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Abstract: Tool condition monitoring (TCM) systems are essential in milling operations to guarantee
the product’s quality, and when they are paired with indirect measuring techniques, such as vibration
or acoustic emission sensors, the monitoring can happen without sacrificing productivity. Some more
advanced techniques in tool wear estimation are based on supervised machine learning algorithms,
like several other applications in Industry 4.0’s context; however, a satisfactory performance can be
obtained with simple techniques and low computational power. This work focuses on an application
of tool wear estimation using a simple backpropagation neural network in a milling dataset. Statistical
techniques, i.e., the mean, variance, skewness, and kurtosis, were used as features that were extracted
from indirect measurements from vibration and acoustic emission sensors’ data in a real milling
testbench dataset containing multiple experiments with sensor data and a direct measure of the flank
wear (VB) in most instances. The data were preprocessed, specifically to acquire clean and normalized
values for the neural network training, assuming that the VB measure would be the target variable
used to predict tool wear; all incomplete samples without a VB measure, as well as outliers, were
removed beforehand. The train and test subsets were chosen randomly after making sure that the
maximum values of every variable were represented in the training subset. A multiple topology
approach was implemented to test the configurations of multiple backpropagation neural networks
to determine the most suitable one based on two performance criteria, i.e., the mean absolute percent
error (MAPE) and variance. Although only a simple backpropagation algorithm was used, the results
were adequate to demonstrate a balance between accuracy and computational resource usage.

Keywords: tool condition monitoring; backpropagation neural network; tool wear estimation

1. Introduction

Machining is a material removal process that is mainly used in computer numerical
control (CNC) systems. The system’s cutting tool is worn down by the workpiece with each
operation, and this can irreversibly affect the surface of the workpiece, so tool condition
monitoring (TCM) systems are essential to preventing failures and guaranteeing the quality
of the product [1].

The use of TCM systems can be divided into two groups [2]: (1) direct monitoring,
which directly measures fault values such as tool wear (TW) and utilizes more expensive
lasers and optical sensors, and (2) indirect monitoring, which measures the physical pa-
rameters that represent the tool condition parameters indirectly. Some direct monitoring
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methods that use microscopy or vision systems require the machining process to be inter-
rupted and the tool to be removed from the system, while indirect methods can measure
with lower precision without affecting the production line [3]. Various types of sensors
can be used for indirect measurements, such as dynamometers to measure cutting forces,
accelerometers to measure vibration, acoustic emission (AE) sensors to measure this very
parameter in the system, motor current sensors, and even microphones to measure the
sound of the process to indirectly measure TW [4].

The next step is to remove signal characteristics (vibration, AE, electric current, etc.)
from the pre-processed data. Such techniques can be only in the time domain, e.g., mean
and variance, in the frequency domain, e.g., fast Fourier transform (FFT), or in both the
time and frequency domain, such as the Wavelet transform (WT) [5].

Several artificial intelligence (AI) tools can be used in the decision-making process for
the estimated condition of the tool based on the characteristics of the signals, specifically
classical supervised machine learning algorithms such as decision trees and k-nearest neigh-
bors (KNN) for classification and linear regression. However, deep learning algorithms
such as convolutional neural networks (CNN) and recurrent neural networks (RNNs) are
also used [6].

Indirect measurement can be applied to a specific type of machining operation, such
as turning, grinding, or milling. Among these, milling is one of the most common and
important, so reducing costs and increasing product quality is essential. The use of TCM
systems can provide parameters such as AE, vibration, cutting force, etc., to detect any
faults or adverse conditions in the operation [7]. The proposed work focuses on monitoring
the milling operation.

Several studies focus on monitoring the TW of milling operations. The authors
of [8] propose a method that uses the short-time Fourier transform (STFT) to extract the
characteristics of the vibration signal from milling operations. The STFT is used to form a
time–frequency map that inputs an image in a supervised convolutional neural network
(CNN) to predict the tool flank wear. Another work [1] with the same goal as the previous
one uses a comparative approach between statistical techniques and discrete WT with or
without the Hölder exponent to analyze milling vibration signals. It also compares the
performance of various machine learning algorithms, such as decision trees, k-nearest
neighbors (KNN), and multi-layer perceptron (MLP) neural networks. Another method in
the literature that predicts flank wear in a milling operation uses the characteristics of a
cutting force model and Wavelet packet decomposition (WPD) as the input for a deep MLP
neural network [9].

The supervised machine learning methods used to estimate TW using indirect meth-
ods, specifically AE and vibration sensor signals, can accurately estimate the wear state of
the machining tool. Therefore, this work proposes an MLP artificial neural network (ANN)
model to estimate the TW, with the support of statistical techniques for AE and vibration
signals. The public dataset used [10] provides real information from milling experiments
with several measurements, enough to train a few MLP ANN configurations and test their
ability to predict TW.

2. Materials and Methods

This section presents the methods and materials used in the work, specifically the
dataset pre-processing and the conditions for implementing, training, and testing the
proposed neural networks.

The chosen dataset is made up of experimental data from the milling operation and
is called the mill dataset. The pre-processing of the data is necessary to obtain clean and
normalized values to serve as inputs for the ANN. The file is a MATLAB-specific. mat
file with a mill structure made up of 167 samples and 13 fields with different variables.
The explanations of each variable, as well as important information about the dataset, are
described in the Readme file next to the data file.
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The target variable for the ANN to estimate is called VB, the flank TW. The values of
case, a specific test condition, are a combination of the variables DOC, feed, and material,
meaning, respectively, the depth of cut, the feed rate of the tool, and the type of material,
which can be cast iron (1) or steel (2).

Each case has a unique number of passes in the tool on the workpiece; this variable
is called run. The duration of each case is represented by the variable time. Finally, the
sensor variables are the root mean square (RMS) values collected in around 9000 samples.
Only two of these are used, namely the vibration signals from the variable vib_table and
AE from the variable AE_table. Typical raw AE signal values are shown in Figure 1.

Eng. Proc. 2023, 58, 39 3 of 6 
 

 

The target variable for the ANN to estimate is called VB, the flank TW. The values of 

case, a specific test condition, are a combination of the variables DOC, feed, and material, 

meaning, respectively, the depth of cut, the feed rate of the tool, and the type of material, 

which can be cast iron (1) or steel (2). 

Each case has a unique number of passes in the tool on the workpiece; this variable 

is called run. The duration of each case is represented by the variable time. Finally, the 

sensor variables are the root mean square (RMS) values collected in around 9000 samples. 

Only two of these are used, namely the vibration signals from the variable vib_table and 

AE from the variable AE_table. Typical raw AE signal values are shown in Figure 1. 

 

Figure 1. Typical raw RMS values of AE sensor in a run. 

Some missing values (NaN) were found in the MATLAB structure. This had already 

been considered, as the Readme of the dataset mentions that the VB was not measured for 

each run. Therefore, the samples (run) with missing values were simply removed using 

MATLAB’s own function. The DOC and feed variables were also removed, considering 

that they were redundant as the case already represents a combination of these variables. 

The vib_table and AE_table sensor variables were split into statistical variables, 

specifically the mean, variance, skewness, and kurtosis for each signal. A simple analysis 

of the mean values of the statistics highlighted an anomaly in the mean and variance 

values, leading to a huge difference between the values. The outlier sample value was 

highlighted (Figure 2); it appears that the signal was corrupted and, consequently, 

removed from all tables, resulting in much more realistic values. The statistical values 

replaced the signal values with 8 new variables, specifically, m_AE, m_vib, v_AE, v_vib, 

s_AE, s_vib, k_AE and k_vib. Each variable’s name represents a combination of the first 

letter of the mean, variance, skewness or kurtosis, and AE or vibration specifying the 

statistical value and sensor. The resulting table had 145 samples and 13 scalar variables. 

 

Figure 2. Outlier anomaly AE sensor signal. 

The resulting values were normalized between 0 and 1 with a MATLAB function, but 

the run variable range was dependent on each case; therefore, it needed to be normalized 

separately, as there are different numbers of runs for each case, especially after removing 

some samples. The run variable was added to the normalized table after that. 

Figure 1. Typical raw RMS values of AE sensor in a run.

Some missing values (NaN) were found in the MATLAB structure. This had already
been considered, as the Readme of the dataset mentions that the VB was not measured for
each run. Therefore, the samples (run) with missing values were simply removed using
MATLAB’s own function. The DOC and feed variables were also removed, considering that
they were redundant as the case already represents a combination of these variables.

The vib_table and AE_table sensor variables were split into statistical variables, specif-
ically the mean, variance, skewness, and kurtosis for each signal. A simple analysis of
the mean values of the statistics highlighted an anomaly in the mean and variance values,
leading to a huge difference between the values. The outlier sample value was highlighted
(Figure 2); it appears that the signal was corrupted and, consequently, removed from all
tables, resulting in much more realistic values. The statistical values replaced the signal
values with 8 new variables, specifically, m_AE, m_vib, v_AE, v_vib, s_AE, s_vib, k_AE
and k_vib. Each variable’s name represents a combination of the first letter of the mean,
variance, skewness or kurtosis, and AE or vibration specifying the statistical value and
sensor. The resulting table had 145 samples and 13 scalar variables.
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Figure 2. Outlier anomaly AE sensor signal.

The resulting values were normalized between 0 and 1 with a MATLAB function, but
the run variable range was dependent on each case; therefore, it needed to be normalized
separately, as there are different numbers of runs for each case, especially after removing
some samples. The run variable was added to the normalized table after that.
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Samples were split into random training and test sets, using 80% for training and
20% for testing, according to the guidelines in [11]. The same author also pointed out that
the minimum and maximum values of each variable must be in the training set, so these
values were removed from the random selection of the test set, with the rest going into the
training set.

2.1. Backpropagation Neural Network

The MLP neural network was used as a universal function approximator, as it estimates
a real value between 0 and 1, according to the normalization performed previously. The
candidate topologies were 3 when using only one hidden layer, respectively, with 5, 10, and
15 neurons.

The MLP networks were trained using the generalized delta rule three times for each
candidate topology. The training set had 116 samples for each training with a maximum
number of 1000 epochs, all of which converged for a network accuracy ϵ = 0.5 × 10−6 and
a learning rate η = 0.1.

The final training results (T1, T2, and T3) are compiled in Table 1, based on the number
of epochs, i.e., how many times the algorithm had to be presented with all the training
samples until it converged, and the mean squared error (MSE).

Table 1. Training results.

Metric Training Network 1 Network 2 Network 3

Epochs
T1 189 199 188
T2 230 213 203
T3 177 240 219

MSE
T1 0.0033 0.0032 0.0031
T2 0.0033 0.0030 0.0030
T3 0.0032 0.0032 0.0032

The network only converges when the absolute value of the difference between the
MSE of the current and previous epoch is less than the ϵ precision. All the training
sessions had good results, except for T3 in Network 2; the best results were for T2 in
Network 1 and T1 in Network 3, with the lowest MSE and the lowest number of epochs, so
it converged faster.

2.2. Tests

The results are based on 9 different tests for each training and topology configuration.
The main metrics used are as follows: the mean absolute percentage error (MAPE) and
variance (σ2).

3. Results and Discussion

The plots in Figure 3a–c coincide with the smallest MAPE, all resulting from one of the
training sessions (T1, T2, or T3) for each network compiled in Table 2. The output values
are very close to the desired values, represented by a black dotted line, but there was no VB
result greater than 0.5, contributing to a higher MAPE value. All the networks failed on the
first sample. One solution would be to obtain more training data with high values (above
0.5) to balance the distribution, or to even have a better method for separating training
and test sets, such as the k-partition cross-validation method, the aim of which would be
to evaluate each network topology on different training and test subsets with a specific
size (k) [11]. The best results were close to 24% MAPE and 0.43 variance in Network 3.
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Table 2. Test results.

Metric Training Network 1 Network 2 Network 3

MAPE
T1 27.537 24.820 25.182
T2 26.791 25.178 25.206
T3 27.674 25.828 24.407

σ2(%)
T1 0.4469 0.4625 0.5090
T2 0.4433 0.4423 0.4330
T3 0.5007 0.4620 0.4710

Figure 4a–c shows the convergence of each network in its best training, i.e., the MSE
for each epoch. All networks had similar convergence curves, but both Networks 2 and 3
managed to converge in fewer epochs. Network 2 had the smallest MSE in the test,
converging in a similar number of epochs to Network 3 in training; however, it did not
perform better in the test phase.
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4. Conclusions

This work demonstrated how a relatively simple supervised machine learning al-
gorithm can estimate the values that come from the complex relationships between the
milling tool and the workpiece. Simple methods were also used to remove features from
the signal and the result was satisfactory as a proof of concept of the power of an ANN for
estimating values. Clearly, more complex ANN models such as CNNs and more robust
feature extraction methods such as WT would have better results, but they have higher
computation costs for training compared to the MLP, which has only one layer and fast
training convergences.

Still, it is possible to improve the MLP’s performance with more efficient algorithms
and better data preparation, including adding two or more hidden layers and being able
to reach the deep MLP (DMLP) with at least four hidden layers. Therefore, future studies
should compare a more robust MLP with another more advanced ANN, considering
both the accuracy and the computational cost of training and implementation. The best
algorithm will be the most appropriate considering the problem constraints.
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