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Abstract

We study the radial expansion of cylindrical tubes in a hot QGP. These tubes are treated as perturbations
in the energy density of the system which is formed in heavy ion collisions at RHIC and LHC. We start from
the equations of relativistic hydrodynamics in two spatial dimensions and cylindrical symmetry and perform
an expansion of these equations in a small parameter, conserving the nonlinearity of the hydrodynamical
formalism. We consider both ideal and viscous fluids and the latter are studied with a relativistic Navier–
Stokes equation. We use the equation of state of the MIT bag model. In the case of ideal fluids we obtain a
breaking wave equation for the energy density fluctuation, which is then solved numerically. We also show
that, under certain assumptions, perturbations in a relativistic viscous fluid are governed by the Burgers
equation. We estimate the typical expansion time of the tubes.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The study of the initial stage of relativistic heavy ion collisions has experienced a fast progress
in recent years. One of the most interesting findings in this study, supported both by theoretical
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works and by the analysis of experimental data, is that in the early times of these collisions color
flux tubes are formed. Although color flux tubes are familiar objects in hadron physics it is not
obvious that they should be formed in high energy heavy ion collisions, where projectile and tar-
get can be regarded as bunches of partons without any strong clustering neither in configuration
nor in color space. Flux tubes, sometimes called strings, appear in lattice QCD calculations as
field configurations between static heavy charges. They appear also in phenomenological models
of high energy soft hadronic scattering. In the Lund model, for example, when two high energy
protons collide with low momentum transfer, they cross each other and, due to gluon exchange,
a color rearrangement takes place with the subsequent formation of strings, which stretch and
decay, producing particles.

At high energies, colliding nuclei are dense systems in which the standard linear evolution
equations (such as the DGLAP equations) must be replaced by others, which include nonlinear
effects in the evolution. The theoretical description of these dense systems evolved into the theory
of the Color Glass Condensate (CGC). In this formalism the dense gluonic matter is treated in a
semi-classical approximation. In this approach, it has been shown in [1–4] that there are solutions
of the classical Yang–Mills equations in which the lines of the chromo-electric and chromo-
magnetic fields are all parallel to the collision axis and these fields form color flux tubes in the
longitudinal (z) direction.

The interpretation of RHIC and LHC data also suggests that the system reaches thermal
equilibrium, forming a thermalized quark–gluon plasma (QGP), very soon after the collision.
At first sight this would imply that the flux tubes disappear and the quark–gluon matter be-
comes reasonably homogeneous when the hydrodynamical expansion starts. However detailed
hydrodynamical studies [5,6] strongly suggest that some experimental features observed at RHIC
and LHC can be understood if we assume that these tubes survive the thermalization stage and
form “tubular” structures that persist for some time during the hydrodynamical expansion. More
specifically, the data show the existence of structures in the two-particle correlations plotted as
function of the pseudorapidity difference �η and the angular spacing �φ. In [5,6] it has been
argued that these structures may have a common hydrodynamic origin: the combined effect of
longitudinal high energy density tubes (leftover from initial particle collisions) and transverse
expansion.

The tubular structures described above, which are nearly uniform in the longitudinal direc-
tion, may be considered as cylindrical perturbations in the energy density upon a continuous
background as depicted in Fig. 1. The propagation of perturbations on the top of a QGP back-
ground has been investigated in several works [7–10]. In most of these works [7,8] a linearized
version of hydrodynamics is employed. We have tried to keep the nonlinear terms in the equa-
tions which describe the evolution of the perturbations [9,10]. This extends the validity of our
formalism to perturbations which are not so small.

In this work we try to answer the question: how fast do the tubes expand in the QGP? In order
to obtain the answer we write the hydrodynamical equations for the propagation of cylindrical
perturbations along the radial direction (see Fig. 1), solve them numerically, and estimate what
is the time needed for a tube of initial radius of the order of 1 fm to grow and reach the typical
radius of the system formed in heavy ion collisions, which is of the order of 7 fm. If the tube
expansion time were much shorter than the lifetime of the fireball, then the tube would be very
rapidly incorporated in the fireball and it would produce no visible effect in the final state particle
correlation measurements.

We also investigate the effects of viscosity on the expansion of the tubes. It is well known
that the relativistic version of the Navier–Stokes equation does not constitute a causal theory. We
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Fig. 1. Tubular perturbations on a QGP background. The inner cylinder of radius l represents a tube of energy density
higher than the background, shown as a cylindrical fireball of radius L. The perturbation expands radially.

strongly recommend the reading of [11] to understand the subject in details. Besides these con-
ceptual issues of stability and causality we perform a Navier–Stokes approach without worrying
about microscopic time scales, due to the nonlinear expansion as seen in Appendix A. A future
and more complete version of this work in relativistic viscous hydrodynamics is in progress with
the use of Müller–Israel–Stewart theory, which is a causal theory [11].

Due to dissipation, viscosity damps the perturbations, which are then more easily mixed with
the background fluid, loosing their influence on final state particle correlations.

In contrast to other studies of perturbations in fluids, we do not neglect the nonlinear terms in
the hydrodynamical equations.

This text is organized as follows. In the next section we review the basic formulas of relativis-
tic hydrodynamics. In Section 3 we review the equation of state (EOS) of the MIT bag model. In
Section 4 we derive the equation which describes the evolution of the tube. In Section 5 we solve
this equation numerically and present some conclusions.

2. Relativistic fluid dynamics

Pedagogical texts on relativistic hydrodynamics can be found in [12,13]. Approximation
schemes which conserve nonlinearities can be found in [14] and their application to the study
of nonlinear waves in cold and warm nuclear matter can be found in [15–18] and references
therein. In this section we briefly review the basic equations (throughout this work we use c = 1,
h̄ = 1 and the Boltzmann constant is taken to be one, i.e., kB = 1).

For simplicity we start our discussion considering two coaxial cylinders. The inner and nar-
rower cylinder represents the flux tube which is a perturbation in energy density ε. The outer and
larger cylinder represents the fireball with a uniform energy density ε0 (ε0 � ε). We will study
the expansion of the flux tube in the center of mass system of the fireball. It is then natural to
chose spatial cylindrical coordinates (z, r,φ).

The velocity four-vector uν is defined as u0 = γ , �u = γ �v, where γ is the Lorentz factor γ =
(1−v2)−1/2 and thus uνuν = 1. The velocity field of matter is given by �v = �v(t, r, z,φ). Because
of the azimuthal symmetry we do not have components along the φ direction and consequently
no terms involving ∂/∂φ will survive in what follows.
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2.1. Ideal fluid

The energy–momentum tensor is given by:

Tμν = (ε + p)uμuν − pgμν (1)

where ε is the energy density and p the pressure. Energy–momentum conservation is given by:

∂νT
ν
μ = 0 (2)

The projection of (2) on a direction perpendicular to uμ yields the relativistic version of Euler
equation:

∂ �v
∂t

+ (�v · �∇)�v = − 1

(ε + p)γ 2

(
�∇p + �v ∂p

∂t

)
(3)

The relativistic version of the continuity equation for the entropy density comes from the projec-
tion of (2) on the direction of uν :

(ε + p)∂μuμ + uμ∂με = 0 (4)

We next recall the Gibbs relation:

ε + p = μBρB + T s (5)

and the first law of thermodynamics:

dε = T ds + μB dρB (6)

In the central rapidity region of heavy ion collisions we expect to find hot QGP with zero net
baryon number and hence ρB = 0 and T �= 0. Using dρB = 0 in (6) and inserting (6) and (5)
into (4) we find:

T s
(
∂μuμ

) + T uμ(∂μs) = 0

and finally:

∂ν

(
suν

) = 0 (7)

as expected for a perfect fluid. This expression can be rewritten as:

∂s

∂t
+ γ 2vs

(
∂v

∂t
+ �v · �∇v

)
+ �∇ · (s�v) = 0 (8)

2.2. Viscous fluid

In order to take the viscosity into account, we add the viscous stress tensor Πμν to the ideal
fluid energy–momentum tensor:

T μν = T
μν

(0) + Πμν (9)

where T(0) is the ideal fluid energy–momentum tensor [12,13]. With this new definition of the
energy–momentum tensor, Eq. (2) remains valid. We will consider [11] a system without con-
served charges (or at zero chemical potential). As in the case of the ideal fluid, we take the
appropriate projections of (2), which are parallel (uν∂μT μν) and perpendicular (�α

ν ∂μT μν) to
the fluid velocity obtaining:

uν∂μT μν = Dε + (ε + p)∂μuμ + uν∂μΠμν = 0 (10)
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and

�α
ν ∂μT μν = (ε + p)Duα − ∇αp + �α

ν ∂μΠμν = 0 (11)

where D ≡ uμ∂μ and �μν = gμν − uμuν . The viscous tensor is given by [11]:

Πμν = η∇〈μuν〉 + ζ�μν∇αuα (12)

where [11]

∇〈μuν〉 ≡ 2∇(μuν) − 2

3
�μν∇αuα (13)

with

A(μBν) = 1

2
(AμBν + AνBμ) (14)

and

∇α ≡ �μα∂μ (15)

Combining Eqs. (10) and (11) we can obtain the relativistic version of the Navier–Stokes equa-
tion. In a compact form it may be found in [11]. For our purposes it is more convenient to write
it in the long form:

(ε + p)γ 2
(

∂

∂t
+ �v · �∇

)
�v + �v ∂p

∂t
+ �∇p

− η�v
{
∂μ∂μγ + ∂μ

∂uμ

∂t
− ∂μ

[
γ

(
∂

∂t
+ �v · �∇

)(
γ uμ

)]}

− �v
(

ζ − 2

3
η

)
∂

∂t

[
∂γ

∂t
+ �∇ · (γ �v)

]
+ �v

(
ζ − 2

3
η

)
∂μ

{
γ uμ

[
∂γ

∂t
+ �∇ · (γ �v)

]}

+ η

{
∂μ∂μ(γ �v) − ∂μ

�∇uμ − ∂μ

[
γ

(
∂

∂t
+ �v · �∇

)(
γ �vuμ

)]}

−
(

ζ − 2

3
η

)
�∇
[

∂γ

∂t
+ �∇ · (γ �v)

]
−

(
ζ − 2

3
η

)
∂μ

{
γ �vuμ

[
∂γ

∂t
+ �∇ · (γ �v)

]}
= 0 (16)

With the help of Eqs. (10) and (11) and using thermodynamical relations we obtain [11]:

∂μsμ = 1

T
Πμν∇(μuν) (17)

For our purposes we shall rewrite it as:

γ
∂s

∂t
+ γ �∇s · �v + s

∂γ

∂t
+ s �∇γ · �v + γ s �∇ · �v

= − η

T

(
∂γ

∂t

)2

− 2
η

T

[
�∇γ · ∂

∂t
(γ �v)

]
− η

T

(
∂iuj

)
∂jui

+ 1

T

(
2

3
η + ζ

)[
∂γ

∂t
+ γ �∇ · �v + �∇γ · �v

]2

(18)

which is the relativistic version of the continuity equation for the entropy density s. In the case
of an ideal fluid (η = ζ = 0) we recover the entropy density conservation:

γ
∂s

∂t
+ γ �∇s · �v + s

∂γ

∂t
+ s �∇γ · �v + γ s �∇ · �v = 0
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3. Equation of state

From the thermodynamics of the MIT bag model we have [9]:

3(p +B) = ε −B = 8π2

15
T 4 + 6

π2

∞∫
0

dk k3[n�k + n̄�k] (19)

and

p = 1

3
ε − 4

3
B (20)

with the speed of sound cs , given by:

c2
s = ∂p

∂ε
= 1

3
(21)

Since ρB = 0, the chemical potential is zero(μ = 0) and the distribution functions are the same
for quarks and anti-quarks: n�k = n̄�k = 1/(1 + ek/T ). Therefore:

3(p +B) = ε −B = 37

30
π2T 4 (22)

Solving the first identity for the pressure and using the relation s = (∂p/∂T )V we arrive at:

s = ∂

∂T

(
−B + 37

90
π2T 4

)
= 4

37

90
π2T 3 (23)

The bag constant is related to the critical temperature, Tc, of the quark–hadron phase transition.
During the phase transition the pressure remains constant and (22) reduces to:

B = 37

30
π2 T 4

c

3
− const = 37

30
π2

[
T 4

c

3
− 30

37π2
const

]

and we can define

T 4
B =

[
T 4

c

3
− 30

37π2
const

]

and consequently:

B = 37

30
π2(TB)4 (24)

The bag constant, B, is chosen to be B1/4 = 170 MeV and this corresponds to TB = 91 MeV.
Inserting (24) into the second identity of (22) we find the following expression for ε(T ):

ε = 37

30
π2(T 4 + T 4

B

)
(25)

Solving the second identity in (22) for the temperature, we find:

T =
[

30

37π2
(ε −B)

]1/4

(26)

which substituted in (23) yields:

s = s(ε) = 4
37

π2
[

30
2
(ε −B)

]3/4

(27)

90 37π
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From (22) we have:

ε + p = 148

90
π2T 4 (28)

and from (21):

�∇p = 1

3
�∇ε and

∂p

∂t
= 1

3

∂ε

∂t
(29)

4. The wave equation

In this section we combine the results of the two previous sections and derive the differential
equations which govern the evolution of cylindrical perturbations in the energy density. We start
writing the energy density and the components of the fluid velocity in a dimensionless form:

ε̂ = ε

ε0
(30)

v̂ = v

cs

(31)

and

v̂r = vr

cs

, v̂z = vz

cs

(32)

4.1. Ideal fluid

After the use of relations (28) to (32) the components of the Euler equation (3) along the r

and z directions become:

cs

∂v̂r

∂t
+ c2

s v̂r

∂v̂r

∂r
+ c2

s v̂z

∂v̂r

∂z
= 15(c2

s v̂
2 − 1)ε0

74π2T 4

(
∂ε̂

∂r
+ cs v̂r

∂ε̂

∂t

)
(33)

and

cs

∂v̂z

∂t
+ c2

s v̂r

∂v̂z

∂r
+ c2

s v̂z

∂v̂z

∂z
= 15(c2

s v̂
2 − 1)ε0

74π2T 4

(
∂ε̂

∂z
+ cs v̂z

∂ε̂

∂t

)
(34)

Now, using (22), (27) and (30) to (32) we rewrite the continuity equation (8) as:

(
1 − c2

s v̂
2){(

45ε0

74π2T 4

)[
∂ε̂

∂t
+ cs v̂r

∂ε̂

∂r
+ cs v̂z

∂ε̂

∂z

]
+ cs v̂r

r
+ cs

∂v̂r

∂r
+ cs

∂v̂z

∂z

}

+ c2
s v̂r

∂v̂r

∂t
+ c2

s v̂z

∂v̂z

∂t
+ c3

s v̂
2
r

∂v̂r

∂r
+ c3

s v̂r v̂z

∂v̂z

∂r
+ c3

s v̂zv̂r

∂v̂r

∂z
+ c3

s v̂
2
z

∂v̂z

∂z
= 0

(35)

Now we combine (33), (34) and (35) to find the wave equation. To this end we perform a change
of variables in (33), (34) and (35), going from the (r, z, t) space to the (R,Z,T ) space by
the reductive perturbation method [19–21], through the introduction of the “stretched” coor-
dinates [19]:

R = σ 1/2

(r − cst), Z = σ
z, T = σ 3/2

cst (36)

L L L
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where L is a characteristic length scale of the problem (typically the radius of a heavy ion) and
σ is a small expansion parameter. We next perform the following expansions[19–21]:

ε̂ = 1 + σε1 + σ 2ε2 + σ 3ε3 + · · · (37)

v̂r = σvr1 + σ 2vr2 + σ 3vr3 + · · · (38)

v̂z = σ 3/2vz1 + σ 5/2vz2 + σ 7/2vz3 + · · · (39)

After the use of (36), (37), (38) and (39), the Euler and continuity equations can be written as
series in powers of σ . We will consider terms only up to the order σ 2. It is then possible to
reorganize the series in powers of σ , σ 3/2 and σ 2. After a little algebra we find:

σ

{(
45ε0

74π2T 4

)
∂ε1

∂R
− ∂vr1

∂R

}

+ σ 2
{(

45ε0

74π2T 4

)
∂ε2

∂R
− ∂vr2

∂R
+ ∂vr1

∂T
+ vr1

∂vr1

∂R
−

(
15ε0

74π2T 4

)
vr1

∂ε1

∂R

}
= 0 (40)

σ 3/2
{(

45ε0

74π2T 4

)
∂ε1

∂Z
− ∂vz1

∂R

}
= 0 (41)

and

σ

{
−

(
45ε0

74π2T 4

)
∂ε1

∂R
+ ∂vr1

∂R

}

+ σ 2
{
−

(
45ε0

74π2T 4

)
∂ε2

∂R
+

(
45ε0

74π2T 4

)
∂ε1

∂T
+

(
45ε0

74π2T 4

)
vr1

∂ε1

∂R

+ vr1

T
+ ∂vr2

∂R
+ ∂vz1

∂Z
− vr1

3

∂vr1

∂R

}
= 0 (42)

In the above equations each bracket must vanish independently and therefore we obtain a set of
relations. From the terms of order σ in the last two equations we find:(

45ε0

74π2T 4

)
∂ε1

∂R
= ∂vr1

∂R
(43)

which, after the integration over R and taking the integration constant equal to zero, yields:

vr1 =
(

45ε0

74π2T 4

)
ε1 (44)

From the terms of order σ 3/2 we have:(
45ε0

74π2T 4

)
∂ε1

∂Z
= ∂vz1

∂R
(45)

which, after the derivation with respect to Z, becomes:(
45ε0

74π2T 4

)
∂2ε1

∂Z2
= ∂2vz1

∂Z∂R
(46)

From the terms of order σ 2 we obtain:

∂vr2

∂R
−

(
45ε0

74π2T 4

)
∂ε2

∂R
= ∂vr1

∂T
+ vr1

∂vr1

∂R
−

(
15ε0

74π2T 4

)
vr1

∂ε1

∂R
(47)

and
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∂vr2

∂R
−

(
45ε0

74π2T 4

)
∂ε2

∂R

= −
(

45ε0

74π2T 4

)
∂ε1

∂T
−

(
45ε0

74π2T 4

)
vr1

∂ε1

∂R
− vr1

T
− ∂vz1

∂Z
+ vr1

3

∂vr1

∂R
(48)

Identifying (47) with (48), using (44), deriving the resulting equation with respect to R and using
(46), we obtain

∂

∂R

{
∂ε1

∂T
+

[
2

3

(
45ε0

74π2T 4

)]
ε1

∂ε1

∂R
+ ε1

2T

}
+ 1

2

∂2ε1

∂Z2
= 0 (49)

Returning now to the (r, z, t) space we find:

∂

∂r

{
∂ε̂1

∂t
+ cs

∂ε̂1

∂r
+

[
2

3

(
45ε0

74π2T 4

)]
cs ε̂1

∂ε̂1

∂r
+ ε̂1

2t

}
+ cs

2

∂2ε̂1

∂z2
= 0 (50)

where ε̂1 ≡ σε1 is a small perturbation on the background energy density ε0. We can rewrite the
above equation with the coefficients depending only on temperatures and on the sound velocity.
Using (25) and calling ε0 = ε(T = T0), where T0 is the temperature of the background, we then
find:

2

3

(
45ε0

74π2T 4
0

)
= 1

2

[
1 +

(
TB

T0

)4]
(51)

where T0 > TB . Substituting (51) into (50) we find the final form of the wave equation:

∂

∂r

{
∂ε̂1

∂t
+ cs

∂ε̂1

∂r
+ cs

2

[
1 +

(
TB

T0

)4]
ε̂1

∂ε̂1

∂r
+ ε̂1

2t

}
+ cs

2

∂2ε̂1

∂z2
= 0 (52)

4.2. Viscous fluid

Using again the relations (28) to (32) in (16), performing the same change of variables (36),
performing the same expansions (37), (38) and (39), organizing the several terms in powers of σ

and obtaining the corresponding identities and returning to the (r, z, t) we arrive at the analogue
of (50) for a viscous fluid:

∂

∂r

{
∂ε̂1

∂t
+ cs

∂ε̂1

∂r
+

[
2

3

(
45ε0

74π2T 4
0

)]
cs ε̂1

∂ε̂1

∂r
+ ε̂1

2t

−
(

45

74π2T 4
0

)(
ζ + 4

3
η

)
∂2ε̂1

∂r2

}
+ cs

2

∂2ε̂1

∂z2
= 0 (53)

As expected, the above equation reduces to the corresponding equation for ideal fluids (50) in the
limit η = ζ = 0. Since the derivation of the equation is very similar to the sequence of steps that
led to (50), we omitted all the details. However the interested reader can find some more details
in Appendix A.

With the help of (23) we can rewrite the viscosity term as a function of the dimensionless
ratios η/s and ζ/s, which are well studied in the literature [22,23]. So the wave equation (53)
becomes, after using (51) and (23):

∂

∂r

{
∂ε̂1

∂t
+ cs

∂ε̂1

∂r
+ cs

2

[
1 +

(
TB

T0

)4]
ε̂1

∂ε̂1

∂r
+ ε̂1

2t

− 1
(

ζ + 4 η
)

∂2ε̂1
2

}
+ cs ∂2ε̂1

2
= 0 (54)
T0 s 3 s ∂r 2 ∂z
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4.3. Effect of the background expansion

So far we have considered the motion of a perturbation on a static background. In order to
include the motion of the underlying medium we would need to know the full solution of the
three-dimensional hydrodynamical equations describing the QGP expansion and consequently
ε0(r,φ, z, t). The appearance of a coordinate dependent quantity in the denominator of (30)
would make our expansion of the Euler and continuity equations too complicated. A simple
way to estimate the effect of the expansion is to represent the cooling of the background by the
Bjorken formula [24]:

T (τ)

T (τ0)
=

(
τ0

τ

)1/3

(55)

where the proper time is given by τ = t
γ

= t
√

1 − v2. We have only radial flow v2 = vr
2 = (r/t)2

and thus:

τ =
√

t2 − r2 (56)

The initial proper time is taken to be τ0 = 1 fm. With the inclusion of Bjorken cooling the term
in parenthesis in (52) will become:

TB

T0
→ TB

T0(τ )
= TB

T0(τ0)

(
τ

τ0

)1/3

(57)

Inserting (57) into wave equation (54) we have:

∂

∂r

{
∂ε̂1

∂t
+ cs

∂ε̂1

∂r
+ cs

2

[
1 +

(
TB

T0(τ0)

(
τ

τ0

)1/3)4]
ε̂1

∂ε̂1

∂r
+ ε̂1

2t

− 1

T0(τ0)

(
τ

τ0

)1/3(
ζ

s
+ 4

3

η

s

)
∂2ε̂1

∂r2

}
+ cs

2

∂2ε̂1

∂z2
= 0 (58)

for a viscous fluid. Inserting (57) into (52) we have:

∂

∂r

{
∂ε̂1

∂t
+ cs

∂ε̂1

∂r
+ cs

2

[
1 +

(
TB

T0(τ0)

(
τ

τ0

)1/3)4]
ε̂1

∂ε̂1

∂r
+ ε̂1

2t

}
+ cs

2

∂2ε̂1

∂z2
= 0 (59)

for an ideal fluid.

5. Numerical results and discussion

For simplicity, we assume that when they are formed and also throughout the expansion the
tubes are uniform along the longitudinal direction and therefore:

cs

2

∂2ε̂1

∂z2
= 0

Integrating (52) and (54) with respect to r and setting the integration constant to zero we arrive
at the cylindrical breaking wave equation for the ideal fluid:

∂ε̂1 + cs

∂ε̂1 + cs

[
1 +

(
TB

)4]
ε̂1

∂ε̂1 + ε̂1 = 0 (60)

∂t ∂r 2 T0 ∂r 2t
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and at the famous Burgers equation [19–21] for the viscous fluid:

∂ε̂1

∂t
+ cs

∂ε̂1

∂r
+ cs

2

[
1 +

(
TB

T0

)4]
ε̂1

∂ε̂1

∂r
+ ε̂1

2t
= 1

T0

(
ζ

s
+ 4

3

η

s

)
∂2ε̂1

∂r2
(61)

which in this case is a cylindrical Burgers equation [25,26]. Both can be solved numerically for
a given choice of T0 and TB . c2

s = 1/3 for this equation of state. If both equations had only the
first two terms, they would describe a traveling wave with velocity cs . The third term makes the
equations nonlinear in ε̂1. Its effect is to increase the velocity of the wave, which is given by
the coefficient of the terms proportional to ∂ε̂1/∂r . The velocity becomes therefore proportional
to ε̂1 and so the top of the wave travels faster than its bottom. Because of this, an initially Gaus-
sian pulse turns into a triangular pulse with a “vertical wall”, as it will be seen in the figures.
Finally, the nonlinear term induces rapid oscillations around the region close to the wall. This is
called dispersion. The term ε̂1/2t in both equations comes from the use of cylindrical geometry.
It causes the attenuation of the initial perturbation at increasing times. Changes in the equation
of state imply changes in the evolution of the tube. A harder EOS will have a bigger velocity
of sound and this will make the tube move faster. Moreover the strength of the nonlinear term
is directly proportional to TB , and consequently (because of (24)) to the bag constant, which,
in its turn, contains information about the nonperturbative components of the EOS. Increasing
the bag constant makes the tube move faster! Inversely, increasing the temperature of the back-
ground, T0, makes the pulse to propagate slower. In spite of the qualitative richness of (60) and
(61), for realistic values of B and T0, the nonlinear term has a very limited range of numeri-
cal values. Moreover, as we can observe in (60) and in (61), this term is never large. Thus we
can conclude a posteriori that the linearization, as performed in [7,8], may indeed be a good
approximation. In the case of the Burgers equation (61) the second order derivative term tames
the breaking and dispersion of the wave and at the same time, dissipation reduces its ampli-
tude.

The initial condition is given by a Gaussian pulse in ε̂1:

ε̂1 = Ae−r2/r2
0 (62)

where the amplitude A and the approximate width r0 are parameters which depend on the dynam-
ics of flux tube formation. For simplicity we shall refer to r0 as the initial “radius” of the tube. If
the tubes are perturbations we expect that A < 1. According to current estimates [23] the trans-
verse size of the tubes is of the order of 1 fm and thus in our calculations 0.1 fm � r0 � 0.8 fm.
We consider hot QGP at temperatures T0 = 150 MeVand T0 = 500 MeV treated as an ideal fluid
(η/s = ζ/s = 0) and as a viscous fluid (η/s = 0.08 and ζ/s = 0) [22,23].

In the numerical analysis there are many cases to be considered. We present our results in
eight figures (Figs. 2–9). The first four refer to the static background and the second group of four
shows solutions for the same parameters for the case of an expanding background. All figures
have four panels. The two upper panels refer to the low temperature (T0 = 150 MeV) and the two
lower panels to the high temperature (T0 = 500 MeV). The two panels on the left show results
with the ideal fluid and the two panels on the right results with the viscous fluid. From the figures
we want to see how sensitive the expansion of the tube is to changes in: (i) the initial amplitude,
(ii) the temperature, (iii) the tube radius, (iv) the strength of viscosity and (v) the expansion of
the background fluid. In what follows we discuss the role played by each one of these variables
mentioning them by order of relevance.
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Fig. 2. Numerical solutions of (60) for an ideal fluid (left) and of (61) for a viscous fluid (right). The solutions are for
several times and for T0 = 150 MeV (upper panels) and T0 = 500 MeV (lower panels). The initial amplitude is 0.5 and
the width r0 = 0.1 fm.

5.1. Viscosity

The most striking finding is the strong influence of viscosity. This can be seen in all figures
and most clearly in the comparison between Figs. 2(a) and 2(b). Viscosity damps the amplitude
of the pulse by a factor ten in 1 fm! Increasing the temperature of the medium reduces the effect
of viscosity as it can be seen from the factor 1/T0 in (61). However the comparison between
Figs. 2(b) and 2(d) shows that this reduction is not very strong. The role played by viscosity is
also reduced when the initial radius parameter of the tube goes from r0 = 0.1 to 0.8 fm. This
is easy to understand looking at (62) and then at the right-hand side of (61). A broader initial
distribution generates smaller spatial gradients appearing in the viscosity term of (61), which
becomes smaller. Nevertheless the attenuation of the initial pulse remains strong as compared to
the ideal fluid case. This situation is illustrated in Fig. 3, which is to be compared with Fig. 2. If
we increase the initial amplitude from A = 0.5 to A = 0.8, the relevance of viscosity remains the
same. This can be checked by comparing Fig. 2 with Fig. 4 and also comparing Fig. 3 with Fig. 5.
The introduction of the background cooling preserves the difference between ideal and viscous
fluids, as can be inferred from the comparison between Figs. 2, 3, 4, 5 and their analogues with
cooling Figs. 6, 7, 8 and 9.

The introduction of viscosity in our calculations is what more strongly changes them. As an-
ticipated in the introduction, due to dissipation, viscosity strongly damps and broadens the tubes
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Fig. 3. Numerical solutions of (60) for an ideal fluid (left) and of (61) for a viscous fluid (right). The solutions are for
several times and for T0 = 150 MeV (upper panels) and T0 = 500 MeV (lower panels). The initial amplitudes 0.5 and
the width is r0 = 0.8 fm.

during their expansion and they are more easily mixed with the background fluid, loosing their
influence on final state particle correlations. This is a robust conclusion of our numerical analysis
since it remains valid in all situations considered. Moreover viscosity prevents the perturbation
wave from breaking, as can be seen comparing, for example, Figs. 5(a) and 5(b) or comparing
Figs. 7(a) and 7(b). Looking at the time evolution of the peaks of the pulses, we can have an idea
of the velocity with which they propagate. Comparing the left with right side of all figures we
can see the velocity of the pulses is only weakly changed by viscosity. This velocity is defined
by the sound velocity, which in our approach is the same both for ideal and viscous fluids.

5.2. Initial radius of the tube

The solutions of nonlinear differential equations, such as (60) and (61), are expected to de-
pend on the initial condition. We can check this dependence changing the parameters in (62) and
solving again both (60) and (61). The comparison between Fig. 2 and Fig. 3 and also the com-
parison between Fig. 4 and Fig. 5 shows that, after viscosity, changes in the initial tube radius
are those which most substantially affect the tube evolution. Essentially thinner tube are more
fragile. They break more easily, developing secondary bumps (called “radiation”) and/or forming
a wall with rapid oscillations at the edge. These instabilities may lead to loss of localization and
absorption of the tube by the medium. Larger tubes, on the other hand, live longer in the plasma.
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Fig. 4. Numerical solutions of (60) for an ideal fluid (left) and of (61) for a viscous fluid (right). The solutions are for
several times and for T0 = 150 MeV (upper panels) and T0 = 500 MeV (lower panels). The initial amplitude is 0.8 and
the width is r0 = 0.1 fm.

This conclusion may be relevant for the physics of particle correlation studied now at RHIC
and LHC. Moreover, the transverse size of the tubes has physical origins. Glasma flux tubes are
typically thinner [23] than the tubes obtained in event generator based on string models (see [5]
and [6] for details).

5.3. Initial amplitude of the tube

Figs. 4 and 5 are repetitions of Figs. 2 and 3 with a larger amplitude. These cases are very
interesting for us because in perturbations with larger amplitudes the nonlinear effects become
more important. The reductive perturbation method (RPM) employed here is well suited to pre-
serve the nonlinearities of the original equations and transfer them to the equations which govern
the evolution of perturbations. From the figures we can conclude that pulses with larger am-
plitudes break faster. However the effect is not very pronounced because the range of variation
considered here is relatively narrow: 0.5 < A < 0.8.

5.4. Temperature

Comparing in all figures the upper panels with the lower panels, we conclude that, in the
case of ideal fluids, there are only small differences between them. This weak dependence on
the temperature might have been anticipated from a closer look at the coefficient of the non-
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Fig. 5. Numerical solutions of (60) for an ideal fluid (left) and of (61) for a viscous fluid (right). The solutions are for
several times and for T0 = 150 MeV (upper panels) and T0 = 500 MeV (lower panels). The initial amplitude is 0.8 and
the width is r0 = 0.8 fm.

linear term in (60) and in (61). The temperature dependent term in this coefficient can vary
only between zero and one, changing the overall coefficient at most by a factor two (in realis-
tic calculations the range of variation is even narrower because of the limits in the temperature:
150 < T0 < 500 MeV). This weak sensitivity comes from all the developments which led to (60)
and is difficult to say what is more responsible for the final result, whether the equation of state
or the approximations adopted. In contrast, the temperature dependence of the viscosity term in
Eq. (61) is slightly stronger. Therefore the comparison of upper with lower panels on right side
of all figures reveals more pronounced differences. In viscous fluids the increase of tempera-
ture decreases the amplitude of the pulse and makes it live longer. The second derivative term
in the Burgers equations does not permit the breaking and dispersion of the pulse. However, to-
gether with the geometrical term ε̂1/2t , it causes the attenuation of the tube. In our calculations
the viscosity coefficients (η and ζ ) were kept constant but they may be temperature dependent,
enhancing the sensitivity of our results to the temperature.

5.5. Background expansion

We have repeated all the calculations replacing (52) and (54) by (58) and (59). The numeri-
cal solution of the latter equations (neglecting the derivatives with respect to z) is presented in
Figs. 6 to 9. The effect of the Bjorken cooling is to slightly reduce the amplitude of the pulse,
which can be best seen comparing Fig. 2 with Fig. 6 and Fig. 3 with Fig. 7. It is a small ef-
fect and this is very interesting. The cooling studied here is a crude representation of the real
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Fig. 6. The same as of Fig. 2 with background fluid expansion. The curves show numerical solutions of (60) and (61)
with a changing T0, given by Eq. (55).

three-dimensional background fluid expansion. If we had found that cooling is important, this
would suggest that a realistic treatment of the background expansion would change completely
the conclusions obtained so far. This seems not to be the case.

5.6. Final remarks

If, on one hand, the similarity between the figures is somewhat deceptive (because of the weak
dependence on the dynamical ingredients), on the other hand they deliver a strong message: the
tube expands radially with a supersonic velocity and in less than 4 fm/c it becomes a “ring”,
with a hole in the middle. Moreover, by this time the amplitude is already reduced by a factor
two and the tube (or ring) looses the strength to “push away” the surrounding matter. This agrees
with the results found in [6], where the evolution of a tube was studied in a different way. In
that work the numerical solution of the hydrodynamical equations of the total system (tubular
perturbation + background) was obtained, whereas here we have isolated the perturbation from
the background and written a differential equation for it. We have provided an independent check
of the results found in [6] with the use of a different equation of state.

An important conclusion of our work is that viscosity strongly affects the propagation of
perturbations in the quark–gluon plasma. This conclusion was obtained with the relativistic
Navier–Stokes formalism and it would be interesting to check if it remains valid in other rel-
ativistic theories of viscosity.
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Fig. 7. The same as of Fig. 3 with background fluid expansion. The curves show numerical solutions of (60) and (61)
with a changing T0, given by Eq. (55).
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Appendix A

The derivation of Eq. (54) is quite similar to derivation of Eq. (52) and here we would like
to add some details. The expansion of Eqs. (16) and (18) in powers of σ is straightforward. The
calculation is faster if we keep terms only up to σ 2 and neglect some higher order terms even
before reaching the identities equivalent to (40), (41) and (42). It is useful to remember that:

γ n ∼= 1 + (n/2) × v2 ∝ 1 + σ 2 + · · ·
∂γ

∂t
= γ 3v

∂v

∂t
∝ σ 5/2 and �∇γ = γ 3v �∇v ∝ σ 5/2 (63)

The viscous terms in (16) are of the following order in σ :

ηvi∂μ∂μγ ∝ σ 4 (64)

ηvi∂μ

∂uμ

∝ σ 3 (65)

∂t
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Fig. 8. The same as of Fig. 4 with background fluid expansion. The curves show numerical solutions of (60) and (61)
with a changing T0, given by Eq. (55).

ηvi∂μ

[
γ

(
∂

∂t
+ �v · �∇

)(
γ uμ

)] ∝ σ 3 (66)

vi
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∂
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]
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+vi
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∝ σ 3 (68)

η∂μ∂μ
(
γ vi
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γ viuμ

[
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]}
∝ σ 3 (69)

Using (64) to (69) in (16) and keeping only terms up to O(σ 2) we obtain:
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Fig. 9. The same as of Fig. 5 with background fluid expansion. The curves show numerical solutions of (60) and (61)
with a changing T0, given by Eq. (55).

(ε + p)γ 2
(

∂

∂t
+ �v · �∇

)
vi + vi ∂p

∂t
− ∂ip

+ η

[
γ

(
∂2vi

∂t2
− �∇2vi

)
+ γ ∂i( �∇ · �v) − γ 3 ∂2vi

∂t2

]

+
(

ζ − 2

3
η

)
γ ∂i( �∇ · �v) = 0 (70)

The γ n (with n = 1,2,3) factors in (70) are also multiplying vi or its derivative, which con-
tributes with at least one power of σ . Therefore we consider γ n ∼= 1 and (70) becomes:

∂ �v
∂t

+ (�v · �∇)�v = − 1

(ε + p)

[
�∇p + �v ∂p

∂t

]
+ 1

(ε + p)

[
η �∇2�v +

(
ζ + 1

3
η

)
�∇( �∇ · �v)

]
(71)

The equation above is the simplified version of the relativistic Navier–Stokes equation and
from (71) it is easier to derive (53).

Analogously we estimate the order (in σ ) of the viscous terms in (18):

η

T

(
∂γ

∂t

)2

∝ σ 5 (72)

η
[

�∇γ · ∂
(γ �v)

]
σ 4 (73)
T ∂t
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η

T

(
∂iuj

)
∂jui ∝ σ 3 (74)

1

T

(
2

3
η + ζ

)[
∂γ

∂t
+ γ �∇ · �v + �∇γ · �v

]2

∝ σ 3 (75)
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