
Molecular Ecology. 2023;32:3257–3275.	﻿�   | 3257wileyonlinelibrary.com/journal/mec

Received: 15 September 2022  | Revised: 24 January 2023  | Accepted: 27 February 2023

DOI: 10.1111/mec.16912  

O R I G I N A L  A R T I C L E

Shifts in functional traits and interactions patterns of soil 
methane-cycling communities following forest-to-pasture 
conversion in the Amazon Basin

Dasiel Obregon Alvarez1,2  |   Leandro Fonseca de Souza1  |   Lucas William Mendes1  |   
Moacir Tuzzin de Moraes1  |   Micaela Tosi2  |   Andressa Monteiro Venturini1  |    
Kyle M. Meyer3,4  |   Plínio Barbosa de Camargo1  |   Brendan J. M. Bohannan4  |    
Jorge L. Mazza Rodrigues5,6  |   Kari E. Dunfield2  |   Siu Mui Tsai1

1Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
2School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
3Department of Integrative Biology, University of California-Berkeley, Berkeley, California, USA
4Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
5Department of Land, Air, and Water Resources, University of California-Davis, Davis, California, USA
6Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

Dasiel Obregon Alvarez and Leandro Fonseca de Souza contributed equally to this work. 

Correspondence
Dasiel Obregon Alvarez, School of 
Environmental Science, University of 
Guelph, 50 Stone Road East, Guelph, ON, 
N1G 2W1, Canada.
Email: dasieloa@uoguelph.ca

Funding information
Canada First Research Excellence Fund; 
Conselho Nacional de Desenvolvimento 
Científico e Tecnológico, Grant/Award 
Number: CNPq - 311008/2016-0; 
140953/2017-5; 307670/2021-0; 
Coordenação de Aperfeiçoamento 
de Pessoal de Nível Superior, Grant/
Award Number: CAPES- 001; 
88887.185941/2018-00; Fundação 
de Amparo à Pesquisa do Estado de 
São Paulo, Grant/Award Number: 
FAPESP- 2014/50320-4; 2015/13546-
7; 2016/24695-6;, 2015/13546-7 
and 2016/24695-6;; National Science 
Foundation - Dimensions of Biodiversity, 
Grant/Award Number: DEB 1442214; 
Natural Sciences and Engineering 
Research Council of Canada

Handling Editor: Aurélie Bonin

Abstract
Deforestation threatens the integrity of the Amazon biome and the ecosystem ser-
vices it provides, including greenhouse gas mitigation. Forest-to-pasture conversion 
has been shown to alter the flux of methane gas (CH4) in Amazonian soils, driving 
a switch from acting as a sink to a source of atmospheric CH4. This study aimed to 
better understand this phenomenon by investigating soil microbial metagenomes, fo-
cusing on the taxonomic and functional structure of methane-cycling communities. 
Metagenomic data from forest and pasture soils were combined with measurements 
of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical 
approaches. We found a significantly higher abundance and diversity of methanogens 
in pasture soils. As inferred by co-occurrence networks, these microorganisms seem 
to be less interconnected within the soil microbiota in pasture soils. Metabolic traits 
were also different between land uses, with increased hydrogenotrophic and methy-
lotrophic pathways of methanogenesis in pasture soils. Land-use change also induced 
shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring 
genes encoding the soluble form of methane monooxygenase enzyme (sMMO) de-
pleted in pasture soils. Redundancy analysis and multimodel inference revealed that 
the shift in methane-cycling communities was associated with high pH, organic mat-
ter, soil porosity and micronutrients in pasture soils. These results comprehensively 
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1  |  INTRODUC TION

The Amazon basin, with an area of ~5.3 million km2, constitutes 40% 
of the world's rainforests. This biome provides important local, re-
gional and global ecosystem services, including climate regulation, 
carbon sequestration, hydrological cycling and greenhouse gas 
(GHG) uptake (Aragão et al., 2014; Strand et al., 2018). However, de-
spite enormous efforts to preserve the Amazon biome over the last 
decades, deforestation and agribusiness continue to be a significant 
threat (Artaxo, 2019; Rajão et al., 2020). It is estimated that ~20% 
of the Brazilian Amazon forest has already been converted into ag-
ricultural areas (Artaxo,  2019), with the predominant use (~89%) 
being cattle ranching (Amazonía, 2020). Amazon deforestation and 
cattle ranching are closely intertwined with GHG emissions in Brazil 
(Lapola et al., 2014; Malhi et al., 2008), and has led to a significant 
decline in the carbon sink capacity of the Amazon (Gatti et al., 2021).

Methane (CH4) is one of the most affected GHGs due to land-
use change (LUC) in the Amazon, including an increasing production 
(+11%) by cattle enteric fermentation (Basso et al., 2021). In addi-
tion, studies conducted 30 years ago revealed that Amazonian forest 
soils, which normally are sinks of atmospheric CH4, shift from sinks 
to sources of CH4 emission following conversion from forest to pas-
ture (Fernandes et al., 2002; Steudler et al., 1996). Methane cycling 
in upland soils is driven by microbial community dynamics in which 
CH4 is produced by strictly anaerobic archaea (methanogens), and 
then oxidized by aerobic bacteria (methanotrophs) that use CH4 as 
a carbon and energy source. It is estimated that 50%–90% of the 
CH4 produced below ground is oxidized by methanotrophs before 
reaching the atmosphere (Conrad, 2009; Kotsyurbenko et al., 2004).

Methane production or methanogenesis is the final step in the an-
aerobic degradation of organic matter (Conrad, 2020; Serrano-Silva 
et al., 2014). Depending on the available substrates, three main met-
abolic pathways are used: (i) hydrogenotrophic, (ii) acetoclastic and 
(iii) methylotrophic methanogenesis (Evans et al., 2019). Acetoclastic 
and hydrogenotrophic pathways are the most common methano-
genic pathways and contribute around 67% and 33% of CH4 biosyn-
thesis, respectively (Conrad, 2009; Kotsyurbenko et al., 2004). The 
role of methylotrophic methanogenesis is less clear (Conrad, 2020). 
However, the recent discovery of hydrogen-dependent methy-
lotrophic methanogens in the order Methanomassiliicoccales sug-
gests they may be common in soils (Söllinger & Urich, 2019). The last 
step of the three methanogenesis pathways consists of the reduction 

of methyl-coenzyme M to CH4, which is catalysed by the methyl-
coenzyme M reductase (MCR) enzyme complex (Evans et al., 2019). 
Two forms of MCR exist: the MCR-I which is present in all methano-
gens, while the isoenzyme MCR-II is only present in members of the 
classes Methanococci and Methanobacteria (Rospert et al., 1990).

Methane oxidation or methanotrophy involves two pathways, 
the Type I methanotrophs (γ-Proteobacteria) use the ribulose mono-
phosphate (RuMP) pathway, while Type II (α-Proteobacteria) use the 
serine pathway (Knief, 2015). The first step in both methanotrophy 
pathways consists of the oxidation of CH4 to methanol (CH3OH), cat-
alysed by the enzyme methane monooxygenase (MMO; Knief, 2015; 
McDonald et al., 2008). Two forms of MMO have been identified, 
the most common being a copper-containing membrane-bound en-
zyme particulate MMO (pMMO) found in nearly all methanotrophs, 
while the cytosolic iron-containing soluble (sMMO) form is present 
in just a few methanotrophs (Banerjee et al., 2019).

Studies in the Amazon Basin have demonstrated the impacts of 
LUC on soil microbiota (de Carvalho et al., 2016; Mendes et al., 2015; 
Navarrete et al.,  2011; Paula et al.,  2014; Rodrigues et al.,  2013). 
Ground-breaking work at the Amazon Rainforest Microbial 
Observatory (AMRO) in the Brazilian state of Rondonia used a com-
bined approach of quantifying methanotrophs and methanogens 
using functional genes, and metagenomics to characterize methane-
cycling organisms (Meyer et al., 2017). Their study found that forest-
to-pasture conversion at ARMO had few impacts on methanogen 
community, and suggested that the shift to methane emission may 
be due to altered methane consumption rates caused by changes to 
the methanotroph community. However, the study was limited to 
one unique site. More recently, an expanded study looking at mul-
tiple regions in Amazonia found that while all converted pastures 
emitted CH4, the Rondonian pastures showed the highest CH4 
emissions. Using an amplicon sequencing approach, it was evident 
that the Rondonian pastures had the highest microbial richness, 
and contrary to Meyer et al.  (2017), higher methanogen and lower 
methanotroph relative abundance (Meyer et al., 2020). Using undis-
turbed soil columns from the same sites, Kroeger et al. (2020) used a 
stable isotope probing (SIP)-DNA approach and determined that ac-
tive methanogenesis was higher in pastures compared to rainforest 
soil cores. While these studies shed light on possible microbial pro-
cesses driving the shift to methane emission, they were limited by 
the amplicon sequencing approaches, or laboratory-based studies. 
Gaps remain regarding the environmental factors driving increased 

characterize the effect of forest-to-pasture conversion on the microbial communities 
driving the methane-cycling microorganisms in the Amazon rainforest, which will con-
tribute to the efforts to preserve this important biome.

K E Y W O R D S
land-use change, metagenomics, methanogens, methanotrophs, microbial networks, soil 
functioning
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methanogenesis in pasture soils, and the enzymatic pathways that 
may be involved.

LUC affects several soil properties, including organic matter, car-
bon and nutrient cycling, pH, and soil structure and porosity (Oguike 
& Mbagwu, 2009) which are known to affect methanogenesis and 
methanotrophy (Serrano-Silva et al.,  2014; Tate,  2015). A better 
understanding of the abiotic and biological processes regulating 
soil CH4 flux will allow the prediction of conditions (e.g., land-use 
and management practices) that favour higher soil CH4 oxidation 
rates and lower net CH4 emissions (Fonseca De Souza et al., 2021; 
Tate,  2015). Furthermore, microbe–microbe interactions prob-
ably play a key role in these systems. Methanogens are known to 
be syntrophically related and cannot exist independently (Fowler 
et al.,  2016; Kotsyurbenko,  2005; Zhang et al.,  2020), while stud-
ies on methanotrophs suggest that their interaction with nonmeth-
anotrophic microbes can modulate CH4 oxidation (Ho et al., 2016, 
2020). The analysis of microbial networks constitutes a useful tool 
to explore microbial community structure, enabling the predictions 
of community states, patterns of species interactions and the identi-
fication of hub species (Morriën et al., 2017; Röttjers & Faust, 2018).

In this study, we use metagenomic sequencing from field-
collected soil samples to assess functional gene content and high-
resolution taxonomic structure, as well as to analyse predicted 
microbe–microbe interaction networks in forest and pasture soils. 
The aims were to: (i) determine the community composition of 
methanogens and methanotrophs, and their relative abundance 
within the soil microbiota; (ii) determine the interaction range and 
“keystoneness” of CH4-cycling microorganisms; and (iii) identify the 
shift in metabolic traits from CH4-cycling communities in forest and 

pasture soils. Lastly, we use a multimodel inference approach to de-
termine the relative importance of soil physicochemical properties 
and shifts in CH4-cycling microbial community traits in predicting 
CH4 fluxes (in situ measurements). Specifically, the analyses aimed 
to (i) identify the changes in soil abiotic factors underlying shifts in 
CH4-cycling communities, and (ii) identify the best predictive vari-
ables of CH4 fluxes, using integrated analysis of soil abiotic factors 
and microbial functional traits.

2  |  METHODS

2.1  |  Study area and sampling

This study was carried out at “Agropecuaria Nova Vida” (09°54′58″S, 
63°02′27″W), a 20,000-ha cattle ranch in the central region of 
Rondônia state, Brazil (Figure 1). Habitats in this area belong to the 
Amazon biome, where the local climate is humid tropical and classi-
fied as Af (Koppen's classification), with a mean annual temperature 
of 25.5°C and precipitation of 2200 mm (Alvares et al., 2013). The 
soil is classified as Ultisol (Santos et al., 2018). Forest soil comprises 
areas of primary (undisturbed) forest. The pasture areas were es-
tablished in 1972, following slash-and-burn soil preparation with no 
mechanical interventions or chemical fertilization (Feigl et al., 2006). 
Pastures are managed by cattle rotation, fire applied only to control 
eventual pests, mechanical removal of invasive trees, and at least 
one record of liming 15 years before the sampling.

Soil and gas samples were taken in April 2017 at the end of the 
rainy season, which occurs from October to May. The samples were 

F I G U R E  1  Geographical location of the study area. (a) Map of South America showing the Amazon Basin (green). The red dot indicates 
the location of the “Agropecuaria Nova Vida” Ranch wherein the study was conducted, situated in the Brazilian state of Rondônia. (b) Aerial 
view of the sampled sites. Dots indicate the three sampling sites in primary forests (F1, 2, 3), and pasture (P1, 2, 3) soils. (c) At each site, a 
transect (200 m) with five sampling points 50 m apart was delineated.
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collected from three sites in each land use (forest and pasture). 
Within each site, a transect with five points 50 m distant was estab-
lished (Figure 1), totalling 15 sampling points (n = 15) per land use. At 
each point, surface litter material was removed and static cylindrical 
chambers (with removable lid) were used for gas sampling. The di-
mensions of the chambers were 12 × 30 cm (total volume of 6.3 L) 
and were inserted 3 cm deep in the soil. Gas samples were taken 
four times after closing chambers (0, 10, 20 and 30 min), using plas-
tic syringes and pre-evacuated (<0.05 kPa) 20-mL glass vials as gas 
sample containers. The vials were crimp sealed with a 20-mm blue 
butyl rubber stopper (Chemglass Life Sciences). The measurements 
of gas concentration were made in the laboratory within 1 week, as 
detailed below.

After gas sampling, soil samples were collected from the top 
layer (0–10 cm) and kept on ice. Once in the laboratory, one part of 
the soil sample was kept at −20°C for DNA extraction, and the other 
part was kept at 4°C for the measurement of chemical properties. 
Additional undisturbed soil cores (5.0 × 5.0 cm) were collected in the 
centre of the topsoil layer (0–10 cm) for soil physical analyses.

2.2  |  Methane flux measurement and processing

The CH4 concentration in the gas samples was measured using an 
SRI8610C gas chromatograph (GC; SRI Instruments), with a flame 
ionization detector (FID). Nitrogen was used as a carrier gas at a flow 
rate of 25 cm3 min−1. Oven and detector temperatures were 50 and 
150°C, respectively. Standard CH4 samples (White Martins) were 
used for GC calibration. CH4 flux calculations were performed using 
a simple linear regression model of change in the concentration as a 
function of the incubation time within the chamber. Daily CH4 flux 
(F, μg CH4-C m−2 h−1) was calculated according to Equation 1, pro-
posed by Ussiri and Lal (2009):

where ∆g/∆t is the linear change in CH4 concentration inside the 
chamber (i.e., μg CH4-C chamber min−1), V is the chamber volume (m3), 
A is the surface area circumscribed by the chamber (m2) and k is the 
time conversion factor (60 min). Chamber CH4 concentration was pre-
viously converted from a molar mixing ratio (ppm), determined by GC 
analysis, to volumetric mass density by assuming an ideal gas law.

2.3  |  Soil physical–chemical properties

Soil chemical properties were analysed at the Laboratory of Soil 
Fertility, Luiz de Queiroz College of Agriculture, USP, Brazil, as de-
scribed by van Raij et al. (2001). Briefly, soil pH was measured from 
CaCl2 suspension. Organic matter (OM) was measured by the colori-
metric method. Total nitrogen (TN) was extracted and determined 
by the combustion catalytic oxidation method. Available phosphorus 

(P) and potassium (K+) were determined by colorimetry and atomic 
emission spectroscopy, respectively. Calcium (Ca) and magnesium 
(Mg) were determined by atomic absorption spectrometry, and 
aluminium (Al) was determined by acid–base titration. The total 
exchangeable bases (EB) was calculated as the sum of Ca2+, Mg2+ 
and K+. Potential acidity (H) is the sum of Al3+ and H+. The poten-
tial cation exchange capacity (CECpH7.0) was calculated as the sum of 
EB and potential acidity. The percentage of base saturation (v) was 
calculated as the relationship between EB and CEC. The aluminium 
saturation (m) was calculated as the relationship between Al3+ and 
effective cation exchange capacity (ECEC), where ECEC is the total 
amount of exchangeable cations plus Al3+. Available micronutrients 
(Fe2+, Mn2+, Zn2+ and Cu2+) were extracted with diethylenetriamine-
pentaacetic acid (DTPA).

To determine macro- and microporosity, soil cores were saturated 
and subjected to drainage at −6 kPa in the tensile table, as described 
in Teixeira et al.  (2017). Soil macroporosity (Mac) comprised pores 
larger than 50 μm, which drained at −6 kPa. Microporosity (Mic) in-
cluded pores smaller than 50 μm that retained water at −6 kPa. Soil 
bulk density (BD) was calculated from the relationship between dry 
soil mass (oven-dried at 105°C for 24 h) and cylinder volume. Total 
porosity (TP) was calculated using two methods: (i) soil saturation 
(TPs), and (ii) calculated (TPc) from the relationship between BD and 
particle density (PD) measured with a pycnometer.

2.4  |  DNA extraction and quantitative 
PCR analyses

DNA extraction was carried out from 250 mg of each soil sample 
(n = 15 in each land use) using a PowerLyzer PowerSoil DNA Isolation 
Kit (Qiagen), according to the manufacturer's protocol with modifi-
cations. Briefly, after adding C1 solution, the stirring and centrifuga-
tion times were extended to 15 and 3 min respectively (Venturini 
et al., 2020). DNA quality and concentration were measured using a 
NanoDrop 1000 spectrophotometer (Thermo Scientific).

The abundance of methanogens and methanotrophs was as-
sessed in each sample through quantitative polymerase chain reac-
tion (PCR) assays targeting the marker genes mcrA, pmoA and mmoX, 
using referenced primer sets (Table S1), which were purchased from 
Sigma-Aldrich Chemical. For each qPCR assay, standard curves were 
constructed based on purified PCR products, performed with DNA 
extracted from strains of Methanolinea mesophila (DSMZ 23604), 
used for the mcrA gene, and Methylosinus sporium (DSMZ 17706) 
used to construct the pmoA and mmoX standard curves. Both strains 
were obtained from the German Collection of Microorganisms and 
Cell Cultures (DSMZ; Leibniz Institut DSMZ). The starting gene copy 
number was calculated with the DNA copy number calculator at the 
URI Genomics and Sequencing Center website (http://cels.uri.edu/
gsc/cndna.html). The standard curves included six DNA concentra-
tions in a range of 101–107 DNA copies μl−1.

The qPCRs were made in a 10-μl final volume, containing 5 μL of 
2× SYBR Green ROX qPCR Master Mix (Thermo Scientific), 0.5 μm of 
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each primer, 0.5 μm bovine serum albumin (BSA; Thermo Scientific), 
1 μL of total DNA (10–30 ng μl−1) and nuclease-free water. Each DNA 
sample and each dilution in the standard curve were analysed in trip-
licate. The qPCR amplifications were carried out as follows: 95°C 
for 30 s; 42 cycles of 94°C for 15 s, 56°C for 30 s and 72°C for 30 s. 
Also, a melting curve was included, between 65 and 95°C with incre-
ments of 0.5°C at 5 s. The reactions were carried out in a StepOne 
Plus thermocycler (Applied Biosystems), and the results were anal-
ysed using stepone Software version 2.3 (Applied Biosystems). The 
R2 values remained between 96% and 101% in all the trials, and the 
slope remained at −3.28 ± 0.15, −3.27 ± 0.10 and − 3.30 ± 0.14 in the 
pmoA, mmoX and mcrA assays, respectively. Results were expressed 
as gene copy numbers per gram of dry soil (log copy number g−1 soil).

2.5  |  Whole metagenome shotgun 
sequencing and annotation

Three out of five sampling points per site were selected for whole 
metagenomic sequencing (WGS). In total, 18 DNA metagenome 
samples (n = 9 in each land use) were processed using the TruSeq 
kit (Illumina) for library preparation, according to the manufacturer's 
protocol for WGS in an Illumina HiSeq 2500 platform (2× 100-bp 
paired-end). The WGS sequences were preprocessed and annotated 
with the web application server Metagenomic Rapid Annotations 
using Subsystems Technology (mg-rast), pipeline version 4 (Meyer 
et al., 2008). Briefly, the raw sequences were processed by quality 
control (QC) using solexaqa software by removing low-quality seg-
ments using the “Dynamic Trim” method (Cox et al., 2010), according 
to the lowest Phred score of 15 and a maximum of five bases below 
the Phred score. Subsequently, artificial replicate sequences and sin-
gletons were removed (Gomez-Alvarez et al., 2009).

The identification of protein-coding regions (features) was based 
on the protein database M5nr for a nonredundant integration of 
many protein databases (Wilke et al., 2012). The taxonomic origins 
of the features were determined using the RefSeq database (O'Leary 
et al.,  2016), and the functional profiles were analysed according 
to the SEED subsystems database. Annotation parameters were 
those recommended by Randle-Boggis et al.  (2016) using mg-rast: 
maximum e-value cut-off of 1e-5, and minimum alignment length 
of 15 bp, while the minimal identity cut-off was 60% and 80% for 
taxonomic and functional profiling respectively, allowing a trade-off 
between sensitivity and accuracy. Abundance profiles were deter-
mined using the “Representative Hit Classification” method. During 
the analysis, features annotated as eukaryotic and viral sequences 
were removed.

2.6  |  Microbial co-occurrence networks

The taxonomic profiling from each metagenomic data set (land use) 
was used to infer co-occurrence networks of interacting bacteria 
and archaea at the species level. We used the SparCC method from 

the package “SpiecEasi” (Friedman & Alm, 2012) implemented in R 
version 3.6.3 (R Core Team, 2021) to build the correlation matrix. 
All bacteria and archaea were considered in the input tables, but 
only significant positive correlations (SparCC > 0.75; p < .01) were 
included in the networks. Several metrics were used to explore the 
topology and strength of the networks (i.e., number of nodes and 
edges, weighted degree, the diameter of the network, modularity 
and the clustering coefficient). We explored several centrality met-
rics (i.e., betweenness centrality, harmonic centrality and close-
ness centrality; Newman, 2008) to infer the “keystoneness” of each 
node, which is defined as the ability of a species to alter the abun-
dance of other species and the structure of the community (Cagua 
et al., 2019). Keystone taxa are highly connected taxa (i.e., high net-
work centrality) that individually or in a guild exert a considerable 
influence on microbiome structure and functioning, and thus its 
alterations can have knock-on effects on ecosystem functions and 
services (Banerjee et al., 2018). We selected eigenvector centrality 
for the analysis because it takes into account both the number of 
connections of a given node and its relevance in terms of influence 
within the network (Ruhnau, 2000). The calculations and network 
visualizations were done with the software gephi 0.9.2 (Bastian & 
Jacomy, 2009).

2.7  |  Statistical analysis

Average values of CH4 flux, as well as the abundance of marker 
genes (pmoA, mmoX and mcrA) and the gene ratios, were compared 
between the two land-use groups using the two-tailed Student's t 
test, with Welch's correction (95% confidence interval). Soil proper-
ties were compared using the Multiple t test methods (t test per row) 
with Holm–Sidak correction. Statistical analyses and graphs were 
performed and made using GraphPad prism software version 8.0.1 
(GraphPad Software).

Differences in taxonomic and functional profiles between whole 
microbiomes from pasture and forest soils were tested using permu-
tational multivariate analysis of variance (PERMANOVA) and visual-
ized using nonmetric multidimensional scaling (NMDS), both based 
on the Bray–Curtis dissimilarity index. PERMANOVA and NMDS 
were performed using past software (Hammer et al., 2001).

The differential abundances of well-known methanogens (Evans 
et al., 2019) and methanotrophs (Knief, 2015) were tested in the con-
text of the overall microbiome composition at the species level using 
the aldex2 method (Fernandes et al., 2014) in R version 1.26.0. aldex2 
is recognized as a powerful method for differential taxonomic analy-
sis because of its low false discovery rate (FDR; Nearing et al., 2022). 
In this approach, low-abundance (<10 counts) and low-prevalence 
(<10%) taxa were removed from the unrarefied taxonomic table, and 
then Monte Carlo samples of Dirichlet distributions were generated 
to account for the uncertainty in the proportions of each sample. The 
proportional data were then transformed using the centred log ratio 
(clr) transformation (Aitchison,  1986), which made the data more 
symmetrical and allowed standard statistical analysis. Wilcoxon and 
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Welch's tests were used, and the results were the median difference 
in clr values between groups, the median effect size and p-values ad-
justed according to the Benjamini–Hochberg FDR method to avoid 
the inflation of type-I error (Benjamini & Hochberg, 1995).

The functional microbiome profiles involved in CH4-cycling were 
compared between forest and pasture soils. We compared the abun-
dance of genes encoding the enzymes pMMO, sMMO and MCR, 
but also looked at the abundance of key enzymes involved in the 
three methanogenic pathways (i.e., acetoclastic, hydrogenotrophic 
and methylotrophic) according to the MetaCyc pathway mapping 
(Superpathway of methanogenesis; PWY-6830; Caspi et al., 2018). 
The differences between land uses were detected by comparing the 
log2 fold change (LFC), using Wald's test as implemented in the deseq2 
method (Love et al.,  2014) in the R package (version 1.38.2). The 
deseq2 pipeline is intended for differential gene analysis on smaller 
data sets (<20 samples per group) of RNA sequencing (RNA-seq) 
or shotgun sequencing data, which frequently have overdispersion 
(Quince et al., 2017; Weiss et al., 2017). The method assumes a neg-
ative binomial distribution of the count data and models it using the 
maximun-likelihood estimation (MLE) method. It includes shrinkage 
estimation of dispersions and fold-changes for each feature, yielding 
accurate FDRs and FDR-corrected p-values (Love et al., 2014). For 
consistency and improved data visualization, the relative abundance 
of taxa or functional genes was shown as clr-transformed, which 
shows how genes (or taxa) behave relative to the per-sample aver-
age, using the geometric mean in each sample as a reference (Quinn 
et al., 2019).

The relationship between gene abundance (log-transformed) 
and soil properties from pasture and forest sites was analysed 
using redundancy analysis (RDA) following Box–Cox transforma-
tion of the explanatory variables (soil properties). A similar analysis 
was performed to infer the relationship between taxon abundance 
and soil properties. The Hellinger transformation was applied to 
the taxonomic table (i.e., including only methanoges and methano-
trophs) to generate the distance matrix suitable for RDA (Legendre 
& Gallagher, 2001). The selection of explanatory variables was per-
formed by the forward-selection method, which has correct levels 
of type-I error and power (Legendre et al., 2011). The RDAs were 
performed using the canoco 5 software (ter Braak & Šmilauer, 2012).

We used a multimodel inference approach (Burnham & 
Anderson,  2002) to determine the contribution or importance of 
soil biotic (abundance of functional groups or genes) and abiotic 
(physicochemical properties) factors on the CH4 emissions. Because 
we aimed to compare the suitability of different types of microbial 
data, we carried out separate analyses based on: (i) the abundance 
of genes mcrA, pmoA and mmoX as quantified by qPCR, and (ii) the 
abundance of key enzyme-coding genes involved in the methanot-
rophy and methanogenesis pathways obtained from WGS analysis. 
The two analyses were performed using the same set of physico-
chemical properties. To avoid multicollinearity, a set of predictor 
variables was chosen in each analysis, based on their collinearity 
with other properties (i.e., assessed using both Pearson correlation 
and variance inflation factor [VIF]). For each of the data sets (i.e., 

functional groups or genes), we first created a global model using lin-
ear mixed-effects models (lme) in the R package “nlme” (Pinheiro & 
Bates, 2019). This global model included all the selected explanatory 
variables as fixed effects, as well as “site” as a random effect. To val-
idate the global model in terms of homoscedasticity and normality, 
residuals were analysed using graphical tools. Then, we compared 
models with different sets of predictors using the function “dredge” 
in the R package “MuMIn” (Barton, 2019). This function generates a 
set of models with all possible combinations of predictors and ranks 
them by second-order Akaike Information Criterion (AICc; Burnham 
& Anderson,  2002). In addition, we calculated the relative impor-
tance of the different predictor variables, which is based on the AIC 
weight of the models in which the variable appears.

3  |  RESULTS

3.1  |  Increase in soil CH4 flux and CH4-cycling 
microorganisms after forest-to-pasture transition

Methane fluxes were higher in pasture than forest soils (t  =  1.97, 
p < .05; Figure 2a). As expected, forest soil acted as a CH4 sink, with 
an average of −67.14 ± 34.40 μg m2  h−1 (95% CI: −140.9 to 6.64). 
Pasture soils, on the other hand, exhibited net CH4 emissions, with 
an average of 23.82 ± 30.63 μg m2 h−1 (95% CI: −41.88 to 89.53), al-
though CH4 consumption was observed at some sampling points.

A high abundance of methanogens (mcrA gene) was observed 
in pasture soils (t  =  13.96, p < .001; Figure  2b). Different abun-
dance patterns were observed among the methanotrophs based 
on the quantification of the pmoA and mmoX genes. While mmoX-
harbouring methanotrophs were more abundant in forest soils 
(t  =  6.56, p < .001), pmoA-harbouring methanotrophs were more 
abundant in pasture soils (t = 8.55, p < .001; Figure 2b). In addition, 
the gene ratios pmoA/mcrA and mmoX/mcrA were both higher in for-
est soils (Figure  2c), but the differences were more significant for 
mmoX/mcrA (t = 7.39, p < .001). Despite the observed imbalance in 
the abundance of methanogens and methanotrophs, the CH4 flux 
was poorly explained by both pmoA/mcrA (R2  =  .09; p  =  .10) and 
mmoX/mcrA (R2 = .02; p = .51) gene ratios (Figure 2d).

3.2  |  Changes to the taxonomic composition of 
CH4-cycling communities

From the 18 metagenomes, an average of 99,082,073 ± 11,765,887 se-
quences resulted from the quality control process (Post QC) from the 
pasture soil samples, while the average of sequences that passed the 
QC process in the forest soil samples was 106,355,652 ± 14,815,574. 
From then, an average of 37,827,472 ± 4,458,689 were annotated as 
bacteria and archaea (RefSeq database) in pasture soil samples, and 
36,488,031 ± 6,392,840 in forest soil samples (Table S2). Overall, the 
taxonomic profiling of the whole metagenomic data set (Bacteria and 
Archaea) revealed significant differences (PERMANOVA; F  =  4.6; 
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p < .001) in community composition between forest and pasture 
soils (Figure S1). When exploring methanogenic and methanotrophic 
communities, it was found that methanotrophs had a higher relative 
abundance than methanogens, but were only represented by five 
bacterial taxa (Figure  3a). Yet, methanogens were more diverse, 
comprising 26 archaeal taxa (at the species level), belonging to seven 
orders among which the most frequent were Methanosarcinales 
(28%), Methanococcales (24%), Methanobacteriales (20%) and 
Methanomicrobiales (16%; Figure  3a). Methanotrophs were more 
abundant in forest soils than those observed in pastures, while 
methanogens were more abundant in pasture soils, except for three 
species of Methanocaldococcus (i.e., M. jannaschii; M. fervens, M. sp. 
FS406-22; M. vulcanius; Figure 3b).

3.3  |  Keystoneness of methane-cycling taxa within 
microbial co-occurrence networks

Co-occurrence networks constructed from the taxonomic profiles 
from forest and pasture soils (Figure S2) revealed differences in the 
interaction patterns of microbial communities (Table  1). Although 
the number of nodes (connected taxa) was similar in both soils, the 
number of correlations (edges) in forest soils was twice as high as in 
pasture soils, indicating that the microbiota in the undisturbed for-
est soils is highly interconnected. The microbial network from forest 
soils consisted of fewer modules, a higher number of nodes per mod-
ule and twice the average edges per node than the network from 
pasture soils (Table 1; Figure 4a,b).

F I G U R E  2  Methane flux and abundance of microbial functional genes associated with methanotrophy and methanogenesis in Amazon 
forest and pasture soils. (a) Methane flux in forest and pasture soils, measured in micrograms of CH4-C (carbon contained in methane) per 
square metre per hour. (b) Abundance (gene copy number from DNA) of mcrA (methanogens) and pmoA and mmoX genes (methanotrophs). 
(c) Gene ratio indicates how many times the abundance of the functional genes of methanotrophy (pmoA and mmoX) contains the abundance 
of mcrA. Asterisks denote statistically significant differences (*p < .05; **p < .01; ***p < .001). (d) Relationships between the CH4 flux and gene 
ratios; linear models were fitted for each ratio of genes (i.e., the ratio of each methanotrophic marker and mcrA).
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3264  |    OBREGON ALVAREZ et al.

Among the nodes from both networks, 31 belonged to methane-
cycling taxa, including 26 methanogens and five methanotrophs 
(Figure  4a,b). Methane-cycling taxa exhibited a greater degree of 
interactions within the microbial networks from forest soils, includ-
ing interactions within methanogens but also between methanogens 
and methanotrophs and other microorganisms not directly related 
to CH4 metabolism (Table 1). Overall, the average number of con-
nections from methane-cycling taxa was three-fold higher in forests 
than in pasture soils. In addition to being more connected, they also 
showed a greater ecological relevance, exhibiting higher centrality 
within the microbial networks in forest soils (Figure 4c,d).

3.4  |  Metagenomic analysis of functional 
markers of methanogenesis and methanotrophy

Annotated functional features corresponding to Bacteria and 
Archaea, based on the SEED subsystems database, resulted in an 
average of 38,627,142 ± 4,311,728 and 36,533,213 ± 6,549,490 hits 
from pasture and forest soil respectively (Table S2). Based on this, 
the functional profiles significantly differed (F = 2.05; p =  .05) be-
tween land uses (Figure S3).

Genes encoding the subunits of the pMMO enzyme were slightly 
more abundant in pasture soils, while the subunits of sMMO were 

F I G U R E  3  Changes to the relative abundance of methane-cycling taxa between forest and pasture soils, measured from metagenomic 
sequencing data. (a) Identity and relative abundance (centred log-ratio, clr) of methanogenic archaea and methanotrophic bacteria (species 
level). (b) Differential abundance of each taxon between forest and pasture soils as median effect size (diff.btw/max(largest difference)) 
and p-value. Asterisks denote statistically significant differences according to Benjamini–Hochberg adjusted p-value (***p < .001, **p < .01, 
*p < .05).
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more abundant in forest soils (Figure 5). The analysis revealed that 
the two isoforms of methyl coenzyme M reductase (MCR-I and 
MCR-II) were more abundant in pasture soils. MCR-I was five-fold 
more abundant in pasture than in forest soils (Wald test, p < .001), 
while MCR-II was twice as high (Figure 5).

Acetoclastic methanogenesis was the most abundant pathway 
in both pasture and forest soils (Figure 6). A total of 11 out of 12 
genes were more abundant in pasture soils in comparison to for-
est soils. The gene coding for the enzyme formylmethanofuran 
(formyl-MFR) dehydrogenase (EC 1.2.7.12) was more abundant in 
forest soils (Figure 6). This enzyme catalyses a reversible reaction 
in hydrogenotrophic methanogenesis by reducing carbon dioxide 
(CO2) to form carboxy-MFR. However, the alternative forms of this 
enzyme, tungsten-containing and molybdenum-containing formyl-
MFR dehydrogenases, were more abundant in pasture soils. The 
analysis also found an increased abundance of all genes encoding 
enzymes involved in methylotrophic methanogenesis in pasture soils 
(Figure 6).

3.5  |  Influence of soil abiotic factors on the 
abundance of methanogens and methanotrophs

Pasture soils showed higher pH and consequently a reduced per-
centage of Al saturation, as well as higher available micronutrients 
(Fe, Mn, Zn and Cu). Other soil chemical properties showed no de-
tectable differences between land uses (Table  S3). We observed 
changes in soil structure, specifically in the ratio of micro- and ma-
cropores, with a predominance of micropores in pasture soils and 
macropores in forest soils.

RDA on the relationships between methane-cycling gene abun-
dances and soil properties (Figure 7a) revealed a clear effect of soil 
properties on the differentiation between land uses. Soil porosity, 
pH and micronutrient content (i.e., Mn, Cu and Zn) were the main 
drivers influencing gene abundance profiles. The abundance of 
CH4-cycling taxa was similarly associated with soil properties, but 
included significant effects only from soil macroporosity and Cu 
content (Figure 7b).

Network features and connectedness of 
CH4-cycling Forest Pasture

Nodes 1472 1452

Methanogens 26 26

Methanotrophs 5 5

Edges 104,734 47,010

Network diameter 12 10

Average degree 142.3 64.7

Weighted degree 124.3 56.2

Average path length 4.2 4.2

Modularity 0.61 0.68

Number of modules 10 8

Average clustering coefficient 0.72 0.64

Edges from methane-cycling*** 3588 (3.4%) 750 (1.6%)

Edges within methane-cycling* 178 (0.2%) 62 (0.1%)

Edges methanogens-methanotrophs 0 0

Edges from methanogens*** 2988 (2.9%) 485 (1.0%)

Edges from methanotrophs* 776 (0.7%) 264 (0.6%)

Edges within methanogens* 176 (0.2%) 58 (0.1%)

Edges within methanotrophs 2 (0.0%) 4 (0.0%)

Note: Nodes represent taxa with at least a significant (p < .01) and positive (SparCC > 0.75) 
correlation. Edges represent the number of connections/correlations obtained by SparCC 
analysis. Modularity represents the strength of connections between the nodes within different 
communities. The number of modules is the number of communities in the network. Network 
diameter indicates the longest distance between nodes in the network. Average path-length is the 
average length of the shortest path between any possible pairs of network nodes. The average 
degree represents the average number of edges per node in the graph. Weighted degree is the sum 
of the weights of all edges attached to the node. The average clustering coefficient indicates how 
nodes are embedded in the network. Interactions of methane-cycling represent the percentage of 
edges connecting nodes from methanogens and methanotrophs. Significant differences between 
land uses were tested by the “two-proportion Z-test” (*p < .05; **p < .01; ***p < .001).

TA B L E  1  Topological parameters of 
co-occurrence networks of bacterial and 
archaeal species in forest and pasture soils 
and the interaction patterns of methane-
cycling taxa
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3.6  |  Identification of the best 
predictors of CH4 flux based on soil factors and 
microbial functional traits

Only variables of low multicollinearity were included in the mul-
timodel inference analyses to prevent overparameterization. 
Therefore, based on the correlations among the several edaphic 
factors initially considered, only pH, OM, Cu and the macropore/
micropore ratio were included in further analysis (Figure  S4). 
Similarly, for gene abundance data we included only mcrA and the 
ratio mmoX/pmoA, while from the metagenomic data set we selected 
the gene encoding the enzyme sMMO (methanotrophic) and four 
methanogenic enzymes (Figure S5).

The multimodel inference including gene abundance data pro-
duced a total of 63 models. The 10 best models, as ranked by AICc, 
included mostly edaphic properties and only 30% (3/10) included 

the gene ratio of methanotrophic genes (Figure  8a). In fact, the 
four best models did not include any microbial gene data and the 
R2 did not improve significantly when including them in the model. 
Overall, R2 values were relatively low, with only 16%–29% of the 
methane flux explained by the best models. The higher contri-
bution of edaphic properties can also be seen in the importance 
of the predictors (Figure  8a), which is calculated as the sum of 
“Akaike weights” over all the models that include explanatory vari-
ables. The macropore/micropore ratio, Cu and OM content were 
the most important drivers of CH4 flux, followed by the gene ratio 
mmoX/pmoA (Figure 8a).

Results were different when including metagenomic data in-
stead of qPCR gene abundance. Of the 512 models produced by 
the analysis, the 10 models with the highest AICc included at least 
one methane-cycling enzyme, usually from methanogenesis path-
ways (Figure 8b). Soil OM was the only edaphic factor included in 

F I G U R E  4  Co-occurrence networks of CH4-cycling within the archaeal and bacterial communities from forest and pasture soils. 
Partial networks, including the interactions of the methane-cycling taxa (species level) in (a) forest and (b) pasture soils. In each plot, the 
nodes correspond to methanogens (red) and methanotrophs (blue), as well as all other taxa (grey) with which they co-occur. Connecting 
edges indicate significant and strong positive SparCC correlations (r > .75; p < .01). Only nodes with at least one significant correlation are 
represented. The colour of edges corresponds to its node of origin, and the size of the nodes is proportional to its eigencentrality value, 
which indicates the influence of a node in a network. Bottom figures depict the “keystoneness” of methane-cycling taxa within microbial 
interaction networks from (c) forest and (d) pasture soils, as its relationship with relative abundance (clr). Keystoneness was inferred in terms 
of connectedness (weighted degree) and eigencentrality in the networks.
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the best models. Moreover, these models explained 38%–75% of 
methane fluxes, with most models exhibiting an R2 > .5. The enzyme 
methanol–corrinoid protein methyltransferase (EC 2.1.1.90), impli-
cated in methylotrophic methanogenesis, was the most important 
factor predicting CH4 fluxes. Other enzyme-encoding genes fol-
lowing in importance were those from hydrogenotrophic and ace-
toclastic methanogenesis (Figure  6) and the enzyme sMMO from 
methanotrophy.

4  |  DISCUSSION

The disruption of natural ecosystems associated with LUC often 
leads to increased emissions of CH4 to the atmosphere (McDaniel 
et al.,  2019). The results from this study support previous work 
showing that forest-to-pasture conversion in the Amazon rainfor-
est reverts the role of soil from sink to source of CH4 (Fernandes 
et al., 2002; Steudler et al., 1996; Verchot et al., 2000). These results 
also confirm recent studies indicating that this phenomenon is asso-
ciated with alterations in the abundance and structure of methane-
cycling communities (Kroeger et al., 2020; Meyer et al., 2017, 2020). 
Yet, beyond previous discoveries, our findings provide a compre-
hensive characterization of the transformations of methane-cycling 
communities in response to forest-to-pasture conversion in the 
Amazon. For instance, similar to Meyer et al. (2017, 2020), we used 

field-based measurements and samplings to measure the abundance 
and taxonomic structure of the communities, but we used species-
level differential taxonomic analysis, and this is the first study to as-
sess the microbe–microbe interaction patterns of methane-cycling 
in the region, and the first study to use constrained analysis (RDA) 
to identify the main abiotic drivers of methanogens and methano-
trophs associated with LUC in the Amazon. Furthermore, Kroeger 
et al. (2020), using SIP incubations and metagenomics, detected an 
increased functional diversity and activity of methanogens in pas-
ture soil. Extending their results, we use field-based measurements 
(i.e., environmental DNA) of metabolic traits of the communities, 
and we use that data to explain the differences in CH4 fluxes be-
tween land use.

We found that type II methanotrophs Methylosinus trichospo-
rium and Methylocella silvestris, and the type I Methylococcus cap-
sulatus, are among the most abundant taxa in Amazon forest soils, 
consistent with findings by Meyer et al. (2017). However, these au-
thors also found an overall high abundance of Methylocystis rosea 
(type II), which was not observed in our analyses. Interestingly, 
both studies found a greater abundance of Methylacidiphilum in-
fernorum in forest soils, an acidophilic methanotrophic aerobic 
bacterium from the phylum Verrucomicrobiota. This bacterium 
grows optimally at pH ~2.5 (Dunfield et al., 2007), and thus could 
be well suited for the acidic conditions of Amazon soils. In con-
cordance with Meyer et al.  (2017), we also found a great diversity 

F I G U R E  5  Differential abundance of the genes encoding key enzymes of methanotrophy (MMO) and methanogenesis (MCR) between 
forest and pasture soils, as measured by metagenomic sequencing. (a) The two types of MMO are shown: the copper-containing membrane-
bound enzyme particulate MMO (pMMO), and the cytosolic iron-containing soluble form (sMMO). The two forms of MCR are presented: 
MCR-I, which is present in all methanogens, and MCR-II, which is present in only a few methanogenic taxa. The relative abundance (centred 
log-ratio transformed) of the main subunit is presented in each case. The centred log-ratio (clr) transformation uses the geometric mean 
(g) of the sample as the reference, and thus features have negative values when their abundance is less than the geometric mean. (b) 
Differential abundance of each enzyme (subunit) between forest and pasture soils as log2 fold change (a value of 1 indicates that it is twice 
as abundant). Asterisks denote statistically significant differences according to the Benjamini–Hochberg adjusted p-value (***p < .001, 
**p < .01, *p < .05).
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of methanogenic archaea inhabiting both forest and pasture soils, 
which belonged to seven out of the eight well-known orders from 
the classes Methanobacteria, Methanococci, Methanomicrobia and 
Methanopyri (Evans et al., 2019). Among the most abundant meth-
anogens in pasture soils was the hydrogenotrophic Rice Cluster I, 
which is widely distributed and generally found living in rice roots 
(Conrad et al., 2006). Other abundant species were from the genera 
Methanosarcina and Methanocella, which seem to be ubiquitous in 
aerated soils and adapted to fluctuating oxic–anoxic conditions as 
soil water content changes (Angel et al., 2012).

The results of our network analyses suggested a loss of connect-
edness and influence of CH4-cycling microbes within the soil micro-
biota following forest-to-pasture conversion. We hypothesize that 
changes in the interaction patterns of these microorganisms could 
be related to changes in nutrient availability. Nutrient availability 
can increase negative interactions between microbes by stimulating 
competition (Ratzke et al., 2020), thus affecting the stability of the 
microbial communities (Lozupone et al., 2012). Here, nutrient avail-
ability in pasture soils may have been increased by tree removal, 
changes in soil cover and slash-and-burn management practices 

(Feigl et al.,  2006; Petersen et al.,  2019). Slash-and-burn often 
leads to an increase in soil nutrient availability due to the input of 
nutrient-rich ash (De Souza Braz et al., 2013; Fujisaka et al., 1996). 
The nutrient input following slash-and-burn has been reported to 
shape bacterial community composition in Amazonian soils, domi-
nated by fast-growing high-nutrient-requiring (i.e., copiotrophic) 
taxa (e.g., Actinomycetota) and fewer oligotrophic stress-tolerant 
taxa (e.g., Chlamydiota, Planctomycetota and Verrucomicrobiota) in 
deforested soils (Navarrete, Tsai, et al., 2015; Rodrigues et al., 2013).

Microbial interaction networks may become more complex in 
conditions limiting substrate availability since co-occurrence leads 
to greater metabolic exchange (Zelezniak et al., 2015). We assume 
that deforestation disrupts the microbial food web, in a way that 
CH4-cycling microorganisms are less relevant. For instance, meth-
anotrophs showed a significant reduction of connections between 
them and with other nonmethane-cycling microbes in pasture soils 
(Figure  4). Although not autotrophs, methanotrophs are the base 
of food webs acting as an accessible carbon source for hetero-
trophs (Hutchens et al., 2004; Kalyuzhnaya et al., 2013; Karwautz 
et al., 2018). In this regard, a network meta-analysis conducted by 

F I G U R E  6  Differential abundance of the methanogenesis pathways from different substrates. (a) The abundance of the genes encoding 
enzymes from the first enzymatic reactions in each pathway are shown as their relative abundance (centred log-ratio, clr) in forest and 
pasture soils. The pathway maps are adapted from the “superpathway of methanogenesis” according to the MetaCyc database. Enzyme 
Commission (EC) numbers are provided according to MetaCyc and KEGG databases. (b) For a clearer view of the differences between land 
uses, the selected enzyme-encoding genes are represented as the magnitude of log2 fold change. Asterisks denote statistically significant 
changes according to the Benjamini–Hochberg adjusted p-value (***p < .001, **p < .01, *p < .05).
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Ho et al. (2016) revealed a CH4-derived food web in diverse ecosys-
tems, in which methylotrophs were always present underlying the 
cross-feeding between methanotrophs and methylotrophs, whereas 
nonmethanotrophic communities were site-specific and not consis-
tent among the diverse ecosystems. Consistent with our results, Ho 
et al. (2016) also found the lowest clustering around methanotrophs 
in pasture soils, suggesting that other microorganisms compatible 
with methanotrophs and more complex metabolic routes exist in 
pasture soils.

Methanotrophs that carry the soluble form of the enzyme MMO 
(sMMO) were depleted by LUC from forest to pasture, whereas 
those harbouring the particulate form of this enzyme (pMMO) were 
enhanced (Figures 2 and 5). These results provide strong evidence 
of functional diversification of the methanotrophic community 
due to the forest-to-pasture conversion. The selective process of 
pmoA- and mmoX-type methanotrophs is probably a consequence 
of changes in soil physical and chemical properties imposing a niche 
differentiation for these microorganisms (Ho et al., 2013, 2016). For 
instance, γ-proteobacterial methanotrophs (mainly pmoA-type) are 
predominant in neutral pH soils, while α-proteobacterial methano-
trophs, comprising mostly mmoX type, are well adapted to acidic 
soils (Kolb, 2009). Consistently, the methanotrophic species with the 
highest reduction in abundance in pasture soils was Methylocella sil-
vestris (Beijerinckiaceae), an mmoX-type with moderate acidophilic 

preference (Knief,  2015) usually found in forest soils (Dunfield 
et al., 2003).

Methanogenesis pathways also differentiated along with 
the forest-to-pasture conversion, with increased hydrogeno-
trophic and methylotrophic methanogenesis in pasture soils 
(Figure 6). Methylotrophic methanogens (mainly from the orders 
Methanosarcinales and Methanomassiliicoccales) are major con-
tributors to CH4 biosynthesis in marine sediments, where other 
methanogens are outcompeted by sulphate-reducing bacte-
ria (Conrad,  2020). Yet, recent studies have shown that methy-
lotrophic methanogens are much more diverse and widespread 
than expected (Borrel et al.,  2013; Söllinger & Urich,  2019; 
Vanwonterghem et al.,  2016). Our findings confirm results by 
Meyer et al.  (2017), who reported that methylotrophic metha-
nogenesis genes were significantly more abundant in pasture 
soils than in Amazon forest soils. These findings also support 
the idea that methylotrophy is an active methanogenesis path-
way in Amazon soils that should be investigated further (Alves 
et al., 2022). Moreover, in microcosms supplemented with metha-
nol, Alves et al. (2022) found that Methanosarcina members could 
be responsible for methylotrophic methanogenesis in Amazon 
pasture soils. Methanosarcina was consistently the only taxon 
found in our study that could include methylotrophic methano-
gens. Methyl-fermenting methanogens from Methanosarcinaceae 

F I G U R E  7  Redundancy analysis (RDA) links soil physicochemical properties to methane-cycling communities. (a) Analysis based on 
methane-cycling gene abundance profiles (mcrA, pmoA and mmoX) from qPCR. (b) Analysis based on the composition of methanogenic and 
methanotrophic communities as obtained by metagenomic sequencing (at the species level). Vector points toward an increase for a given soil 
property and gene abundance, and its length indicates the strength of between-variable correlation and ordination scores. Asterisks indicate 
explanatory variables with significant contributions (*p < .05, **p < .01, ***p < .001).
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possess a complete Wood–Ljungdahl pathway and can oxidize 
methyl groups at standard conditions of H2, outcompeting methyl-
reducing methanogens (Feldewert et al., 2020).

The observed microbial changes are likely to be linked to mod-
ifications in their abiotic environment. LUC induced modifications 
in soil abiotic factors, including pH, micronutrient content (i.e., Cu, 
Mn, Zn), and soil macro- and micropores (Table  S3), consistently 
with previous reports in the Amazon region (Navarrete et al., 2010; 
Navarrete, Soares, et al., 2015; Paula et al., 2014; Ranjan et al., 2015). 
The increase in pH in pasture soils was positively associated with 
the abundance of methanogens and pmoA-type methanotrophs. 
Furthermore, the inversely proportional abundance of pmoA and 
mmoX methanotrophs also seemed to be associated with soil pH, 
since methanotrophs comprise taxa adapted to different pH (i.e., 
from alkaline to acidic soils; Ghashghavi et al.,  2017; Knief,  2015; 
Kolb, 2009; Tate, 2015).

We found that the macro/micropore ratio was significantly re-
duced in pasture soils, probably due to compaction caused by animal 

trampling (Valladares et al.,  2011); this was found to have signifi-
cant impact on the abundance of methanogens and methanotrophs 
(Figure 7). Soil porosity is an important factor driving niche differen-
tiation of both methanogens (strict anaerobes) and methanotrophs 
(Serrano-Silva et al., 2014; Tate, 2015). The low oxygen conditions 
may also impact methanotrophs, favouring the pMMO-containing 
methanotrophs that possess hemerythrin, an oxygen-binding protein 
that acts as an oxygen scavenger for the pMMO enzyme (Guerrero-
Cruz et al., 2021). The higher Cu levels in pasture soils relative to 
forest soils also could be a key driver of the mmoX/pmoA ratio and 
the abundance of methanotrophs (Table S3; Figure 7). In laboratory 
experiments, Cu content has been shown to alter the physiology 
of methanotrophs. For example, high Cu conditions can suppress 
sMMO (mmoX) expression while increasing the expression of pmoA, 
a phenomenon known as the “copper switch” (DiSpirito et al., 2016; 
Semrau et al., 2010). Still, the physiological mechanism by which Cu 
regulates the expression and activity of MMO forms is still being 
investigated (Peng et al., 2022) and the Cu concentration threshold 

F I G U R E  8  Best-fitting regression models explaining CH4 flux in Amazonian soils along a forest-to-pasture conversion. (a) Multimodel 
analysis based on the abundance of functional genes (qPCR). (c) Multimodel analysis based on the abundance of key functional enzymes 
assessed through metagenomics. For each analysis, the 10 best-fitting models are presented in the tables; each row represents a model and 
each column is a different predictor variable (blue: functional markers of methanotrophy; red: functional markers of methanogenesis; brown: 
soil edaphic factors). Grey cells indicate variables that were not included in a particular model. The performance of the models is presented 
in terms of: R2: likelihood-ratio based pseudo-R-squared; ΔAICc: difference between the AICc (corrected Akaike information criterion) 
of each model and the best model; and Wi: Akaike weights. (b, d) The relative importance of the different predictor variables (variable 
importance) was calculated based on the Wi of the models in which the variable appears.
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for switching from sMMO to pMMO expression in soil has not been 
determined. We recommend further research on this topic along the 
forest-to-pasture conversion gradient in the Amazon region.

Besides characterizing changes in methane-cycling communities 
and their abiotic environment, we were also able to evaluate their 
capacity to predict methane emissions. As revealed by multimodel 
inference, the functional metagenomic profiling enabled a better 
prediction of CH4 emissions than data derived from qPCR, possi-
bly given the higher resolution of metagenomic data to split func-
tional markers into different pathways. We also detected a slight 
change in the predictive value of different edaphic factors to explain 
CH4 flux when combined with either functional gene quantifica-
tion data (qPCR) or metagenomic functional profile data (Figure 8). 
For instance, soil porosity, followed by Cu and OM, were the most 
important predictors when qPCR data were used, while OM was 
the main abiotic predictor in models with functional metagenomic 
data. Such differences arise from the contrasting relationships be-
tween different biotic and abiotic variables (Figure 7). For example, 
Cu was associated with qPCR data, but it does not stand out when 
analysed in conjunction with metagenomic data because enzymes 
were better predictors of CH4 fluxes. Interestingly, OM, which was 
not related to qPCR or taxonomic data in RDA, became the abiotic 
variable with the greatest importance in predicting CH4 fluxes. This 
result suggests that OM, which shows a slight increase in pasture 
soils (+ ~8.75 g dm−3), is influencing CH4 fluxes possibly via the link of 
methanogenesis to the availability of substrates resulting from the 
degradation of OM (Conrad et al., 2009).

5  |  CONCLUSION

While our study supports previous evidence that forest-to-pasture 
conversion in the Amazon impacts the abundance and taxonomic 
structure of soil methane-cycling communities, it also brings new in-
sights into the changes affecting these communities. First, we found 
community assembly and microbe–microbe interaction patterns of 
methane-cycling taxa were also affected by LUC, resulting in a loss of 
connectedness of these microorganisms within the soil microbiota. 
Our results also revealed significant shifts in the potential functional 
capabilities of both methanogens and methanotroph communities, 
with a significantly increased abundance of marker genes of methy-
lotrophic and hydrogenotrophic methanogenesis pathways in pas-
ture soils. Methane uptake potential was also affected in pasture 
soils, with a significant reduction in sMMO-harbouring methano-
trophs. Besides, we were able to link these shifts in methane-cycling 
communities to increased pH, compaction, OM and micronutrient 
content in pasture soils. Finally, we found that enzymes from the 
functional metagenomic profiling, with its higher resolution, ena-
bled a better prediction of methane emissions than qPCR of marker 
genes. Overall, these results reinforce the importance of preserving 
the Amazon rainforest, which, in addition to maintaining biodiver-
sity, contributes to atmospheric CH4 sequestration, favouring the 
mitigation of this GHG on a global scale.
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