1294

iy

o Bibiictoen de fuoe-pes
ELSEVIER

Setvigo de Biblistecay
niviza, Fard 2R

Applied Ocean Research 15 (1994) 327-335

Wave radiation by a deep submerged cylinder with
application to ocean structure

J.A.P. Aranha & M.O. Pinto
Department of Naval Engineering, EPUSP, Cidade Universitaria, Sao Paulo, CP 61548, Brazil

The radiation problem for a deep submerged cylinder is analysed and an
asymptotic expression, uniformly valid in the whole range of frequencies, is
derived for the radiation damping and exciting force. The obtained expression is a
natural extension of the inertia term in the well known Morison’s formula and it
may be useful in the analysis of certain ocean structures such as a tension leg
platform, for example. In particular it makes it possible to define a geometry
tuned to have null excitation at some desired frequency.

1 INTRODUCTION

The hydrodynamic study of an ocean structure, like a
tension leg platform (TLP), for example, is an essential
step in its design and there are several computer codes,
most of them based on Green’s function method,
dedicated to this issue. These tools, however, are more
appropriate for the analysis of a given structure than
for its synthesis, and in the initial phase of the
design one generally needs a more direct approach that
can give some insight about possible geometric forms
that would fit better the desired performance of the
structure.

In the present paper a simple expression is derived
for the radiation damping and wave exciting force
on a relatively deep submerged cylinder. This expression
can be useful to help define the geometric form -of
the pontoons of a TLP and it is a natural extension, to
the whole range of frequencies, of the inertia term
of the well known Morison’s formula. The derivation
is based on an old study done by Lamb in 1913
about the wave resistance of a submerged circular
cylinder;! more recent references in related subjects are
the works by Leppington and Siew? and Grue and
Palm.?

In Section 2 the motion of a cylinder in an unbounded
fluid is briefly reviewed since this result is needed in
Section 3, where the free surface effect is incorporated.
In Section 4 the expressions for the exciting force and
radiation damping are derived and a possible criterion
for the optimization of a TPL is discussed. In Section 5
different geometric forms for the cross-sections of the
pontoons are analysed, both analytically and numerical,
and some simple, perhaps useful, conclusions are
derived.
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2 MOTION IN UNBOUNDED FLUID

Consider a cross-section as indicated in Fig. 1,
symmetric with respect to the y-axis and subjected to a
vertical motion with unit velocity. Let b be the half beam
of the section and c¢ the radius of the circle that
circumscribes it.

If z=x+i.y is the complex variable let f(z) be the
complex velocity potential, analytical in the region
|z} > ¢. In this region, f(z) can be expanded in a power
series in 1/z and one has then
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For a section symmetric with respect to the y-axis the
coefficients B, are real and if the section is also
symmetric with respect to the x-axis then B,, =0.
Another important property is the following: if
{B,, n=1,2,...} represent the coefficients of a section
obtained from the given one by a complete rotation
around the x-axis, then

3
By, 1 = Byuy

B;n = —an

(2)

Equation (2) shows that the signs of the even
coefficients can be changed by a rotation around the
x-axis, a result that will be used later on. The coefficient
B, can be written in terms of the sectional added mass.
In fact, if S is the cross-section area and Cyy = M, /pS is
the added mass coeflicient, then

5 3)

It is usual to analyse the proposed problem in a

B =——(Cy+1)S
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Fig. 1. Geometric definition of a cross-section in vertical
motion.

normalized geometry where a certain length a is
assumed to be unitary. This geometric scale can
be, for example, the half beam of the body (a =b)
or the equivalent circle’s radius, given by a=
[(Cyv +1)S/2n])"2. If {D,;n=1,2,...} are the coef-
ficients of eqn (1) for the normalized geometry the
following relations can be derived between D, and B,:

B,=a"'.D, (4)
Observing the identities:
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the velocity potential can be written as

¢(x,y) = Real(f(2))
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3 FREE SURFACE EFFECT

Consider now the same section oscillating with
frequency w and suppose that the free surface is at the
plane y = d. If K = o? /g is the related wavenumber it
will be assumed here that the depth of submergence d is
so large that the nondimensional parameter (Ka)?.e 2%
is small compared with 1 in the whole range of
frequencies. This condition is naturally satisfied in a
TLP, where usually one has d = 3a.

The solution of the radiation problem satisfies the
imposed kinematic condition on the body’s surface, the
free surface boundary condition at y = d, the radiation

condition when x — oo and Laplace’s equation.
Observing that the kinematic condition on the body is
automatically satisfied by eqn (6) the radiation potential
can be written in the form:

&3(x, 3, 1) = [¢(x,¥) + ¥(x,y)]. cos wt
+ Yw(x,3,0) + R(x, y,1) (7)

with ¢(x,y) given by eqn (6) and the remaining
functions to be defined as explained below.

The function (x, y) is determined by imposing that
the term within brackets in eqn (7) satisfies the free
surface boundary condition, and y(x,p,f) is a
stationary wave added in order that the radiation
condition is fulfilled. The residue R(x,y,) corrects the
body’s boundary condition, perturbed by the terms
and 1, in eqn (7), and must satisfy the remaining
conditions. As it will be seen later on this function is of
the order (Ka)®.e 24 and will be ignored in the present
approximation.

The function (x,y), being a solution of Laplace’s
equation, can be given by the Fourier integral:

Y(x,y) = J a(k).e¥ . cos kx dk (8a)
0
Observing the identity:

sinf _y

Sl
. _x2+y2=Jo e “.coskxdk (y>0) (8b)

one can write ¢(x, y) in the form:

d(x,y) = Bl'_[ F(ka).e™ .cos kx dk
0

Fka) =3 (~1)" % DD"—T‘ ©)
—0 .

The function F(.) is analytic on the complex plane
(see Appendix) and depends exclusively on the geometry
of the cross-section through the ratios D,/D;. In
particular, F (ka) = 1 for a circle. From the free-surface
boundary condition:

B
3y [p+Y)=Klp+4;y=4d

one obtains

k+K
k—K

The Fourier integral (eqn (8)) can be defined in the
complex k-plane, but one must take care of the
singularity at k=K introduced by eqn (10). If
the contour is indented above (below) the singularity
when x > 0 (x < 0) the final result can be expressed in
the form:

¢(x,y) =1/Jo(x7}’)+¢e(x,y) (11)

a(k) = B, F(ka)e %4 (10)
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with
Po(x,y) = —2n B, KF(Ka)e %X sin K|x|
’(/)e(x,y) = _27rBl

(2Kd—-Ky) —mlxl dm

xReal [ ! J i 1F(mea)e
2w jo im—

(11b)

The functions (x,y) and .(x, ) are, respectively,
the undulatory and evanescent parcels of v(x,y) and
one fact should be observed here: the odd derivatives of
o(x,y) with respect to x have discontinuities at x = 0
exactly balanced by the discontinuities of the derivatives
of v(x,y). This last result can be easily demonstrated
with the help of the Residue Theorem and from the
properties of the analytic function F(z) (F(—imKa) =
F(imKa)). In particular, one has

31/1e (0 y) — (sign x).27B, K*F (Ka)e 24Xy (12)

In the far field only the undulatory parcel v,(x, y)
remains, and the radiation condition will be satisfied if
the stationary wave:

Yw(x,, 1) = 27B, KF (Ka)e **eX cos K]|x|.sinwt
(13)
is added to the solution. The function R (x, y, t) corrects

the perturbation introduced in the body’s boundary
condition by the functions 1 and v, and so

VR.7 = —V(¢.cos wt + 1y,). 7 ~ 0(6) (14a)
where § is given by (see eqns (11)—(13)):
6 = (Cy + 1)K*S.F(Ka).e 2Kd-v/2) 1 (14b)

The factor w in eqn (14) comes from the estimation of
eqn (14a) at y =w. In the far field the radiation
potential takes the form:

¢3(x,¥,1) ~ i.2nB|.KF (Ka)e 2K4 &Ky {Ki—ut). |3 _, oo

(15)

an expression that will be used in Section 4.

4 EXCITING FORCE AND RADIATION DAMPING

The exciting force due to an incident wave with potential
¢1 can be computed from the radiation solution with the
help of Haskind’s relation. In the present case, one
obtains, with eqn (15), the simple expression:

f3(t) = pS(Cy + 1).F(Ka).ddlt°
Ot _ Kt i 1e)

wo(t) = i —iwAe

where 4 is the wave amplitude, and f3(¢) the heave
sectional force.

Observing that F(Ka) — 1 when Ka — 0, eqn (16)
reduces to the inertia part of Morison’s formula in this
limit. So eqn (16) is the natural extension of this formula
to the whole range of frequencies with an error of the
form (1 4 0(6)), 6 being given by eqn (14b). For a circle,
in particular, F(Ka)=1 and eqn (16) reduces to
Morison’s formula independent of the value of Ka.
This simplified expression is compared in Ogilvie* with
the exact solution (see Fig. 2 of Ogilvie’s work) and one
can check directly that, for a given Ka, the error tends to
zero as Kd increases.

If 4, is the amplitude of the imposed motion on the
cylinder and A(w) is the far field wave amplitude
generated by this motion, from eqn (15) one obtains
AWw)| _

Ay |

and from energy conservation it follows that the
sectional radiation damping can be written as

K*S(Cy + 1)F (Ka) 7% (17a)

r

Ao (17b)
The pontoons of a TLP, for example, are relatively
slender and once can use eqn (17), together with strip
theory, to estimate the radiation damping in the three
vertical modes heave, pitch and roll. In particular the
radiation damping in the heave motion is given in this
approximation by ¢;./, where / is the total perimeter of
the pontoons. Supposing that M is the total mass of the
structure, and M, = CypS! is the added mass, then the
percentage of the critical damping ¢; is given by

el =2(M + M,)Gw,
= pwl(KS)*(Cy + 1)*F*(Ka) e 2K

where w, is the heave natural frequency. In the resonant
condition one has

TN ad)

~2Kd 12 2
€ K(Cy + 1)S.F*(Ka
Cym + (M/pS]) (Cm+1) k)

(18)

Equation (18) splits the radiation damping into three
distinct contributions: the first depends on the depth of
submergence through the exponential term in —2Kd, the
second on the ‘hydrodynamic size’ of the pontoons
through the term proportional to (Cy + 1)S; the third
depends on the geometric form of the cross-section
through the function of form F(Ka). Observing that the
natural period of a TLP is short (of the order of 4s) one
has F(Ka) relatively different from 1(Ka>0(1)) and so
the form of the cross-section can affect strongly the
value of ¢, for these structures.

One of the main concerns in the design of a TLP is the
fatigue life of the tendons. Within the context of the
linear analysis it can be shown that the r.m.s. value of
the vertical displacement is proportional to g, where

" 1/2
=(— 19
5 (Ci +ov+ Cr) (19)
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In eqn (19), ¢, ¢y, ¢, are, respectively, the damping
coefficients due to the internal dissipation in the
structure, to viscous dissipation in the fluid and to
wave radiation to infinity. This result, derived by
Vandiver,’ has a simple explanation: since the resonant
peak is very large the random response is dominated by
the behaviour of the system in the vicinity of the
resonance and so the average value of the heave
amplitude squared is proportional to the force spec-
trum, at the natural frequency, times the transfer
function. The force spectrum is related, through
Haskind’s relations, to the radiation damping, and the
transfer function at the resonance is inversely pro-
portional to the total damping.

The parameter g is monotonically increasing with ¢,
an observation that leads to the following result: the
r.m.s. value of the vertical displacement (and so the
dynamic tension in the tendons) increases with the
function of form F(Ka). The fatigue life of the tendons
is very sensitive to the dynamic tension, and a simple
design criteria can be derived in this case: the geometric
form of the pontoons’ cross-sections must be chosen in
order to minimize the function of form F(Ka).

This criteria may be criticized since important second-
order effects have been ignored, but, it is believed, it
represents a first step attempting to define a suitable
form of the pontoons; anyway, in Section 6, a digression
about second-order forces is made in order to place the
discussion in a proper perspective.

5 THE FUNCTION OF FORM F (Ka)

In this section a more systematic study of the function
F(Ka) will be made, aiming to shed some light on the
geometric features that lead to the minimization of this
function. First, an analysis is made for a family of
simple geometries and in section (5.2) some ideas related
to the geometric synthesis of a desirable function of
form are discussed. The last item introduces a numerical
method based on Hamilton’s principle and presents
numerical results for different geometries.

5.1 Family of ellipses

The conformal mapping:
z=0.5(Z+1/2) (20a)

transforms the unit circle in the Z-plane into a flat plate
and a circle with radius R > 1 into an ellipse. Denoting
members of this family by the ratio w/b, see Fig. 1,
the following simple relation can be derived between the
coefficients in the series in eqn (1) (a =56 = 1):

D + — nDn+
—p Ov/B) = [1 = (w/B)'"—5=(0) (200)

For the flat plate the complex potential has the form:

1
zZ)=—i————— 2la
f() Z+(22—1)1/2 ( )
this expanded in a powers series in 1/z gives

Using eqns (21b) and (20b) in eqn (9) the following
approximation is obtained for the function of the form
(a = b in this case):

2 o N
. =1-Z 4
F (Ka; w/b) s 192 9216 T 737280
A= [1 - (w/b)")"” Ka @)

The function of form decreases then with w/b, and
Fig. 2 shows the graph of F(Ka;w/b) as a function of
Ka for different values of w/b. Notice that the behaviour
shown in eqn (22) is typical for sections that are
symmetrical with respect to the x-axis: the first
correction to the circle result F(Ka) = 1 appears at the
power (Ka)’ since these sections have zero even
coefficients in eqn (1). For values of Ka that are not
too large one should prefer then a section nonsymmetric
with respect to the x-axis since; in this case, it is always
possible to obtain a first negative term in eqn (22) that is
linear in Ka (see eqn (2)). This point will be elaborated
further on.

5.2 Geometric synthesis of a function of form

The hydrodynamic problem is, in general, posed in a
direct way (namely, to determine the function of form
for a given geometry) although the inverse problem may
be more interesting from a design point of view. In this
case a function of form, with some desirable properties,
is defined and one must then find the geometry that fits
the given function F(Ka).

The intention here is not to exhaust this problem and
only some simple examples will be discussed. Observing
the exponential nature of the series in eqn (9) the
following functions of form are proposed:

Fy(Ka) = e~k
F,(Ka) = cos (aKa) (23)

F;(Ka) = 1 — sin (aKa)

The first function of form F;j(Ka) leads to a trivial
result that could have been anticipated, as explained
below. The two other functions, however, give nontrivial
results and one can choose a to tune
the structure to give zero response at some desired
frequency. For example, if @ = 8 m, and T,,, the natural
period, is 4s, then Ka=2 at resonance and
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\—circle

ellipse (w/b=0.5)

35
Ka

Fig. 2. Function of the form F (Ka) for the family of ellipses. Also shown is the function of form for a square (a = b = 1 in all cases).

F,(Ka) = F;(Ka) = 0 when Ka = 2 and « = 7/4. In this
situation the resonant response is eliminated.

Furthermore, since F(Ka) depends only on the ratios
D,/D,, a freedom exists to choose the value of D; and
this is an important point. In fact, if one takes D; = —1,
then all geometries will have the same ‘hydrodynamic
size’ (Cy + 1)S of the circle and will differ, one from the
other, only in the form of the cross-section (see eqn
(18)). In this circumstance, changes in the geometry will
affect weakly other parameters such as the natural
frequency, for example, and this makes the comparison
between geometries more realistic. The normalization of
the coefficient D; implies, however, that one is using
the length a = [(Cy + 1)S/27]"/?, instead of the half
beam, as the geometric scale of the problem. This fact
will be assumed in the following.

Expanding the function F;(Ka) in a power series in
Ka and comparing with eqn (9) one obtains
D,/D, = o""'. Using these relations in eqn (1) the
complex potential takes the form:

N1(2) = (iDy/z+ Dy /2).[1 = (e/z)" + (a/2)* — -]
= (iDyz+ D,) /(22 + &)

and since D,/D; = a the following result can be
obtained when D; = —1:

NH(z)=~i :

z+ i

Since eqn (24) is the result for the normalized
geometry the conclusion is simple: the function of form
F\(Ka) is related to a circle of radius @ and centred in a
point with coordinate y = —aa. This result could have
been anticipated: if one takes F (Ka) = ¢ *%® in eqn (16)
the heave force on a circle, d + aa distant from the free
surface, is obtained. In the Appendix the question of the
invariance of eqn (16) under coordinate translation is
further discussed.

The same procedure applied to the function of form
F,(Ka) leads to the result:
i1 i1
2z+a 2z—a

(24)

fa(2) = -

which has a simple meaning: it is the body formed by

(25)

two y-dipoles placed at the points x = +a. For o<1 this
body tends to a circle with radius a = 1, but for a>1
one has two circles centred at x = £a and with radius
1 /21/ 2 For a = /4 one obtains the geometry shown in
Fig. 3, where each pontoon is split into two parallel
cylinders with indicated cross-sections.

The function of form F;(Ka) is associated with the
complex potential:

1
- 05 !
-« zZ4+«

£(2)

i

p, +0-5 . (26)
that corresponds to a y-dipole at the origin and two
x-dipoles with opposite signs at x = Fa. The geometry
is shown in Fig. 3 for & = /4 and one confirms a result
already pointed out in eqn (20): sections nonsymmetric
with respect to the x-axis have a function of form that
decays faster with Ka. In the present case, in particular,
the value of F3(Ka) is very small in a large vicinity of
Ka = 2, a peculiarity that it is indeed desirable.

Others functions of form can be analysed, but it is not
the purpose of this work to explore further this issue.

5.3 Numerical determination of ¥ (Ka) for a given
geometry

In this section attention is turned to the direct problem,
where a geometry is given and the related function of
form F(Ka) must be determined. In this case, one must
resort to a numerical method generally based, in
hydrodynamics, on an integral equation defined with
the help of Green’s function. A different approach,
perhaps more direct and expedite, can be developed
from Hamilton’s principle of mechanics, as elaborated
below.

Let y be the position of the mechanical system (fluid)
and Y(¢) the external force applied by the body. The
potential of this force is —y.Y(#) although, in a fluid
system, it is more mnatural to use the form
(dy/dz). [ Y(€)d¢, where dy/dt is the body’s velocity.
Notice that one form differs from the other by an exact
time differential that is immaterial in the Principle of the
Least Action (Hamilton’s principle). If pU(¢) is the
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Fig. 3. Functions of form: (i) cos (aKa) and (i) 1 — sin (aKa) with related geometries (a = 7/4).

‘potential energy’ and dy/d¢ = 1, then
t
p.U(¢) = J Y() de = p. JS $.n,.dS (27a)
(4

where ¢(x,y) is the velocity potential, S is the body’s
surface, and 7, is the y component of the normal 7
pointing towards the body. If ¥ is the region occupied
by the fluid the kinetic energy is given by

T(6) = 406(6:8) = b | (VoPav @)
The Lagrangean is defined by the expression:

L(¢) = 30G(¢;4) — pU(9) (27)

and, in a steady problem, Hamilton’s principle reduces
to the stationary condition of L(¢), in other words, the
actual velocity potential is the one that makes 6L = 0.

The discretization of the problem is immediate in this
formulation: if {T,(x,y);n=1,2,...,N} is a set of
linearly independent functions with finite energy one can
write

N
On(%Y) = gnTu(x,) (28a)
n=1

as an approximation for ¢(x, y) in the space spanned by
the functions {7,(x,y)}. In this case the Langrangean
takes the form:

L(qn) = %pz Z G(Tn; Tm)qnqm = pz U(Tn)qn
(28b)

and the stationary condition §L(g,) = 0 reduces to the
linear system:

[G(Tn; Tm)]'{qn} = {U(Tm)} (28C)
Notice that if all T,(x,y) satisfy Laplace’s equation

and decay at least as fast as a dipole, one can show that
G(T,; T,y) = J (VT,.7).T,.dS (29)
s

and so all the matrices in eqn (28¢c) can be obtained by
integration over the body’s surface.

It is natural to use typical flow singularities (poles,
dipoles, vortex line, etc.) to define the basis
{T,(x,y),n=1,2,...,N} of the approximation (eqn
(28a)), where the singular point must be inside the body.
In particular a ‘vortex line’ is defined here as two
counter rotating vortices with a branch cut coincident
with the segment that joins the vortices. This singularity
is then defined by the position of the two vortices and
the remaining ones (poles, dipoles, etc.) by the position
of the singular point.

As discussed in Aranha and Pesce,’ a physical
visualization of the flow field can help define a minimal
set of singularities for a given problem. For example, an
ellipse with w/b = 0.1 can be represented by ‘vortices
lines’ that imitate the rotation of the velocity field
around the ends of the ellipse. Using four vortices
lines (N = 4), placed at (£0-98;0), (+0-8;0), (+0-7;0),
(£0-6;0), one obtains the results shown in Table 1,
where the coefficients D, have been obtained by
the Fourier decomposition of eqn (28a) in a circle
with radius ¢=2. Comparison with the exact
solution, derived in eqn (20), shows a very good
agreement. A square with » = 1 was also analysed with
three trial functions: a y-dipole at the origin (circle’s
solution) and two vortices lines, at (£0-9;0-9) and
(£0-9; —09), to imitate the flow rotation around
the corners. In this case the only known coefficient is
D, related to the added mass, and the agreement is
good again.

The function F(Ka) is defined by the series in eqn (9)
whose convergence is relatively fast. For example, if the
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Table 1. Coefficients D, and F (3) for an ellipse with w/b = 0.1 and a square
D,;F(3) Ellipse Square
N=4 Exact Error (%) N=3 Exact Error (%)
D, —0-541 —0-5500 1-6 -1-353 —1-393 29
D, 0-135 0-1361 0-8 —0-357 * *
Ds —0-066 —0-0674 2-0 0-347 * ¥
Dy 0-041 0-:0417 1-7 0-402 ¥ *
Dy —0-029 —0:0289 04 —0-506 * *
F(3) 0-2238 0-2318 34 1-084 * *

series is oscillatory, a common circumstance, and the
sum is truncated at m the error is smaller than
((Ka)"/m!).D,py1/D;. Since D,/D, — 0 as n — oo an
upper bound for the error is given by (Ka)™ /m!, a factor
smaller than 1-63% when Ka<3 and m = 10. In the
following the analysis will be restricted to the range of
frequencies 0< Ka<3 and the series in eqn (9) will be
truncated at m = 10. The last line of Table 1 compares
the values of F(3) for the numerical and exact solutions
in the case of the ellipse.

As has been observed before, sections nonsymmetric
with respect to the x-axis have a nonzero value for the
coefficient D,/ D, the one that multiplies Ka in eqn (9).
Furthermore, by a rotation around the x-axis, one can
change the sign of this ratio (see eqn (2)). So, for a given
nonsymmetric section (or for the section obtained from
this one by a rotation) the function of form decays
linearly with Ka for small values of the frequency,
certainly a desirable feature. This simple result can be
helpful to select the pontoon’s geometry, and Fig. 4
presents the function of form for some nonsymmetric
sections. These results, again, are intended only to
exemplify the theory, not to exhaust it, but they show
the advantages of this class of geometries

6 A DIGRESSION ON SECOND-ORDER FORCES

As pointed out in Section 1 the former motivation of
this work aimed to analyse the resonant response of a
TLP, where the natural period is short and the linear
exciting force on the pontoons, proportional to e %4, is
small. In this context the second-order ‘sum frequency’
force may become important, since it decreases linearly
with depth and not exponentially; as a matter of fact this
force appears to be the dominating parcel for the usual
geometric configuration of a TLP, where the columns
are large and the pontoons relatively slim, and a critical
analysis of this trend may be of importance in order to
place the discussion of this work in a proper perspective.

Observing that a second-order effect is larger the
larger is the diffraction and that the interaction between
the pontoons and the incident wave can be neglected in
the short wave regime, one can restrict the attention to
the columns that intercept the free surface. In this way
one considers first a circular column with radius a, and

draft D excited by a harmonic wave with frequency w
and amplitude A4; if Newman’s approximation’ for the
second-order sum frequency is further approximated for
relatively small Ka, one obtains that the vertical second-
order force on the column is given by

o 2T pgao 4 (an/ D) (Kao)? & &2

Suppose now a TLP with four pontoons disposed in a
squared configuration with side 2/ and four columns
placed at the corners of the square. Suppose also that
the pontoons have a circular cross-section and let ¥ be
the displaced volume of the structure, V the volume of
the columns, and V3 the pontoon’s displacement;
obviously V= V¢ + Vp. Assuming a force like the
above one in each column one obtains, as resultant,
the expression:

Z{ (1)

Zyc(1) = F .0 pVEGH (KL B) &7 72

" 5 (30a)
Fre= 4 (KAP L (Ve/V)
where G,(Kl; 3) = cos (Klsin 8).cos (Klcos 3) takes

care of the phase difference between the forces in each
column, and 3 is the angle of the incident wave.

Let w; =2w be the natural frequency of a TLP
and consider the linear exciting force on the pontoons
at this frequency. Assuming a circular cross-section
(F(Ka) = 1) and a phase function G,(KI; 3) analogous
to G, (K, B), then the vertical linear exciting force can be
written as

Zp(t) = F1p pVeGi (KL, B) e~
1,p(2) 1P 1Kd ) (30b)
Fip = 2K 4y) e (V[ V)

with K| = w? /g and A, being the amplitude of the wave
with frequency w;. If one defines now the coefficient:

F=Fipt+Fac (30c)
the total exciting force can be expressed as
Z(0) = Zip(1) + Zy,c(0) = F pVg G(KI; B) e
(30d)

where G(KI;3) takes care of the phase difference
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Fig. 4. Functions of form F(Ka) for nonsymmetrical geometries.

between the distinct force components and of the angle
of incidence.

Ignoring, for the sake of brevity, the influence of this
phase function, eqns (30c) and (30d) show that the
hydrodynamic design of a TLP should search for a
minimum of the force coefficient #; assuming, for the
sake of evaluation, a medium size steel platform with
displacement ¥ = 32000m>, draft D = 20 m, with the
pontoons centre line distant d = 15m from the free
surface and a natural period 7| =2x/w; =4s, one
obtains #;p = 3-84 x 1073(Vp/V) and Foc = 2:56%
1073(Ve/V)? if KA = K A, = 0-08, a usual value for a
significant wave. In this case the minimum of # occurs
when Vo/V = 0-75 where then

Fip=096x 107 F,yc=144x107

(Ve/V =075  (3la)

F =240 x 1073

The above result justify, in part at least, the actual
trend in the design of a TLP, where large columns and
relatively slim pontoons are used, and one observes also
that the second-order effect is the dominating one for
this configuration.

If instead of this choice one uses an opposite one,
with large pontoons and slim columns, where
Ve/V =075 and Vc/V =025 for example, one
obtains the values:

Frp=288x107 F,yc=016x 1073

(Ve/V =0-25) (31b)

F =304x10"°
the total force being roughly 30% larger than in the
‘minimum’ configuration case (eqn (31a)).

These results, however, were derived under the

assumption that the pontoon has a circular cross-
section. If one supposes now that the cross-section is

‘tuned’ to the natural period in such a way that
F1p =0, as discussed in the preceding section, the
optimum choice for V¢/V is the one that minimizes
F > c; in this case one should prefer slim columns and
large pontoons, a choice that is opposite to the actual
trend in the TLP design. In particular, if V¢/V = 0-25
one would obtain for the ‘tuned’ geometry an exciting
force that is 7% of the ‘optimum’ value indicated in eqn
(31a), since then % = 0-16 x 10> (see eqn (31b) with
,9’— 1,p = 0)

It is not necessary to emphasize the pedagogic nature
of this digression; several important points in the actual
design were ignored and the real problem is much more
complex than the overview given here. The intention
was just to stress the possible flexibility introduced in the
design when one can change the geometric configuration
of the pontoon’s cross-section.

7 CONCLUSION

In this work an extension of the Morison formula, valid
over the whole range of frequencies, was derived for a
relatively deep submerged cylinder. As should be
expected the high frequency response is strongly
affected by the cross-section geometry, in contrast to
the low frequency response where only the size of the
section has importance. A TLP has a relatively short
natural period in the vertical modes and so its resonance
response should be influenced by the form of the
pontoons. This was the practical motivation of the
work.

The obtained expression may be useful in an initial
phase of the design and a possible criterion for
optimization was proposed in the present paper: the
function of form |F(Ka)| should be minimum. One
could then derive some simple conclusions (for example,
nonsymmetric sections are preferable) or even to address
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the crucial design problem: the geometric synthesis of a
desirable response.

It should be emphasized, however, that some aspects
of the problem have been intentionally ignored. On the
one hand the analysis assumed a two-dimenstonal flow
and, in this way, the hydrodynamic interaction between
the pontoons (and columns also) was not considered
here; on the other hand, important second-order effects,
as the one discussed in Section 6, were not studied in
depth. It does not seem difficult to extend the analysis to
a full three-dimensional problem or to use the derived
solution to estimate the second-order effect. The final
result, however, will likely be much more complex than
the one obtained here and of questionable importance
for the geometric synthesis of the structure.

In spite of the above mentioned limitations it is felt
that the proposed expression can be useful for the
purpose it aims at: to help define the geometry of an
ocean structure. For a strict analysis of a specific
geometry one must resort to more sophisticated
mathematical models or even to an experimental
investigation.

APPENDIX

From the convergence of the power series (eqn (1)) when
|z| > pe, > 1, one obtains that there exists an M,
independent of n, for which |B,| < M(uc)".® From eqn
(4) it follows then that |D,| < M/a(uc/a)" and from eqn
(9) one has

12
!

n+1

\F(z)| =

o0 nDn Zn [ o]
Sh-1r Do < SojPen

< BMe S (uclzl/a)” _ pMc

Dla2 n—0 n! D 2

exp [uc|z|/d]

The above inequality shows that F(z) is analytic in the
whole complex plane.

The function of form F(Ka) depends, to some extent,
on the position of the origin of the coordinated system
used. In fact, since the eqns (16) and (18) must be
invariant under a translation of the coordinated axis,
then one must have

F,(Ka) = e X% F(Ka) (A1)

where F|(Ka) is the function of form when the origin is
at 01 = (0, Ay)

To prove eqn (A.1) one should start with the series
expansion in eqn (1). If D,(Ay) are the coefficients of
f(z) in relation to the origin 0, and z; = z — iAy is the
related complex variable, then one can place
z=z;+iAy in eqn (1) and expand the parcels
(1 +iAy/z)™" in a power series of iAy/z,. From the
equalities of the terms that multiply z;” the following
identity can be derived:

D,y (Ay) = Z Dppi ——— m'(n

Since Dy (Ay)

)n—m

Y (Ay

= D, from the definition (eqn (9)) one

has
Z Z "(A}’) Dipyy
=0 m=0 m)' Dl
or
ii( 1 Ka (Ay)" i Dm+l
m=0 n=m ml(n —m)! D,

If p = n — m, one obtains

RIS

p=0 m=0

p+m Ka P+m(Ay) m+1
mip! D,

which proves eqn (A.1) with the help of eqn (9).
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