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ABSTRACT

The presence of opportunistic bacteria such as coagulase-negative Staphylococcus (CoNS) in drinking water poses public health concerns

because of its potential to cause human infection and due to its antimicrobial resistance (AMR) diversity. This study evaluated the occurrence,

virulence markers and AMR of CoNS in 468 drinking water samples from 15 public fountains located in four urban parks of São Paulo city

(Brazil). Out of 104 samples positive for the presence of Staphylococcus genus, we detected CoNS in 75 of them (16%), which did not

meet the Brazilian sanitary standards for residual chlorine. All isolates were of concern to public health for being responsible for infection

in humans from low to high severity, nine of them are considered the most of concern due to 63.6% being multiresistant to antimicrobials.

The results demonstrated that CoNS in drinking water must not be neglected. It is concluded that the presence of resistant staphylococci in

drinking water is a potential health risk, which urges feasible and quick control measures to protect human health, especially in crowded

public places.

Key words: ATB resistance, coagulase-negative Staphylococcus, drinking water, MRSH

HIGHLIGHTS

• Coagulase-negative Staphylococcus (CoNS) was detected in chlorinated drinking water.

• High diversity of CoNs was found in drinking water.

• Ten species of CoNS and 25 phylogenetic variations were identified.

• High frequency of antibiotic-resistant CoNs was observed.

• A strain of S. haemolyticus carrying mecA gene and resistant to oxacillin and cefoxitin (MRSH) was identified.
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GRAPHICAL ABSTRACT

INTRODUCTION

One of the most concerning issues associated with drinking water is the occurrence of microbial contaminants, which
impacts human health. Usually, the assessment of drinking water bacteriological quality is based on fecal indicator bacteria

(FIB) such as thermotolerant coliforms or Escherichia coli. In current Brazilian legislation as well as in several other
countries, FIB is used as a bacteriological quality indicator for drinking water in addition to heterotrophic plate count
(HPC) and residual chlorine, according to the Ministry of Health of Brazil and the Northern Ireland Environment Agency

(NIEA) (Ministério da Saúde Brasil 2011; NIEA 2016). FIB (E. coli) acts as an indicator of the potential presence of patho-
gens and they are effective to identify fragilities in drinking water distribution systems. Nevertheless, these indicators are not
always sufficient to indicate the presence of opportunistic bacteria. Furthermore, the usage of indicators alone does not allow

a broader view of the drinking water quality regarding the issue of the presence of resistant pathogens to antimicrobials.
According to Getahun et al. (2020), antibiotic-resistant bacteria are part of a global crisis, requiring urgent action because
untreatable drug-resistant infections and diseases pose the threat of a worldwide public health emergency.

The presence of opportunistic pathogens can lead to interspecies and other bacterial lineage interactions. These inter-

actions favor exchanges of genetic elements that are responsible for antimicrobial resistance (AMR) characteristics.
Moreover, the response of their metabolites can amplify virulence in other strains, impacting human health (Hartmann
et al. 2018; Hu et al. 2021). Among the diversity of opportunistic bacteria, the group of microorganisms that is increasingly

reported in bacterial infections is the coagulase-negative Staphylococcus (CoNS). CoNS have received a lot of attention
because of the increasing number of cases of resistant infections in inpatients and individuals outside healthcare settings,
according to the National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) of Centers for Disease Control
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and Prevention (CDC) (NCEZID 2014). In Brazil, according to the Brazilian National Health Surveillance Agency

(ANVISA), CoNS infections are the most reported agent in healthcare units and the most resistant agent to antimicrobials
used in intensive care units (Ministério da Saúde Brasil 2017).

Although there is ample evidence that opportunistic bacteria exhibit multidrug resistance, their AMR profiles are poorly

studied in drinking water (Santos et al. 2020; Hu et al. 2021). This shortage of data is a threat to human health, especially
to individuals with compromised immunity (Sanganyado & Gwenzi 2019).

CoNS comprise 23 coagulase-negative staphylococcal species, all of which show a high frequency of AMR and a natural
reservoir of genes associated with a virulence that notably favor characteristics for strains that turn out to be more infectious

and more resistant to antibiotic treatments (Becker et al. 2014; Argemi et al. 2019; Heilmann et al. 2019). Considering the
importance of CoNS in the potential human health impact from exposure to these opportunistic bacteria, this research eval-
uated the occurrence of them in drinking water distribution systems in urban parks, since the urban parks are public spaces

with a high circulation of people (PMSP 2014). This unprecedented study aimed to detect, identify and characterize CoNS
microorganisms in drinking water from public drinking fountains in the city of São Paulo, available in public parks.

METHODS

There are more than 100 municipal parks in the city of São Paulo (Brazil), in which drinking water is provided by public net-

works and distributed by drinking fountains to visitors according to the São PauloCityHall (PMSP) (PMSP 2014). According to
Brazilian legislation, drinking water must meet the potability quality chemical and bacteriological standards established by the
Ministry of Health (Ministério da Saúde, Brasil 2011). The bacteriological standards concern the presence–absence of E. coli,
HPC with a maximum limit of 500 CFU/mL, to assess the cleanliness and integrity of the water distribution system and reser-
voirs, and for disinfection standard residual chlorine concentration must be �0.5 mg/L (Ministério da Saúde, Brasil 2017).
Urban parks provide environmental services by improving air quality, reducing noise pollution and stabilizing the microcli-
mate. In addition, the environmental health of these spaces is related to the preservation of fauna, flora and water sources

(streams and lakes), which has a positive impact on the visitors’ health and on the preservation of green areas in metropolitan
areas (Limnios & Furlan 2013). Spaces like these improve people’s quality of life and a sense of well-being (Krekel et al. 2016;
Nguyen et al. 2021), promoting outside activities for social interactions and bringing a high flowof visitors (Coley et al. 1997). In
this study, four public parks were selected based on high visitor frequency (Figure 1), territorial characteristics and location in
the city: the Aclimação Park, located in the central region; the Buenos Aires Park, which receives visitors of different ages; the
Ibirapuera Park, considered the most important leisure area in the city, attracting people from different parts of the city and the

world; and the Piqueri Park, located on the east side of the city.

Samples and sampling

From March 2017 to March 2018, drinking water samples (n¼ 468) from drinking water fountains were collected fortnightly

from the four parks. Sample collection, storage and chilling for transportation were carried out in accordance with the rec-
ommendations of the Standard Methods for the Examination of Water and Wastewater (2017). Free residual chlorine
concentration was performed by a colorimetric method using Free-chlorine Analyzer Policontrol® (São Paulo, BR). E. coli
quantification was carried out by the membrane filter method according to Standard Methods (2017) as well as the HPC.

Staphylococcus determination and biochemical characterization

A volume of 100 mL of the water samples was concentrated using a filter membrane (0.45 μm, 47 mm, Millipore®, USA) and
then transferred on a Petri dish containing Baird-Parker agar (BP) (Difco®, MI, USA) (Standard Methods 2017) followed by

incubation for 48 h at 35+ 0.5 °C. After the incubation period, typical colonies were observed and then submitted to bio-
chemical characterization for staphylococcal bacteria. The selected colonies were initially screened according to the
recommendations of the Brazilian National Health Surveillance Agency (ANVISA 2004): Gram stain, catalase reaction

(hydrogen peroxide solution 10 V, Laborclin®, PR – BRA); tube coagulase reaction (Coagu-plasma, Laborclin®, PR –

BRA); DNAse agar test (Difco®, MI, USA) and fermentation of Mannitol Salt agar (Difco®, MI, USA).

Identification and genotypic characterization of Staphylococcus by PCR

After the screening step, the typical staphylococcal colonies were transferred to a BHI broth and incubated overnight at 35+

0.5 °C. From the bacterial growth, a volume of 1,000 μL was transferred to a microtube and centrifuged at 13,000 rpm for
10 min. The yielded supernatant was discarded, and the pellet was resuspended in 25 μL of lysostaphin enzyme (1 μg/mL)
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(Sigma®, Missouri, USA) and 25 μL of ultrapure water and incubated for 10 min at 37°+ 0.2 °C with agitation. After this step,
50 μL of proteinase K (20 mg/mL in sterile deionized water) (Roche®, California, USA) and 150 μL of Tris buffer (0.1 M, pH
7.5) (USB Corp.®, Ohio, USA) were added and incubated in a shaking bath at 37 °C for 10 min, followed by incubation in a

water bath at 95 °C for 10 min. Finally, the solution was centrifuged at 13,000 rpm for 10 min and the supernatant was stored.
The primers used to track seven genes are shown in Table 1.

Identification of species of Staphylococcus and lineages by MALDI-TOF MS

We used the Bruker MALDI Biotyper for the identification of the isolates. The identification was performed by matrix-

assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) (Moreno et al. 2018). This technique is useful
to analyze peptides and proteins in relatively complex samples, such as samples from environmental matrices. It allows us
to differentiate species or subspecies, as well as new species and lineages. Mass spectra were obtained by Microflex™

mass spectrometer (Bruker Daltonik®, Leipzig, Germany). The interpretative criteria were applied as follows: scores �2.0
were accepted for species assignment and for gender identification scores ranging from �1.7 to �2.0 according to the
Bruker standard.

Figure 1 | Location of public parks in Sao Paulo city, selected in the research: (1) Aclimação, (2) Buenos Aires, (3) Piqueri and (4) Ibirapuera.
Characteristics such as number of visitors a year, area in m2 and number of drinking water fountains are analyzed in each park.
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Antimicrobial susceptibility profile

The susceptibility to antibiotics was determined by using the disk diffusion method according to the Clinical and Laboratory

Standards Institute (CLSI 2020). CLSI has been developing international standards for the past 50 years which are used in
more than 50 countries, and benefit safe and transparent laboratory practices (Weinstein & Lewis 2020). Antimicrobials (n¼ 11)
tested were: cefoxitin (30 μg); ciprofloxacin (5 μg); clindamycin (2 μg); chloramphenicol (30 μg); erythromycin (15 μg); genta-

micin (10 μg); penicillin g (10 μg); rifampicin (5 μg); sulfazotrin (25 μg); tetracycline (30 μg) and oxacillin (1 μg) (DME®, SP,
Brazil). Vancomycin susceptibility was also assessed by microdilution broth microplate technique for concentrations ranging
from 0.5 to 32 μg/mL of Vancomycin hydrochloride (Sigma®, Missouri, USA).

RESULTS

Out of 468 samples, 393 (83.9%) were in accordance with the standards set by the Brazilian legislation concerning E. coli and
HPC, and free chlorine (Ministério da Saúde, Brasil 2011), while 75 (16%) of them did not meet the standard value for free

chlorine. Staphylococcus genus was found in 104 (22.2%) samples within which 75 samples presented a lack of free residual
chlorine. CoNS were found in 16% of the isolates in which the residual chlorine did not meet the established standard, as
follows: 38.7% (29/75) in Aclimação Park; 22.7% (17/75) in Buenos Aires Park and Piqueri Park; and 16% (12/75) in Ibir-

apuera Park.
All of the 75 isolates were positive for the catalase test, and within them, 53.3% (40/75) were positive for mannitol fermen-

tation and for the DNAse test. For the coagulase reaction 13.3% (10/75) of the isolates were positive as well as for gene coa
presence. Genes sea, seg and luk-PVL were not detected; however, their genes recN and icaAB, commonly associated with
CoNS, were detected in 4% (3/75) and in 6.7% (5/75), respectively.

A wide diversity of CoNS was identified in our samples (Table 2): 10 species and 25 phylogenetic variations were identified;
85.3% (64/75) of the isolates were identified at a taxonomic level showing logarithmic scores �2.0 while 12.3% with scores

�2.0 were identified at the genus level. Within the 64 isolates, 40.6% (26/64) were identified as Staphylococcus epidermidis
while the frequency of Staphylococcus sciuri and Staphylococcus warneri was 17.2% (11/64); 6.3% (4/64) for Staphylococcus
saprophyticus and Staphylococcus condiment; 4.7% (3/64) for Staphylococcus haemolyticus; 3.1% (2/64) for Staphylococcus
nepalensis; and 1.6% (1/64) for Staphylococcus cohnii, Staphylococcus gallinarum and Staphylococcus pscifermentans. A
wide diversity of phylogenetic variation was identified. The greatest variation occurred for the following species: S. haemo-
lyticus with 66.7% (2/3), S. warneri with 45.5% (5/11), S. sciuri with 27.2% (3/11) and S. epidermidis with 11.5% (3/26).

Table 1 | Primers used in the study

Gene Primers sequence Function bp

nuc GCGATTGATGGTGATACGGTT Nuclease encoding specific characteristics found in staphylococci
(Barski et al. 1996)

278
AGCCAAGCCTTGACGAACTAAAGC

coa CGTTACAAGGTGAAATCGTT Difference between positive and negative coagulase isolates
(Nagaraj et al. 2014)

247
CCATATTGAGAAGCTTCTGTTG

RecN CAGTTAATCGGTATGAGAGC Synthesizes extracellular polysaccharides as a precursor in the
biofilm formation (Iorio et al. 2011)

219
CTGTAGAGTGACAGTTTGGT

icaAB TTATCAATGCCGCAGTTGTC Synthesizes enzymes of adhesion intercellular that contribute in
biofilm resistance process (Iorio et al. 2011)

154
GTTTAACGCGAGTGCGCTAT

sea GAAAAAAGTCTGAATTGCAGGGAACA Genes encoding staphylococcal enterotoxins (Jarraud et al. 2002) 560
CAAATAAATCGTAATTAACCGAAGGTTC

seg AATTATGTGAATGCTCAACCCGATC 642
AAACTTATATGGAACAAAAGGTACTAGTTC

Luk- PVL ATCATTAGGTAAAATGTCTGGACATGATCCA Encode Panton-Valentine leucocidin (PVL) production, toxin
cytotoxic often associated with staphylococci infection (Jarraud
et al. 2002)

433
GCATCAASTGTATTGGATAGCAAAAGC

mecA CTATCCACCCTCAAACAGG Encode protein that methicillin resistances mediate (Okuma et al.
2002)

280

mecA CGTTGTAACCACCCCAAGA
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Table 2 | Species isolates from drinking water and resistance antibiotics phenotypes

Species N. of isolates

Species group OXA CFO PEN CIP CLI CLO ERI GEN RIF TET SUT
Total

N % N % N % N % N % N % N % N % N % N % N % N % %

S. cohnii 1 S. cohnii 1 1.33 1 100 0 0 1 100 0 0 1 100 0 0 1 100 0 0 1 100 0 0 0 0 45.45

S. condimenti 4 S. condimenti 4 5.33 2 50 0 0 1 25 0 0 0 0 0 0 0 0 2 50 0 0 2 50 2 50 45.45

S. epidermidis 30 S. epidermidis 30 40 4 13.33 2 6.67 12 40 3 10 5 16.67 4 13.33 10 33.33 2 6.67 3 10 2 6.67 16 53.33 100

S. gallinarum 1 S. gallinarum 1 1.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S. haemolyticus 4 S. haemolyticus 4 5.33 1 25 0 0 3 75 0 0 1 25 0 0 2 50 0 0 0 0 0 0 2 50 45.45

S. nepalensis 2 S. nepalensis 2 2.7 2 100 0 0 0 0 0 0 2 100 0 0 2 100 0 0 0 0 0 0 2 100 36.36

S. piscifermentans 1 S. piscifermentans 1 1.3 1 100 0 0 0 0 0 0 1 100 0 0 1 100 0 0 0 0 0 0 0 0 27.27

S. saprophyticus 4 S. saprophyticus 4 5.3 3 75 1 25 3 75 3 75 1 25 0 0 3 75 2 50 0 0 2 0 3 75.00 81.82

S. sciuri 1 S. sciuri 16 21.3 4 25 1 6.25 2 12.50 2 12.50 6 37.50 2 12.50 6 37.50 1 6.3 2 12.50 2 12.50 2 12.50 100

S. warneri 12 S. warneri 12 16.0 3 25 2 16.67 7 58.33 2 16.67 1 8.33 1 8.33 5 41.67 0 0 0 0 0 0 5 41.67 72.73

OXA, oxacillin; CFO, Cetoxitin; PEN, Penicillin; CIP, ciprofloxacin; CLI, clindamycin; CLO, chloramphenicol; ERI, erythromycin; GEN, gentamicin; RIF, rifampicin; TET, tetracycline; SUT, sulfazotrin.
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Concerning the antimicrobial susceptibility of the isolates, all of them were susceptible to vancomycin in the broth micro-

dilution test. It was observed that 3.1% (2/64) of isolates were resistant to 63.6% (7/11) of the antibiotics tested (clindamycin,
erythromycin, oxacillin, penicillin, tetracycline, cetoxitin and sulfazotrin). Table 2 shows the results obtained in this study,
CoNS of isolates examined, organized by taxonomic group and the respective percentages of antibiotic resistance (or inter-

mediary) phenotypes. The resistance to oxacillin was verified in 34.8% (22/64) of the isolates and resistance to cefoxitin in
9.3% (6/64) and for both was 9.3% (6/64). Regarding the detection of mecA gene, 15.6% (10/64) of the isolates carried this
gene, which were: S. epidermidis (1/10), S. condimenti (1/10), S. haemolyticus (1/10), S. warneri (2/10) and S. sciuri (5/10).
Within them, only S. haemolyticus expressed resistance against oxacillin.

DISCUSSION

The presence of opportunistic bacteria in various aquatic environments has been increasingly reported (Vikramjeet et al.
2019), including Staphylococcus aureus which has been detected in drinking water samples with the absence of free residual
chlorine or below 0.1 mg/L as reported by Santos et al. (2020). The colorimetric method is one of the most used for field

evaluation of free residual chlorine concentrations in drinking water (Badalyan et al. 2009; Standard Methods 2017). In
the present study, it was shown that Staphylococcus that do not belong to the aureus species, including a variety of CoNS,
are capable of surviving in drinking water even in the presence of chlorine. Staphylococcus infections cause several health

concerns related to secondary bacterial infections in clinical outcomes and mortality in humans (Argemi et al. 2019). There-
fore, evidence that CoNS are present and viable in drinking water is a significant worry for people who are exposed to those
drinking water sources (Otzen & Nielsen 2008; Sanganyado & Gwenzi 2019). Taking into account the study carried out by
Hu et al. (2021) which reported that there are several threatening environmental contaminants such as opportunistic patho-

gens compromising the safety of drinking water, raises the need to protect drinking water sources and protect human health.
Therefore, we investigated the occurrence of CoNS in drinking water supplied in public areas. Our study is unprecedented

in focusing on the occurrence, taxonomy identification, and pathogenic potentials of negative staphylococci (CoNS) in drink-

ing water distributed by public devices. The results reinforce the presence of these opportunistic bacteria in drinking water
due to the absence of residual chlorine or its improper concentration. This is evidence for the poor sanitary conditions,
which favor the survival of opportunistic pathogens and their proliferation in these environments.

Čuvalová et al. (2015), in Slovak Republic, reported that out of 10 coagulase-negative staphylococci species isolated 4 were
from drinking water samples. The study carried out by Faria et al. (2009) reported the occurrence of coagulase-negative sta-
phylococci in several sources of water, including drinking water from a distribution network. They found the prevalence of
Staphylococcus pasteuri and S. epidermidis in these samples. In our study, 10 species were identified and 25 phylogenetic

variations of CoNS, within which the most prevalent species were S. epidermidis, S. warneri and S. sciuri (Table 2).
CoNShas been increasingly reported innosocomial infectionsworldwide (Table 3), but our study also shows that the presence

ofCoNS in drinkingwater is a risk factor for humanhealth. S.warneri, detected in our samples, is considered an emerging patho-

gen whose pathogenesis and epidemiology have been little explored, but according to Espadinha et al. (2019), this species is
frequent in infections of immunocompromised individuals and in sepsis of neonates. Another concerning species isolated
from our samples is S. sciuri, which, according to Nemeghaire et al. (2014), is associated with polymicrobial infections and is

considered a reservoir of virulence factors, playing a role in the horizontal transfer of genes to other staphylococcal species.
Although there are reports of the presence of genes associated with virulence factors in isolates of CoNS (Heilmann et al.

2019), we did not detect the genes sea, seg and luk-PVL. Only the virulence genes recN and icaAB were detected, which does

not exclude that the isolates have other virulence characteristics. However, the identification of isolates using primers for
specific recN and icaAB genes could be used to forecast virulent strains that possess the ability to initiate a lethal infection
(Raheema et al. 2020).

Regarding antimicrobial susceptibility, the isolates of this study were resistant to penicillin, erythromycin, oxacillin, clinda-

mycin, sulfazotrin and tetracycline, very similar to the resistance showed by clinical isolates (penicillin, erythromycin,
oxacillin and gentamicin) (Duran et al. 2012; Čuvalová et al. 2015). Similar results were reported by Čuvalová et al.
(2015) for AMR of coagulase-negative staphylococci isolated from drinking water and reported by Faria et al. (2009) as well.

We found the mecA gene in S. haemolyticus, S. epidermidis, S. warneri, Staphylococcus caprae and Staphylococcus capitis
ssp. urealyticus, and the same results were found by Čuvalová et al. (2015). Among 10 CoNS isolates carrying mecA gene,
only S. haemolyticus was simultaneously resistant to oxacillin and cefoxitin.
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According to Shi et al. (2013), disinfection using chlorine can provide a favorable environment for antimicrobial-resistant bac-
teria (ARB), antimicrobial-resistant genes (ARGs) and mobile genetic elements (MGEs) dissemination. Moreover, infections
caused by resistant CoNS are directly associated with worse clinical outcomes, with longer hospital stays, with an increment

of mortality, and with an increasing burden and costs on the healthcare infrastructure (Gajdács et al. 2021; Kalantar-Neyesta-
naki et al. 2022). Currently, there are no data to estimate the risk due to exposure to AMR in the environment for establishing a
safety level of risk (Wuijts et al. 2017); however, we have experienced that CoNS may colonize different types of water, includ-

ing drinking water that fulfills bacteriological quality standards, which poses a risk for human health.

CONCLUSION

CoNS species and phylogenetic variations identified in drinking water samples from public fountains presented antibiotic-
resistant profile, posing serious concerns for human health in spaces with a large circulation of people, especially children,
newborns, immunocompromised people and elderly people, whose attendance at parks is high.

Table 3 | Pathogens identified in drinking water and potential health risks and antimicrobial resistance according to the literature

Species Diseases Antimicrobial resistance References

S. cohnii Implications in nosocomial infections,
including meningitis, primary septic
arthritis, septicemia, brain abscess and
catheter invasion

Linezolid, penicillin, oxacillin, cefoxitin,
clindamycin, erythromycin, azithromycin,
levofloxacin, ciprofloxacin and gentamicin

Lavecchia et al. (2021)
and Song et al. (2017)

S. condimenti Until 2013 was considered to have a medium
or low pathogenic capacity. Currently, it
has been identified in meningococcal
infection hypoxic–normocapnic respiratory
failure and dilated cardiomyopathy

Erythromycin and rifampicin Misawa et al. (2015),
Gabrielsen et al.
(2017) and Zecca et al.
(2019)

S. epidermidis Healthcare-associated infection and medical
devices: prosthetic valve endocarditis,
prosthetic joint infections, infections of
central catheter

They usually tend to be multidrug-resistant,
the resistance to methicillin ranges from 75
to 90% of the cases. It also presents very
high resistance to other antimicrobial
agents, such as trimethoprim/
sulfamethoxazole, clindamycin, fusidic acid
and fluoroquinolone

ECDC (2018) and
Kozajda et al. (2019)

S. gallinarum Sepsis Ampicillin, amoxicillin, tetracycline Nhung et al. (2017)

S. haemolyticus Foreign body-related infections and
infections in preterm newborns

Oxacillin, cefoxitin, ampicillin, levofloxacin,
gentamicin, clindamycin, erythromycin,
tetracycline and fosfomycin

Frickmann et al. (2018)
and Westberg et al.
(2022)

S. nepalensis It was not identified as a human pathogen
until 2019, recently identified in human
bacteremia

Novobiocin Hosoya et al. (2020)

S. piscifermentans So far reported only in the production
process in the food industry

There is currently no research discussing its
antibiotic resistance ability

Zell et al. (2008)

S. saprophyticus Frequently colonizes humans and animals, it
is related to urinary tract infections, acute
pyelonephritis, nephrolithiasis and patients
in UTI with endocarditis

Nalidixic acid and novobiocin Lawal et al. (2021) and
Watanabe et al. (2022)

S. sciuri Resistance to novobiocin, β-lactams,
tetracyclines, aminoglycosides and
aminocyclitols, trimethoprim and fusidic
acid

Endocarditis, peritonitis, septic shock, urinary
tract infection, endophthalmitis and pelvic
inflammatory disease

Nemeghaire et al. (2014)
and Al-Hayawi (2022)

S. warneri Rare cases of human disease, but reported in
infections of prostheses and endovascular
catheters and sepsis

Penicillin G, oxacillin, vancomycin and
kanamycin

Gelman et al. (2022)
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This verification is reinforced by the fact of detection of a strain of S. haemolyticus carrying mecA gene, and, moreover, to

be resistant to oxacillin and cefoxitin (methicillin-resistant Staphylococcus haemolyticus, MRSH). These results bring us to
the crux of the matter, the complexity of keeping drinking water safe, even meeting the established standards. Contamination
of drinking water by opportunistic and antimicrobial-resistant pathogens is beyond monitoring classic microbiological indi-

cators of drinking water quality, and, despite the increase of relevant studies related to this issue, it is still an ongoing
discussion.

A better knowledge of pathogenic organisms toward survivability, antibiotic resistance profile and chlorine resistance in
drinking water systems is needed to assess risks, and to better design sanitary barriers and contamination prevention

measures in order to supply safe drinking water.
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