
Journal of Computational Science 66 (2023) 101910

A
1

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Speedup of the Metropolis protocol via algorithmic optimization
A.E. Macias-Medri a, G.M. Viswanathan b, C.E. Fiore c, M. Koehler a, M.G.E. da Luz a,∗

a Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-980, Curitiba-PR, Brazil
b Department of Physics and National Institute of Science and Technology of Complex Systems, Universidade Federal do Rio Grande do
Norte, 59078-900, Natal-RN, Brazil
c Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo-SP, Brazil

A R T I C L E I N F O

MSC:
00-01
99-00

Keywords:
Metropolis algorithm
Monte Carlo optimization
Pseudo-random number generators
Precalculated Boltzmann factor
Ising model

A B S T R A C T

The Metropolis algorithm is widely used in Monte Carlo (MC) simulations in diverse areas of science
and technology, especially for problems formulated in terms of lattice models. A common situation is the
necessity to perform long sequential processing, e.g., when looking for equilibrium states of distinct physical
systems. Hence, even marginal increases in efficiency of the algorithm individual steps can lead to significant
reductions in absolute execution runtimes. Usual speedup procedures include hardware updates, parallelization
(when possible) and sampling methods. Here we follow a different direction in trying to decrease the full
execution times of MC approaches: algorithmic optimization. We show that the algorithms can be improved
by implementing relatively few and simple changes in their organization and structure. First, we discuss some
refinements for the pseudo-random number generator, addressing the broadly employed Mersenne-Twister
algorithm (MT19937-64). Second, we develop a protocol to precalculate the Boltzmann factor, thereby avoiding
the high cost of repeatedly calls to this exponential function (indeed, a very recurring step in the standard
Metropolis method). To benchmark our proposals we choose the Ising model since it is one of the best
known and more extensively studied problems in statistical physics. We consider the mentioned optimizations
and different computational elements, like compilers and Hamiltonian variables ranges, testing the efficiency
to obtain the system solutions. Our results suggest that the present set of improvement schemes—namely;
decreasing the processing time for both, to generate a random number and to implement the one-flip Metropolis
step; systematically enforcing optimization for the maximum quantity of algorithm structures accessing random
numbers in a code; and considerably reducing the amount of required computations of the MC probabilistic
actualization term—might constitute a relevant addition to the existing collection of expediting techniques in
MC computational routines.
example, a coarse graining of 𝑅) are implemented and computed are
at the heart of MC simulations.

Among different classes of systems, MC methods are particularly
1. Introduction

Monte Carlo (MC) methods are quite versatile to treat a wide range
of problems, either stochastic or deterministic. For instance, Newton’s
second law and the time-dependent Schrödinger’s equation are impor-
tant examples where direct numerical integration can be used to obtain
the proper solutions. For systems with as small number of degrees
of freedom, simple quadrature procedures can be employed. However,
if is very large, a different approach becomes necessary. The MC
protocol is a fundamental tool exactly for such kind of situation [1–3].
Indeed, in MC integration, the ‘‘area under the curve’’ 𝐴 (for 𝐴 a subset
of a -dimensional region 𝑅) of a chosen function is calculated by
comparing the frequency of random visits to 𝐴 with that to the whole
𝑅. The final estimation can be very close to the exact value, but a long
enough number of simulational steps (depending on and features of
𝐴) may be in order. How these visits to microstates (in the integration

∗ Corresponding author.
E-mail address: luz@fisica.ufpr.br (M.G.E. da Luz).
vailable online 19 November 2022
877-7503/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jocs.2022.101910
Received 17 August 2022; Received in revised form 24 October 2022; Accepted 14
important in statistical lattice models [4], providing adequate ways to
probe the systems microstates (see Section 3) and to obtain relevant
macroscopic quantities by means of averages calculations. Nonetheless,
to perform such averages representative equilibrium configurations
must be found. Thus, MC requires a lot of iterations (in certain instances
> 106), involving the usage of proper procedures — as the Metropolis
algorithm (MA) [5–9] — for sampling (often from a distribution) on a
relative big finite set of states. The idea underlying the MA is to gen-
erate a great diversity of configurations, with their associated relative
weights, through Markov chains of acceptance/rejection probabilities.
This requires considerable computational efforts [10,11], whose more
expensive aspects are easily identified. Indeed, several numerical op-
erations are concentrated on the calculation of: non-periodic long
November 2022

https://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
mailto:luz@fisica.ufpr.br
https://doi.org/10.1016/j.jocs.2022.101910
https://doi.org/10.1016/j.jocs.2022.101910
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2022.101910&domain=pdf

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.

o
c
v

I
r
g

sequences of pseudo-random numbers (PRNs); and the distribution of
probabilities, specified through a certain energy functional defined on
the system states.

More concretely, on the one hand, (1) algorithms to generate se-
quences of PRNs with long periods are necessary for many computa-
tional applications, in special for those entailing statistical sampling
(see, e.g., [12–15]). There are some algorithms of relatively low com-
putational complexity resulting in a fast generation of PRNs (Xor-
shift [16], Lehmer [17], etc.). However, the sequence period 𝑇𝑃𝑅𝑁
(i.e., the maximum stretch of ‘‘independent’’ PRNs yielded by the algo-
rithm before systematic repetitions or correlations) is relatively short.
For many systems, 𝑇𝑃𝑅𝑁 should be great enough to allow the dynamics
to reach the stationary condition. For instance, in different lattice mod-
els MC (with the MA) calculations may demand a period larger than
𝑉 ×𝑆×106 [18–21], for 𝑉 the lattice volume and 𝑆 the number of local
possible configurations at any lattice site. Consequently, if the sequence
of independent PRNs does not fulfill this requirement, the simulation
can generate spurious and even wrong results [22]. An efficient well
tested generator of PRNs for MC simulations, bypassing the 𝑇𝑃𝑅𝑁
length problem, is the Mersenne-twister algorithm (MTA) [23–25].

On the other hand, (2) in MC methods, for each single constituent 𝑖
f the system — a particle, a spin, a cell, a site, etc. — having the local
onfiguration variable 𝜎𝑖 (assuming a discrete and finite number of
alues), the macroscopic state is the set 𝜎 ≡ {𝜎1, 𝜎2,…}. The transition

probabilities for the individual 𝜎𝑖’s depend on a distribution function.
f a function of energy — the Hamiltonian — is pre-defined, then the
atio of probabilities between two states (of energy difference 𝛥𝐸) is
iven by the Boltzmann factor, namely, exp[−𝛽𝛥𝐸]. Here 𝛽 = 1∕(𝑘𝐵𝑇),

with 𝑇 the temperature and 𝑘𝐵 the Boltzmann constant. So, depending
on the model, a large computational time might be needed to achieve
the steady state through probabilistic actualizations in the form 𝜎′ →
𝜎′′ → 𝜎′′′ …. A way to speedup the calculations (see, e.g., [26]) is by
applying precalculation techniques to the transition probabilities.

Given the aforementioned panorama for the large class of lattice
models, this work focus on the MC basic ‘‘elements’’, addressing solely
algorithmic advances. Thus, unlike other optimization philosophies (for
example, parallelization [27]), we shall examine and verify specific
machine code instructions and algorithmic structures to reduce the
runtime of the usual MC simulations, i.e., no hardware modifications or
new methodologies are been considered. We develop upgrades related
to the above (1) and (2) points in the case of lattice models. We discuss
how to enhance the MTA as well as how to implement a (local, so
very simple) precalculation for the transition probabilities in the MC
method. More concretely, our improvements are as it follows.

First, the outputs of more straightforward PRNs generators are
often carried out through recurrent procedures as linear-feedback shift
register operations or by means of linear congruential relations. As a
consequence, one typically gets 𝑇𝑃𝑅𝑁 = 264−1 with variables of 64 bits.
In contrast, the MTA uses an internal extra process, where operations
between elements 𝐴[𝑗] (𝑗 = 0, 1,… , 𝑁∗ − 1) of an internal vector are
computed. Then, the shift register transformations of 𝐴[𝑗] are employed
to construct the PRNs outputs. This extends 𝑇𝑃𝑅𝑁 to 219937−1. For each
group of 𝑁∗ generated PRNs the transformations on 𝐴[𝑗] are executed
once. In this way, the MTA can be viewed as an algorithm with two
different stages (more details in the next Section). Since the first stage
(𝐴[𝑗] manipulations) is contained in the second one (generating a
PRN), some direct optimization schemes during the compilation can
be implemented, basically proper organization of memory and of logic
gates [28]. With this, a non-negligible increasing of speed for the PRN
generator can be achieved.

Second, the previously mentioned difference of energies 𝛥𝐸 = 𝐸𝜎′′−
𝐸𝜎′ of two arbitrary states 𝜎′ and 𝜎′′ can only take on a finite number
of values. Moreover, for local upgrades, i.e., if at each MC step just the
site 𝑖 is randomly altered, only a ‘‘local’’ energy 𝐸{𝑖}, corresponding to
a neighborhood {𝑖} of 𝑖, will change so that 𝐸𝜎′′−𝐸𝜎′ = 𝐸{𝑖}

𝜎′′ −𝐸
{𝑖}
𝜎′ . Thus
2

{𝛥𝐸} is a relatively small set, essentially of the order of the number of
possible values of 𝐸{𝑖}. Therefore, one can exploit this fact and from
the Hamiltonian to precalculate all the possible values of exp[−𝛽 𝛥𝐸].
By means of direct indexation, the probabilities exchanges can then
be selected during the simulations without the need to perform any
intermediary calculations, with a considerable gain of computational
time.

A comprehensive survey of the impact of the above procedures
in the efficiency of MC simulations, including distinct optimization
options of different compilers, is performed considering the well known
Ising model. In special, we calculate important quantities for the prob-
lem employing an indirect thermodynamic-like analysis, usually very
demanding through MC simulations, but here leading to a concrete
speed up due to our algorithm improvements.

2. Upgrading the Mersenne-Twister algorithm

In this section we review the MTA structure and present two simply
ways to optimize its performance. We address the 64-bit version in
the C language, known as MT19937-64 and originally developed by
Matsumoto and Nishimura [23]. Details about the MTA initialization
procedures will not be discussed here.

As previously mentioned, the MTA is divided into two stages: to
transform all the bits of an internal vector 𝐴[𝑗] and to yield output
values by means of shift register operations (see functions in Algorithm
1). The function RandInt64OA returns a 64-bit unsigned PRN, which is
generated by means of two kinds of bit periodic transformations of 𝐴[𝑗]
(𝑗 = 0, 1, ⋅, 𝑁∗ − 1). In the first stage (from line 13 to 23), one defines
a pivot index 𝑗∗, where if 𝑗∗ ≥ 𝑁∗ two cross loops perform nonlinear
mixing of values of 𝐴[𝑖] with 𝐴[𝑖 + 𝑘] for 𝑘 = 𝑀∗ (if 𝑖 < 𝑁∗ −𝑀∗) and
𝑘 =𝑀∗−𝑁∗ (otherwise). In the second stage (function ShiftRegister(y)),
all bits of 𝐴[𝑗] are transformed into each other by means of shift register
operations. After this last step the pivot index is increased by 1.

From the function RandInt64OA one identifies four algorithm as-
pects which can be optimized:

1. The constant vector 𝑊∗ is defined each time the function is
invoked. Thus, as a first possible improvement, we can redefine
𝑊∗ as a global variable (some compilers optimization procedures
already do so, but not all).

2. The counter 𝑖 used in the for loops can be replaced by the pivot
index 𝑗∗ as a way of recycling variables. Note this procedure is
possible once 𝑗∗ is reinitialized after the loops.

3. In order to increase the number of algorithmic structures requir-
ing optimization (ASRO) during the compilation, the keyword
‘‘inline’’ should be added to the function. This keyword is very
powerful to demand optimization from the compilers [29], espe-
cially when general subroutines are built-in into a program-code
with a specific application. In our case the MTA into MC method.

4. Each PRN is produced by two transforms of 𝐴[𝑗] (𝑗 = 0, 1,… , 𝑁∗−
1) regulated by two different step intervals, one taking place at
every single step and the other (when the counter 𝑗∗ ≥ 𝑁∗) at
intervals of 𝑁∗ steps. Since some compilers optimization pro-
cesses involve simultaneously data reorganization in the RAM
memory and expansions and contractions of loops, these two
intervals in the function could cause multiple ASRO with logical
conflicts [30,31]. A way to avoid this potential problem is to
define a new global vector 𝑅[𝑗] (𝑗 = 0, 1,… , 𝑁∗ − 1), containing
the shift register transformations and accessed whenever 𝐴[𝑗] is
changed (nonlinear mixtures).

These four upgrades are implemented in a new function,
RandInt64I4, shown in the Algorithm 2. For a better quantification of
the improvements, some test simulations are performed only with the
upgrades 1, 2 and 3, through the function RandInt64I3 (the algorithm
for this case is not presented). As for 4, in fact one may be induced

to think that including 𝑅[𝑗] can lead to a decreasing instead of an

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.

c
t
u
o
S
a

t
c
p

𝐟

i
i

1
1
1
1
1
1
1
2
2

Algorithm 1 Global constants/variables and functions for one single
step of the original MTA. The global vector 𝐴 (of size 𝑁∗ and nonlinear
mixing symmetry 𝑀∗) contains values that will be transformed in two
intervals of steps. The symbols ‘‘⊕’’, ‘‘≻’’, ‘‘≺’’, ‘‘∧’’ and ‘‘𝑗++’’ denote,
respectively, the 64 bit operations ‘‘xor’’, ‘‘bit shift right’’, ‘‘bit shift
left’’, ‘‘and’’ and ‘‘post-increment’’. The variable 𝑗∗ = 0, 1,⋯ , 𝑁∗ − 1
is the pivot index, where 𝐴[𝑗∗] is used to compute the output of one
PRN. Here ‘‘inline’’ is the same instruction than that in the C and C++
languages.

1: function inline ShiftRegister(𝑦)
2: 𝑦′ ← 𝑦 ⊕ ((𝑦 ≻ 29) ∧ 0x5555555555555555)
3: 𝑦′ ← 𝑦′ ⊕ ((𝑦′ ≺ 17) ∧ 0x71D67FFFEDA60000)
4: 𝑦′ ← 𝑦′ ⊕ ((𝑦′ ≺ 37) ∧ 0xFFF7EEE000000000)
5: return 𝑦′ ⊕ (𝑦′ ≻ 43)
6: end function
7: Define: 𝑁∗ ≡ 312, 𝑀∗ ≡ 156
8: Allocate: 𝐴[0 to 𝑁∗ − 1]
9: 𝑗∗ ← 𝑁∗

10: function RandInt64OA()
11: Define: 𝑊∗[0 to 1] ≡ {0,0xB5026F5AA96619E9}
12: if 𝑗∗ ≥ 𝑁∗ then
13: for 𝑖← 0 to 𝑁∗ −𝑀∗ − 1 do
14: 𝑥← (𝐴[𝑖]∧0xFFFFFFFF80000000)∨(𝐴[𝑖+1]∧0x7FFFFFFF)
15: 𝐴[𝑖] ← 𝐴[𝑖 +𝑀∗]⊕ (𝑥 ≻ 1)⊕𝑊∗[𝑥 ∧ 1]
16: end for
17: for 𝑖← 𝑁∗ −𝑀∗ to 𝑁∗ − 2 do
18: 𝑥← (𝐴[𝑖]∧0xFFFFFFFF80000000)∨(𝐴[𝑖+1]∧0x7FFFFFFF)
19: 𝐴[𝑖] ← 𝐴[𝑖 +𝑀∗ −𝑁∗]⊕ (𝑥 ≻ 1)⊕𝑊∗[𝑥 ∧ 1]
20: end for
21: 𝑥← (𝐴[𝑁∗−1]∧0xFFFFFFFF80000000)∨(𝐴[0]∧0x7FFFFFFF)
22: 𝐴[𝑁∗ − 1] ← 𝐴[𝑀∗ − 1]⊕ (𝑥 ≻ 1)⊕𝑊∗[𝑥 ∧ 1]
23: 𝑗∗ ← 0
24: end if
25: 𝑥← 𝐴[𝑗∗++]
26: return ShiftRegister(𝑥)
27: end function

increasing in the computational efficiency due to a higher usage of
RAM memory. This might be true, but only if no compiler optimization
options are enabled or the MTA is implemented ‘alone’, i.e., not as built-
in function for another code (cf., point 3 above). To confirm this latter
observation, we have performed some simulations with the MTA just to
generate PRNs without any extra more ‘involved’ task.1 The assumed
compilers and optimization flags are shown in Table 1. The results
obtained with the distinct options (i.e., different CPUs and algorithms)
are summarized in Table 2.

From the simulations we identify two main trends. First, the icc
ompiler (Intel Free distribution) yields more efficient machine instruc-
ions in almost all cases. However, this should not be taken as an
niversal fact, insomuch the considered algorithms are very simple —
n purpose, as already explained — in the examples here (but see next
ecs). Further, a small difference in the runtime with i7-4790k CPU
nd RandInt64I3 function is favorable to the gcc compiler in this case.

1 As far as we know, the minimal number of instructions between calls
o the MTA (to generate PRNs) in a code already allowing optimization by
ompilers is just a single operation. So, we have built and run the simplest
ossible simulation by means of a sum loop, namely:

𝐨𝐫 𝑘← 0 𝐭𝐨 𝑄 𝐝𝐨 𝑃 = 𝑃 + RandInt64XX; with XX equal to OA, I3 or I4.

On the other hand, if no operations between PRNs are included, the compilers
notify an unusable function RandInt64XX and no optimization procedures are
implemented by them.
3

Algorithm 2 The MTA with the four (items 1–4 in the main text)
algorithmic changes. Briefly, the vector 𝑊∗ is redefined as a global
constant, the pivot index 𝑗∗ is recycled in the loops, the keyword
‘‘inline’’ is added to the function header and a new vector 𝑅[𝑗] is
ntroduced, assuming the values of ShiftRegister(𝐴[𝑗∗]) whenever 𝐴[𝑗]
s computed (so, the output is reproduced only from the 𝑅[𝑗∗] values).

1: Allocate: 𝑅[0 to 𝑁∗ − 1]
2: Define: 𝑊∗[0 to 1] ≡ {0,0xB5026F5AA96619E9}
3: function inline RandInt64I4()
4: if 𝑗∗ ≥ 𝑁∗ then
5: for 𝑗∗ ← 0 to 𝑁∗ −𝑀∗ − 1 do
6: 𝑥 ← (𝐴[𝑗∗] ∧ 0xFFFFFFFF80000000) ∨ (𝐴[𝑗∗ + 1] ∧

0x7FFFFFFF)
7: 𝐴[𝑗∗] ← 𝐴[𝑗∗ +𝑀∗]⊕ (𝑥 ≻ 1)⊕𝑊∗[𝑥 ∧ 1]
8: 𝑅[𝑗∗] ←ShiftRegister(𝐴[𝑗∗])
9: end for

10: for 𝑗∗ ← 𝑁∗ −𝑀∗ to 𝑁∗ − 2 do
11: 𝑥 ← (𝐴[𝑗∗] ∧ 0xFFFFFFFF80000000) ∨ (𝐴[𝑗∗ + 1] ∧

0x7FFFFFFF)
12: 𝐴[𝑗∗] ← 𝐴[𝑗∗ +𝑀∗ −𝑁∗]⊕ (𝑥 ≻ 1)⊕𝑊∗[𝑥 ∧ 1]
3: 𝑅[𝑗∗] ←ShiftRegister(𝐴[𝑗∗])
4: end for
5: 𝑥 ← (𝐴[𝑁∗−1]∧0xFFFFFFFF80000000)∨(𝐴[0]∧0x7FFFFFFF)
6: 𝐴[𝑁∗ − 1] ← 𝐴[𝑀∗ − 1]⊕ (𝑥 ≻ 1)⊕𝑊∗[𝑥 ∧ 1]
7: 𝑅[𝑁∗ − 1] ←ShiftRegister(𝐴[𝑁∗ − 1])
8: 𝑗∗ ← 0
9: end if
0: return 𝑅[𝑗∗++]
1: end function

Second, with the gcc compiler, the best performance is achieved from
the RandInt64I3 function (26% better than RandInt64I4). Contrastingly,
there is no relevant distinction between RandInt64I3 and RandInt64I4
for icc. Thus, as above mentioned, when the algorithms are rather
straightforward (notice that in the present illustration they contain only
few ASRO to be processed by the compiler), to implement all the fourth
upgrades, 1–4, does not lead to a noticeable improvement compared
to implement only the first three, 1–3. Indeed, in simple algorithms
memory accesses become the essential priority for optimization, and
consequently, data increment in RAM irremediably decreases perfor-
mance [32]. Thence, the real advantage in considering RandInt64I4 is
for codes presenting much more ASRO, as typical in rather complex
applications (more details below).

We should emphasize that there are no qualitative distinction be-
tween the PRNs resulting from RandInt64OA, RandInt64I3 and
RandInt64I4 since our improvements do not involve changes in logical
or mathematical operations. In fact, we have implemented few simple
tests to explicitly check the equivalence between the pseudo-random
number stream for I3, I4 and OA. Here we mention just one. We have
computed the sum 𝑃 (described in the footnote 1) of a very large
number of PRNs generated from the three algorithms. Considering
the same initial conditions presented in the Mersenne Twister 64 bit
version website,2 the calculated 𝑃 ’s sums are exactly the same, namely,
5642137241471645936 (details in the footnote 1). This indicates that the
improvements I3 and I4 do not change the random number stream from
the original algorithm OA.

If specific procedures and/or operations are altered or added to the
MTA (e.g., to modify the sequence period), then extra speed gain may
be attained. With this aim, we built a direct protocol to generate 32-
bit unsigned PRNs from RandInt64XX functions (XX = OA, I3 or I4),

2 http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt64.html.

http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt64.html

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.

o
R
O
t
a
p
a
r

i
i
T
i

Table 1
Compilation setup. Two sets of optimization flags are considered for each compiler. The first (-mG for the gcc compiler or
-mI for the icc compiler) is oriented to mathematical functions, whereas the second (-fG and -fI) enables ‘‘primitive’’
levels of optimization in loops and RAM memory. Other flags considered (-O3 and -Ofast), common in both compilers,
are the highest optimization levels aimed to a single core/thread of CPU. There are many other possible optimization flags
for each compiler. However, from many tests they have not led to significant runtime gain, thus they are not discussed here.
Note that specialized flags for CPU architectures (-march and/or -mtune) have not been used. It is important to highlight
that the selected flags are intended to algorithmic optimization for a single core/thread only, hence not involving issues like
pipelining, parallelization and activity of CPU specialized logic gates.

gcc version 9.3.0 icc version 14.0.3

-mG -lm -mI -limf
-ffast-math -fimf-precision=low
-fgraphite-identity -ftz
-floop-parallelize-all -fma

-fG -funroll-all-loops -fI -use-intel-optimized-headers
-fasynchronous-unwind-tables -opt-multi-version-aggressive
-fsched2-use-superblocks -opt-assume-safe-padding
Table 2
Results for the runtime (in seconds) for the simplest possible sum loop with 𝑄 = 109 steps (see footnote 1). Compiling details are presented in
Table 1. The CPUs used in the tests are: Intel Core i7-4790K, Intel Core i7-2600 and Intel Core i7-950. Each value is the mean of five runs.

gcc 4790K 2600 950 icc 4790K 2600 950

(no flags) 7.65 11.91 15.41 (no flags) 2.11 3.24 4.61
-O3 3.39 4.22 5.44 -O3 2.10 3.21 4.57

RandInt64OA -Ofast 3.41 4.22 5.42 -Ofast 2.09 3.21 4.57
-fG 7.62 11.83 15.41 -fI 2.10 3.24 4.61
-fG -O3 3.24 4.12 5.00 -fI -O3 2.10 3.21 4.57
-fG -Ofast 3.09 3.89 5.00 -fI -Ofast 2.09 3.21 4.57

(no flags) 5.79 9.34 11.10 (no flags) 2.11 3.22 4.57
-O3 2.19 3.47 4.94 -O3 2.10 3.21 4.57

RandInt64I3 -Ofast 2.19 3.47 4.94 -Ofast 2.10 3.21 4.57
-fG 5.79 9.34 11.06 -fI 2.11 3.22 4.56
-fG -O3 2.06 3.26 4.60 -fI -O3 2.09 3.21 4.57
-fG -Ofast 2.07 3.26 4.59 -fI -Ofast 2.10 3.20 4.57

(no flags) 9.89 13.09 17.64 (no flags) 2.48 3.81 5.55
-O3 2.86 4.29 5.73 -O3 2.46 3.77 5.61

RandInt64I4 -Ofast 2.81 4.28 5.78 -Ofast 2.46 3.77 5.61
-fG 9.86 13.08 17.67 -fI 2.47 3.80 5.55
-fG -O3 2.82 4.34 5.43 -fI -O3 2.46 3.77 5.61
-fG -Ofast 2.81 4.34 5.44 -fI -Ofast 2.46 3.77 5.61
t
P
T
w
o

v
S
i
o
s

depicted in Algorithm 3. Obviously, such a strategy is justified only if
the PRNs reduction from 64 to 32 bits does not introduce appreciable
precision problems for the related applications. For instance, for lattice
models with volume 𝑉 < 232 this should not be an issue.

In Algorithm 3, the function RandInt32 returns a unsigned number
containing the first (if �̃� = True) or last (if �̃� = False) 32 bits
f RandInt64XX. In this way, the 64 bits of a PRN generated by
andInt64XX is divided into two halves, each leading to a 32-bit PRN.
bserve that RandInt64XX is called only once, when �̃� = True, for each

wo calls of RandInt323. This method reduces the period of the PRNs by
factor of 2−32 [33], but which is insignificant compared to the MTA

eriod of 219937 −1. The PRNs generated from the RandInt32 are tested
nd compared with those from the RandInt64XX in the Appendix. The
esults confirm the quality of our pseudo-random numbers of 32 bits.

Analysis of the performance (again, a sum loop for 𝑘 → 0 to 𝑄 do
𝑃 = 𝑃+RandInt32) of the Algorithm 3 is displayed in Table 3. In
contrast to Table 2, now the gcc compiler is more efficient than the
cc when optimization flags are enabled. Also, notice that RandInt64I3

s still the best option, but this time 15% better than RandInt64I4: in
able 2, the runtime difference between RandInt64I3 and RandInt64I4

s of about 26%. We have pointed out that a great number of ASRO

3 One may argue that it would be even faster RandInt32 already to return
the two 32-bit PRNs and the MC algorithm to be adapted to use these two
numbers in a row before a next call to the function. Of course, this could
be implemented if extra efficiency gain would be absolutely mandatory. Here
we prefer to maintain our algorithms as general as possible, not addressing
4

dedicated MC implementations. b
Algorithm 3 The function to generate 32-bit unsigned integer PRNs.
The global variables �̃� and �̃� are used to determine and then split
he first (from 1 to 32) and second (from 33 to 64) parts of a 64-bit
RN. The variable �̃� contains all the bits computed from RandInt64XX.
he first half of this 64 bits list is obtained as (�̃� mod MaxInt32),
hereas the second as (�̃�∕MaxInt32). The symbol ‘‘¬’’ means the ‘‘not’’
perator.

1: Define: MaxInt32≡ 232 ⊳ MaxInt64≡ (MaxInt32)2
2: �̃�← True
3: �̃� ← 0
4: procedure inline RandInt32()
5: �̃�← ¬�̃�
6: if �̃� then return (�̃� mod MaxInt32)
7: �̃� ← RandInt64XX() ⊳ XX = OA, I3 or I4.
8: return �̃�∕MaxInt32
9: end procedure

(usually emerging in more complex codes) should increase the effi-
ciency of the RandInt64I4. In fact, RandInt32 incorporates a new and
ery simple ASRO, thus resulting in some optimization improvement.
uch tendency becomes even more clear for the Ising model analyzed
n the following Sections. Also, how exactly one can profit from calling
nce the PRN generator and get two PRNs in the context of MC
imulations for lattice models will be illustrated in the next Section.

Finally, for many applications, the precision and periodicity of 32-
it PRNs are more than enough. So, they could be further split (for

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.
Table 3
Results for the runtime (in seconds) with Algorithm 3 (32-bit PRN) for a sum loop of 𝑄 = 109 cycles (see footnote 1). The CPUs and optimization
flags tested here are the same than those in Table 2.

gcc 4790K 2600 950 icc 4790K 2600 950

(no flags) 5.53 8.08 10.79 (no flags) 1.69 2.84 3.44
-O3 2.27 2.78 4.18 -O3 2.33 2.57 3.40

RandInt64OA -Ofast 2.16 2.65 4.17 -Ofast 2.34 2.57 3.40
-fG 5.53 8.08 10.58 -fI 1.68 2.84 3.44
-fG -O3 1.99 2.55 3.52 -fI -O3 2.34 2.57 3.40
-fG -Ofast 1.88 2.55 3.36 -fI -Ofast 2.31 2.57 3.40

(no flags) 4.54 6.76 8.27 (no flags) 1.68 2.83 3.44
-O3 1.60 2.38 3.31 -O3 2.30 2.70 3.77

RandInt64I3 -Ofast 1.49 2.35 3.30 -Ofast 2.30 2.69 3.78
-fG 4.54 6.77 8.27 -fI 1.68 2.84 3.44
-fG -O3 1.53 2.28 3.15 -fI -O3 2.30 2.70 3.78
-fG -Ofast 1.42 2.25 3.15 -fI -Ofast 2.30 2.70 3.78

(no flags) 6.21 8.90 11.98 (no flags) 2.15 2.64 3.78
-O3 2.10 2.64 3.52 -O3 2.48 3.43 4.73

RandInt64I4 -Ofast 1.69 2.66 3.48 -Ofast 2.47 3.43 4.73
-fG 6.21 8.91 11.92 -fI 2.15 2.64 3.78
-fG -O3 1.68 2.84 3.37 -fI -O3 2.48 3.43 4.73
-fG -Ofast 1.68 2.84 3.37 -fI -Ofast 2.47 3.43 4.73
example, to 16-bit), since the period of the MTA is extremely big. This
could be easily implemented by repeating the same scheme to our
RandInt32 function.

3. Boltzmann factor precalculation method

In the following we address two other aspects that can be algo-
rithmically improved in typical MC simulations: (i) reduction of the
number of PRN’s required in the MA and (ii) more efficient calculations
of the Boltzmann factor. Given that the Ising is a paradigmatic example
of a lattice system [34], for concreteness we implement (i) and (ii)
considering the Ising model in a square network of volume 𝑉 = 𝐿2.
We emphasize, however, that the ideas proposed here could be easily
extended to any other lattice model.

The Ising Hamiltonian is given by (𝐽 > 0 and 𝐵 an arbitrary real
value)

𝑆 = −𝐽
∑

⟨𝑖,𝑗⟩
𝑆𝑖𝑆𝑗 − 𝐵

∑

𝑖
𝑆𝑖, (1)

where 𝑆𝑖 = ±1 is the spin value at the lattice site 𝑖, ⟨𝑖, 𝑗⟩ denotes
nearest-neighbor sites 𝑖 and 𝑗, and the parameters 𝐽 (interaction) and
𝐵 (external field) are constants. The MA is one of the best approaches
to numerically analyze the Ising model [34], for instance, usually being
more efficient than the Glauber dynamics [35].

The classical MC method using the MA consists of an iterative
process. First a site 𝑖 is randomly chosen. Second, the 𝑖-spin can change
its state, 𝑆 → 𝑆′, with a probability given by (throughout this work we
set the Boltzmann constant 𝑘𝐵 = 1, then 𝛽 = 1∕(𝑘𝐵 𝑇) = 1∕𝑇)

𝑆→𝑆′ = exp[min{0,−(𝑆′ −𝑆)∕𝑇 }]. (2)

The standard computational procedure for these two stages, the so
called one-flip Metropolis scheme, is for convenience illustrated in the
Algorithm 4. From it one can readily pinpoint two issues that could be
optimized.

a. The function OneFlipSta requires two PRNs, one to randomly
choose the spin and the other to calculate the transition prob-
ability. For these tasks, the period of the 32 bit PRN from
Algorithm 3 can still be considered large. Thus, we develop a
set of instructions to further split such PRNs into two parts, or

Limit← Real(MaxInt32)∕Real(𝐿2), (Global)
𝑈 ← RandInt32(),
𝑟← 𝑈 mod 𝐿2,

2

5

𝑟← 𝑈∕𝐿 , (3)
Algorithm 4 Standard one-flip Metropolis prescription in the square
lattice case. A square lattice containing one spin per node is established
by means of a simple array 𝛩 of size 𝐿2. Successive elements along a
row (or along a column) differ from each other by 1 in their corre-
sponding array index. The sum of the four neighbor spins in definition
SumNei(𝑟) returns the local magnetization around the site 𝑟. The function
Real(𝑟) transforms an integer into a single/double precision number.
For 𝐸𝑖 see the main text.

1: Define: 𝐿 ≡ 128
2: Allocate: 𝛩[0 to 𝐿2 − 1]
3: Define: SumNei(𝑟) ≡ 𝛩[𝑟 + 1 − (𝑟 mod 𝐿 = 0) × 𝐿] + 𝛩[𝑟 − 1 + ((𝑟 −

1) mod 𝐿 = 0)×𝐿] +𝛩[𝑟+𝐿−(𝑟 > 𝐿2−𝐿)×𝐿2]+𝛩[𝑟−𝐿+(𝑟 < 𝐿)×𝐿2]
4: Define: RandReal32←Real (RandInt32())∕Real(MaxInt32)
5: procedure inline OneFlipSta(𝑇 , 𝐽 , 𝐵)
6: 𝑟 ←Integer(RandReal32 ×Real(𝐿2))
7: 𝐸𝑖 ← (𝐽× Real(SumNei(𝑟)) + 𝐵)×Real(𝛩[𝑟]) ⊳ 𝛥𝐸 = 2𝐸𝑖 for the

Ising model
8: if 𝐸𝑖 ≤ 0 then
9: 𝛩[𝑟] ← −𝛩[𝑟]

10: else
11: if exp(−2𝐸𝑖∕𝑇) > RandReal32 then 𝛩[𝑟] ← −𝛩[𝑟]
12: end if
13: end procedure

and substitute RandReal32 by Real𝑟∕Limit in line 11 of Algorithm
4. As a consequence, the algorithm will invoke RandInt64XX
only once each four times the one-flip subroutine is executed.
The resulting protocol constitutes the new function OneFlipSpl
(details not shown). It is tested for benchmarking below.

b. Another fundamental process which can be optimized in OneFlip-
Sta (Algorithm 4) is to reduce the number of computations of the
exponential function in Eq. (2) as well as to avoid comparisons
between 0 and −(𝑆′ − 𝑆)∕𝑇 . To do so, consider (for ∑

⟨𝑗⟩𝑖
denoting a sum over the neighbors 𝑗 of 𝑖)

𝐸𝑖 =
(

𝐽
∑

⟨𝑗⟩𝑖

𝑆𝑗 + 𝐵
)

𝑆𝑖. (4)

If the spin 𝑆𝑖 is reversed, 𝐸𝑖 above changes its signal. Hence,
from Eq. (1) and the discussion just before Eq. (2), the system
energy variation due to the one flip mechanism is exactly 2𝐸𝑖.
In this way, the second argument of min in Eq. (2) is equal to
−2𝐸𝑖∕𝑇 . But at a given temperature, −2𝐸𝑖∕𝑇 can assume at most

2 (𝑧+1) = 10 values depending on 𝐵∕𝐽 (note that for our square

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.

a
r

t
r
o

i
i
o
t
t
B
𝐷
b
c
b
(
r
w
a
a

a
t
t
f

Algorithm 5 Precalculation of the one-flip procedure (microstates up-
date) in the square lattice case. The function OneFlipVec is a reduced
and simplified version of the MA, executing just three instructions.
Although the parameters 𝑇 , 𝐽 and 𝐵 are not used, they are maintained
only to keep the same notation of the previous OneFlipSta and One-
FlipSpl functions, thus easing the comparisons. As in RandInt32, note
that here a PRN (𝑈) is split in two parts — (𝑈 mod 𝐿2) and (𝑈∕𝐿2)
— increasing the MC simulations speed. This can be employed if the
lattice size 𝐿2 does not demand more than 16 bits (indeed, in our case
𝐿2 = 1282, or 14 bits). The node 𝑟 is randomly chosen by a 14-bit
PRN and the matrix elements 𝐷[𝑠][𝑚] are compared with a 18-bit PRN
(𝑈∕𝐿2).

1: Allocate: 𝐷[{−1,+1}][−4 to 4 step 2]
2: procedure inline AllExp(𝑇 , 𝐽 , 𝐵)
3: for 𝑚 ← −4 to 4 step 2 do
4: 𝐷[−1][𝑚] ← exp[−2 × (𝐽 × 𝑚 + 𝐵) × (−1)∕𝑇]
5: 𝐷[+1][𝑚] ← exp[−2 × (𝐽 × 𝑚 + 𝐵) × (+1)∕𝑇]
6: end for
7: end procedure
8: Define: Limit←Real(MaxInt32)∕Real(𝐿2)
9: procedure inline OneFlipVec(𝑇 , 𝐽 , 𝐵)

10: 𝑈 ←RandInt32()
11: 𝑟 ← 𝑈 mod 𝐿2

12: if 𝐷[𝛩[𝑟]][SumNei(𝑟)] > Real(𝑈∕𝐿2)∕Limit then 𝛩[𝑟] ← −𝛩[𝑟]
13: end procedure

lattice 𝑧 = 4 and SumNei𝑟 can return only −4,−2, 0,+2,+4).
Taking all this into consideration, we can add a small matrix
𝐷 of size 2 × (𝑧 + 1) to the algorithm, whose elements must
be calculated just when 𝑇 is changed, as shown in Algorithm
5 (function AllExp).

This version of the one-flip procedure (OneFlipVec, Algorithm 5)
requires only a single loading of the global matrix 𝐷[𝑠][𝑚] (𝑠 = −1,+1
and 𝑚 = −𝑧,−𝑧 + 2,… ,+𝑧) by the function AllExp. Such restructured
fundamental step of MC algorithm does not include any mathematical
function and does not need to distinguish between the two cases in
Eq. (2) (see the unique instruction in line 12 of Algorithm 5 contrasting
with lines 9 and 12 of Algorithm 4). Therefore, it greatly facilitates the
optimization process by the compiler.

In Fig. 1 we analyze the runtimes for the Ising model, comparing
different combinations of the one-flip Metropolis method, generation
functions for the PRNs and compilers. The estimations show that the
function OneFlipVec leads to the best performance. We note that smaller
times are obtained with the function RandInt64I4 for any OneFlipYyy
(Yyy = Sta, Spl or Vec) and compilers. Moreover, the plots for distinct
temperatures in Fig. 1 seem to indicate that the runtimes are mainly
related to two factors: (a) the probability calculation (exp[−2𝐸𝑖∕𝑇] or
𝐷[⋯][⋯]) and (b) the one-flip event (𝛩[𝑟] ← −𝛩[𝑟]). Also, taking into
account that at least 90% of these simulations are already at the steady
state (see next section), the runtime profiles in Fig. 1, as function of 𝑇 ,
can be understood by checking how the algorithm accesses (a) and (b)
after reaching the steady state.

On the one hand, for high temperatures (𝑇 > 4.5), state transitions
occur with a relatively high rate because 𝐸𝑖 ≤ 0 or exp[−2𝐸𝑖∕𝑇] is close
to 1. Actually, resorting to the definitions

𝛾 ≡ −𝐵
𝐽
, and 𝑚𝑖 ≡

∑

⟨𝑗⟩𝑖

𝑆𝑗 = 0,… , 𝑧, (5)

𝐸𝑖 > 0 if (refer to Eq. (4)): (i) 𝑆𝑖 = 1 and 𝑚𝑖 > 𝛾 or (ii) 𝑆𝑖 = −1
and 𝑚𝑖 < 𝛾. Thus, we estimate that for 𝑇 ≈ 4.5 — i.e., at relatively
high temperatures — the system should pass through intermediate
states of order–disorder during its evolution towards the steady state.
Note that for either (i) or (ii) holding, the average probability to have
6

𝐸𝑖 > 0 is around 1∕2, while for other combinations of 𝑆𝑖, 𝛾 and 𝑚𝑖,
such probability is lower. On the other hand, for low temperatures
(𝑇 < 1.5), at the equilibrium the ground state with minimal energy
⟨𝑆⟩0 = −(𝐽 𝑧+ |𝐵|)𝑉 is characterized by homogeneous phases, which
re achieved faster than those for the system at high 𝑇 ’s. These phases
emain stable in time once 𝐸𝑖 > 0 and exp[−2𝐸𝑖∕𝑇] ≈ 0.

A peculiar behavior is observed when −2𝐸𝑖∕𝑇 ≪ 0. The calling of
he exponential function is relatively frequent in this regime, but the
untime is somehow surprisingly short. For instance, the optimization
f internal algorithms calculating exp[𝑥] with |𝑥| ≫ 0 (from the

mathematical libraries of GNU in the Intel distributions) are not enough
to cause a significant decreasing in the runtime. But for |𝑥| ≫ 0,
certain processes to reduce the range of 𝑥 in 𝑓 (𝑥) involve subroutines
rescaling 𝑓 (𝑥) = 𝐾 𝑓 (𝑥′), thus decreasing the double/single floating
point precision of 𝑥′ (see, e.g., [36,37]). Given that the numerical
operations to determine 𝑓 (𝑥′) require less bits than for 𝑓 (𝑥), the lower-
ng of the runtime is explained. Further, the relational operator ‘‘>’’
s used to compare exp[−2𝐸𝑖∕𝑇] with the PRN, as seen in line 11
f algorithm 4 and in line 12 of algorithm 5. In this way, although
he PRNs Real(𝑈∕𝐿2) always have the same floating point precision,
hat for exp[−2𝐸𝑖∕𝑇] can drastically change during the simulations.
ut depending on the order of magnitude of the difference between
[⋯][⋯] (which encodes exp[−2𝐸𝑖∕𝑇]) and PRN, the number of CPU
it-to-bit comparisons considerably decreases [38], thus reducing the
omputing time. This is so because large floating point contrasts can
e used by compilers to eliminate unnecessary bit-to-bit operations
for details see Ref. [39]). These arguments are supported by the
untimes obtained with the OneFlipVec function (right panel of Fig. 1),
hich display the same overall profiles with 𝑇 than the OneFlipSta
nd OneFlipSpl functions (we recall that 𝐷[⋯][⋯] is the only variable
ffected by the temperature).

The proposed method is not restricted to the Ising model. Just as
n illustration, let us briefly comment on the Potts model. In general,
he dimensions of the key matrix 𝐷 in the Algorithm 5 will depend on
he number of possible energy values. For example, the Hamiltonian
or the 𝑞 Potts [40] reads

𝑆 = −𝐽
∑

⟨𝑖,𝑗⟩
𝛿
(

𝑆𝑖, 𝑆𝑗
)

− �̃�
∑

𝑖
𝛿
(

𝑆𝑖, 𝑆∗
)

, (6)

where 𝑆𝑖 = 0,… , 𝑞−1, 𝛿(𝑆𝑖, 𝑆𝑗) is the Kronecker’s delta and 𝐽 , �̃� and 𝑆∗
are constants. So, the energy difference 𝛥𝐸 resulting from the change
𝑆𝑖 → 𝑆′

𝑖 is

−𝛥𝐸(𝑆𝑖, 𝑆′
𝑖) = 𝐽

∑

⟨𝑗⟩

(

𝛿
(

𝑆′
𝑖 , 𝑆𝑗

)

− 𝛿
(

𝑆𝑖, 𝑆𝑗
)

)

+ �̃�
(

𝛿
(

𝑆′
𝑖 , 𝑆∗

)

− 𝛿
(

𝑆𝑖, 𝑆∗
)

)

.

(7)

All the distinct combinations between 0 ≤ 𝑆𝑖 ≤ 𝑞 − 1, 0 ≤ 𝑆′
𝑖 ≤

𝑞 − 1 and their neighbors ⟨𝑗⟩ determine the possible values which 𝛥𝐸
can assume. In fact, for 𝑧 neighbors, at most (e.g., depending on the
commensurability of �̃�∕𝐽) we can have a total of (2 𝑧+1)×3 possibilities
for 𝛥𝐸 — coming from 𝐽 × (−𝑧,… ,+𝑧) times �̃� × (−1, 0,+1). Hence, 𝐷
should be defined as

𝐷[𝑎𝑖][𝑏𝑖] = exp[𝐽 𝑎𝑖 + �̃� 𝑏𝑖], (8)

where 𝑎𝑖 and 𝑏𝑖 are auxiliary matrices, to be computed at the beginning
of the simulations

𝑎𝑖 = 𝑎𝑖[𝑆𝑖][𝑆′
𝑖][𝑆⟨𝑗⟩] =

∑

⟨𝑗⟩

(

𝛿
(

𝑆𝑖, 𝑆𝑗
)

− 𝛿
(

𝑆′
𝑖 , 𝑆𝑗

)

)

,

𝑏𝑖 = 𝑏𝑖[𝑆𝑖][𝑆′
𝑖] = 𝛿

(

𝑆𝑖, 𝑆∗
)

− 𝛿
(

𝑆′
𝑖 , 𝑆∗

)

, (9)

for 𝑆
⟨𝑗⟩ denoting the set of neighbor spins to the site 𝑖. The matrices

𝑎𝑖 and 𝑏𝑖 demand an extra RAM memory of 𝑞2+𝑧 + 𝑞2 bytes. How-
ever, this is much more advantageous than the usual procedure of

calculating the exponential functions, regardless of the optimization

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.

𝐶

w
l

Fig. 1. Runtime (for a CPU Intel i7-4790K) for the Ising model as function of temperature, where 𝑉 = 128 × 128, 𝐽 = 1 and 𝐵 = 0.1. The plots correspond to averages over 50
simulations, each with 1000 MC steps (much longer than necessary to reach equilibrium). The optimization flags used are those presented in Table 1. In all cases the system starts
with randomly oriented spins (a disordered state).
w

𝛷

f
i
t
|

h

flags. We emphasize that to replace exp[⋅] by 𝐷 does not constitute a
parallelization scheme [41,42]. In this way, parallelization procedures
plus the exp[⋅] → 𝐷 protocol should further improve the simulations
performance.

As a final observation, it should be noted the computational dif-
ficulty to reach the Potts model equilibrium by means of usual MA
protocols, specially for large 𝑞 and lattice sizes (often demanding
special methods [43,44]). In particular, there is a critical value for 𝑞
(𝑞𝑐 = 4) above which the probability to find thermodynamically stable
states are drastically reduced. In these cases, cluster algorithms [45]
and/or tempering schemes [20,46] are often considered to speed up
the states space probing. However, the exponential functions are still
used in these approaches. The precalculation of exp[−𝛽𝛥𝐸] could easily
be extended to such distinct methods. This is a topic we shall explore
in a forthcoming contribution.

4. Some thermodynamic simulation tests

As previously mentioned, the results in Fig. 1 with the functions
OneFliSpl (Eq. (3)) and OneFlipVec (algorithm 5) have been obtained
with 32-bit PRNs, thus speeding up the simulations when compared to
the standard function OneFlipSta of 64-bit. But of course, one should
guarantee that these changes do not alter the final outcomes, namely,
that the computations do lead to the correct thermodynamic quantities
for the model.

To verify this we calculate, as function of the number of iterations 𝑡
(MC steps), the interaction energy (𝐼𝑡), the magnetization (𝑀𝑡) and the
sum of all auto-correlation functions (𝐺𝛷𝑡), for 𝛷 either 𝐼 , 𝑀 , or 𝑆 ,
defined as

𝐼𝑡 =

⟨

∑

⟨𝑖,𝑗⟩
𝑆𝑖 𝑆𝑗

⟩

, 𝑀𝑡 =

⟨

∑

𝑖
𝑆𝑖

⟩

, 𝐺𝛷𝑡 = 1
𝑡 − 1

𝑡−1
∑

𝑠=1
𝐶𝛷(𝑡, 𝑠),

𝛷(𝑡, 𝑠) =
1

(𝑡 − 𝑠) 𝜎𝑡2

𝑡−𝑠
∑

𝜏=1

[

𝛷(𝜏) −𝛷𝑡
][

𝛷(𝜏+𝑠) −𝛷𝑡
]

, (10)

here 𝜎𝑡 is the standard deviation (of 𝑡 values), ⟨∑ ⋅ ⟩ represents the
7

attice average and 𝛷(𝑡) is the cumulative temporal average up to 𝑡, (
hich can be computed as

(𝑡) =
1
𝑡

𝑡
∑

𝜏=1
𝛷𝜏 = 𝛷(𝑡−1) +

𝛷𝑡 −𝛷(𝑡−1)

𝑡
. (11)

We observe that usually, for an already well established algorithm, the
common practice is to evolve the system beyond the transient time
𝑡∗ (often estimated from proper trials) and then, for the equilibrium
thermodynamic quantities, to perform averages taking 𝛷𝑡>𝑡∗ . Since
here we are checking the results for our novel protocols, we prefer to
compute the above 𝛷’s as well as the pressure 𝑝 (see below) in terms
of the cumulative mean in Eq. (11). Besides the physical quantities
themselves, Eq. (11) also gives a fair idea about the converge of the
𝛷𝑡’s to their correct values.

The results for 𝐺𝑀𝑡 , 𝑀(𝑡) and 𝐼(𝑡) as function of 𝑡 using OneFlipSta and
OneFliSpl are displayed in Fig. 2. As can be seen, there are no significant
differences between the values of 𝛷 obtained from the OneFlipYyy func-
tions (Yyy = Sta and Spl). This shows that the efficiency in exploring a
specific region of the phase space is the same for both kinds of PRNs
(64 bit and 32 bit). In other words, the essential elements of the MA
are not altered with the present PRNs splitting. Also, we observe from
Fig. 2 that the steady states are achieved with relatively few iterations
(𝑡 ≈ 10 for 𝑇 = 1.0 and 𝑡 ≈ 100 for 𝑇 = 4.5). This corroborates our
earlier observation that at least 90% of the total iterations leading to
the runtimes in Fig. 1 (with 1000 MC steps) correspond to simulations
at the steady state. Finally, prior to reaching the steady states one easily
identifies a linear evolution of 𝛷𝑀 with 𝑡. This is mainly due to a
competing spin-flip kinetics [47].

Another important check — for the implementation of the OneFliVec
function — is to verify if the right convergence is also obtained for
distinct values of the Ising model parameters 𝐽 and 𝐵. So, in Fig. 3 we
present runtimes and the internal energy density 𝑢 ≡ ⟨𝑆⟩ = −𝐽𝐼−𝐵𝑀
or different compilers and values of 𝐽 and 𝐵. We find that the compiler
cc is more efficient, leading to runtimes around 9–11% shorter. Note

his is similar to the results in Fig. 1. For relatively high values of
𝐽 |, the runtimes diminishes with |𝐽 |, confirming the positive effect of
aving great floating point differences between 𝐷[⋯][⋯] and the PRNs

see the discussion in the paragraph before that of Eq. (6)). For instance,

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.

E
a

a
c

t
o

Fig. 2. Evolution with time 𝑡 (MC steps) of the observables 𝐺𝑀
𝑡 , 𝑀(𝑡) and 𝐼(𝑡) for the Ising model (𝐽 = 1 and 𝐵 = 0.1) considering the MA for both standard and splitting PRNs.

ach curve represents averages over 50 simulation runs in a lattice of volume 𝑉 = 128×128. In all cases, the system starts with randomly oriented spins, such that 𝐺𝑀 =𝑀 = 𝐼 = 0
t 𝑡 = 0.
Fig. 3. For 𝑇 = 1, comparisons of the compilers (gcc and icc) runtimes as well as the behavior of the internal energy density 𝑢(1000) as function of 𝐽 and 𝐵. The simulations
re performed with the function OneFlipVec, where RandInt64I4 is used in RandInt32 (see algorithm 3). The minimal runtimes correspond to the 𝐽 (𝐵) value for which all the 𝑢
urves, for the three distinct 𝐵’s (𝐽 ’s), do intersect — see footnote 4.
o

he function AllExp in algorithm 5 (necessary for the precalculation
f exp[−2𝐸𝑖∕𝑇]) for low temperatures (e.g., 𝑇 = 1 in Fig. 3) gives

−2𝐸 ∕𝑇 ≈ −2 ⟨ ⟩ ∕(𝑉 𝑇) = 2 (𝐽 𝑧 + |𝐵|)∕𝑇 . So, for |𝐽 | ≥ 1 and
8

𝑖 𝑆 0 R
𝐵 = 0.1, we have exp[−2𝐸𝑖∕𝑇] ∼ 10±3, with ± representing the signal
f 𝐽 . Hence, in both cases the floating point numbers of 𝐷[⋯][⋯] and
eal(𝑈∕𝐿2) differ by a factor of 1000, explaining the outcomes in Fig. 3.

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.

E
d
7

t
a
a
𝐽
d
t
r
o

i
i
t
r
e

𝑢

m
m
o
C

Fig. 4. For distinct 𝑇 ’s, the pressure 𝑝(𝑡)(𝑇) versus the total, i.e., accumulated runtime 𝛤 (𝑡), considering different 𝑡 MC steps used to calculated the 𝑢(𝑡)(𝑇𝑛)’s for the integral in
q. (16) (see main text). Here 𝐽 = 1, 𝐵 = 0.1, 𝑉 = 128 × 128 and the reference temperature is 𝑇0 = 1.0. Averages are performed over 300 runs with a CPU i7-4790K employing two
istinct compilers (gcc and icc) and the functions OneFlipSpl and OneFlipVec. The assumed 𝑡’s are 1, 2, 3, 4, 6, 10, 13, 20, 30, 40, 60, 100, 150, 210, 280, 360, 450, 550, 660,
70, 890, 999. The inset shows 𝑝(1000) as a function of 𝑇 .
F

𝑝

p
w
r
𝑝
t
c
i
O

5

a
p
a
a
t
t
s
t

j
T
H
d
a
h
s
t
[
𝐷
n

Inasmuch the 𝑢(𝐽 , 𝐵) curves have been computed at a same low
emperature (𝑇 = 1), crossing lines behavior is observed.4 For example,
well-known first-order phase transition for the Ising model takes place
round 𝐵 = 0. This is identified in the 𝑢(𝐵)-curves for different values of
, illustrating that the novel algorithm correctly describes the system
ynamics. Moreover, a potentially practical useful remark is that for
his lattice model (and probably others), phase transitions might be
elated to local minimums for the runtimes: at an equilibrium state the
ne-flip events are much less frequent, hence reducing the runtimes.

As a final test, let us discuss a quantity which must be computed
ndirectly, so in principle a more involved situation. Moreover, to
llustrate the efficiency of the present computation approach in a
hermodynamic-like analysis for the system, we assume a very simple
e-scaling of the free and internal energy densities in terms of a ref-
rence temperature 𝑇0 (see, e.g., Refs. [48,49]). In this way, suppose

− �̃� = − 1
𝑉
𝜕 ln
𝜕𝛽

, with �̃� ≡ 𝑢(𝑇0), (12)

where is the partition function and 𝑇0 is a low temperature close to
the ground state such that the entropy 𝑆 ≈ 0. Also, for the free-energy
density 𝜓(𝑇) we write

𝜓 − �̃� = − ln
𝑉 𝛽

, with �̃� = 𝜓(𝑇0). (13)

Eqs. (12) and (13) can be combined to yield

−∫

𝛽′′

𝛽′
(𝑢 − �̃�) 𝑑𝛽 = −𝛽′′ (𝜓 ′′ − �̃�) + 𝛽′ (𝜓 ′ − �̃�). (14)

The pressure is related to the free-energy (grand-canonically) through
𝜓 = −𝑝. Then

∫

𝑇 ′′

𝑇 ′

(𝑢 − �̃�)
𝑇 2

𝑑𝑇 =
𝑝(𝑇 ′′) − 𝑝(𝑇0)

𝑇 ′′ −
𝑝(𝑇 ′) − 𝑝(𝑇0)

𝑇 ′ . (15)

4 Usually, the first-order phase transition around 𝐵 = 0 is characterized by
eans of a phase diagram of 𝑀(𝑡≫0) versus 𝐵 and 𝑇 . However, the cross-line
ethod (between two coexisting phases) is also valid for 𝑢(𝐵) and 𝑢(𝐽) in Fig. 3

nce 𝑉 𝛥𝑢 = 𝑇𝛥 and 𝛥 ≈ 0 close to the ground state, with the entropy.
onsequently, 𝑢 is constant in a phase transition.
9

or 𝑇 ′ = 𝑇0 and 𝑇 ′′ = 𝑇 , it reads [50]

(𝑇) = −�̃� + 𝑇 ∫

𝑇

𝑇0

(𝑢 − �̃�)
𝑇 2

𝑑𝑇 . (16)

Now, for 𝑝(𝑡)(𝑇) we can proceed as the following. For each 𝑡, we
calculate 𝑢(𝑡)(𝑇𝑛) at different temperature values 𝑇𝑛 = 𝑇0+𝑛 (𝑇−𝑇0)∕(𝑁−
1) (with 𝑛 = 0,… , 𝑁 − 1). Given 𝑇 , 𝑁 is chosen so to lead to a good
recision for the numerical integration of Eq. (16). From such scheme,
e perform simulations to determine 𝑢(𝑡)(𝑇) and the corresponding

untime for 𝑡 varying from 1 to 999. Finally, setting 𝑡 we compute both
(𝑡) and the accumulated runtimes 𝛤 (𝑡), i.e., the sum of the runtimes
o obtain all the 𝑢(𝑡)(𝑇𝑛)’s. Fig. 4 presents the results using two distinct
ompilers. Again, we observe shorter runtimes when the icc compiler
s used. Also, regarding the efficiency of the functions OneFlipSpl and
neFlipVec, 𝛤 (𝑡) is always shorter for the function OneFlipVec.

. Final remarks and conclusion

In this work we have focused on relatively simple but effective
lgorithmic improvements to reduce the runtime execution of MC
rocedures for lattice systems. More specifically, we have addressed
nd optimized some computational features in the Mersenne-Twister
nd Metropolis protocols. As a case study we have considered in details
he standard Ising model. Nevertheless, it is important to emphasizes
hat all the innovations proposed here could easily be implemented in
imilar classes of problems, as briefly discussed for the Potts model in
he end of Section 3.

Although lattice models constitute a very relevant class of problems,
ustifying the present developments, we should observe the following.
aking into consideration the possible types of energy changes for a
amiltonian 𝐻 , there are two kinds of Monte Carlo implementations:
iscrete (DMC) and continuous (CMC) frameworks. The DMC methods
re mainly aimed to lattice problems (exactly the situation analyzed
ere), allowing the precalculation of all probabilities. However, in CMC
chemes, Hamiltonians are usually more complex depending on con-
inuous potentials and displaying continuous spectra — refer, e.g., to
51–55]. Of course, in these cases our discretization method (through
) could not be applied. Also for CMC, which still depend on random
umber generators, the optimization of the PRNs could have a limited

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.

i

t
t

S
a
M
F
W
R
C
S

D

c
i
D

A

3
(
u
o
0
a

A

P
u
S
R

s

b
t
S
T
T
s

f
i
a
t
s
R
2

impact. But this demands extra analysis, outside the scope of our
present study.

At this point is useful to summarize and make few extra observations
about the main computational developments put forward in the present
contribution:

1. Certainly, the precalculation of the Boltzmann factor, given by
an exponential function (used in OneFlipSta and OneFlipSpl), will
always lead to a performance gain for lattice systems. The key-
point is to take advantage of the discrete changes of energy
𝛥𝐸 in the attempts of state updates. Indeed, in some setups
we have been able to reduce in 50% the runtimes compared to
the traditional method, see Fig. 1. However, this gain can vary
according to the compiler (and library) employed. For instance,
in our case the gcc (math.h) has been more efficient than the
icc (mathimf.h).

2. Proper refinements of PRNs generators should diminish the
runtimes in MC simulation methods. This fact motivated us to
propose four upgrades (Section 2) for the Mersenne-Twister algo-
rithm, which has been incorporated into the functions
RandInt64I4 and Rand32Int. However, the concrete gain depends
on the features of the compilers optimization flags once the num-
ber of ‘‘optimization paths’’ in the solution space for the ASRO
increases with the number of conditionals, loops, entanglements,
etc [56,57] present in the actual code. For example, the opti-
mization options used for the icc compiler are not so efficient
for computations employing only the function RandInt64XX into
RandInt32 (see Table 3) given that in this case there are just few
ASRO. On the other hand, this same compilation configuration
— compared to the gcc compiler — is the most efficient if
the simulations use the OneFlipVec function. We mention that
benchmarks contrasting gcc and icc for other algorithms can
be found in [58].

Another important strategy has been to divide a single 64 bit PRN
nto two 32 bit PRNs (achieved through the substitution of RandInt64XX

by RandInt32).5 But obviously one must be sure that this type of change
does not modify the simulated physical quantities, something we have
confirmed with the comparisons in Fig. 2. In this regard, the Ising is
one of the simplest lattice models available, thus requiring relatively
few PRNs (1282 × 103 in Figs. 2–4). Nevertheless, we mention that in
a recent work [50] (whose goal was not to discuss algorithmic im-
provement techniques) some of the authors have used the present PRNs
implementation for the much more complex Blume–Emery–Griffiths
and Bell–Lavis models, obtaining good results. So, the improvements
observed here are not only an artifact of the relative simplicity of
the Ising model. We should mention that currently we are testing all
these protocols in the simulations of rather involved systems, like some
stochastic effects in organic solar cells [59–61], with promising initial
findings. The full analysis will be reported in the due course.

We highlight that any study demanding sampling and/or stochastic
sorting (associated to Brownian, Poisson, Markov, Branching, Bernoulli,
Wiener, and many others processes) and even more sophisticated MC
implementations, like the variational [62] and diffusion [63], should
also present speedups by means of both the MTA updates and the
Boltzmann factor precalculation approach. This also would be the
case for replica methods, like the simulated and parallel tempering
(for an overview see, e.g., [64]). Indeed, they involve attempts to
change the temperature between replicas via an exponential distribu-
tion probability, which then could be precalculated exactly as done
here.

We hope the present proposals can help future developments in
computational physics, specially in the context of statistical lattice
models.

5 It is important to emphasize that although the 64-bit PRNs have been split,
he method considered assured that the pseudo-homogeneous distribution of
he 32-bit PRNs have not been notably altered from that of the original PRNs.
10

p

CRediT authorship contribution statement

A.E. Macias-Medri: Conceptualization, Software, Development,
imulations, Investigation, Methodology, Software, Validation, Visu-
lization, Writing – original draft. G.M. Viswanathan: Investigation,
ethodology, Visualization, Writing – review & editing. C.E.
iore: Software development, Investigation, Methodology, Software,
riting – review & editing. M. Koehler: Project administration,
esources, Methodology, Writing – review & editing. M.G.E. da Luz:
onceptualization, Funding acquisition, Methodology, Resources,
upervision, Writing – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
ata availability

No data was used for the research described in the article.

cknowledgments

We acknowledge the CNPq grants 302051/2018-0 (Viswanathan),
04532/2019-3 (Luz), 310251/2021-4 (Koeler), 309313/2021-7
Fiore), as well as financial support from the project ‘‘Efficiency in
ptake, production and distribution of photovoltaic energy as well as
ther renewable sources of energy’’ (Grant No. 88881.311780/2018-
0) via CAPES Print-UFPR. This latter project is also acknowledge for
post-doc fellowship (Macias-Medri).

ppendix. Analysis of the 32 bits and 64 bits PRNs

In order to verify the quality of sequences of 32- and 64-bits
RNs, we have considered a total of 15 distinct test indicators (TI)
sing the standard open source code NIST Statistical Test Suite (NIST-
TS) [65], with 107 PRNs generated from the algorithms RandInt64OA,
andInt64I4 and RandInt32.

For all the TI’s, an important parameter for the analysis is the
tatistical 𝑃 -value. Whenever a stream of PRNs give 𝑃 > 0.01, this im-

plies that the sequence can be considered random for most of practical
purposes (details in [65]). Also, unless for TI08, TI12 and TI13, for the
remaining TI’s one can ascribe an unique value for this quantifier.

The analysis for TI01-07, T109-11 and TI14-15 are presented in
Table A.4. We first remark that the 𝑃 -values are always identical for
oth RandInt64OA and RandInt64I4. This is another indication that
he PRNs are not altered by implementing our four improvements.
econd, RandInt32 has exact the same 𝑃 -values than RandInt64XX for
I01-03 and TI06 and almost the same for TI11. For the other TI’s in
able A.4 the results differ, but the 𝑃 -values for RandInt32 are always
atisfactory, above 𝑃 > 0.01 (for the smallest, TI07, it is 0.0176).

The test indicators TI08, TI12 and TI13 are depicted in Fig. A.5
or RandInt64OA and RandInt32 (the modified algorithm RandInt64I4
s totally analogous to RandInt64OA, so not shown). Observe that TI12
nd TI13 are invariably successful for both algorithms. The TI08, which
ries to detect certain periodic overlappings among the considered
equence templates (here 147), has found just one failure (𝑃 < 0.01) for
andInt64OA (thus 0.68% of the cases) and four for RandInt32 (thus,
.72% of the cases).

Therefore, we can conclude that the obtained PRNs are very appro-
riate for the MC simulations.

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.
Table A.4
Twelve test indicators (TI) from the free software NIST-STS random number checker program [65], estimating
the quality of 107 PRNs having 32- and 64-bits. A pseudo-random number stream is satisfactory if 𝑃 > 0.01.

RandInt64OA RandInt64I4 RandInt32

01 Frequency 0.174903 0.174903 0.174903
02 Block Frequency 0.663591 0.663591 0.663591
03 Cumulative Sums 0.318118 0.318118 0.318492
04 Runs 0.126679 0.126679 0.212574
05 Longest Runs of Ones 0.801665 0.801665 0.692375
06 Rank 0.568834 0.568834 0.568834
07 Discrete Fourier Transform 0.454043 0.454043 0.017608
09 Overlapping Template Matchings 0.813638 0.813638 0.466733
10 Universal Statistical 0.435835 0.435835 0.994476
11 Approximate Entropy 0.875363 0.875363 0.865356
14 Serial (lowest) 0.353316 0.353316 0.924530
15 Linear Complexity 0.575134 0.575134 0.738255
Fig. A.5. Results from the NIST-STS (TI08, TI12 and TI13) for sequences of 107 PRNs of 32- and 64-bit (MTA). Very few failures (𝑃 < 0.01) are identified an only for TI08 (in a
total of 147 subtests). For 64-bit it occurs just once (template=111101000) and for 32-bit four times (templates=000010001, 000011011, 000111011, 110011010).
References

[1] W.K. Chan, Theory and Applications of Monte Carlo Simulations, first ed.,
IntechOpen, London, 2013.

[2] B. Larget, Introduction to Markov chain Monte Carlo methods in molecular
evolution, in: R. Nielsen (Ed.), Statistical Methods in Molecular Evolution,
Springer, New York, 2005, pp. 45–65, Ch. 3.

[3] D.P. Kroese, T. Brereton, T. Taimre, Z. Botev, Why the Monte Carlo method is
so important today? WIREs Comput. Stat. 6 (2014) 386–392.

[4] D.P. Landau, K. Binder, Monte Carlo Simulations in Statistical Physics, fifth ed.,
Cambridge University Press, Cambridge, 2020.

[5] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation
of state calculations by fast computing machines, J. Chem. Phys. 21 (1953)
1087–1092.

[6] I. Beichl, F. Sullivan, The Metropolis algorithm, Comput. Syst. Sci. Eng. 2 (1)
(2000) 65–69.

[7] P. Diaconis, L. Saloff-Coste, What do we know about the Metropolis
algorithm? J. Comput. Syst. Sci. 57 (1) (1998) 20–36.

[8] B. Ydri, Computational Physics: An Introduction to Monte Carlo Simulations of
Matrix Field Theory, World Scientific, Singapore, 2017, pp. 89–104, Ch. 9.

[9] P. Mathé, E. Novak, Simple Monte Carlo and the Metropolis algorithm,
J. Complex. 23 (2007) 673–696.

[10] T.M. Yeh, J.J. Sun, Using the Monte Carlo simulation methods in gauge
repeatability and reproducibility of measurement system analysis, JART 11 (5)
(2013) 780–796.

[11] M.K. Cowles, B.P. Carlin, Markov chain Monte Carlo convergence diagnostics: A
comparative review, J. Am. Stat. Assoc. 91 (434) (1996) 883–904.

[12] R.J.N. Baldock, Classical Statistical Mechanics with Nested Sampling (Ph.D.
thesis), University of Cambridge, Cambridge, 2017.
11
[13] L.R. Ernst, R. Valliant, R.J. Casady, Permanent and collocated random number
sampling and the coverage of births and deaths, J. Off. Stat. 16 (3) (2000)
211–228.

[14] V. Tirronen, S. Äyrämö, M. Weber, Study on the effects of pseudorandom
generation quality on the performance of differential evolution, in: A. Dobnikar,
U. Lotrič, B. Šter (Eds.), Adaptive and Natural Computing Algorithms, Springer,
Berlin, 2011, pp. 361–370.

[15] D.J. Duffy, Random number generation and distributions, in: D.J. Duffy,
J. Kienitz (Eds.), Monte Carlo Frameworks: Building Customisable High-
Performance C++ Applications, John Wiley & Sons, Ltd, New Delhi, 2015, pp.
571–599, Ch. 22.

[16] G. Marsaglia, Xorshift RNGs, J. Stat. Softw. 8 (14) (2003) 1–6.
[17] W.H. Payne, J.R. Rabung, T.P. Bogyo, Coding the lehmer pseudo-random number

generator, Commun. ACM 12 (2) (1969) 85–86.
[18] H. Suzuki, Monte Carlo simulation of classical spin models with chaotic billiards,

Phys. Rev. E 88 (2013) 052144.
[19] J. Anosh, Markov Chain Monte Carlo Methods in Quantum Field Theories: A

Modern Primer, Springer, Cham, 2020.
[20] C.E. Fiore, M.G.E. da Luz, Exploting a semi-analytic approach to study first order

phase transitions, J. Chem. Phys. 138 (2013) 014105.
[21] F. Faizi, G. Deligiannidis, E. Rosta, Efficient irreversible Monte Carlo samplers,

J. Chem. Theory Comput. 16 (2020) 2124–2138.
[22] T.H. Click, G.A. Kaminski, A.B. Liu, Quality of random number generators

significantly affects results of Monte Carlo simulations for organic and biological
systems, J. Comput. Chem. 32 (3) (2011) 513–524.

[23] M. Matsumoto, T. Nishimura, Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator, ACM Trans. Model. Com-
put. Simul. 8 (1) (1998) 3–30.

[24] F. Sepehria, M. Hajivalieia, H. Rajabib, Selection of random number generators
in GATE Monte Carlo toolkit, Nucl. Instrum. Methods Phys. Res. A 973 (2020)
164172.

http://refhub.elsevier.com/S1877-7503(22)00269-1/sb1
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb1
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb1
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb3
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb3
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb3
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb4
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb4
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb4
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb5
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb5
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb5
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb5
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb5
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb6
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb6
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb6
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb7
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb7
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb7
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb8
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb8
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb8
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb9
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb9
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb9
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb10
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb10
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb10
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb10
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb10
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb11
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb11
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb11
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb12
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb12
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb12
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb13
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb13
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb13
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb13
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb13
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb14
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb14
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb14
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb14
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb14
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb14
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb14
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb15
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb15
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb15
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb15
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb15
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb15
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb15
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb16
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb17
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb17
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb17
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb18
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb18
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb18
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb19
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb19
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb19
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb20
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb20
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb20
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb21
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb21
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb21
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb22
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb22
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb22
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb22
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb22
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb23
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb23
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb23
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb23
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb23
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb24
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb24
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb24
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb24
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb24

Journal of Computational Science 66 (2023) 101910A.E. Macias-Medri et al.
[25] K. Hongo, R. Maezono, K. Miura, Random number generators tested on quantum
Monte Carlo simulations, J. Comput. Chem. 31 (2010) 2186–2194.

[26] O.R. Chaparro-Amaro, J. Martínez-Castro, S. Yung-Jun, Vectorization techniques
for probability distribution functions using VecCore, JPCS 1525 (2020) 012106.

[27] N.G. Dickson, K. Karimi, F. Hamze, Importance of explicit vectorization for CPU
and GPU software performance, J. Comput. Phys. 230 (13) (2011) 5383–5398.

[28] J.M.P. Cardoso, J.G.F. Coutinho, P.C. Diniz, Embedded Computing for High
Performance, first ed., Morgan Kaufmann, Boston, 2017, pp. 185–225, Ch. 6.

[29] P.P. Chang, W.W. Hwu, Inline function expansion for compiling c programs,
in: R. Wexelblat (Ed.), Proceedings of the ACM SIGPLAN 1989 Conference on
Programming Language Design and Implementation, ACM, New York, 1989, pp.
246–257.

[30] D. Cociorva, J.W. Wilkins, C. Lam, G. Baumgartner, J. Ramanujam, P. Sadayap-
pan, Loop optimization for a class of memory-constrained computations, in: M.M.
Furnari, E. Gallopoulos (Eds.), Proceedings of the 15th International Conference
on Supercomputing, ACM, New York, 2001, pp. 103–113.

[31] O. Zendra, Memory and compiler optimizations for low-power and -energy,
in: R. Ducournau, E. Gagnon, C. Krintz, P. Mulet, J. Vitek, O. Zendra (Eds.),
ECOOP 2006: Workshop on Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems, HAL-Inria, Nantes, 2006, p.
8, arXiv:cs/0610028v1.

[32] S. Joannou, R. Raman, An empirical evaluation of extendible arrays, in: P.M.
Pardalos, S. Rebennack (Eds.), Experimental Algorithms. SEA 2011, in: Lecture
Notes in Computer Science, vol. 6630, Springer, Heidelberg, 2011, pp. 447–458.

[33] J.A. Doornik, Conversion of high-period random numbers to floating point,
TOMACS 17 (1) (2007) 3–es.

[34] W. Janke, Monte Carlo simulations in statistical physics – from basic principles to
advanced applications, in: Y. Holovatch (Ed.), in: Order, Disorder and Criticality,
vol. 3, World Scientific, Singapore, 2012, pp. 93–166, Ch. 3.

[35] W. Janke, H. Christiansen, S. Majumder, Coarsening in the long-range ising
model: Metropolis versus glauber criterion, J. Phys.:Conf. Ser. 1163 (2019)
012002.

[36] P.-T.P. Tang, Table-driven implementation of the exponential function in IEEE
floating-point arithmetic, ACM Trans. Math. Softw. 15 (2) (1989) 144–157.

[37] J.M. Muller, Range reduction, in: Elementary Functions, Springer, Boston, 1997,
pp. 143–162, Ch. 8.

[38] W. Stallings, Computer Organization and Architecture: Designing for Perfor-
mance, tenth ed., Pearson, London, 2016.

[39] G. Dahlquist, A. Björck, Numerical Methods in Scientific Computing, Vol. 1,
SIAM, Philadelphia, 1997.

[40] F.Y. Wu, The Potts model, Rev. Mod. Phys. 54 (1982) 235.
[41] E.E. Ferrero, J.P. De Francesco, N. Wolovick, S.A. Cannas, 𝑞-State Potts

model metastability study using optimized GPU-based Monte Carlo algorithms,
Comp. Phys. Comm. 183 (2012) 1578–1587.

[42] F. Piccini-Cercato, J.C.M. Mombach, G.G.H. Cavalheiro, High performance sim-
ulations of the cellular Potts model, in: 20th International Symposium on
High-Performance Computing in an Advanced Collaborative Environment, IEEE,
St.John’s-NL, 2006, p. 28.

[43] B.A. Berg, T. Neuhaus, Multicanonical ensemble: A new approach to simulate
first-order phase transitions, Phys. Rev. Lett. 68 (9) (1992) 9–12.

[44] F. Wang, D.P. Landua, Efficient, multiple-range random walk algorithm to
calculate the density of states, Phys. Rev. Lett. 86.

[45] R.H. Swendsen, J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo
simulations, Phys. Rev. Lett. 58 (1987) 86–88.

[46] A. Valentim, M.G.E. da Luz, C.E. Fiore, Determining efficient temperature sets for
the simulated tempering method, Comp. Phys. Comm. 185 (2014) 2046–2055.

[47] C. Nuno, First-order phase transition in a 2D random-field ising model with
conflicting dynamics, J. Stat. Mech.: Theory Exp. 2009 (02) (2009) P02058.

[48] P. Pfeuty, R.J. Elliott, The ising model with a transverse field. II. Ground state
properties, J. Phys. C: Solid State Phys. 4 (15) (1971) 2370–2385.
12
[49] A.J. Guttmann, I.G. Enting, Series studies of the Potts model. I. The simple cubic
ising model, J. Phys. A: Math. Gen. 26 (1993) 807–821.

[50] A.E. Macias-Medri, C.E. Fiore, M.G.E. da Luz, Analyzing and validating simulated
tempering implementations at phase transition regimes, Comput. Phys. Commun.
260 (2021) 107256.

[51] P. Fearnhead, J. Bierkens, M. Pollock, G.O. Roberts, Piecewise deterministic
Markov processes for continuous-time Monte Carlo, Statist. Sci. 33 (3) (2018)
386–412.

[52] W.L. Jorgensen, J. Tirado-Rives, Molecular modeling of organic and biomolecular
systems using BOSS and MCPRO, J. Comput. Chem. 26.

[53] I.C. de Vaca, Y. Qian, J.Z. Vilseck, J. Tirado-Rives, W.L. Jorgensen, Enhanced
Monte Carlo methods for modeling proteins including computation of absolute
free energies of binding, J. Chem. Theory. Comput. 14 (6) (2018) 3279–3288.

[54] G. Zhou, Mixed Hamiltonian Monte Carlo for mixed discrete and continuous
variables, in: H. Larochelle, M. Ranzato, R.T. Hadsell, M.F. Balcan, H. Lin
(Eds.), NIPS’20: Proceedings of the 34th International Conference on Neural
Information Processing Systems, Curran Associates Inc., Red Hook-NY, 2020, pp.
17094–17104.

[55] M.M. ghahremanpour, J. Tirado-Rives, W.L. Jorfensen, Refinement of the op-
timized potentials for liquid simulations force field for thermodynamics and
dynamics of liquid alkanes, J. Phys. Chem. B 126 (31) (2022) 5896–5907.

[56] R.H. Saavedra, Performance characterization of optimizing compilers,
IEEE Trans. Softw. Eng. 21 (7) (1995) 615–628.

[57] K.D. Cooper, S. Devika, T. Linda, Adaptive optimizing compilers for the 21st
century, J. Supercomput. 23 (1) (2002) 7–22.

[58] A. Abedalmuhdi, A. Afnan, B. Lakshmy, GCC vs. ICC comparison using PARSEC
benchmarks, IJITEE 4 (7) (2014) 76–82.

[59] R.A. Marsh, C. Groves, N.C. Greenham, A microscopic model for the behavior
of nanostructured organicphotovoltaic devices, J. Appl. Phys. 101 (8) (2007)
083509.

[60] P.K. Watkins, A.B. Walker, G.L.B. Verschoor, Dynamical Monte Carlo modelling
of organic solar cells: The dependence of internal quantum efficiency on
morphology, Nano Lett. 5 (9) (2005) 1814–1818.

[61] C. Groves, N.C. Greenham, Monte Carlo simulations of organic photovoltaics,
in: D. Beljonne, J. Cornil (Eds.), Multiscale Modelling of Organic and Hybrid
Photovoltaics, Springer, Berlin, 2013, pp. 257–278.

[62] B. Rubenstein, Introduction to the variational Monte Carlo method in quantum
chemistry and physics, in: J. Wu (Ed.), Variational Methods in Molecular
Modeling, Springer, Singapore, 2017, pp. 285–313.

[63] P.J. Reynolds, J. Tobochnik, H. Gould, Diffusion quantum Monte Carlo,
Comput. Phys. 4 (1990) 662.

[64] C.E. Fiore, M.G.E. da Luz, Comparing parallel- and simulated-tempering-
enhanced sampling algorithms at phase-transitions regimes, Phys. Rev. E 82
(2010) 031104.

[65] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, A statistical test suite for
random and pseudorandom number generators for cryptographic applications,
Special Publication (NIST SP) 800-22 Rev 1a, National Institute of Standards
and Technology, Gaithersburg, MD, USA, 2010.

M. G. E. da Luz: was born in 1968 in Ponta Grossa-PR,
Brazil. He achieved a diploma in Physics at the University
Federal of Paraná (UFPR) in 1991 and a Doctoral degree
in Physics at Unicamp in 1995. He was a post-doc at
Harvard University from 1995 to 1997. Since 1998 he has
been at the Physics Department at UFPR, becoming a full
professor in 2017. For many years he has leading the group
of Complexity, Non-Linearity and Disorder in Classical and
Quantum Systems at UFPR.

http://refhub.elsevier.com/S1877-7503(22)00269-1/sb25
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb25
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb25
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb26
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb26
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb26
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb27
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb27
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb27
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb28
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb28
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb28
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb29
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb29
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb29
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb29
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb29
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb29
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb29
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb30
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb30
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb30
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb30
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb30
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb30
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb30
http://arxiv.org/abs/cs/0610028v1
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb32
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb32
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb32
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb32
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb32
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb33
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb33
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb33
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb34
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb34
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb34
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb34
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb34
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb35
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb35
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb35
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb35
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb35
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb36
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb36
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb36
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb37
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb37
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb37
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb38
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb38
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb38
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb39
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb39
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb39
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb40
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb41
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb41
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb41
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb41
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb41
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb42
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb42
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb42
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb42
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb42
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb42
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb42
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb43
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb43
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb43
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb44
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb44
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb44
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb45
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb45
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb45
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb46
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb46
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb46
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb47
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb47
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb47
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb48
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb48
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb48
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb49
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb49
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb49
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb50
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb50
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb50
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb50
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb50
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb51
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb51
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb51
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb51
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb51
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb52
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb52
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb52
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb53
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb53
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb53
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb53
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb53
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb54
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb54
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb54
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb54
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb54
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb54
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb54
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb54
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb54
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb55
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb55
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb55
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb55
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb55
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb56
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb56
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb56
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb57
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb57
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb57
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb58
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb58
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb58
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb59
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb59
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb59
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb59
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb59
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb60
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb60
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb60
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb60
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb60
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb61
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb61
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb61
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb61
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb61
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb62
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb62
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb62
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb62
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb62
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb63
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb63
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb63
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb64
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb64
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb64
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb64
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb64
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb65
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb65
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb65
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb65
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb65
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb65
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb65
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb65
http://refhub.elsevier.com/S1877-7503(22)00269-1/sb65

	Speedup of the Metropolis protocol via algorithmic optimization
	Introduction
	Upgrading the Mersenne-Twister Algorithm
	Boltzmann factor precalculation method
	Some thermodynamic simulation tests
	Final remarks and conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Analysis of the 32 bits and 64 bits PRNs
	References

