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Abstract

In this paper we present a numerical study of a mathematical model of spiking neurons
introduced by Ferrari et al. (J Stat Phys 172(6):1564-1575, 2018). In this model we have a
countable number of neurons linked together in a network, each of them having a membrane
potential taking value in the integers, and each of them spiking over time at a rate which
depends on the membrane potential through some rate function ¢. Beside being affected
by a spike each neuron can also be affected by leaking. At each of these leak times, which
occur for a given neuron at a fixed rate y, the membrane potential of the neuron concerned
is spontaneously reset to 0. A wide variety of versions of this model can be considered by
choosing different graph structures for the network and different activation functions. It was
rigorously shown that when the graph structure of the network is the one-dimensional lattice
with a hard threshold for the activation function, this model presents a phase transition with
respect to y, and that it also presents a metastable behavior. By the latter we mean that in the
sub-critical regime the re-normalized time of extinction converges to an exponential random
variable of mean 1. It has also been proven that in the super-critical regime the renormalized
time of extinction converges in probability to 1. Here, we investigate numerically a richer
class of graph structures and activation functions. Namely we investigate the case of the two
dimensional and the three dimensional lattices, as well as the case of a linear function and a
sigmoid function for the activation function. We present numerical evidence that the result
of metastability in the sub-critical regime holds for these graphs and activation functions as
well as the convergence in probability to 1 in the super-critical regime.
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1 Introduction

This article presents and discusses a simulation study of a system of interacting point pro-
cesses modeling a biologically inspired neural network; focusing on the time of extinction
of a sustained activity exhibited by the network in the absence of external input. The use of
point processes, like Hawkes processes [7, 8, 14, 15] or Wold processes [16], as models for
biological neural networks has by now a pretty long history. The model considered here is
closer to the one introduced by [3], since the process mimicking the neuron membrane poten-
tial is reset to a fixed value after each spike emitted by the neuron; it is informally speaking
a stochastic version of the integrate and fire model. While network dynamics has been the
subject of many studies both from a point process (i.e. stochastic) and from a deterministic [5,
21, 26] perspective, the concern for a rigorous characterization of the endogenous behavior
(that is, in the absence of input) of the first kind of networks is, to the best of our knowledge,
recent [1, 2, 10, 11, 13]. The latter studies using Galves-Locherbach-like models [12].

The exact model we consider here is as in [11], which consists in an infinite number
of neurons, each of them being affected by two different point processes representing the
spiking times and the leaking times, the latter being an homogeneous Poisson process. This
choice of a non-continuous potential loss is a clearly peculiar feature of our model and is
introduced for technical convenience. It contrasts with the continuous leakage of the integrate
and fire model (in the deterministic family) and of the original Galves-Locherbach one (in
the stochastic family).

Within the framework of our model, a series of rigorous results were established and
are reviewed in Sect. 3 of this paper. Considering a one dimensional lattice together with a
hard threshold activation function—the neuron’s spiking rate switches from zero to one when
the membrane potential becomes positive—[11] showed that the network exhibits a phase
transition with respect to the leakage rate (Theorem 3.1 in Sect. 3); namely, there is a phase
in which every neuron stops spiking in finite time with probability one, while in the other,
each neuron continues spiking infinitely many times with positive probability. Considering a
finite version of the same model, [2] showed that, in the continuously spiking phase of [11]-
the sub-critical phase—, the re-normalized time of extinction is asymptotically (with respect
to the number of neurons) exponentially distributed (Theorem 3.2 in Sect. 3), a property
that we refer to as metastability. Informally, the network will present an unpredictably long
period of pseudo-stationary activity before being kicked out to the only equilibrium (where
all neurons are quiescent) by a sudden fluctuation. [1] also showed that in the other phase,
the re-normalized time of extinction goes to one asymptotically (see Theorem 3.3 in Sect. 3).
Informally, the network activity will exhibit a sharp membrane potential loss leading to a
comparatively fast and predictable extinction time.

The notion of metastability has acquired more and more attention during the last years in
the field of neuroscience (see for example [9] and [23]), especially to explain the brain ability
to switch periodically between different functional networks. The most common approach
consider large scale models to keep track of brainwaves. The approach we adopt here is to
the best of our knowledge the first one (along with [2]) to give evidence of metastability in a
theoretical model operating at the neuron level. It is inspired by statistical physics and takes
its roots in [6], where a formal framework was developed for metastability in interacting
particles systems, and where some models such as the Curie-Weiss mean field dynamics and
the Harris contact process were proven to be metastable in the sense of this framework. The
key point in this framework is to show that under suitable conditions (which here means in
the sub-critical phase) the time of extinction of the system is asymptotically memory-less,
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or in other words exponentially distributed (Theorem 3.2). The result proven in [2], as well
as the results proven in [1] and [11], are nonetheless dependent on the technical assumptions
that the structure of the network is a one-dimensional lattice, and that the activation function
is a hard threshold, which is convenient mathematically but unrealistic biologically. Here,
we develop a numerical study aimed to show that the results related to the time of extinction
hold in lattices of higher dimensions Z¢ (d = 2 and d = 3) and for two other commonly
used activation functions.

The choice of such structure for the network was motivated by the fact that lattices of vari-
ous dimensions has been previously used in the literature that is concerned with mathematical
modeling of neural networks (see for example [20, 22] and [25]), and also by the fact that
experimental works show that some cortical regions, such as specific regions of the primate
visual cortex, present high similarity with multidimensional lattices (see [24] and [28]). We
also deliberately chose non-random graphs in order to avoid a double source of stochasticity,
which would uselessly complicate the analysis. For each of these multidimensional lattices
we investigate the effect of changing the activation function to a linear function and to a sig-
moid function. Both activation functions have been used in some form in stochastic models
of biological neural networks (see for example [4] and [17]) as well as in artificial neural
networks (see for example [19]).

This paper is organized as follows. In Sect. 2 we give a formal definition of the model.
In Sect. 3 we give a formal presentation of the rigorous results that were proven in previous
papers. In Sect. 4 we give a description of the algorithm used for the simulations. In Sect. 5
we give a precise characterization of the instantiations that we considered. In Sect. 6 we
present the results of our simulations. Finally in Sect. 7 we discuss these results.

2 Definition of the Model

Informally the model we consider is as follows. / is a countable set representing the neurons,
and to each i € [ is associated a set V; of presynaptic neurons. If you consider the elements
of I as vertices, and draw and edge from j to i whenever j € V;, then you obtain the graph
structure of the network. The membrane potential of neuron i is a stochastic process denoted
(X;(1)):=0 taking value in the set N of non-negative integers. Moreover, we associate to
each neuron a Poisson process (N l’ (t)):>0 of some parameter y, representing the leak times.
At any of these leak times the membrane potential of the neuron concerned is reset to 0.
Another point process (N;(t));>0 representing the spiking times is also associated to each
neuron, which rate at time ¢ is given by ¢ (X;(¢)), where ¢ is the rate function. Whenever a
neuron spikes its membrane potential is also reset to 0 and the membrane potential of all of
its post-synaptic neurons is increased by one (i.e. the neurons of the set {j : i € V;}). All
the point processes involved are assumed to be are mutually independent.

More formally, beside asking that (NiT (t))s>0 be a Poisson process of some parameter y,
this is the same as saying that (N;(¢));>0 is the point process characterized by the following
equation

t
]E(Ni(l)—Ni(S)lﬁs)Zf E(o (X; ()| F5)du

where

xiw=3 [ anje,

jev, L.
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L;(t) being the time of the last event affecting neuron i before time ¢, that is,
Li(t) = sup {s <t:Ni({s) =lor N/ ({s}) = 1].

(Z1)1>0 is the standard filtration for the point processes involved here. See [11] for more
details.

3 Rigorous Results

In [2, 11], and [1] a specific version of the model above was studied. The graph structure
chosen there was the one-dimensional lattice, i.e. I = Z with V; = {i — 1, i 4+ 1}, moreover
the activation function was chosen to be a hard threshold of the form ¢ (x) = 1,~¢. Insuch a
paradigm the rate of the point processes representing spiking times can only take two values:
0 or 1, depending on whether the membrane potential is positive or null. In this context
whenever the membrane potential of a neuron is different from O we say that the neuron
is active, otherwise we say that it is quiescent. More generally we will only consider here
function ¢ satisfying ¢(0) = 0 and ¢(x) > 0 for x > 0, so that we will keep this distinction
between active and quiescent neurons.

In [11] it was proven that in the case of the one-dimensional lattice with hard threshold
the following theorem holds

Theorem 3.1 Suppose that for any i € Z we have X;(0) > 1. There exists a critical value y,
Sfor the parameter y, with 0 < y. < oo, such that for anyi € 7

P(N:([0, 00D = 00) > 0ify < .
and
IP’(N,-([O, ool) < oo) —1ify > ..

In words there is a critical point for the parameter y, such that below this critical point each
neuron stays active forever (with positive probability), and above it each neuron becomes
quiescent if you wait long enough. These two mutually exclusive type of behavior for the
system are called the sub-critical regime (or phase) and the super-critical regime respectively.

The process as a whole of course never dies completely because of the fact that there is
an infinite number of neurons, so that it doesn’t makes sense to consider the extinction time.
Nonetheless nothing prevents us to consider a finite version of this model. Suppose we’re
stillinthecase V; = {i — 1,i + 1} and ¢ (x) = 1,0 and for any N > O consider the system
defined on the finite set Iy = {—N, ... N} instead of the whole lattice. Then you can define
the process (& (7));>0 of the spiking rates of the system, that is, the process taking value in
{0, 1}/V defined by &y (t); = 1x,()~0- This is a Markov process, belonging to the category
of interacting particle systems, and by classical results on Markov processes we know that
it will always reach the state 0’N—where all neurons are quiescent—in finite time. We can
therefore consider the extinction time of this finite model, which we denote oy, and it is
natural to ask about its distribution in each of the two phases distinguished by the theorem
above. It was proven in [2] that the following holds.

Theorem 3.2 There exists y/ such that if y < y/, then we have the following convergence

ON Z
—
E(on) N>

&(1).
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In words, the re-normalized time of extinction converges in distribution to an exponential
random variable of mean 1.

We know that y/ < y., and the fact that the theorem is stated for some y/ and not for
the critical value y,. comes from essentially technical reasons related to the way the proof is
built. We believe that this metastable result holds for the whole sub-critical region but it is
not yet proven. Moreover, it was proven in [1] that we also have the following.

Theorem 3.3 Suppose that y > 1. Then the following convergence holds

ON P

— 1.
E(UN) N—oo

We know that y. < 1, so that the result concerns a sub-region of the super-critical region,
and as for the previous result, while to the best of our knowledge the result has been proven
only for y > 1, it is reasonable to expect that it holds in the whole super-critical region.

As stated in the introduction the choice of a one-dimensional lattice for the graph of inter-
action and of a hard threshold for the activation function were initially essentially motivated
by mathematical conveniency, and we’re interested in checking that the results hold for a
richer class of instantiations of the model. Namely, we are aimed to establish numerically
that the results related to the asymptotical distribution of the extinction time stated for the
one-dimensional case in Theorems 3.2 and 3.3 remain valid for lattices of dimension 2 and
3. We also investigate the effect of changing the activation function to a linear function and
to a sigmoid function on these results.

4 Simulation Algorithm

All simulations were done in Python. The algorithm used to simulate our system of spiking
neurons can be informally described as follows:

o Initial configuration: The network starts with all neurons actives (by default membrane
potential equals 1), and for each neuron an initial spiking value is sampled from an expo-
nential random variable of parameter 1 (corresponding to the first atom of (N;(?)):>0)
and an initial leaking time value is sampled for each neuron from an another indepen-
dent exponential random variable of parameter y (corresponding to the first atom of
(N} (®)i20)-

e Interaction: The current time is set to be the smallest of the previously sampled values,
the neuron i associated with this value is found and the value of its membrane potential is
set to 0. In case the event considered is a spike the membrane potential of the neurons in
theset {j : i € V;} (the set of post-synaptic neurons) is increased by one. The membrane
potential of neuron i being equal to O we set the next spiking time for neuron i to be
infinite until further notice. If the event was a leaking then we sample an exponential
random variable of parameter y and add it to the current time to get the next leaking time
for neuron i. If the event was a spike then we sample an exponential random variable of
parameter ¢ (X ;) for all post-synaptic neuron j and add this value to the current time to
get the next spiking time for these neurons.

e Stopping condition: The previous operation is iterated until all neurons are quiescent.

More formally, our simulation algorithm can be described by the following pseudo-
algorithm.

@ Springer



41

Page 6 of 16

C.Romaro et al.

Algorithm 1 Simulate the system of spiking neurons and return the extinction time

> & denotes the realization of an exponential random variable

1: I the (finite) set of neurons.

2: ¢ the activation function.

3: y the rate of the leaking point processes.

4: t the current time.

5: V; the set of presynaptic neurons for neuron i.

6: X; the membrane potential of neuron i at the current time.

7: o) the time of the next leaking for neuron i.

8: o; the time of the next spike for neuron i.
INITIALIZATION

9: 1«0

10: for each i in I do

1 X; <1

12: for each i in I do

13 o < &)

14:  o0; < E@X)))
SIMULATION

15: while ", .; X; # 0do

16 MinLeaking < min;¢; a;

17: MinSpiking <— min;cj o;

18:  if MinLeaking < MinSpiking then

19: t = MinLeaking

20: i~ argminjela;

21: X; <0

22: g; < 00

23: a;f «—t+E(y)

24:  else

25: t = MinSpiking

26: i < argminjc o

27: X; <0

28: 0 < 00

29: for each j such thati € V; do

30: Xj<X;+1

31: oj < t+E@X)))

32: oy <t

33: return oy

5 Models Investigated

All codes are available at https://github.com/ceciliaromaro/Finite_Spike.

In this section we specify the structure of the graph of interaction and the activation function
we’re interested in.

@ Springer


https://github.com/ceciliaromaro/Finite_Spike

A Numerical Study of the Time of Extinction... Page70of16 41

Fig. 1 One-dimensional and two-dimensional lattices. A directed arrow is drawn toward the black neuron
from each of its presynaptic neurons

5.1 Multi-dimensional Lattices

For the graph of the network we consider the lattices Z', Z* and Z>. For any d € {1, 2, 3},
let || - || be the norm on Z4 given for any j € 74 by

d
=" Lil,
k=1

where j; is the k-th coordinate of j. The structure of the network is then given by I = Z¢
andV;, ={j el?:|li—j| =1} fori eI.

Notice that by defining the set of presynaptic neurons as the set of the nearest neighbours
we actually have j € V; if and only if i € V. In other words, for a given neuron the set of
the presynaptic neurons and the set of the postsynaptic neurons are equal. For this specific
choice the graph of interaction is therefore actually undirected.

5.2 Linear and Sigmoid Activation Functions

The activation function considered in [2, 11] and [1] was the hard threshold ¢ (x) = 1,-¢.
This choice is convenient mathematically as the system then becomes an additive interacting
particle system where any neuron can only have two possible values for the spiking rate at
any time: O or 1. Nonetheless, from a biological point of view, a hard threshold is a rough
choice, and we would like to consider smoother options.

The first option we consider is a linear function of the simplest form: ¢ (x) = x.
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Table 1 Values of the total

number of neurons and of the Lattice Number of neurons Value of y Figure
parameter y used in the 7 101 0.34 2
simulation for each of the three
lattices 0.85 3
72 121 1.25 2
5.00 3
73 125 1.80 2
6.00 3
1049 — et

H y=0.34 n=101

Density

2 3 4
Normalized Time (t)

1.0 b — et 1.0 = — e
. y=125 n=121 s y=1.8 n=125

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Normalized Time (t) Normalized Time (t)

Fig. 2 Histogram of the re-normalized time of extinction oy for small values of gamma, and an activation
function of the form ¢ (x) = 1,~¢.Ina, b and c the blue, green and gray bars are the histograms for the time of
extinction in the one-dimensional lattice, two-dimensional lattice and three-dimensional lattice respectively.
The red line is the exponential function ¢ > e~7, which corresponds to the density of an exponential law of
parameter 1. The parameter n corresponds to the number of neurons (Color figure online)

The second option we consider is a somewhat more sophisticated sigmoid function of the
following form

500 (14+e 301 ifx > 0,
X) =
0 ifx =0.

Notice that we need to have ¢ (0) = 0, in order to avoid spontaneous spiking (neuron with
null membrane potential that spikes nonetheless). This is the reason why we force this value
for the sigmoid function.
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a - -
1.50 4 mm y=0.85 n=101
1.25 Lattice Zl
2 1.00 -
%)
8075
0.50 1
0.25 A
0.00 - T T T T
0 1 2 3 4 5 6 7
Normalized Time (t)
b = y=50 n=121 c = y=6.0 n=125
1.50 A y=>9n= 1.50 - y=060n=
1.25 4 Lattice Z? 1.25 4 Lattice Z3
2 1.001 1.00
2
8 0.75 1 0.75 4
0.50 - 0.50 4
0.25 A 0.25 4
0.00 - u T T T T 0.00 + T T T T T
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Normalized Time (t) Normalized Time (t)

Fig. 3 Histogram of the re-normalized time of extinction o for high values of gamma, and an activation
function of the form ¢ (x) = 1,~¢.In a, b and c the blue, green and gray bars are the histograms for the time of
extinction in the one-dimensional lattice, two-dimensional lattice and three-dimensional lattice respectively.
The parameter n corresponds to the number of neurons (Color figure online)

6 Results

We run simulations for instantiations of the system of spiking neurons consisting of all the
possible combinations between the graphs and activation functions described above.

6.1 Simulations with a Fixed Number of Neurons
6.1.1 Multidimensional Lattices and Hard Threshold

For each of the three lattices the Algorithm 1 described in Sect. 4 was run, with an activation
function of the form ¢ (x) = 1,-¢. Each of the simulations were run for two different values
of y, 10,000 times for each of these values, using a number of neurons of the order of 100.
The mean of the time of extinction oy was then computed using these data, and used to
build the re-normalized histogram in each of these cases. The exact values for the size of the
network and for the parameter y can be found in Table 1.

The resulting histograms are presented in Figs. 2 and 3.

6.1.2 Multidimensional Lattices, Linear Function and Sigmoid Function

The routine described above was repeated with the two other activation functions. Only the
values of y change, which was necessary as changing the activation function must change
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¢ E y=1.000 n=101

1.0 — e
mm y=0.420 n=101 . 1
Lattice 7

5 6 7 3 4 5 6 7
b -t - -
1.0 e 1.50 - Hm y=50 n=121
N y=17 n=121 . 5
1.25 4 Lattice Z
1.00
0.75
0.50
0.25 |
T T 0.00 - ¥ T T T T
5 6 7 0 1 2 3 4 5 6 7
1.0 C et 150_f B y=6.0 n=125
mm y=19 n=125 . 3
1.25 A Lattice Z
1.00
0.75
0.50 +
0.25
T T T 0.00 - T T T T T
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Normalized Time (t) Normalized Time (t)

Fig. 4 Histogram of the re-normalized time of extinction o for a linear activation function for each of the
three lattices. On the left side are the histograms for small values of y and on the right side the histograms for
high values of y. The red line on the left side is the exponential function ¢ > ¢, which corresponds to the
density of an exponential law of parameter 1. The parameter n corresponds to the number of neurons (Color
figure online)

the critical value of the system. These values are given in Table 2. The resulting histograms
are presented in Figs. 4 and 5.

6.2 Simulations for a Varying Number of Neurons

To further investigate the behavior of the time of extinction in the super-critical regime, we’ve
run a set of simulation for a (fixed) high value of y and for a varying number of neurons.
Each element of the set consists in 1000 repetitions with y = 4. The value of the size of
the network varies from 11 to 2000. For each of these values we’ve estimated the mean and
variance of the extinction time oy, and the variance of the re-normalized extinction time
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2.0 d
1.0 — et E y=0.850 n=101
mm y=0.027 n=101
1.5 A
Lattice 7
1.0 A
0.5 1
0.0 Y T T T T
0 1 2 3 4 5 6 7
2.0
10]P et e = =17 n=121
N y=02 n=121
1.5 A
Lattice 72
1.0 1
0.5 1
0.0 T T T T T
0 1 2 3 4 5 6 7
2.0
10 C et f s y=18 n=125
B y=0.09 n=125
1.5 A
Lattice 73
1.0
0.5 1
0.0 T T T T T
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Normalized Time (t) Normalized Time (t)

Fig.5 Histogram of the re-normalized time of extinction oy for a sigmoid activation function for each of the
three lattices. On the left side are the histograms for small values of y and on the right side the histograms for
high values of y. The red line on the left side is the exponential function # > ™7, which corresponds to the
density of an exponential law of parameter 1. The parameter n corresponds to the number of neurons (Color
figure online)

on/E(on). These simulations have been done in the one-dimensional lattices for all of the
three activation functions The results of these simulations are presented in Figs. 6, 7 and 8.
7 Discussion

7.1 Sub-critical Regime

The histogram built from the simulations for which y is small (Fig. 2 and left side of Figs. 4

and 5) closely approximates the density of a mean 1 exponential random variable. The fact
that the result of the simulations remains identical in all the cases investigated (dimension
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Table 2 Values of the total number of neurons and of the parameter y used in the simulation for each of the

three lattices

Lattice Number of neurons Activation function Value of y Figure
Z Linear 0.42 4
Sigmoid 0.028 5
Linear 1 4
Sigmoid 0.85 5
z? 121 Linear 1.70 4
Sigmoid 0.2 5
Linear 5.00 4
Sigmoid 1.7 5
73 125 Linear 1.90 4
Sigmoid 0.09 5
Linear 6.00 4
Sigmoid 1.8 5
= [V " — o
Tha e T
S
]
5 14
g 1 x  Mean(oy)
—— C*log(2N+1)
0 T T T T T T T T T
0.3 0 250 500 750 1000 1250 1500 1750 2000
g b x Var(oy)
% 0.2 1 X X X X
@ RS Ry B X X X x X X X %
(v}
g X
= 0.1+
©
-
0-0 T T T T T T T T T
A5 0 250 500 750 1000 1250 1500 1750 2000
"z‘ .
ug C ® Var(on/E(on))
L)
<3
s 02{@
N
o
)
E 0.1 1
= [ J
= ® %0000 00000000000
> 0-0 T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Number of Neurons (2N+1)

Fig. 6 Mean and variance of o) and variance of the renormalized extinction time oy /E(op) for a hard-
threshold activation function. In a the red dots represents the values of the estimated mean of o for varying
numbers of neurons and the red line a logarithmic function fitted over the values of the mean (C = 0.32).
In b the blue crosses represent the variance of o as the number of neurons increases. The blue dots in ¢
represent the variance of the renormalized extinction time oy /E(o ) for a varying number of neurons. These
simulations were run with y = 4 (Color figure online)
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30 A
a

2 N/ N
S 204 = ?

S

C

©

% 10 1 X  Mean(oy)

—— C*log(2N+1)
O T T T T T T T T T

=5 0 250 500 750 1000 1250 1500 1750 2000
= 0.
\Z, ® Var(on/E(oy))
02 04-1e@
Y

o

§ 0.2
G LI

e ©000000c0c0000o00000
> 0.0 T

0 250 500 750 1000 1250 1500 1750 2000
Number of Neurons (2N+1)

Fig.7 Mean of oy and variance of the renormalized extinction time oy /EE(o ) for a linear activation function.
In a the red dots represents the values of the estimated mean of o for varying numbers of neurons and the
red line a logarithmic function fitted over the values of the mean (C = 2.9). The blue dots in b represent the
variance of the renormalized extinction time o /E(oy ) for a varying number of neurons. These simulations
were run with y = 1 (Color figure online)

one, two and three, with hard-threshold, linear function and sigmoid function) suggests that
Theorem 3.2 doesn’t merely hold for the specific instantiation of the model for which is was
proven, but for a wide class of systems.

In the one dimensional case with hard threshold the fact that the histogram approximates
the density of an exponentially distributed random variable is of course not a surprise as
this what Theorem 3.2 predicts asymptotically. Nonetheless it gives us evidences that the
approximation by an exponential law holds for relatively small networks (in the simulation
concerned the number of neuron in the system is 101). The number of neurons in animals
varies from hundreds [27] to billions [18], so that in our model the approximation by an
exponential law is observed for all possible biologically realistic number of neurons. This
indicates that, in networks where the randomness of the connections between neurons is not
of interest, the model presented here might be an interesting choice for the investigation of
metastable behaviors in dense cortical regions.

7.2 Super-Critical Regime

The histograms built from the simulations with high values of y are visibly not approximating
any exponential. Instead they show a distribution that is reminiscent of a gamma distribution
with mass concentrated around 1 (See Fig. 3 and right side of Figs. 4 and 5).

Moreover the evolution of the variance of the renormalized time of extinction (last graph
in Figs. 6, 7 and 8) is seemingly converging toward O as the number of neurons grows for all
of the three instantiations investigated.
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30 A
= a l
> I
o
c
[(v]
% 10 - X  Mean(oy)
— C*log(2N+1)
0 T T T T T T T T T
. 0 250 500 750 1000 1250 1500 1750 2000
=
% 0.4 - b ® Var(on/E(ow))
& 0.3
k)
o 02-®
O
& 0.1 o
r>300 ‘000000000000000000

0 250 500 750 1000 1250 1500 1750 2000
Number of Neurons (2N+1)

Fig. 8 Mean of oy and variance of the renormalized extinction time oy /E(oy) for a sigmoid activation
function. In a the red dots represents the values of the estimated mean of oy for varying numbers of neurons
and the red line a logarithmic function fitted over the values of the mean (C = 3.6). The blue dots in b
represent the variance of the renormalized extinction time o /E(oy ) for a varying number of neurons. These
simulations were run with y = 0.34 (Color figure online)

For the simulation of the system with hard-threshold, these facts are not a surprise neither,
as this is what Theorem 3.3 predicts. Again the fact that the simulations of the systems with
a linear and a sigmoid function for ¢ show similar results suggests that Theorem 3.3 isn’t
only satisfied for ¢(x) = 1,0, but for a wide class of activation functions.

Moreover the first graph in Figs. 6, 7 and 8 gives us strong evidence that in each of
the three instantiations the expectation of the time of extinction grows approximately like a
logarithm (up to a multiplicative constant) with respect to the number of neurons. This fact
is interesting in itself as the proof of Theorem 3.3 (which can be found in [1]) relies on the
fact that for the hard-threshold instantiation of the model we have the following convergence
in the super-critical region (at least for y > 1)

E(tn)

N c, 1
10g2N + 1) N—oo M

where C is a strictly positive (and finite) constant. This is an additional hint that the
behavior of the time of extinction should be qualitatively identical in the super-critical region
as well for any of the choices we proposed here for the activation function.
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