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ABSTRACT

The field of quantum turbulence is related to the manifestation of turbulence in quantum fluids, such as liquid helium and ultracold gases.
The concept of turbulence in quantum systems was conceived more than 70 years ago by Onsager and Feynman, but the study of turbulent
ultracold gases is very recent. Although it is a young field, it already provides new approaches to the problem of turbulence. The authors
review the advances and present status, of both theory and experiments, concerning atomic Bose–Einstein condensates (BECs). The authors
present the difficulties in characterizing turbulence in trapped BECs, if compared to classical turbulence or turbulence in liquid helium. The
authors summarize the challenges ahead, mostly related to the understanding of fundamental properties of quantum turbulence, including
what is being done to investigate them.
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I. INTRODUCTION

Turbulence is characterized by a large number of degrees of free-
dom interacting nonlinearly, over several length scales, to produce a
disordered state both in space and time. From a technical point of
view, turbulence is considered a harmful or highly undesirable process,
taking as an example flow of gas through pipes or a motion of a piston
in an engine, which, due to wall friction, produces great energy losses.
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However, turbulence is present on almost all levels of the organization
of matter, ranging from quantum to astrophysical scales.

Classical turbulence (CT) has been studied for much longer than
its quantum version, quantum turbulence (QT). Since there are many
aspects of CT, which are not well understood, dealing with QT may
seem a formidable challenge. However, vortex circulation is quantized
in QT and continuous in CT, so the quantum version may be more
tractable. One of the main questions, which needs to be answered, is
until what extend our knowledge on classical turbulence will help to
explain turbulence in quantum systems.1,2

Bose–Einstein condensates (BECs) are excellent candidates for
the study of QT due to the amount of control that is possible in these
systems.3–7 Interparticle interactions can be tuned via Feshbach reso-
nances, and different trapping geometries have been successfully
employed. However, there are also some intrinsic difficulties in these
systems, mostly related to the small range of length scales available
and visualization techniques. Despite these intrinsic difficulties, much
has been accomplished.8–10 One of the most important milestones
since the first observation of turbulence in a trapped BEC, and its sig-
nature self-similar expansion,11 was the observation of a power-law in
the energy spectrum.12–14

In this review, we emphasize QT in trapped BECs. We discuss
CT and QT in liquid helium in order to be able to compare and con-
trast QT in trapped dilute atomic BECs to these other systems. This
work is structured as follows. In Sec. II, we introduce briefly topics and
concepts that will be relevant throughout the manuscript, such as
superfluidity in helium, quantized vortices, fundamentals of
Bose–Einstein condensation, and how to excite BECs. Aspects of clas-
sical turbulence, especially those that we compare to QT, are presented
in Sec. III. In Sec. IV, we discuss the different types of quantum turbu-
lence. Examples of quantum turbulence in systems that are not single-
component BECs are given in Sec. IVC. Lastly, we summarize the
challenges that the field currently faces in Sec. VI.

II. PRELIMINARIES
A. Superfluid helium

Before the experimental realization of trapped Bose–Einstein
condensates, quantum turbulence was already known and studied
using liquid helium. For temperatures above 4K, 4He is a conventional
gas. For temperatures below this value, unlike any other substance, it
becomes liquid and remains in this state until absolute zero. This
exceptional property owns the low mass of helium, which makes its
zero-point energy high enough to suppress any process of crystalliza-
tion15 (unless a high pressure is applied).

Liquid He possesses two distinct phases separated by a critical
temperature point, Tk ¼ 2.17K, known as the lambda point due to the
shape of the specific heat curve. To distinguish both phases, 4He is
called He I above Tk and He II below it. Under certain conditions,
helium II exhibits unique properties such as zero entropy, zero viscos-
ity, and superfluidity. The last refers to its ability to flow without fric-
tion. This picture is helpful in many aspects but idealized. In real
experiments, thermal noise will always be present.

Early experiments on the superfluidity of He II gave contradict-
ing results. One of the techniques demonstrating its frictionless nature
was to determine helium II viscosity from its flow through a long, nar-
row capillary. The experimental results showed that below a critical
velocity (vc), helium II indeed flows without friction.16 Similar results

have been obtained using a rotating, torus-shaped apparatus filled
with a porous material within which He II can flow freely.17 Initially, a
fast-rotating torus is suddenly stopped allowing helium to decrease its
velocity slowly. Once the velocity reaches vc, the superfluid begins
flowing without dissipation.

On the other hand, these two examples were contradicted by the
so-called Couette flow.18–20 The Couette flow experiment consisted of
two cylinders: an outer rotating one and an inner fixed one. The mea-
surement of the torque exerted by the flow on the stationary cylinder
is proportional to the viscosity of the fluid, which, unexpectedly,
turned out to be nonzero. The reason for such conflicting results lies
in the fact that helium II has two components: normal fluid and super-
fluid, and their ratio is strongly temperature-dependent, meaning that
only at T¼ 0, He II is 100% superfluid.21

Above the critical velocity, helium II can sustain vorticity that,
unlike classical vortices, can take only a filament form. Moreover, the
angular momentum of the vortex is quantized, so its value is an integer
number. The consequence of this is that rotating the superfluid faster
than a critical value breaks it into several smaller discrete filaments cre-
ating an array of vortices. Quantum vortices have no classical counter-
part in nature as they reach unusual dimensions for a single filament
that can be as long as 10 cm with a core radius of only 10�8 cm.22

Individual filaments or their arrays are the result of superfluid laminar
flow. More common is its disordered spatial form called the vortex
tangle, which represents the turbulence of the superfluid
component.1,21,23

The concept of the two fluid model was first laid by Tisza24

and mathematically formalized by Landau.25–27 Although theoreti-
cally complete, the two-fluid theory failed to explain the nonzero
vorticity of the superfluid, which was demonstrated experimen-
tally. In fact, the model assumes a priori zero-vorticity, defined as
x ¼ r � v, by arguing that the dissipation-free zero-viscosity fluid
velocity field should be conservative. Hence, it could be written as
r/ ¼ v. Since x ¼ r �r/ ¼ 0, r� v ¼ 0, meaning that the
superfluid should be irrotational.

B. Quantized vortices

Landau’s condition that the superfluid fraction of He II is irrota-
tional, r� v ¼ 0, can be closely examined following the argument of
London who first connected BECs with superfluid He. London real-
ized that the condensed atoms can be described by a macroscopic
wave function if the collective occupation corresponds to the lowest
energy state. For N condensed atoms, one could write Wðr; tÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
qðr; tÞ

p
exp ½iSðr; tÞ�, where qðr; tÞ ¼ jWðr; tÞj2 is the density of

the condensate and Sðr; tÞ its phase. Hence, the probability current is
j ¼ �h=ð2miÞðW�rW�WrW�Þ ¼ qð�h=mÞrS. The above can be
seen as a flux of the density that flows with velocity v ¼ ð�h=mÞrS,
which can be simplified to j ¼ q v. The direct consequence of this is
that when S has continuous first and second derivatives, the velocity
field is irrotational, r� v ¼ 0. However, this will not hold in the
presence of the vortex line.

In 1949, Onsager suggested that the circulation can be
quantized.28 For given path C, the circulation is C ¼

Þ
Cv � dr. Hence,

for the single-valued macroscopic wave function, with the 2pn phase
change (n is an integer), the circulation can be written as
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C ¼
þ
C
v � dr ¼ �h

m
2pn ¼ nj: (1)

The integer n is often called the charge of the vortex. In most cases,
quantized vortex lines can be thought as an ordinary (classical) vortex
line in the superfluid with the hollow core and the quantized circula-
tion j (�h is Planck’s constant andm is the mass of He).

Following Osanger’s proposal, in 1950, Osborn found that
the rotation of helium II was indistinguishable from the rotation of
helium I.29 Later, in 1955, Feynman presented his theory on vortex
lines,30 which finally led to the conclusion that when He II is spun in
the cylinder, the normal fluid rotates uniformly with it, while the
superfluid forms discrete vortex filaments aligned parallel to the cylin-
der axis.31

The angular momentum of a vortex is quantized and propor-
tional to its charge. In principle, a superfluid with high angular
momentum could be in a state of a single vortex with a large charge
Q or Q single-charged vortices. However, the vortex kinetic energy
is proportional to Q2, and a state with one vortex with a large
charge will not be energetically favorable.32 This has been con-
firmed experimentally.33

C. Bose–Einstein condensation

BECs are great toolboxes for studying numerous fields of physics,
ranging from statistical mechanics to field theories. Their strongest
advantage is that they allow the investigation of quantum effects on a
macroscopic scale. BECs rely on the indistinguishability and wave
nature of particles. The condensation itself is a phase transition process
occurring when a wavepacket of a boson reaches the size of the ther-
mal de Broglie wavelength (kdB / n�1=3, where n is the interparticle
density).15 The whole gas of bosons occupies the lowest energy level
by constructive interference between the individual wavepackets. The
conditions for the condensation are a critical density and a critical
temperature. Most condensates are obtained in a nonhomogeneous
harmonic trap for which the critical temperature depends on only
two properties: the number of atoms N and the trap frequencies. The
critical temperature is given by Tc ¼ 0:15�xN1=3=kB, where �x
¼ ðxxxyxzÞ1=3 is the geometrical mean of the three trapping frequen-
cies. To reach the desired temperature and density, a combination of
magnetic fields and optical forces is used. The final stage requires
removing the hottest atoms from the system, which is called the evap-
oration technique.34

The existence of turbulence in trapped BECs allows us to study
the properties and the dynamics of the condensate itself and to explore
some of the universal characteristics related to turbulence.

D. Exciting a BEC

Vortices and turbulence in BECs have been generated by moving
a laser beam across the BEC,35–38 shaking it,11 rotating the trap around
two perpendicular axes,39 phase imprinting staggered vortices,40 or
thermally quenching the system (Kibble–Zurek mechanism).41–43 The
turbulent states resulting from this broad range of techniques, how-
ever, are hard to compare. Moreover, some of them bring additional
excitations and fragmentation of the condensate,44 which makes it
impossible to obtain a clean turbulent regime.

The decay of multicharged vortices gives an alternative scenario
to induce turbulence in BECs. Multiply quantized vortices are

energetically unstable and decay into singly quantized vortices.33,45,46

Besides the energy instability, there is also a dynamical instability,47–49

which can destabilize the vortices even in the absence of dissipation, at
zero temperature. A controlled technique for the generation of multi-
charged vortices in atomic condensates is the technique of topological
phase imprinting.33,50,51

III. CLASSICAL TURBULENCE

Turbulence is the manifestation of the spatial-temporal chaotic
behavior of the fluid flows at large Reynolds numbers, i.e., of a strongly
nonlinear dissipative system with a vast number of degrees of freedom
(most probably) described by the Navier–Stokes equation (NSE).52

Since it is an extremely complicated phenomenon, it is challenging to
give a precise definition of turbulence. Below we list some of the char-
acteristics of classical turbulent flows:

• Large Reynolds numbers: an important characteristic of a viscous
flow is its Reynolds number (Re), which is defined as Re ¼ LV

� ,
with L and V being a characteristic scale and velocity of the flow,
respectively, and � its viscosity. Turbulence often originates as
the instability of laminar flow if Re becomes too large. The insta-
bility is related to the interaction of viscous terms and nonlinear
inertia terms in the equations of motion.

• Wide range of strongly interacting scales: the interaction between
the many degrees of freedom results from the nonlinearity of tur-
bulent flows.

• Dissipation: turbulent flows are highly dissipative. A source of
energy is required to maintain turbulence. Typically, in three-
dimensions, the energy supply is at large length scales and its dis-
sipation at small ones.

• Diffusivity: it is associated with the strongly enhanced transport
processes in turbulence. It causes rapid mixing and increased
rates of momentum, heat, and mass transfer.

• Intrinsic spatiotemporal randomness: there is no necessity for
external random forcing, provided that the Reynolds number is
large enough.

• Vorticity fluctuations: high levels of fluctuating vorticity charac-
terize turbulence. For this reason, vorticity plays an essential role
in the description of turbulent flows.

• Turbulence is not a feature of fluids but of fluid flows. Most of
the dynamics of turbulent flows are the same in all fluids, regard-
less of their molecular properties, if their Re is large enough.

Randomness and nonlinearity combine to make the equation of
turbulence theory suffer from the absence of sufficiently robust mathe-
matical methods.53 Since the equation of motion is nonlinear, each
individual flow pattern has specific unique characteristics that are
associated with its initial and boundary conditions. No general solu-
tion of the NSE is known. However, no turbulence theory intends to
deal with all kinds and types of flows in a general way. Instead, theo-
reticians concentrate on families of flows with relatively simple bound-
ary conditions.

A. Navier–Stokes

Consider the incompressible (constant density) Navier–Stokes
equation
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@tv þ v � rv ¼ � 1
mq
rpþ �r2v; (2)

r � v ¼ 0; (3)

where � is the kinematic viscosity, p is the pressure, and m and q are
the particle mass and density, respectively. The NSE is the result of
coarse graining over the stochastic molecular effects. Although the
NSE has a limited kinetic foundation, it is commonly believed to be
adequate to describe real fluid flows.

The mathematics of nonlinear partial differential equations has
not been developed to a point where a general solution can be given;
thus, there is little substantial analytical use of the NSE in turbulence.
However, numerical simulations have been used extensively.
Furthermore, the NSE is nonintegrable and nonlocal. The property of
nonlocality in physical space is due to the pressure, which is directly
defined by the velocity field. Hence, the velocity field is nonlocal in
physical and any other space (there is a coupling between large and
small length scales). The difficulties described above are mostly of for-
mal or technical nature. There is another difficulty of general nature:
the lack of knowledge about the underlying physical processes of tur-
bulence and its generation and origin.54

Formally, the problem of the NSE subject to initial and boundary
conditions can be solved numerically. However, looking at the behav-
ior of a particular solution, which does not have analytical form, does
not solve the problem since any particular solution may not contribute
to the understanding of the fundamental physics of turbulent flows.
We need an understanding of the global behavior of the system, and
all NSE solutions to elucidate the phenomenon of turbulence.

Just like in statistical physics, the statistical approach should be
adopted in turbulence theories from the outset start due to the extreme
complexity. In turbulence, however, the equations of motion always
lead to situations in which there are more unknowns than equations.
This is called the closure problem of turbulence theory. One has to use
statistical assumptions to make the number of equations equal to the
number of unknowns, as will be illustrated in Sec. III B.

Symmetry considerations are central to the study of fully devel-
oped turbulence.52 At higher Re, when the flow becomes turbulent, its
statistical properties are invariant under translations. Similar remarks
can be made about all the other symmetries of the NSE: the mecha-
nism responsible for the generation of the turbulent flow is usually not
consistent with most of the possible symmetries. However, the qualita-
tive aspects of many turbulent flows suggest some form of homogene-
ity, isotropy, and possible scale-invariance. In the limit of infinite Re,
all possible symmetries of the NSE, usually broken by the mechanism
producing the turbulent flow, are restored in a statistical sense at small
scales (‘� L, with L being the scale characteristic of the production
of turbulence). Under the same assumption, the turbulent flow is self-
similar at small scales, i.e., it possesses a unique scaling exponent h.
Thus, there exists a scaling exponent h 2 R such that dvðr; k‘Þ
¼ khdvðr; ‘Þ for all k 2 Rþ, for all r and all increments ‘ and k‘ small
compared to L.

Based on these symmetry properties of the NSE described before,
phenomenological theories of turbulence can be applied to make cru-
cial assumptions in the early stage of the analysis. In many circumstan-
ces, it is possible to argue that some aspects of the structure of
turbulence depend only on a few independent variables or parameters.
If such a situation prevails, dimensional methods often dictate the

relationship between the dependent and independent variables, which
results in a solution that is known except for a numerical coefficient.
Another frequently used approach is to exploit some of the asymptotic
properties of turbulent flows. Any proposed descriptions of turbulence
should behave appropriately in the limit where Re approaches infinity
since one can consider vanishing small effects of the molecular viscos-
ity. Also, in simple flow geometries, the characteristics of the turbulent
motion at some point in time and space appear to be controlled
mainly by the immediate environment (local invariance).

B. Kolmogorov

Though there exist a set of deterministic differential equations
(NSEs) probably containing almost all of turbulence, most of our
knowledge about turbulence comes from observations and experi-
ments. Phenomenology is the most commonly used description for
some statistical aspects of turbulent flows since it is based on or moti-
vated by some experimental data. It involves the use of dimensional
analysis, a variety of scaling arguments, symmetries, invariant proprie-
ties, and various assumptions, some of which are of unknown validity
and obscure physical and mathematical justification.55 The famous
Kolmogorov hypotheses belong to this category.56 We start with what
is called Kolmogorov phenomenology. We will see that the finite limit
of the mean energy dissipation e at Re!1 defines a unique scaling
exponent in Kolmogorov’s 2/3 law,57,58 while his 4/5 law,59 otherwise,
is a consequence of the NSE.

In turbulent flows, a wide range of length scales exists bounded
from above by the dimensions of the flow and bounded from below by
the diffusive action of molecular viscosity. Incidentally, this is the rea-
son why spectral analysis of turbulent motion is useful.60 The parame-
ters governing the small scale motion include at least the dissipation
rate per unit mass e ½m2 s�3� and the kinematic viscosity � ½m2 s�1�.
With these parameters, one can form length, time, and velocity scales
as follows:

g � ð�3=eÞ1=4;
s � ð�=eÞ1=2;
t � ð�eÞ1=4:

(4)

These scales are referred to as the Kolmogorov microscales. Re formed
with g and t is equal to one g t=� ¼ 1, which illustrates that the
small-scale motion is quite viscous and that the viscous dissipation
adjusts itself to the energy supply by adjusting length scales. The
small-scale motion should depend only on the rate at which it is sup-
plied with energy by the large-scale motion and on the kinematic
viscosity.

In the limit of infinite Re, all the small-scale statistical properties
are uniquely and universally determined by the scale ‘ and the mean
energy dissipation rate e. This corresponds to the Kolmogorov hypoth-
esis of local isotropy: at large Re all the symmetries of the NSE are
restored in the statistical sense. The possible scale invariance symme-
tries of the NSE at Re	 1 allowed us to find the 2/3 famous exponent
in the so-called inertial range of scales r, L	 r 	 g. As an illustration
of it, consider the second-order structure function hðdvð‘ÞÞ2i. The
straightforward dimensional analysis shows that this quantity has
dimension ½m�2½s��2, where [m] and [s] are the unit length and time,
respectively. Since the mean energy dissipation rate per unit mass e
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has dimensions ½m�2½s��3, it follows from the universality
assumption,56

hðdvðr; ‘ÞÞ2i ¼ Ce2=3‘2=3; (5)

with C being a universal dimensionless constant. It is noteworthy that
Kolmogorov never worked in Fourier space. This was done by his
PhD student who formulated the �5=3 law for the energy spectrum
EðkÞ ¼ Cke2=3k�5=3, which is equivalent in some sense to Eq. (5).

In the third 1941 paper,59 Kolmogorov found that an exact rela-
tion can be derived for the third-order longitudinal structure-function.
He assumed homogeneity, isotropy, and finiteness of energy dissipa-
tion. Without any further assumptions, he derived his 4/5 law from
the NSE. In the limit of infinite Re, the hðdvðr; ‘ÞÞ3i of homogeneous
isotropic turbulence evaluated for increments ‘ small compared to the
integral scale is given in terms of the mean energy dissipation per unit
mass e by57–59

hðdvðr; ‘ÞÞ3i ¼ � 4
5
e‘: (6)

This is one of the most important results in fully developed turbulence
because it is both exact and nontrivial. His �4=5 law obtained as a
direct consequence of the NSE for the inertial range L	 r 	 g. This
relation, however, was obtained for globally and not for locally isotro-
pic turbulence. It is noteworthy that there is a considerable deviation
from the 4/5 law. In contrast, the same causes (lack of asymptotic,
homogeneity, isotropy, finiteness of energy dissipation, and poor qual-
ity of data) have little effects on the 2/3 law. This seems surprising
since the law in Eq. (6) is a consequence of the NSE, while Eq. (5) law
is only a consequence of dimensional hypotheses. The 4/5 law applies
strictly to globally isotropic turbulent flows. Even with very large Re,
the system may lack local isotropy.

The Kolmogorov papers raised several fundamental issues that
have kept the turbulence community an active field until now.

C. Energy cascade

The cascade picture of turbulent flows takes its origin from
Richardson.61,62 The cascade picture is based on the intuitive notion
that turbulent flows possess a hierarchical structure consisting of
eddies as a result of successive instabilities. The eddies of various sizes
are represented as blobs stacked in decreasing sizes. The uppermost
eddies have scales L0. The successive generations of eddies have scales
Ln ¼ L0 rnðn ¼ 0; 1; 2; :::Þ, where 0 < r < 1. The smallest eddies
have scale
g, the Kolmogorov dissipative scale. The number of eddies
per unit of volume is assumed to grow with n as r�3n to ensure that
small eddies are space-filling as large ones. Energy, introduced at the
top at a rate e, is cascading down this hierarchy of eddies at the same
rate e and is eventually removed by dissipation at the bottom, still at
the rate e. The main advantage of the cascade picture is that it brings
the scale-invariance phenomenology assumption of the Kolmogorov
laws within the inertial range.

The Richardson–Kolmogorov cascade62 was formulated in physi-
cal space and is used frequently without much distinction both in
physical and Fourier space. However, it was Neumann63 who recog-
nized that this process occurs not in physical space but in Fourier
space. That is, the nonlinear term in the NSE redistributes energy
among the Fourier modes and not in scales as is frequently claimed

(unless the scale is defined just as an inverse of the magnitude of the
wavenumber of a Fourier mode). We recall that there is no contribu-
tion from the nonlinear term in the total energy balance equation since
the nonlinear term in the energy equation has the form of a spatial
flux. In other words, the nonlinear term redistributes the energy in
physical space if the flow is statically nonhomogeneous. Given the
above arguments, it seems that the energy is dissipated not necessarily
via a multistep cascade-like process in physical space. Instead, there is
an exchange of energy in both directions, whereas the dissipation
occurs in small length scales.

IV. QUANTUM TURBULENCE

Having as reference the characteristics of classical turbulence dis-
cussed before, one can start drawing comparisons with the dynamics
of quantum fluids. The reason why turbulent phenomena should also
appear in such systems is not only associated with the possibility of
nucleating vortices in quantum fluids (see Sec. II B). For the particular
case of atomic BECs, it is intimately related to the dynamical equation
that successfully governs their dynamics, the Gross–Pitaevskii equa-
tion (GPE),64,65

i�h
@Wðr; tÞ
@t

¼ � �h2

2m
r2 þ VðrÞ þ gjWðr; tÞj2

� �
Wðr; tÞ; (7)

which is simply a nonlinear Schr€odinger equation for the macroscopic
wave-function w, with a generic potential V and two-body contact
interaction strength g ¼ 4pas�h

2=m proportional to the s-wave scatter-
ing length as. Even though Eq. (7) is typically a rough approximation
for describing the dynamics of superfluid helium (it is not valid for
strongly interacting systems), for BECs, it can accurately describe a
myriad of regimes, in particular turbulent phenomena.

As discussed in Sec. II B, one can associate a velocity field v
¼ ð�h=mÞrS of a fluid, after considering the transformation Wðr; tÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
qðr; tÞ

p
exp ½iSðr; tÞ�. The GPE can, thus, be rewritten in its

hydrodynamical form

@v
@t
¼ � 1

mq
rp�r v2

2

� �
þ 1
m
r �h2

2m
ffiffiffi
q
p r2 ffiffiffi

q
p

 !
� 1
m
rV; (8)

where a pressure-like term p � q2g=2 is conveniently defined.66 The
only term proportional to �h is the so-called quantum pressure. It is a
kinetic term that is only relevant when the density of the fluid varies
abruptly in space.

Notice that Eq. (8) closely resembles the NSE [Eq. (2)]. In fact, in
the limit �h! 0, the above equation becomes identical to the Euler
equation for a classical irrotational fluid (r� v ¼ 0), which is the
dissipation-free (�¼ 0) form of the NSE. This indicates that the same
nonlinearities present in the Euler equation, which one could argue
that is the backbone of classical turbulence, are also present in quan-
tum fluids that follow the GPE dynamics. By considering the multival-
ued nature of the field S, it is possible to correct Eq. (8) in such a way
that vorticity dynamics are also included.67

The mean-field description of the GPE is a T¼ 0 model and
ignores finite-temperature effects. In reality, however, atomic BECs are
not composed entirely of a condensed fraction, which can be depleted
by thermal collisions. Although these thermal effects can be sometimes
negligible, one can attempt a more realistic description, taking thermal
dissipation into account. A possible route for this more rigorous
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description is offered by the stochastic Gross–Pitaevskii theory,68,69

which builds on the mean-field model, introducing coupling of
low-lying modes to a reservoir of thermal modes. This is achieved by
incorporating a dynamical noise to the GPE, which models quantum
fluctuations, and also including a phenomenological dissipative effect
from the thermal bath. This damping term c is added to the GPE39,69

by making i@=@t ! ði� cÞ@=@t. With this modification, the hydro-
dynamical form of the GPE (for an incompressible quantum fluid)
corresponds, then, to a quantum Navier–Stokes equation

@v
@t
¼ � 1

mq
rp�r v2

2

� �
þ 1
m
r �h2

2m
ffiffiffi
q
p r2 ffiffiffi

q
p

 !
;

� 1
m
rV � �qr2v; (9)

where �q � �hc=2m is the analogous (quantum) kinematic viscosity.70

When referring to turbulence in quantum fluids, we must be
aware of the fact that it can be associated with a few types of disor-
dered states. In the case of condensates, a turbulent state may be
related to complex vortex dynamics or nonlinear interactions of waves.
The latter is based on the general formalism of wave turbulence
(WT),2 which has provided a framework to understand turbulence of
wave-like excitations on structures such as vortex lines (Kelvin waves),
spin texture (see Sec. VB), and also density fluctuations of a conden-
sate. In this section, we will focus on vortex turbulence and how it
relates to its classical counterpart.

It is crucial to highlight that even in a strict T¼ 0 description, i.e.,
in the absence of thermal atoms, where dynamics is simply determined
by the standard GPE, vortex turbulence finds an effective dissipative
mechanism through vortex reconnections.71 This means that,
although the system is superfluid (and inviscid by its quantum nature),
if one looks only to the rotation kinetic energy due to vortices, this can
be lost in time and transformed into other forms of kinetic energy
(related to density waves). This effective dissipation mechanism at
T¼ 0 shares close connection to the notion of an effective viscosity,
first envisioned by Onsager,72 while noting the suggestive fact that a
quantum of circulation �h=m shares the same dimension as a kinematic
viscosity. Following this idea, a superfluid Reynolds number was
recently identified in a thorough numerical investigation of vortex-
shedding dynamics in two dimensions.73

A. Vortex turbulence

1. Kolmogorov (or quasiclassical) turbulence

Large-scale numerical simulations of the GPE describing the
dynamics of randomly imprinted vortices in homogeneous BECs74

have exemplified the emergence of a Kolmogorov-like energy spec-
trum of k�5=3 in quantum systems. As in classical turbulence, this indi-
cates the existence of an (incompressible) energy cascade from large to
small length scales. The self-similarity encompassed by such scaling is
believed to come from vortex bundling. In analogy to the classical
Richardson cascade, large bundles of vortices transfer energy to
smaller bundles over many scales, down to typical lengths of a single
quantum vortex (e.g., its core size). Ultimately, vortex-lines wiggle in
Kelvin-wave motion, dissipating energy through sound emission.75,76

This cascade picture was further corroborated by numerical investiga-
tions using Biot–Savart models,77 which have also identified the

temporal decay of the total vortex length L 
 t�3=2 in this regime of
bundling. However, although Kolmogorov energy spectra have been
observed experimentally in superfluid helium,78,79 there is yet no direct
experimental observations of these vortex bundles. Due to its classical-
like energy spectrum, this regime is known as Kolmogorov or quasi-
classical quantum turbulence.

2. Vinen (or ultraquantum) turbulence

When the tangling vortices do not orient themselves in self-similar
bundles throughout scales, the randomness in their orientations marks
the absence of a large-scale, energy-containing flow structure. As a conse-
quence, the energy spectrum does not build up for a small k region and
follows a k�1 power-law,77 a scaling associated with a single quantum
vortex energy spectrum. Due to its unique quantum nature, this different
kind of turbulence is known as ultraquantum or Vinen turbulence, which
has been investigated both experimentally80,81 and numerically.82–84

Differently from the Kolmogorov-type of turbulence, the Vinen regime
follows a L 
 t�1 temporal decay for the total vortex length.80

In Ref. 84, a turbulent state produced from the decay of multi-
charged vortices was investigated. The authors showed how the decay
of multicharged vortices produced a turbulent state consistent with the
Vinen regime of turbulence (see Fig. 1). This was further corroborated
by a particle and energy flux analysis.85 Additionally, non-Gaussian
velocity statistics was also observed, a fundamental feature of quantum
fluid turbulence and in distinction to the Gaussian statistics expected
from classical turbulent systems.40,86

B. Scale availability and type of vortex turbulence

Whether one can find a Kolmogorov or Vinen regime of vortex
turbulence in a quantum fluid is first dependent on the ratio L=n,

FIG. 1. Time evolution of the decay of two antiparallel doubly charged vortices
obtained via numerical simulations of the Gross–Pitaevskii equation. It is possible to
see the initial state with two imprinted vortices (a), which evolve to a turbulent quasi-
isotropic state (b) and then decay (c). Reprinted figure with permission from Cidrim
et al., Phys. Rev. A 96, 023617 (2017). Copyright 2017 American Physical Society.
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where L is the typical largest scale of the system (e.g., size of a helium
container or extension of the trap for an atomic superfluid) and n is
the healing length, which sets the approximate size of the vortex core.
For a quantum system to exhibit the quasiclassical spectrum k�5=3, a
relatively large ratio is necessary, meaning few spatial decades,
log ðL=nÞ, between n and L for the development of large-scale, self-
similar structures. This requirement, however, is not necessary for the
appearance of spectral features of ultraquantum turbulence.
Experiments with superfluid He, for instance, typically offer
log ðL=nÞ 
 4 decades, justifying why both quasiclassical and ultra-
quantum limits have been observed.78,80 In contrast, in current experi-
ments with atomic BECs,11,87–89 log ðL=nÞ 
 1� 2, translating into
system sizes, which tend to hinder the formation of large-scale vortex
bundles (or vortex clusters, in two dimensions). Therefore, these rela-
tively small-ratio systems have only shown evidence of the Vinen tur-
bulence regime.

C. 3DQT

The high degree of control, which is possible in weakly interact-
ing dilute atomic BECs, has motivated theoretical and experimental
investigations of QT in these systems. The S~ao Carlos group reported
the first evidences of QT in a trapped BEC.11 An external oscillatory
perturbation combined with rotations was used to create a vortex
tangle.11,90 Different strengths and durations of the external oscillatory
potential lead to different regimes.12 Increasing the amplitude of
oscillation first caused vortex nucleation and proliferation, then a tur-
bulent vortex regime, and finally a granulation of the condensate.91

They also provided a way to identify a turbulent cloud. A thermal
cloud is characterized by a Gaussian density profile, while a BEC has a
profile that reflects the shape of the confining trap, corresponding to
the Thomas–Fermi regime. For a cigar-shaped trap, the BEC cloud
expands faster in the radial than in the axial direction, causing the
inversion of the aspect-ratio during the free expansion. In a turbulent
BEC, the situation is different. For the cigar shape trap used in Ref. 11,
the turbulent BEC expands with an approximately constant aspect-
ratio, following the release of the trap. A generalized Lagrangian
approach was devised to describe the dynamics of the cloud.92

The quantum behavior of BECs allows for interesting analogies.
Both Bose–Einstein condensates and atom lasers are coherent matter-
wave systems. On the other hand, an optical speckle pattern is a ran-
dom light map. In Ref. 93, the authors establish a parallel between a
ground-state BEC with the propagation of an optical Gaussian beam,
while the turbulent BEC was compared to an elliptical speckle light
map. They showed that the correlations in BECs resemble the ones in
the Gaussian beams, while the same is true for the turbulent BECs and
speckle beams. Hence, in principle, statistical atom optics could
improve our understanding of quantum turbulence.

A discussion of relevant experimental realizations, and also of
theoretical attempts to study the problem of quantum turbulence in
quantum gases, has recently been compiled in Ref. 9. The first experi-
ments involve a very limited number of settings, with the inhomoge-
neous density resulting from harmonic trapping, bringing qualitative
evidence for turbulence only but no quantitative comparisons with
theory.

In Refs. 14 and 94, they eliminate this problem by studying tur-
bulence in a weakly interacting homogeneous BEC, which was trapped
in an optical box and driven out of equilibrium with an oscillating

force. They observe the emergence of a turbulent cascade characterized
by an isotropic power-law distribution in momentum space. Its expo-
nent was related to the weak-wave turbulence of a compressible super-
fluid. The same experimental apparatus was used to directly measure
cascade fluxes in a turbulent system. As their system is thermally iso-
lated from the environment, the dissipation occurs only in the form of
particle loss. The optical box energy depth defines the particle and
energy sink, which was controlled by changing the trapping laser
power. A tunable dissipation scale and a spatially uniform driven force
allowed them to extract the cascade fluxes by studying the particle dis-
sipation in the gas. In the understanding of quantum turbulence, the
cascade fluxes are equally fundamental as the extensively studied
steady-state power-law spectra but much harder to be measured,
which left them unexplored until now. These experiments establish
the uniform Bose gas as a promising new platform for investigating
many aspects of turbulence, as the interplay of vortex and wave turbu-
lence by tuning the strength of nonlinearity via Feshbach resonances,
and also the possibility to study the anisotropic turbulence by engi-
neering arbitrary momentum-cutoff landscapes.

Experimental indicatives of vortex turbulence at small (healing
length) scales were given by a piston shock experiment.95 The genera-
tion of superfluid quantum turbulence arises as a consequence of the
dissipation of excitations from the large scale shock front into small-
scale vortex excitations, via a snake instability of a planar soliton train.

The number of quantized vortices in BEC systems is much
smaller than the one observed in liquid helium experiments. The typi-
cal number of atoms in BECs is close to a few hundred thousand,
while liquid helium experiments are carried out with macroscopic
samples. Also, the ratio L=n of the typical largest scale of the system L
to the healing length n quantifies the range available for turbulence to
take place. For superfluid He, this value is log ðL=nÞ 
 4, while for
BECs, log ðL=nÞ 
 1 or 2. This means that the intrinsic spatial limita-
tion in confined BECs prevents large-scale self-similar structures.9 A
natural question arises at this point: whether or not Kolmogorov’s
scaling appears if the range of length scales available is so small.
Numerical simulations96–99 obtained a kinetic energy spectrum consis-
tent with the k�5=3 Kolmogorov scaling (see Fig. 2).

The attempts to model the transition to the turbulent state have
been carried out in several works. In Ref. 100, the authors character-
ized the transition using a critical number of vortices, sample size, and
external energy input. The perturbed system was classified by a phase
diagram,101,102 and the granular phase was investigated.101

Techniques to directly resolve the structure of individual vortices
in experiments103–106 open up the possibility of studying the dynamics
of a turbulent vortex tangle, which would be of paramount importance
to the understanding of quantum turbulence.

Experimental investigations of turbulent BECs usually hold
atoms for tens of milliseconds in the trap and then release the trap for
imagining. A time of flight (TOF) absorption technique is used to
obtain an image of the cloud. The resulting image is a distorted two-
dimensional projection of the spatial atomic distribution. As a result,
the spatial density has contributions from several wave numbers along
the direction of the imaging light. The turbulent regime is kinetically
dominated; hence, the interaction energy is assumed to be negligible.
The ballistically expanding atoms107 allow for an experimental Fourier
transform of the real space density distribution after a TOF to a
momentum distribution. After a time tTOF, the distance that an atom
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has traveled from the center of the trap is given by r ¼ �htTOFk=m. The
spatial distribution of atoms in free expansion can be used to map the
momentum distribution, nðrÞ 
 nð�htTOFk=mÞ, and the momenta of
the atoms are connected with the position in the expanded cloud. The
radii of the expanded cloud are converted in momentum shells, and
the number of atoms is counted in each shell to construct the momen-
tum distribution of the sample.

In Ref. 13, the TOF technique was used to obtain the momentum
distribution of a turbulent BEC cloud. They found a power-law behav-
ior for the momentum distribution of nðkÞ / k�2:9. This scaling
behavior in the momentum distribution, although probably affected
by the presence of vortices, is consistent with the coexistence of yet
another type of out-of-equilibrium dynamics led by nonlinear interac-
tion of density waves (see Sec. IVE). Subsequent experiments have
shown similar features in a box-trapped BEC.14 The momentum dis-
tribution analysis can be done in conjunction with particle and energy
fluxes in order to characterize cascade processes.85,94,108

D. 2DQT

Nowadays, experiments with BECs can achieve a true two-
dimensional (2D) limit,87–89 meaning that dynamics is completely fro-
zen in one chosen direction. This implies that one-dimensional topo-
logical defects (vortex lines) become in practice points on a plane, with
positive or negative circulation charges, a vortex or anti-vortex, respec-
tively. Reconnection of vortex lines is replaced by vortex–antivortex
annihilation processes, which release phonon-like excitations into the
system.83,87,88,110 It is also possible to confine the atoms in spherically
symmetric potentials, known as bubble traps, which also produce 2D

condensates, but the nonzero curvature introduces interesting
aspects.111–115 The impact of dimensionality in QT can also be investi-
gated by studying a transition from 3D to 2D systems. For instance, a
recent study showed a critical-like transition by numerically solving
the GPE.116

Kolmogorov and Vinen regimes of turbulence are also applicable
for 2D. However, due to the reduced dimensionality, the introduction of
large-scale flow by vortex bundling is replaced by the analogous 2D pro-
cess of vortex clustering. As in the classical turbulence case, such cluster-
ing happens as a result of forcing the system in small scales (as opposed
to 3D, where injection of energy happens in large scales). Related phys-
ics was predicted by Onsager28 in the context of an idealized 2D vortex
gas (modeled as points) in statistical equilibrium. Interestingly,
Onsager’s classical theory found in the 2D BEC a quantum
testbed.109,117–119 In Onsager’s theory, the clustering process represents
a phase transition to a certain vortex configuration associated with a
negative-temperature state (see Fig. 3). Such effective temperature T can
be defined in terms of the vortex-gas configurational entropy S � E=T
with (incompressible kinetic) energy E. Such clusters are long-lived
structures,120 in contrast with vortex dipoles—a pair composed of vortex
and anti-vortex, with high annihilation probability (see the schematic
plot in Fig. 3). This is known as the Onsager vortex condensation, a key
signature of an inverse energy cascade in 2D turbulent systems, transfer-
ring (incompressible) energy from small to larger scales.

The ideas of Onsager have been successfully implemented in
recent experiments120,121 (see Fig. 4), where the emergence of
negative-temperature vortex states indicates an inverse energy cascade.

1. Kolmogorov turbulence in 2D

Several numerical studies on 2D homogeneous superfluids70,122,123

investigated the emergence of the quasiclassical regime, where the

FIG. 3. Negative-temperature and Onsager condensation. The scheme shows the
behavior of entropy for a point vortex model as a function of temperature. As tem-
perature decreases and reaches negative values, the system passes through a
phase-transition where vortex clustering, a coherent Onsager vortex (OV) state,
becomes favorable against vortex dipoles and unbound vortices. At T ¼ 61,
entropy is a maximum and the vortex distribution is said to be in a entropy domi-
nated normal state (NS). The vortex binding–unbinding phase transition separates
this normal state from the pair collapse (PC) state at positive temperature.
Reprinted figure with permission from Simula et al., Phys. Rev. Lett. 113, 165302
(2014). Copyright 2014 American Physical Society.

FIG. 2. Seminal work of Tsubota where the incompressible kinetic energy spectrum
for a turbulent state is computed using the GPE. The solid line corresponds to the
Kolmogorov law. Reprinted with permission from M. Tsubota, J. Phys. 21, 164207
(2009). Copyright 2009 IOP Publishing.

AVS Quantum Science REVIEW scitation.org/journal/aqs

AVS Quantum Sci. 2, 035901 (2020); doi: 10.1116/5.0016751 2, 035901-8

Published by the AVS

https://scitation.org/journal/aqs


incompressible kinetic energy spectrum follows k�5=3 (in 2D, actu-
ally known as Kraichnan–Kolmogorov spectrum124). Figure 5 shows
a schematic version of the spectrum for a turbulent BEC forced in
small scales kF 
 n�1. The Kolmogorov scaling, appearing for large

spatial scales, is associated with an inverse energy cascade through
the vortex clustering, predicted by Onsager’s vortex-gas theory.
However, in 2D classical turbulence, the existence of a second invis-
cid quadratic invariant (besides the kinetic energy)—the enstrophy,
a measure of vorticity variance—implies that a second, downscale
cascade is present. This enstrophy transfer, accompanied by the
upscale energy cascade, is expected to scale with k�3. In superfluids,
the quantized nature of circulation makes enstrophy proportional to
the total number of vortices,7,70 and hence, the possibility of vor-
tex–antivortex annihilations could typically force this quantity not
to be an inviscid quantity in the quantum counterpart. For this rea-
son, the conservation, and even the meaning, of enstrophy in quan-
tum systems has been openly debated in the field.123,125 Recently,
however, the direct enstrophy cascade has been observed in simula-
tions of a dissipative point-vortex model that described a two-
dimensional, decaying turbulent quantum fluid.126 In this work, for
a sufficiently large number of vortices (�500), the energy spectrum
exhibited a clear enstrophy-related k�3 scaling.

2. Vinen turbulence in 2D

Recent experimental and numerical efforts38,88,110,127 have been
focusing on understanding the decay of Vinen turbulence in 2D (and
also aiming at an eventual extension of studying the decay in the
Kolmogorov regime, still unexplored). Experiments with a sodium gas
confined in a quasi-2D trap brought a BEC to a turbulent state
by sweeping a repulsive laser beam of the Gaussian shape through its
center.88,89 After producing 
60 vortices, the repulsive laser beam was

FIG. 4. (a)–(c) Optical density images of
the experiment with perturbed BECs dis-
playing different vortex (dark spots) con-
figurations (dipole, random, and cluster,
respectively). (d)–(f) Corresponding Bragg
spectroscopy signals, highlighting the flow
direction with different colors. (g)–(i)
Associated numerically computed velocity
field from the point-vortex model. Colors in
(d)–(i) indicate projections of the super-
fluid flow in the direction indicated by the
arrow. (j)–(l) Formation of the same-sign
vortex clusters. Reprinted with permission
from Johnstone et al., Science 364, 1267
(2019). Copyright 2019 AAAS.

FIG. 5. Qualitative picture of the incompressible kinetic energy spectra for a 2D sys-
tem. The k�3 part of the spectrum appears due to the structure of the vortex core,
while the k region pertains to distances larger than the largest intervortex distance
L and has no net vorticity. The nonshaded region is the inertial range where
Kolmogorov scaling k�5=3 manifests and kF is the forcing scale, where energy is
injected. Reprinted figure with permission from A. S. Bradley and B. P. Anderson,
Phys. Rev. X 2, 041001 (2012). Copyright 2012 American Physical Society.
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turned off. The number of vortices N as a function of time was
observed to decay nonexponentially. A phenomenological description
(analogous to the 3D Vinen equation80) was, thus, proposed by means
of a rate equation given by

dN
dt
¼ �C1N � C2N

2; (10)

with C1 and C2 being real, positive parameters, attributed to one-body
and two-body losses. This rate equation was in principle regarded to
be universal. However, numerical simulations and phenomenological
modeling have shown that vortex annihilation may involve leading
four-body processes110,118,128 in the zero-temperature case. Recent
results on finite-temperature modeling suggest that different dissipa-
tive regimes induce other leading processes instead, such as three-
body encounters.129

E. Wave turbulence

Up to this point, we have mainly considered the Kolmogorov
and Vinen turbulences, which are associated with chaotic configu-
rations of vortex lines. Now, we are going to consider the situations
in which the chaotic behavior is associated with the condensate
wave function itself. This is the so-called wave turbulence (WT). In
general, a system described by a complex wave function in Fourier
representation wðkÞ ¼ Aeih can be split into its real amplitude
AðkÞ and phase hðkÞ. The system will, then, be considered to be in
a wave-turbulent regime if hðkÞ for different values of k is statisti-
cally independent and uniformly distributed between 0 and 2p. In
such conditions, it turns out that the nonlinear interaction between
the different Fourier modes of the wave function can also give rise
to self-similar cascades, which can be observed through power
laws in the energy spectrum.130 In the case where the kinetic com-
ponent of the energy dominates over the interaction component,
an elegant analytical treatment is possible,2,131 which is known as
weak wave turbulence.

One remarkable feature in the theory is the fact that proper-
ties associated with stationary turbulent states can be directly
obtained from the wave dispersion relation and the lowest-order
nonlinear term. In BECs, there are two main types of wave turbu-
lences: four-wave and three wave turbulences. For the sake of sim-
plicity, we consider here an infinite system with no external
trapping potential.

1. Four-wave turbulence

As a first example of WT, let us consider a very dilute BEC at
T¼ 0, which can be described by the dimensionless version of GPE in
Fourier representation

i
@w
@t
¼ xðkÞwþ g0

ð
dk1

ð
dk2

ð
dk3dðk � k1 � k2 þ k3Þ

� Vðk; k1; k2; k3Þwðk1Þwðk2Þw�ðk3Þ; (11)

where xðkÞ ¼ k2=2 and Vðk; k1; k2; k3Þ ¼ 1. Such a four-wave
weakly interacting system in the WT regime must be described by the
following equation for the wave action2 nðkÞ ¼ jwðkÞj2:
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� 1
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� �
:

(12)

Using Zakharov transformation on the k variables,131 two power
law solutions of the type n 
 k� are possible in this system with

�E ¼ �2b=3� d; (13)

�N ¼ �2b=3� d þ a=3; (14)

which correspond to energy (�E) and particle (�N) cascades. Here, d is the
spatial dimension of the system, while a and b are the degrees of homoge-
neity of x and V, i.e., xðkkÞ ¼ kaxðkÞ and Vðkk1; kk2; kk3; kk4Þ
¼ kbVðk1; k2; k3; k4Þ. In the case of 3D GPE, we have a¼ 2, b ¼ 0,
and d¼ 3. These parameters lead to the energy and wave action cascade
power law spectra, which are �E ¼ �3 and �N ¼ �7=3, respectively.

2. Three-wave turbulence

In BECs, this is the turbulence associated with the small ampli-
tude excitations dw over a macroscopic background132 w0. The equa-
tion of motion for such excitations can be obtained by substituting the
Ansatz w ¼ ½ ffiffiffiffiffiq0

p þ dw�e�ig 0q0t and keeping only the smallest-order
nonlinearities,

i
@dw
@t
¼ � 1

2
r2dwþ g 0q0ðdwþ dw�Þ þ g 0

ffiffiffiffiffi
q0
p ð2dw�dwþ dw2Þ;

(15)

which has the Fourier representation

i
@dwðkÞ
@t

¼ k2

2
dwðkÞ þ g 0q0 dwðkÞ þ dw�ðkÞ

� �
þ g 0q0

ð2pÞ3=2
ð
dk1

ð
dk2 dðk � k1 � k2Þdwðk1Þdwðk2Þ½

þ2dðk þ k1 � k2Þdw�ðk1Þdwðk2Þ�: (16)

The Bogoliubov transformation133,134 at this point is necessary in
order to make explicit the dynamics of plane waves,

aðkÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi
xðkÞ
bðkÞ

s
þ

ffiffiffiffiffiffiffiffiffiffi
bðkÞ
xðkÞ

s0
@

1
AdwðkÞ

þ 1
2

ffiffiffiffiffiffiffiffiffiffi
xðkÞ
bðkÞ

s
�

ffiffiffiffiffiffiffiffiffiffi
bðkÞ
xðkÞ

s0
@

1
Adw�ð�kÞ; (17)

with its inverse transformation

dwðkÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi
xðkÞ
bðkÞ

s
þ

ffiffiffiffiffiffiffiffiffiffi
bðkÞ
xðkÞ

s0
@

1
AaðkÞ

� 1
2

ffiffiffiffiffiffiffiffiffiffi
xðkÞ
bðkÞ

s
�

ffiffiffiffiffiffiffiffiffiffi
bðkÞ
xðkÞ

s0
@

1
Aa�ð�kÞ; (18)

AVS Quantum Science REVIEW scitation.org/journal/aqs

AVS Quantum Sci. 2, 035901 (2020); doi: 10.1116/5.0016751 2, 035901-10

Published by the AVS

https://scitation.org/journal/aqs


where bðkÞ ¼ k2=2 and xðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðkÞ2 þ 2g 0q0bðkÞ

q
. Thus,

substituting into (16), we get the equation for weakly interacting sound
waves as follows:

i
@aðkÞ
@t
¼ xðkÞdwðkÞ þ

ð
dk1

ð
dk2Vðk; k1; k2Þ

� dðk � k1 � k2Þaðk1Þaðk2Þ½
þ 2dðk þ k1 � k2Þa�ðk1Þaðk2Þ�; (19)

where

Vðk; k1; k2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 0q0xðk1Þxðk2Þxðk3Þ

p
ð2pÞd=2

6
aðk1Þaðk2Þaðk3Þ

�

þ 1
2

k1 � k2
k1k2aðk3Þ

þ k2 � k3
k2k3aðk1Þ

þ k3 � k1
k3k1aðk2Þ

� ��
; (20)

where aðkÞ ¼ 2g 0q0 þ k2.
If dw follows the WT conditions, then the equation for the wave

action nðkÞ ¼ jwðkÞj2 is2

@nðkÞ
@t
¼
ð
dk1

ð
dk2 Rðk1; k2; kÞ � Rðk; k1; k2Þ � Rðk2; k; k1Þð Þ;

(21)

where

Rðk1; k2; k3Þ ¼ 2pjVðk3; k1; k2Þj2dðk3 � k1 � k2Þ
� dðxðk3Þ � xðk1Þ � xðk2ÞÞ
� nðk1Þnðk2Þ � nðk2Þnðk3Þ � nðk3Þnðk1Þ½ �: (22)

In the strong condensate limit g 0q0 	 k2, the system simplifies
so that

xðkÞ 
 k; (23)

Vðk; k1; k2Þ 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

p
: (24)

Therefore, in such a limit, the degree of homogeneity of x and V is
a¼ 1 and b ¼ 3=2, respectively. This leads2 to a cascade solution
n 
 k� with � ¼ �b� d, which, in the 3D case, gives � ¼ �9=2.

F. QT from the out-of-equilibrium perspective

Many recent works have looked at the problem of quantum tur-
bulence from a more general standpoint. A set of out-of-equilibrium
phenomena can be categorized into classes of systems that present uni-
versal dynamical behavior. This is done in analogy to scaling theories
for systems in equilibrium but under the light of a renormalization-
group theory that treats time as a scaling parameter when the system
is far from equilibrium.135–139 The universal dynamical behavior can
be related to the presence of a so-called nonthermal fixed point, a
metastable state of the perturbed quantum many-body system that
can be universally characterized. It is quite possible that understanding
the dynamics of isolated quantum systems away from the steady state,
as well as their quest for equilibrium, can elucidate many aspects of
QT. It is believed that a large class of quantum systems outside equilib-
rium, including QT, have universal behavior in their temporal and
spatial evolution. Experiments in this direction begin to generate
results.140–142 In these cases, independent of the initial conditions, the

system has dynamical evolution characterized by only a few
parameters.

V. QUANTUM TURBULENCE IN “EXOTIC” SYSTEMS

So far, we limited ourselves mainly to the discussion of single-
component BECs (we should note that even in this case, there are two
elements, the thermal cloud and the superfluid143). However, QT can
also be studied in a plethora of systems. We should stress that we pre-
sent brief introductions to each of the topics listed in this section since
there is enough material in the literature to write a complete review
about each of them. We focus on the main aspects of each topic while
presenting the features that can be readily connected to the majority of
studies of QT in trapped single-component BECs.

A. Bosonic mixtures

Quantum turbulence can be studied in a mixture of two, or possi-
bly more, bosonic species. A combination widely employed is a Na–K
mixture due to the relatively simple experimental procedure involved
and considerable flexibility of the system.144

Studies began with a single vortex in multicomponent BECs.145

The development of quantum turbulence from two counter-
propagating superfluids of miscible Bose–Einstein condensates has
been investigated numerically by solving the coupled Gross–Pitaevskii
equations.146,147 This can be seen as the analog of quantum turbulence
in 4He, in a regime where the normal and superfluid components are
turbulent at the same time. It was found that when the relative velocity
exceeds a critical value, the counterflow becomes unstable, and quan-
tized vortices and vortex rings are nucleated, which leads to isotropic
quantum turbulence consisting of two superflows.

Another theoretical study,148 also using numerical solutions of
the Gross–Pitaevskii equations, observed the Kolmogorov scaling law
for the incompressible kinetic energy in a binary immiscible mixture
of 87Rb atoms.

A fascinating situation would be to employ one of the compo-
nents of the mixture as a probe for the other, using either an impu-
rity149 or a comparable number of atoms of the second component.
One of the goals would be the visualization of the vortex line tangle
that constitutes turbulence, which is very difficult in a trapped BEC,
but it is well-developed in liquid He.150

B. Spin turbulence

Condensates with particles possessing a spin degree of freedom
have been produced.151 The study of turbulence in these systems,
mainly spin-1 spinor BECs, is called spin turbulence (ST). The turbu-
lent state is characterized by the spin density vectors having various
disordered directions. We should stress that, in the case of ST, turbu-
lence is not referring to the state of the mass density but rather the
spin density. A theoretical investigation or experiment probing both
types of turbulences at the same time would be very challenging.

One of the main differences between ST and a regular mixture of
two bosonic components is that spin-exchange collisions make the
number of atoms of each component fluctuates in spin systems,
whereas the populations are constant in spinless BECs. A hydrody-
namical description of ST is available.152,153

The properties of ST depend on whether the spin-dependent
interactions are ferromagnetic or antiferromagnetic. In theoretical
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studies,152–154 the authors observed a spectrum of the spin-dependent
ferromagnetic interaction energy displaying a �7/3 power-law, which
is different from the�5/3 Kolmogorov scaling. Also, ST can behave as
a spin-glass, corresponding to random spin density vectors, but frozen
in time.154

Besides spin-1 BECs, numerical calculations of a spin-2 BEC sug-
gest that QT is possible in these systems.155 An exciting experiment
exploring the interaction and dynamics of half-quantum vortices in an
antiferromagnetic spinor Bose–Einstein condensate showed that tur-
bulent condensates emerge from many half-quantum vortices colli-
sions.156 For a review of the theoretical and numerical works on ST,
the reader is referred to Ref. 157.

C. Fermionic gases

So far, we have only discussed superfluids containing bosonic
constituents. However, superfluidity is also possible in fermionic sys-
tems. The Bardeen–Cooper–Schrieffer (BCS) theory of condensation
of Cooper pairs into bosonic-like particles158 explains the mechanism
behind fermionic superfluids.

Interatomic interactions can be tuned, both in bosonic and fermi-
onic dilute gases, using Feshbach resonances. Bosonic systems with
attractive pair-wise interactions will eventually collapse.159 However,
this is not the case with fermions due to the Pauli exclusion principle.
The interparticle interactions can be tuned so that the fermion pairs
change their size from tightly bound dimers (BEC limit) to many times
the interparticle distance at the BCS side, spanning the so-called
BEC–BCS crossover.160,161 At the center of the crossover, there is the
strongly interacting unitary regime, with remarkable properties. A
milestone for the study of trapped fermionic superfluids was the obser-
vation of vortex lattices throughout the BEC–BCS crossover in a 6Li
gas, which demonstrates superfluidity.162

Quantum turbulence is possible in fermionic gases, at least in the
unitary regime.163,164 Naturally, many fundamental questions arise. In
which portions of the BEC–BCS crossover it is possible to observe
QT? What is the impact of the quantum statistics-bosons versus
fermions-in turbulence? Although the answers seem far away, the
microscopic structure of vortices in cold atomic fermionic gases has
been studied throughout the BEC–BCS crossover and in the unitary
Fermi gas,165–167 and the time-dependent superfluid local density
approximation is rather reliable to obtain static and dynamic
phenomena.168

D. Astrophysics

1. Neutron stars

Quantum turbulence may provide answers to a mystery in
nuclear astrophysics: the pulsar glitches. These are sudden increases in
the spinning of neutron stars, while they continue to lose angular
momentum. Since neutrons are spin-1/2 particles, the QT of fermionic
gases (see Sec. VC), is of interest. One possible explanation is that the
outer core of a neutron star is in a turbulent state and that the
Reynolds number could account for the glitches.169,170

As is the case with turbulence in trapped BECs, this problem
would benefit from a better understanding of microscopic processes,
such as vortex reconnections. However, even the study of a single
straight vortex line in neutron matter is an active topic of
research.167,171,172

One of the main challenges in this problem is the range of avail-
able length scales. Although this is true for all problems related to tur-
bulence, this feature is extreme in the case of neutrons stars. The
vortex cores are in the femtometer scale, while neutron stars are in the
kilometer scale. Some progress has been made toward developing a
mean-field framework for this situation.173

2. Turbulence in magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of magnetic proper-
ties of electrically conducting fluids, such as the case of plasmas.
Turbulence in plasmas seems to be far away from the turbulent regime
of trapped BECs. However, they both share common aspects. For
example, there is wave turbulence174 in MHD, magnetic reconnec-
tions175 are present, and ongoing debates about the power-law expo-
nent of the energy spectrum.176 Turbulence in MHD and QT in
trapped BECs also present an anisotropic aspect, and understanding
some concepts of turbulence in MHD may prove useful to improve
the description of turbulence in BECs.

Anisotropy arises in BECs due to the trap, which is evident in the
commonly employed cigar-shaped clouds. In order to understand the
origin of the anisotropy in MHD, let us start with a static homoge-
neous plasma.177 We can think of it as describing a local portion of a
much larger system. Even if the equilibrium quantities such as density
and pressure are of large-scale, the only large-scale feature that does
not vanish at small scales is the magnetic field, hence defining a prefer-
ential direction. This is what makes MHD turbulence different from
rotating or stratified turbulence, which always reverts to the universal
Kolmogorov distribution at small enough length-scales.178

Kraichnan179 used this irreducibility of the magnetic field to
derive an energy spectrum. The background uniform magnetic field
B0 can be converted into velocity units, the so-called Alv�en speed,
vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffi
4pq0
p

, with q0 being the mass density of the medium.
Then, by dimensional analysis, the energy spectrum in the inertial
range must be

EðkÞ / ðevAÞ1=2k�3=2; (25)

which is known as the Iroshnikov–Kraichnan spectrum.180

Kraichnan’s interpretation of the spectrum was wrong because of the
Kolmogorov assumption of restoration of symmetry at small enough
length scales, which leads to only one k in the dimensional analysis. In
fact, there are two relevant wave numbers, kk and k?, representing the
turbulent fields along and across B0, respectively.

In a strong magnetic field, perturbations with k? 	 kk should
happen more often than isotropic ones because the magnetic field lines
are hard to bend. This intuitive argument turns out to be right for the
anisotropy of MHD turbulence at all length scales.181 Goldreich and
Sridhar put forward arguments and assumptions182,183 to derive an
energy spectrum of the form

Eðk?Þ / e2=3k�5=3? ; (26)

which is the anisotropic version of the Kolmogorov scaling.
This very brief chronological exposition of events in the field of

turbulence in MHD shows the importance of taking into account the
anisotropic aspect of the system. Perhaps, analogous directions could
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be pursued in QT in trapped BECs to improve our description of these
systems.

VI. CHALLENGES AHEAD

The production of a turbulent regime in trapped condensates is a
very recent topic of investigation. Despite turbulence itself being a cen-
tenary theme, and turbulence in quantum fluids already being
observed a few decades ago, our mathematical capacity and our mod-
els applicable to turbulence are still few. Most of the time, studies are
trying to compare classical and quantum turbulence. Surprises are,
however, very much expected in quantum fluids. There are, therefore,
great challenges that we must face in this field.

Defining the undefined: one of the challenges for quantum turbu-
lence is its definition. While for classical turbulence there are more
consolidated criteria and interpretations for the definition of turbu-
lence, in the quantum world, this has not yet reached maturity. Today,
most definitions of quantum turbulence are broad and undefined. An
analogy with the classical fluids is sought to reach some criteria that
allow establishing whether a fluid experiences the turbulence or not.
However, this does not seem to be the most appropriate way to pro-
ceed. Not everything in the quantum world has a counterpart to be
compared to the classic one. In the classical world, it is conventional to
classify turbulence in terms of the Reynolds number, focusing on vis-
cosity. Increased viscosity makes the fluid less accessible to turbulence.
There is no equivalent in the quantum world. While we deal with a
wide range of scales of motion in the classical world, we also have to
deal with a wide range of scales capable of holding energy in the quan-
tum world. This parallel should allow an equivalent of the Reynolds
number, with quantum characteristics. However, this does not exist
yet. Although we have fundamental differences between classical and
quantum fluids, experiments and theory have shown many similarities
between classical and quantum turbulences. Several experiments on
liquid helium show striking similarities with the observed behavior in
classic fluids. However, for Bose–Einstein condensates confined in a
trap, we focus on similarities, but in practice, great difficulties in mak-
ing analogies with the classical world have been faced. Perhaps the
way to consider the case of trapped quantum fluids is to consider
them as a special class of quantum fluids, as well as their turbulence.
As it is typical in the quantum systems, it would be interesting to have
a series of equations that governed average values of quantum quanti-
ties such as momentum and energy. It could be possible to define tur-
bulence criteria based on such large averages instead of particular
values. This would be a statistical model that would allow coming up
with definitions for the turbulent regime. This, however, seems unreal-
istic to many. The possibility of describing quantum turbulence as a
state of the physical system could be more realistic. The continuous
search for quantum-classical analogies is a way of seeking to observe a
more simplified quantum world and export concepts to the confused
turbulent classical world. This can be an interesting way but not neces-
sarily valid.

The issue of isotropy in condensates and turbulence: while for
simplicity, many models in turbulence are devised considering isotro-
pic systems, where it is evenly distributed in all directions, this is in
fact not a necessity and there are no restrictions to consider a different
scenario. In condensates, the density is not constant and in most situa-
tions not spherically symmetric, depending on the type of confining
potential. Moreover, the potential is almost never isotropic. In fact, in

many experiments, the system even has a large difference in values in
the confinement of orthogonal directions. Allied to such anisotropic
confinement is the finite character of the system, not allowing to create
an unrestricted number of excitations, having limits, which can be dif-
ferent, in each of the directions. This makes the system intrinsically
anisotropic and can transmit such properties to the turbulent cloud.
The result of this situation is that one can have anisotropic characteris-
tics, either in the stationary or the transient regime. These facts need
to be explored since without an isotropic system, the transfer and ther-
malizing of excitations between directions can be a new and extremely
relevant physics for the investigation of turbulence in condensates.

Turbulence formation: one of the important points in the forma-
tion of turbulence involving Bose–Einstein condensates is the intro-
duction of excitations (vortices or other density disturbances), which
later evolve to the turbulent state. This process starts with a condensate
in equilibrium and then taking it out of equilibrium. The process is
opposite to that elaborated by Kibble–Zurek.42 This allows us to imag-
ine that the transformation of a condensate in equilibrium to a turbu-
lent one follows an inverse route to that of the Kibble–Zurek
mechanism.184 The inverse Kibble–Zurek process can be a universal
way to start with a trapped condensate and lead it to turbulence, with
an evolution sequence between these extremes. Understanding this sit-
uation is certainly one of the challenges of the field.

The out of equilibrium aspects: turbulence is one of the most
intriguing phenomena of systems taken out of the equilibrium. While
we use concepts typical of classical fluids to investigate quantum tur-
bulence, looking for the decay aspects of an out of equilibrium quan-
tum system is unique and may be the most correct way to treat such
systems. With that in mind, we can investigate the universal critical
behavior of the system, as a characteristic of a phase transition out of
equilibrium. There are several ways to investigate the evolution of tur-
bulence following those lines with one of the most interesting ways
being the so-called transition to absorptive states. Usually, it is a state
where the system enters and can no longer escape from it. Aspects of
universality for systems out of equilibrium can be seen as the system
gets in a nonthermal state that fixes itself around certain conditions
(nonthermal fixed points). In these systems, a universal dynamics can
occur during the temporal evolution of the system, as recently demon-
strated in quenched Bose gases.141,142 In these cases, variables such as
the momentum distribution can evolve over time, generating a set of
exponents that allow a re-scaling within certain universal functions.
Addressing quantum turbulence, from a perspective of universal
dynamics in far from equilibrium system, can lead to a deeper and less
empirical understanding of the turbulent regime.
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