a 59.41 b 52.46 a 61.43 b

Photosynthetic pigments R673 % 2.71 a 2.03 c 2.23 b 1.77 d
Canopy gaps/emergent trees S60 unitless 0.01 a 0.04 b 0.08 c 0.13 d

Health DWSI5 unitless 1.74 a 2.04 c 1.91 b 2.09 c
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The HSI dataset provided better discrimination between DF and UF, as degraded forests
were generally more spectrally similar to the older second-growth forests (Figure 7A). From
the HSI reflectance bands, the most relevant spectral interval for discriminating vegetation
classes (η2[H] values > 0.3) was the SWIR (1500–2260 nm), especially the bands located
around 1735 nm and 2149 nm (Figure 7B). Red reflectance bands (close to 670 nm), related
to chlorophyll absorption, were also of great importance (η2[H] ~ 0.3) in characterizing
forest degradation/regeneration. They were followed by leaf-water absorption bands in
the NIR at 980 nm and, especially at 1200 nm and by photosynthetic pigment features in
the blue-to-green spectral region (~500 nm). In contrast, the spectral transition from the red
edge to the NIR (740 to 890 nm) showed the lowest η2[H] values. The greater relevance of
the spectral regions associated with absorption by biochemical constituents was evidenced
by the use of the continuum-removal technique. This approach enhances the vegetation
absorption features of interest while reducing the interference of other factors, such as the
effects of soil background and view-illumination geometry. Absorption features at 1200 nm
(D1200) and 2100 nm (W2100) were the most relevant metrics, displaying the highest η2[H]
values (0.40 and 0.38, respectively) and relative importance values for the RF and SGB
classifiers among all HSI metrics.
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In addition to the reflectance bands and absorption features, other HSI metrics were
also relevant to distinguish forest classes. From the sub-pixel metrics, the proportion of
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pixels with a shade fraction above 60% (S60) had great importance, presenting a significantly
different average among the four classes (Table 5). Deep shaded areas occur due to canopy
gaps and shadowing of emergent trees, thus serving as a measure of canopy complexity.
Furthermore, the increase in shade proportion (S60), as well as in canopy moisture (evi-
denced by D1200), from second- to old-growth forests explains the decrease in NIR and
SWIR reflectance in the complex forests (Figure 7A). Among the vegetation indices, those
with higher η2[H] (>0.2) were DWSI5, PRI, PSRI, ARI1, and DWSI4. REP (η2[H] = 0.20) was
also very important for the performance of the RF and SGB models using HSI data. The
older second-growth forests were not significantly different from the undisturbed forests
according to some HSI metrics, such as W2100 and DWSI5 (Table 5).

Differences in the variability of LiDAR and HSI metrics in relation to the discrimination
of classes are useful to better characterize forests that are placed in the intersection between
degradation and regeneration processes, such as degraded forests (class DF). LiDAR metrics
of degraded old-growth forests generally had intermediate values between second-growth
and undisturbed old-growth forests. Meanwhile, for some HSI metrics, degraded forests
displayed intermediate values between younger and older second-growth forests (Figure 8).
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3.2. Effect of Remote Sensing Data Source and Machine Learning Classifiers

Figure 9 shows the results of the cross-validation (mean overall accuracy and overall
F1) for each data source and classifier. Irrespective of the classifier used, the best per-
formances were achieved with the use of multisource data for both evaluation metrics
(accuracy mean cross-validated of 0.88–0.89 and F1 mean cross-validated of 0.82–0.83).
The ANOVA results confirmed that the classification performance was mostly affected by
the data source, which explained 85% of the OA variation and 81% of the F1 variation
(Table 6). The effect of the classifiers was non-significant (p-value > 0.05), indicating that
no single classifier consistently outperformed the others across all types of data sources
used in the analysis. However, the interaction of data sources and classifiers was signif-



Remote Sens. 2024, 16, 3935 17 of 26

icant (p-value < 0.05) for the OA due to the poor performance of SVM when used with
LiDAR data. Furthermore, the performance of the SVM was slightly better in discriminat-
ing the SF16–32yr class (Table 7). This is an advantage of SVM, considering that the older
second-growth forest was the most difficult class to be distinguished from the others (lower
F1 score).

HSI-only models presented higher OA than LiDAR-only models due to the better
performance of HSI data in the prevailing classes of DF and UF. In terms of overall F1, a
more suitable metric for imbalanced datasets, the HSI-only models generally performed
similarly to LiDAR-only models, except for the RF classifier. RF with LiDAR data displayed
a significantly greater overall F1 than the RF with HSI data. LiDAR data generally pro-
duced better discrimination of second-growth forests compared with HSI data, especially
for the SF1–15yr class. The combination of the LiDAR’s ability to better discriminate the
two successional stages with the HSI’s ability to better discriminate the disturbed and
undisturbed old-growth forests increased the overall F1 of hybrid models by up to 12.2%
of the best single model.
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Figure 9. Variations in overall accuracy and F1 to discriminate the vegetation classes using differ-
ent machine learning classifiers (RF = Random Forest, SGB = Stochastic Gradient Boosting, and
SVM = Support Vector Machine) and data sources (LiDAR, HSI, and hybrid dataset).

Table 6. ANOVA results for the assessment of differences in performance measures to discriminate
the vegetation classes.

Factor Degree of Freedom Sum of Squares Mean Square F Value p-Value η2

Overall Accuracy
Data 2 0.17 0.08 359.49 0.00 0.85

Classifier 2 0.00 0.00 1.14 0.32 0.00
Data:Classifier 4 0.01 0.00 6.31 0.00 0.03

Residuals 99 0.02 0.00

Overall F1
Data 2 0.15 0.08 233.75 0.00 0.81

Classifier 2 0.00 0.00 1.87 0.16 0.01
Data:Classifier 4 0.00 0.00 1.89 0.12 0.01

Residuals 99 0.03 0.00
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Table 7. Cross-validated overall and by-class performance for each data source and classifier. Distinct
letters in a column indicate significant differences in performance from the Tukey test.

Data Classifier Overall
Accuracy Overall F1

By-Class F1
SF1–15yr SF16–32yr DF UF

LiDAR
RF 0.80 a 0.75 a 0.77 ab 0.62 ab 0.84 a 0.76 a

SGB 0.80 a 0.76 a 0.79 ab 0.65 abc 0.84 a 0.76 a
SVM 0.77 b 0.74 a 0.75 a 0.67 acd 0.82 a 0.71 b

HSI
RF 0.82 c 0.74 a 0.62 c 0.61 b 0.87 b 0.83 c

SGB 0.84 c 0.75 a 0.64 c 0.62 ab 0.88 b 0.85 cd
SVM 0.84 c 0.74 a 0.61 c 0.63 ab 0.88 b 0.86 cde

LiDAR + HSI
RF 0.88 d 0.82 b 0.80 b 0.69 cd 0.91 c 0.89 de

SGB 0.88 d 0.83 b 0.79 ab 0.71 de 0.91 c 0.88 de
SVM 0.89 d 0.83 b 0.76 ab 0.75 e 0.92 c 0.90 e

3.3. Generalization of Predictions

For each training set (12 replicates, each without a given site), we selected the models
with the highest cross-validated overall F1 (Table 8). In all cases, the best data were the
combination of LiDAR + HSI. For the classifier, the SVM appeared with the highest F1 for
most cases, although the performance difference between the classifiers was not significant.
When we used these best models to predict the classes of the site that was left out, we
found that the OA in the test set ranged from 0.32 to 0.92, and the F1 ranged from 0.39 to
0.93. The results indicate that, for most sites, models trained in other locations were able to
generalize to this new environment, maintaining high classification performance. More
specifically, the sites DUC, FN1, FN2, PAR, SFX1, SFX2, and ZF2 had a test set OA ≥ 0.78
and a test set F1 ≥ 0.7. However, some sites (especially JAM and MAM) performed poorly
in the test set, evidencing that the models were not able to generalize to these sites.

Table 8. Overall performance of the best models in training and test sets. The test set only contains
data for a specific site, which was not used in model training.

Test Set Site
Best Classifier Best Data Training Set Performance Test Set Performance

Overall Accuracy Overall F1 Overall Accuracy Overall F1

ALF SVM LiDAR + HSI 0.90 0.84 0.56 0.67
AUT RF LiDAR + HSI 0.89 0.84 0.64 0.59
DUC SGB LiDAR + HSI 0.88 0.85 0.80 0.70
FN1 RF LiDAR + HSI 0.88 0.82 0.92 0.86
FN2 SGB LiDAR + HSI 0.89 0.84 0.86 0.93
JAM SVM LiDAR + HSI 0.92 0.87 0.40 0.39

MAM SVM LiDAR + HSI 0.89 0.83 0.32 0.48
PAR RF LiDAR + HSI 0.90 0.85 0.80 0.82
SFX1 SVM LiDAR + HSI 0.90 0.86 0.88 0.72
SFX2 SVM LiDAR + HSI 0.88 0.82 0.90 0.81
TAP SVM LiDAR + HSI 0.90 0.84 0.72 0.65
ZF2 SVM LiDAR + HSI 0.88 0.83 0.78 0.88

4. Discussion

The present study brings relevant insights into how advanced remote sensing tech-
nologies can be used together to improve our understanding of forest dynamics concerning
anthropogenic disturbances and natural regeneration in tropical forests of the Amazon
region. It goes beyond simpler evaluations of forest cover loss and advances toward the
assessment of forest quality and ecosystem services in heterogeneous human-modified
tropical landscapes. Despite the high complementary potential of LiDAR and HSI data
for improving the characterization and quantification of forest characteristics, previous
studies displayed divergent results on the synergistic use of both technologies. Some inves-
tigations showed no or slight information gain when combining structural (LiDAR) and
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spectral (HSI) data [72,78,79], while others demonstrated a significant effect on increasing
the performance of models [22,80,81].

In our study, the complementary information of LiDAR and HSI data considerably
improved the characterization of tropical forest degradation and regeneration. While
LiDAR performed well in classifying successional stages by differentiating them from
old-growth forests, HSI was effective in distinguishing degraded forests from undisturbed
forests. Canopy structural characteristics related to LiDAR metrics, such as height, basal
area, and biomass, have been used to characterize successional stages [82]. For instance,
the most important LiDAR metrics found here were similar to the ones used to estimate
aboveground carbon density in Borneo’s tropical forests [83]. Examples include canopy
cover at 20 m aboveground (Cover20), which was similar to the metrics LAD20_30 or LAD22
used here, and top of canopy height (TCH), which was related to the metrics H.max or
H.p95 used in this study. Additionally, the HSI and LiDAR metrics that had the greatest
influence on the classification of forest degradation and regeneration were also the most
important for estimating AGB in a previous study in the Amazon biome [21]. This is
because AGB integrates important forest structural and functional information associated
with forest disturbance and regrowth, such as tree height, basal area, number of trees per
area, and wood density.

The main errors related to our LiDAR-only models expressed the confusion between
degraded and undisturbed old-growth forests. This challenge arises because some de-
graded areas, while structurally similar to undisturbed forests, may experience changes
in species composition. For instance, disturbances like timber harvesting and forest fires
may reduce the abundance of certain tree species and favor the regeneration of early-
successional species in forest gaps and edges [84], which have contrasting functional and
spectral features [5,85]. While LiDAR effectively captures canopy structure and height, it
lacks the ability to detect changes in species composition, which can be a crucial indicator
of forest health and disturbance. Thus, approaches based solely on structural characteristics
limit the characterization of a broad spectrum of forest disturbance conditions.

In contrast, the most important HSI metrics found in this study were related to func-
tional characteristics, especially canopy moisture, biochemical components, and health.
The SWIR spectral region, especially the absorption feature around 2100 nm, was very
relevant for characterizing forest degradation/regeneration. In consonance with our results,
other studies have indicated that SWIR bands contain most of the relevant information to
distinguish forest regeneration [5,86]. This fact can be explained by the increased canopy
complexity, shadowing, and moisture along the succession, which decrease the SWIR re-
flectance. Furthermore, absorption features around 1700 nm and 2100 nm have been related
to non-pigment biochemical components, such as lignin and cellulose [13], indicating the
occurrence of dead or senescent vegetation. Water absorption bands, especially at 1200 nm,
were also very important. Asner et al. [87], using EO-1 Hyperion data in the central Ama-
zon, showed that the canopy water metrics (SWAM, spectroscopic water-absorption metric)
and pigment metrics (PRI and ARI) were a proxy for physiological and biochemical changes
from chronic water stress. In agreement with our results, Thenkabail et al. [17] found that
EO-1 Hyperion bands related to absorption by biochemical constituents (spectral inter-
vals in the 1300–1900 nm, 1100–1300 nm, 1900–2350 nm, and 600–700 nm) were the most
important to characterize African tropical forests following anthropogenic disturbance of
different magnitudes. Thus, the importance of HSI metrics in identifying tropical distur-
bance suggests a greater susceptibility to canopy stress in degraded forests, facilitating
their distinction from healthy forests with similar structural characteristics.

It is important to note that among the tested HSI metrics, the most important were
the absorption features obtained through the continuum-removal method. These features,
unlike reflectance values and some vegetation indices, cannot be derived from multispectral
data due to the need for high spectral resolution to detect specific absorption bands associ-
ated with biochemical and physiological properties, such as pigments and water content
in leaves. Consequently, our study points to a clear advantage of hyperspectral data over
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multispectral data in this context. This finding aligns with those reported by Thenkabail
et al. [17], who compared three broadband sensors (IKONOS, ALI, and ETM+) to the
narrowband hyperspectral Hyperion data for classifying complex rainforest vegetation.
Their results indicated that forest classifications using hyperspectral data achieved overall
accuracies 45–52% higher than those using multispectral data. Similarly, for non-forest
habitats (meadows, grasslands, heaths, and mires), Jarocińska et al. [88] found that HSI
outperformed multispectral Sentinel-2 imagery, with greater improvements in classification
accuracy observed in areas of high α or β-diversity.

Although the combination of LiDAR and HSI offers significant advantages for charac-
terizing the complex dynamics of regeneration and degradation in tropical forests, future
studies should assess the cost-effectiveness of this approach using airborne data. To ex-
pand the analytical scope in larger areas, researchers should consider recently launched
hyperspectral missions such as the Environmental Mapping and Analysis Program (En-
MAP) and the possibility of integrating their observations with data acquired by existing
Synthetic Aperture Radar (SAR) or future LiDAR missions. This strategy would facilitate
the development of approaches combining structural and compositional information for
large-scale monitoring initiatives.

Most studies on forest ecosystems based on LiDAR and HSI data integration have
been performed locally on single study sites [89–92]. Although it is important to consider
different spatial scales in the study of multisensor data integration, the full realization of
its potential as a source of forest information requires an ability to generalize in different
environmental conditions and human-induced degradation and regeneration dynamics.
Even considering that our best model cannot be generalized to all evaluated sites, it
was satisfactorily transferred to most sites that represent the distinct environmental and
anthropogenic conditions of the Amazon. Thus, the integrated use of LiDAR and HSI
data can also help to understand the dynamics of complex Amazonian forests from a
regional perspective.

Second-growth and degraded forests are an integral part of tropical landscapes. How-
ever, they present different compositions and structures, leading to divergent functioning
patterns. Therefore, their accurate characterization and discrimination from the remaining
undisturbed forests are essential for establishing conservation and management priorities.
The distinct structural and functional characteristics of undisturbed forests suggest that
some of their ecosystem services cannot be replaced by degraded or secondary forests [93].
Therefore, it is necessary to conserve forests that are still relatively intact, preventing new
areas from degradation or deforestation. The remote sensing approaches described here
may play a key role in planning interventions under REDD, intact forest landscapes, and
the Alliance for the Restoration in the Amazon [94,95].

Previous studies [96–98] have reported a “secondarization” of degraded forests, de-
scribed as a process that transforms closed-canopy primary forests into more open forests
dominated by short-lived pioneer species due to recurrent anthropogenic disturbances. In
fact, older second-growth forests and degraded old-growth forests may represent forests
with similar structural and compositional characteristics positioned at the intersection
of degradation and regeneration trajectories. However, depending on the degradation
intensity and recurrence, degraded forests can retain important structural characteristics of
the former primary forests, as well as a generally heterogeneous species composition [99].
Likewise, the older second-growth forests had distinct characteristics from the younger
ones and, according to some HSI metrics, were more similar to the undisturbed forests.
Thus, both degraded and secondary forests have great potential to provide significant
environmental benefits, as well as to contribute to poverty alleviation through products
and services of socio-economic importance. However, avoiding recurrent degradation is
essential to ensure the continued functioning of forests.

Finally, as far as we know, this is the first study that evaluates the potential of com-
bining LiDAR and hyperspectral remote sensing to discriminate different levels of forest
degradation and regeneration over the Brazilian Amazon. This knowledge is important for
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future large-swath orbital missions of both instruments, even considering the constraints of
data upscaling from the airborne to the orbital level of data acquisition. Understanding the
variability of LiDAR and HSI metrics in different degradation and regeneration gradients
from a wide spatial sampling over the Amazon forests can help to build models based on
equivalent metrics derived from orbital platforms in an upscaling exercise. Thus, the role
played by data sources, metrics, and models described in this study represents the first
step toward the production of large-scale maps to be further validated with detailed field
information in the Amazon.

5. Conclusions

We concluded that the combined use of LiDAR and HSI data was more effective
than the type of machine learning classifier in improving discrimination between tropical
forests with different degradation and regeneration status. Models based on a single re-
mote sensing data presented a reasonable overall performance (F1 of 0.74–0.76 for LiDAR
models and 0.74–0.75 for HSI models) but displayed superior accuracy in specific classes.
While LiDAR produced significantly fewer errors for discriminating second-growth from
old-growth forests, HSI performed significantly better than LiDAR for separating degraded
from undisturbed old-growth forests. Combining the strengths of each data source signifi-
cantly improved the classification performance, increasing the overall F1 by up to 12.2%
relative to the best single model. When evaluating the best models in the test set, composed
of a site left out in the training process, we found that the models were able to general-
ize to most sites, although they performed poorly in some specific environments. These
results underscore the importance of multisource remote sensing for tropical forest char-
acterization, advancing the assessment of forest degradation and regeneration processes
in the Amazon. Future research should continue to explore the integration of advanced
remote sensing technologies to further enhance conservation, sustainable management,
and restoration policies.
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