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Abstract. Many species live in colonies that thrive for a while and then collapse.
Upon collapse, very few individuals survive. The survivors start new colonies at
other sites that thrive until they collapse, and so on. We introduce spatial and non-
spatial stochastic processes for modeling such population dynamic. Besides testing
whether dispersion helps survival in a model experiencing large fluctuations, we
obtain conditions for the population to get extinct or to survive.

1. Introduction

A metapopulation model refers to populations that are spatially structured into
assemblages of local populations that are connected via migrations. Each local
population evolves without spatial structure; it can increase or decrease, survive,
get extinct or migrate in different ways. Many biological phenomena may influence
the dynamics of a metapopulation; species adopt different strategies to increase its
survival probability. See Hanski (1999) for more about metapopulations.

Some metapopulations (such as ants) live in colonies that thrive for a while and
then collapse. Upon collapse very few individuals survive. The survivors start new
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colonies at other vertices that thrive until they collapse, and so on. In this pa-
per, we introduce stochastic models to model this population dynamic and to test
whether dispersion helps survival. Our non-spatial stochastic models are reminis-
cent of catastrophe models, see Brockwell (1986). However, instead of having the
whole population living in a single colony we now have the population dispersed
in a random number of colonies. We show that dispersion of the population helps
survival, see Section 4. Our spatial model is similar to a contact process, see Liggett
(1985), in that individuals give birth to new individuals in neighboring sites. How-
ever, in our model there is no limit in the number of individuals per site. Moreover,
at collapse time a site loses all its individuals at once. This introduces large fluc-
tuations that are non standard in interacting particle systems and complicate the
analysis, see Section 5.

This paper is divided into five sections. In Section 2 we define a spatial stochastic
process for colonization and collapse and present some of its properties. In Section 3
the main results are stated. In Section 4 we introduce a non-spatial version of our
model and compare it to other models known in the literature. Finally, in Section 5
we prove the results stated in Section 3.

2. Spatial model

We denote by G = (V,E) a connected non-oriented graph of uniformly bounded
degree, where V := V (G) is the set of vertices of G, and E := E(G) is the set of
edges of G. Vertices are considered neighbors if they belong to a common edge.
The degree of a vertex x ∈ V is the number of edges that have x as an endpoint.
We will assume that there is an uniform bound b on the degree of every vertex of
the graph G. A graph is k−regular if all its vertices have degree k. The distance
d(x, y) between vertices x and y is the minimal amount of edges that one must
pass in order to go from x to y. With the usual abuse of notation, by Z

d we mean
the graph with the vertex set Zd and the set of edges {〈(x1, . . . , xd), (y1, . . . , yd)〉 :
|x1−y1|+ . . . |xd−yd| = 1}. Also, Td, d ≥ 2, denotes the degree d+1 homogeneous
tree.

We now give an informal description of our process. It is a continuous time
spatial process on the graph G with parameters λ > 0 and p ∈ [0, 1]. At any time,
each vertex of G may be either occupied by a colony or empty. Each colony is
started by a single individual. The number of individuals in each colony behaves
as a Yule process (i.e. pure birth) with birth rate λ ≥ 0 per individual. To each
vertex is associated a Poisson process with rate 1 in such a way that when the
exponential time occurs at a vertex occupied by a colony, that colony collapses and
its vertex becomes empty. At the time of collapse each individual in the colony
survives with a (presumably small) probability p ∈ (0, 1) or dies with probability
1 − p. Each individual that survives tries to found a new colony on one of the
nearest-neighbor vertices by first picking a vertex at random, independently of the
other survivors. If the chosen vertex is occupied, that individual dies, otherwise
the individual founds there a new colony. If more than one survivor tries to occupy
the same vertex only one of them succeeds and all the others die. We denote by
CC(G, λ, p) the Colonization and Collapse process.

We now give a formal description of the process. The CC(G, λ, p) is a continuous-
time Markov process whose state space is NV and whose evolution (status at time
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t) is denoted by ηt. For a vertex x ∈ V , ηt(x) = i means that at the time t there
are i individuals at the vertex x. We consider |ηt| =

∑

x∈V ηt(x).
Next we present a graphical representation of CC(Z, λ, p), the Colonization and

Collapse process on Z. The ideas presented here are naturally extended for any
graph of uniformly bounded degree.

The graphical representation ofCC(Z, λ, p) is a clump of Poisson processes marks
on the space-time Z×(0,∞). Each mark indicates a random event. The state space
of CC(Z, λ, p) is NZ. A particular vertex is said to be in state i at time t if it holds
a colony of i individuals at time t.

First consider a family of independent Poisson Processes

{{{Nx
i }i≥1, C

x} : x ∈ Z} ,

where for each x ∈ Z and i ≥ 1, the rates for the Poisson processes Nx
i and Cx are

iλ and 1, respectively. The Nx
i processes will take care of birth events at a vertex

x when x hosts a colony of i individuals. The process Cx will take care of collapse
events at vertex x.

Consider now the family of random variables
{

{Xx,j
m , Y x,j

m }m≥1 : x ∈ Z, j ≥ 1
}

,

where the sequence {Xx,j
m , Y x,j

m }m≥1 is such that Xx,j
1 , Xx,j

2 , . . . and Y x,j
1 , Y x,j

2 , . . .
are independent random variables uniformly distributed on the interval [0, 1]. The
construction of the process is done as follows.

• At the arrival times of the Poisson process Nx
i , if vertex x is in state i ≥ 1

then its state is changed to i+ 1.
• At the j-th arrival time of the Poisson process Cx, if vertex x is in state i ≥ 1,

then it is changed to 0. Moreover, the collapse at x affects its neighbors x− 1 and
x+ 1 in the following way. Let

(K,L)x,ji,p :=

(

i
∑

m=1

1{Xx,j
m < p, Y x,j

m < 1/2},

i
∑

m=1

1{Xx,j
m < p, Y x,j

m ≥ 1/2}

)

.

If K ≥ 1 and the vertex x− 1 is in state 0 then its state is changed to 1. If L ≥ 1
and the vertex x+ 1 is in state 0 then its state is changed to 1.

This type of graphical construction goes back to Harris (1972). A difficulty that
was raised and solved by Harris is that since there are infinitely many Poisson
processes there is no first arrival. This is solved by noting that if t0 > 0 is small
enough then the number of vertices interacting with a fixed vertex up to time t0 is
finite. We now prove this fact.

Let t0 be fixed. We define the following random graph on G. Let x be a site in
G and y be a nearest neighbor of x. We draw an unoriented arc between x and y
if there is at least one collapse at x or at y by time t0. We say that two vertices u
and v are connected in the random graph if there exists a sequence y0, y1, . . . , yn of
distinct sites such that y0 = u, yn = v, (yi, yi−1) are nearest neighbors and there is
an arc between yi and yi−1 for each i = 1, 2, . . . , n. Let O be a fixed site in G. Let
N(n) be the number of sites that are connected to O by a path of length n. Then,

E(N(n)) ≤ b(b− 1)n−1(1− e−2bt0)n,

where b bounds the number of degrees per site in G. This is so because there are
less than b(b − 1)n−1 length n self-avoiding paths in G that start at O. Moreover,
the probability that an arc between two neighbors be present is less than 1− e−2bt0
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(recall that collapses occur at rate 1). We can now pick t0 > 0 small enough so
that E(N(n)) converges to 0 as n goes to infinity. This shows that the probability
that O be connected to infinitely many sites in the random graph is 0.

This proves that up to time t0 all the clusters of interacting vertices are finite.
Therefore, we can use the algorithm described in the graphical construction to
construct the process on every finite cluster up to time t0. We then construct
the process from time t0 to time 2t0 and so on. Observe also that the graphical
construction specifies a unique Markov process.

• Observe that the graphical construction allows for the coupling of two processes
with different λ and p. This makes it easy to show that the process is monotone in
p and λ.

Definition 2.1. Let ηt be a CC(G, λ, p), starting with a finite number of colonies.
If P(|ηt| ≥ 1 for all t ≥ 0) > 0 we say that ηt survives (globally). Otherwise, we say
that ηt dies out (globally).

Remark 2.2. If the process ηt starts from an infinite number of colonies, then
P(|ηt| ≥ 1 for all t ≥ 0) = 1, which means that ηt survives with probability 1. Still
we can see local death according to the following definition.

Definition 2.3. Let ηt be a CC(G, λ, p). We say that ηt dies locally if for any
vertex x ∈ V there is a finite random time T such that ηt(x) = 0 for all t > T .
Otherwise we say that ηt survives locally.

Remark 2.4. Local death corresponds to a finite number of colonizations for every
vertex. It is clear that global death implies local death but the opposite is not
always true. As an example consider ηt a CC(Zd, 0, 1) with |η0| = 1. In this case
ηt can be seen as a symmetric random walk on Z

d. For d = 1 or 2, it is recurrent,
which implies that ηt survives locally. For d ≥ 3, it is transient, which implies that
ηt dies locally but survives globally.

By coupling arguments one can see that P(|ηt| ≥ 1 for all t ≥ 0) is a non-
decreasing function of λ and also of p. So we define

λc(p,G) := inf{λ : Pδx(|ηt| ≥ 1 for all t ≥ 0) > 0},

where x is a fixed vertex, and P
δx is the law of the process ηt starting with one

colony at x. The function λc(p,G) is non-increasing in p. Moreover, λc(1,G) = 0
and λc(0,G) = ∞.

Definition 2.5. Let ηt be a CC(G, λ, p) with 0 < p < 1. We say that ηt exhibits
phase transition (on λ) if 0 < λc(p,G) < ∞.

Remark 2.6. Using coupling arguments, we can construct ηt and η̂t as two copies
of CC(G, λ, p) such that ηt ≤ η̂t for all times t > 0, provided that η0 ≤ η̂0. This
monotonic property implies that if ηt survives, η̂t also does. Moreover, if η̂t dies
out (or dies locally) then ηt does too.

Observe that, as the number of individuals per vertex is not bounded, it is
conceivable that the process survives on a finite graph. Next we show that it does
not happen.

Proposition 2.7. For any finite graph and starting from any initial configuration,
the colonization and collapse process dies out.
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Proof : Let α be the probability that at a colony collapse time, zero individuals
attempts to found new colonies at neighboring vertices.

The probability that a Yule process, starting from one individual, has j individ-
uals at time t is e−λt(1− e−λt)j−1, hence we have that

α =

∫ ∞

0

e−t

∞
∑

j=1

e−λt(1 − e−λt)j−1(1− p)jdt.

Let n and m be the number of vertices of G and its maximum degree, respec-
tively. In order to show sufficient conditions for extinction we couple the number
of colonies in the original model to an auxiliary continuous-time branching process
Xt. Particles in the process Xt will play a role analogous to colonies in the colo-
nization and collapse process. We now describe Xt. Each particle is independently
associated to an exponential random variable of rate 1 in such a way that, when
its exponential time occurs, it dies with probability α or is replaced by m particles
with probability 1−α. We also consider a restriction that makes the total number
of particles always smaller or equal than n by suppressing the births that would
make Xt larger than n.

Let Ct be the number of colonies at time t in the colonization and collapse
process. At time t = 0 let X0 = C0. Moreover, we couple each particle in X0 to
a colony in the colonization and collapse process by using the same exponential
random variable of rate 1. When an exponential occurs there are two possibilities.
With probability α, both Xt and Ct decrease by 1. With probability 1 − α, the
process Xt grows by m− 1 particles and Ct grows by at most m− 1 colonies. This
is so because in the colonization process we have spatial constraints and attempted
colonizations only occur at vertices that are empty. Moreover, a colony always
starts with a single individual. Hence, new colonies correspond to births for Xt.
We couple each new colony to a new particle in Xt by using the same mean 1
exponential random variable. This coupling yields for all t ≥ 0

Xt ≥ Ct.

Note now that α > 0 and that Xt is a finite Markov process with an absorbing state.
Hence, Xt dies out with probability 1. So does Ct and therefore the colonization
and collapse process. �

3. Main Results

Next, we show sufficient conditions for global extinction and local extinction for
the colonization and collapse process on infinite graphs.

Theorem 3.1. Let G be an m-regular graph, ηt a CC(G, λ, p) and

µ(m) = m−
m

λ

∑

k≥1

B

(

1 +
1

λ
, k

)

(

1−
p

m

)k

,

where B(a, b) =
∫ 1

0
ua−1(1− u)b−1du is the beta function.

(i) If µ(m) ≤ 1 and |η0| < ∞, then ηt dies out locally and globally.
(ii) Let G = Z

d, d ≥ 1. If µ(2d) < 1 and η0(x) ≤ 1 for every x in Z
d then ηt

dies locally.
(iii) Let G = T

d, d ≥ 1. If µ(d+ 1) < 1/d and η0(x) ≤ 1 for every x in T
d then

ηt dies locally.
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Remark 3.2. Observe that for all m ≥ 1 and λ fixed, there exists p > 0 such that
µ(m) ≤ 1. Furthermore, µ(m) can be expressed in terms of the Gauss hypergeo-
metric function 2F1 (see Luke (1969)),

µ(m) = m−
m− p

λ + 1
2F1

(

1, 1; 2 +
1

λ
; 1−

p

m

)

.

Next, we show sufficient conditions for survival for colonization and collapse
process on some infinite graphs.

Theorem 3.3. For p > 0 and λ := λ(p,G) > 0 large enough, the CC(G, λ, p) with
G = Z

d or T
d survives globally and locally.

Remark 3.4. From Theorems 3.1 and 3.3 it follows that for G = Z
d or T

d and
p ∈ (0, 1), there exists phase transition (on λ) for CC(G, λ, p). So, there exists a
non-increasing function λc(·,G) : (0, 1) → R

+ such that the survival and extinction
regime for CC(G, λ, p) can be schematically represented as in Figure 3.1. In fact
λc(0,G) = ∞ and λc(1,G) = 0 but we do not know if λc(p,G) is continuous and
strict monotonic.

Figure 3.1. Phase transition to CC(G, λ, p), with G = Z
d (or Td).

4. Non spatial models

So called Catastrophe Models have been studied extensively and are quite close to
our model, see Kapodistria et al. (2016) for references on the subject. Particularly
relevant is the birth and death process with binomial catastrophes, see Example 2
in Brockwell (1986). We now describe this model. It is a single colony model. Each
individual gives birth at rate λ > 0 and dies at rate µ > 0. Moreover, catastrophes
(i.e. collapses) happen at rate a > 0. When a catastrophe happens, every individual
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in the colony has a probability p of surviving and 1− p of dying, independently of
each other. Brockwell (1986) has shown that survival (i.e. at all times there is at
least one individual in the colony) has positive probability if and only

µ− a log p < λ.

Hence, there is a critical value for p,

p1 = exp(−
λ− µ

a
).

The single colony model survives if and only if p > p1.

Next we introduce a non-spatial version of our model and compare it to the
catastrophe model above. Consider a model for which every individual gives birth
at rate λ and dies at rate µ. We start with a single individual and hence with
a single colony. When a colony collapses, individuals in the colony survive with
probability p and die with probability 1 − p independently of each other. Every
surviving individual founds a new colony which eventually collapses. Colonies col-
lapse independently of each other at rate a > 0. The proof in Schinazi (2015) may
be adapted to show that survival has positive probability if and only if

pE [exp ((λ− µ)T )] > 1,

where T has a rate a exponential distribution. It is easy to see that if λ ≥ µ + a
then the expected value on the l.h.s. is +∞ and the inequality holds for any p > 0.
It is also easy to see that the inequality cannot hold if λ ≤ µ. Hence, from now on
we assume that µ < λ < µ+ a. After computing the expected value and solving for
p we get that survival is possible if and only if

p > 1−
λ− µ

a
.

That is, when µ < λ < µ+ a the model with multiple colonies has a critical value

p2 = 1−
λ− µ

a
.

The multiple colonies model survives if and only if p > p2.
Since exp(−x) > 1 − x for all x 6= 0 we have that p1 > p2 for any λ > µ.

Hence, it is easier for the model with multiple colonies to survive than it is for the
model with a single colony. That is, living in multiple smaller colonies is a better
survival strategy than living in a single big colony. Note that this conclusion was
not obvious. The one colony model has a catastrophe rate of a while the multiple
colonies model has a catastrophe rate of na if there are n colonies. Moreover, a
catastrophe is more likely to wipe out a smaller colony than a larger one. On the
other hand, multiple colonies give multiple chances for survival and this turns out
to be a critical advantage of the multiple colonies model over the single colony
model.

5. Proofs

5.1. Auxiliary results. For ηt being a CC(G, λ, p) process, we know that some col-
onization attempts will not succeed because the vertex on which the attempted
colonization takes place is already occupied. This creates dependence between the
number of new colonies created upon the collapse of different colonies. Because of
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this lack of independence, explicit probability computation seems impossible. In
order to prove Theorem 3.1, we introduce a branching-like process which dominates
ηt, in a certain sense, and for which explicit computations are possible. This process
is denoted by ξt and defined as follows.
Auxiliary process ξt :

Each vertex of G might be empty or occupied by a number of colonies. Each colony
starts from a single individual. The number of individuals in a colony at time t is
determined by a pure birth process of rate λ. Each colony is associated to a mean
1 exponential random variable. When the exponential clock rings for a colony it
collapses and each individual, independently from everything else, survives with
probability p > 0 or dies with probability 1− p. Each individual who survives tries
to create a new colony at one of the nearest neighbor vertices picked at random.
At every neighboring vertex we allow at most one new colony to be created.

Hence, in the process ξt when a colony placed at vertex x collapses, it is replaced
by 0,1,.., or degree(x) new colonies, each new colony on a distinct neighboring site
of x. The process ξt can be constructed graphically in a way similar to what we did
for the colonization and collapse process. In many ways the process ξt is similar to
a branching random walk. In section 3 of Pemantle and Stacey (2001) a detailed
graphical construction of a branching random walk was given. One can adapt their
ideas to construct ξt.

Note that there is no bound on the number of colonies per site for ξt but there
is at most one colony per site for ηt. Observe that birth and collapse rates are the
same for colonies in ξt and ηt. To each colony created in process ηt corresponds
a colony created in the process ξt. But not every colony created in the process ξt
has its correspondent in the process ηt. Recall that in both processes every colony
starts with a single individual. Techniques such as in Liggett (1985, Theorem 1.5 in
chapter III) can be used to construct the processes ξt and ηt in the same probability
space in such a way that, if they start with the same initial configuration, if there
is a colony of size i on a vertex x for ηt then there is at least one colony of size i
for ξt on the same vertex x.

Lemma 5.1. Let G be a m−regular graph and Wm(λ, p) the number of new colonies
created by individuals of a collapsing colony in the process ξt on G. Then

(i) µ(m) := E[Wm(λ, p)] = m− m
λ

∑

k≥1 B
(

1 + 1
λ
, k
) (

1− p
m

)k
.

(ii) qλ := P[Wm(λ, p) = m] → 1 as λ → ∞.

Remark 5.2. Observe that for the process ηt the probability that upon a collapse
at vertex x each one of its m neighbors gets at least one colonization attempt is
equal to qλ.

Proof of Lemma 5.1: (i) Consider a colony at some vertex x of G. Let Y be the
number of individuals in the colony at collapse time. Then

P[Y = k] =

∫ ∞

0

e−te−λt(1− e−λt)k−1dt =
1

λ
B

(

1 +
1

λ
, k

)

, (5.1)

where the last equality is obtained by the substitution u = e−λt and the definition
of the beta function.
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Enumerate each neighbor of vertex x from 1 to m, then Wm(λ, p) =
∑m

i=1 Ii,
where Ii is the indicator function of the event {A new colony is created in the i−th
neighbor of x.}. Hence,

E[Wm(λ, p)] =

m
∑

i=1

P[Ii = 1] = mP[I1 = 1]. (5.2)

Observe that

P[I1 = 1|Y = k] = 1−
(

1−
p

m

)k

.

Therefore,

P[I1 = 1] =

∞
∑

k=1

[

1−
(

1−
p

m

)k
]

P[Y = k]

= 1−
1

λ

∞
∑

k=1

(

1−
p

m

)k

B

(

1 +
1

λ
, k

)

(5.3)

where the last equality is obtained by (5.1). Substituting (5.3) in (5.2) we obtain
the desired result.

(ii) Observe that

P[Wm(λ, p) = m] = P[I1 = 1, . . . , Im = 1]

= 1− P[Ii = 0 for some i ∈ 1, . . .m]

≥ 1−

m
∑

i=1

P[Ii = 0]

= 1−mP[I1 = 0]

= 1−
m

λ

∞
∑

k=1

(

1−
p

m

)k

B

(

1 +
1

λ
, k

)

≥ 1−
m

λ

∞
∑

k=1

(

1−
p

m

)k

B (1, k) (5.4)

Letting λ → ∞ in (5.4) we obtain the result.
�

5.2. Proofs of main results.

Proof of Theorem 3.1 (i): Consider ξt starting with one colony at the origin and
let Z0 = 1. This colony we call the 0-th generation. Upon collapse of that colony
a random number of new colonies are created. Denote this random number by Z1.
These are the first generation colonies. Every first generation colony gives birth (at
different random times) to a random number of new colonies. These new colonies
are the second generation colonies and their total number is denoted by Z2. More
generally, let n ≥ 1, if Zn−1 = 0 then Zn = 0, if Zn−1 ≥ 1 then Zn is the total
number of colonies created by the previous generation colonies.

We claim that Zn, n = 0, 1, . . . is a Galton-Watson process. This is so because
the offsprings of different colonies in the process ξt have the same distribution and
are independent.
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The process Zn dies out if and only if E[Z1] ≤ 1. From Lemma 5.1.(i) we know
that E[Z1] = µ(m).

Observe that if the process Zn dies out, the same happens to ξt and hence to ηt.
It is easy to see that the proof works if the process starts from any finite number
of colonies. �

Proof of Theorem 3.1 (ii): The graphical construction of ηt can be used to show
that if two initial configurations are such that η(0)(x) ≤ η(1)(x) for every x then for

all t ≥ 0 we have η
(0)
t (x) ≤ η

(1)
t (x). That is, the process ηt is attractive. Hence, to

prove the result we will prove local extinction for the process ξt (which dominates
ηt) starting with one individual at each vertex of Zd.

Fix a vertex x. If at time t there exists a colony at vertex x (for the process
ξt) then it must descend from a colony present at time 0. Assume that the colony
at x descends from a colony at some site y. Let Zn(y) be the number of colonies
at the n-th generation of the colony that started at y. The process Zn(y) has the
same distribution as the process Zn defined above. In order for a descendent of
y to eventually reach x the process Zn(y) must have survived for at least d(x, y)
generations. This is so because each generation gives birth only on nearest neighbors
vertices. The process Zn(y) is a Galton-Watson process with Z0(y) = 1 and mean
offspring µ = µ(2d).

Let n = d(x, y), then

P(Zn(y) ≥ 1) ≤ E(Zn(y)) = µn = µd(x,y)

and
∑

y∈Zd

P(Zn(y) ≥ 1) ≤
∑

y∈Zd

µd(x,y) =

∑

n≥1

#{x ∈ Z
d : d(x, y) = n} µn =

∑

n≥1

(

n+ d− 1

n

)

µn < ∞,

for µ < 1.
The Borel-Cantelli lemma shows that almost surely there are only finitely many

y’s such that descendents from y eventually reach x. From (i) we know that a
process starting from a finite number of individuals dies out almost surely. Hence,
after a finite random time there will be no colony at vertex x. �

Proof of Theorem 3.1 (iii): The proof is analogous to (ii). In this case, µ = µ(d+1)
and

∑

y∈Td

µd(x,y) =
∑

n≥1

(d+ 1)dn−1µn < ∞,

for µ < 1/d. �

Proof of Theorem 3.3: We first give the proof on the one dimensional lattice Z.
We start by giving an informal construction of the process. We put a Poisson

process with rate 1 at every site of Z. All the Poisson processes are independent.
At the Poisson process jump times the colony at the site collapses if there is a
colony. If not, nothing happens. We start the process with finitely many colonies.
Each colony starts with a single individual and is associated to a Yule process with
birth rate λ. At collapse time, given that the colony at site x has n individuals we
have a binomial random variable with parameters (n, p). The binomial gives the
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number k of potential survivors. If k ≥ 1 then each survivor attempts to found a
new colony on x + 1 with probability 1

2 or on x − 1 also with probability 1
2 . The

attempt succeeds on an empty site. We associate a new Yule process to a new
colony, independently of everything else.

We use the block construction presented in Bramson and Durrett (1988). First
some notation. For integers m and n we define

I = [−L,L] Im = 2mL+ I,

B = (−4L, 4L)× [0, T ] Bm,n = (2mL,nT ) + B,

where

T =
5

2
L

and

L =
{

(m,n) ∈ Z
2 : m+ n is even

}

.

We say that the interval Im is half-full if at least every other site of Im is occupied.
That is, the gap between two occupied sites in Im is at most one site.

We declare (m,n) ∈ L wet if starting with Im half-full at time nT then Im−1

and Im+1 are also half-full at time (n + 1)T . Moreover, we want the last event to
happen using only the Poisson and Yule processes inside the box Bm,n. That is,
we consider the process restricted to Bm,n.

We are going to show that for any ǫ > 0 there are λ, L and T so that for any
(m,n) ∈ L

P ((m,n) is wet) ≥ 1− ǫ.

By translation invariance it is enough to prove this for (m,n) = (0, 0). The proof
has two steps.

• Let E be the event that every collapse in the finite space-time box B is followed
by at least one attempted colonization on the left and one on the right of the
collapsed site. We claim that for every ǫ > 0, we can pick L, T and λ > 0 large
enough so that P (E) ≥ 1 − ǫ. We now give the outline of why this is true. Since
collapse times are given by rate one Poisson processes on each site of B the total
number of collapses inside B is bounded above by a Poisson distribution with rate
(8L + 1)T . Hence, with high probability there are less than 2(8L + 1)T collapses
inside B for L large enough. We also take λ large enough so that at every collapsing
time the colony will have so many individuals that attempted colonizations to the
left and right will be almost certain (see Lemma 5.1.(ii)). Since the number of
collapses can be bounded with high probability the probability of the event E can
be made arbitrarily close to 1.

• At time 0 we start the process with the interval I half-full. Let rt and ℓt be
respectively the leftmost and rightmost occupied sites at time t ≥ 0. Conditioned
on the event E it is easy to see that the interval [ℓt, rt] is half-full at any time
t ≤ T . Observe also that conditioned on E, every time there is a collapse at rt then
rt jumps to rt + 1. Since the number of collapses at rt is a Poisson process with
rate 1 we have that rt

t
converges to 1. Hence, for T = 5

2L we have that rT belongs
to (3L, 4L) with a probability arbitrarily close to 1 provided L is large enough.
A symmetric argument shows that ℓT belongs to (−4L,−3L). Since the interval
[ℓT , rT ] contains I−1 and I1, both of these intervals are half-full. Hence, for any
ǫ > 0 we can pick L and λ large enough so that P ((0, 0)) is wet) ≥ 1− ǫ.
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The preceding construction gives a coupling between our colonization and col-
lapse model and an oriented percolation model on L. The oriented percolation
model is 1-dependent and it is well known that for ǫ > 0 small enough (0, 0) will
be in an infinite wet cluster which contains infinitely many vertices like (0, 2n),
see Durrett (1984). That fact corresponds, by the coupling, to local survival in
the colonization and collapse model. Note that the proof was done for the process
restricted to the boxes Bm,n. However, if this model survives then so does the
unrestricted model. This is so because the model is attractive and more births can
only help survival.

Consider now the model on Z
d with d ≥ 2 and parameters (p, λ). Fix a line on

Z
d. It is easy to see that we may couple the process on Z

d with the process on Z

with parameters (p/d, λ) in such a way that the process on Z has less individuals
per site than the process on the embedded line of Zd. This is so because births on
Z will correspond to births on the embedded line and collapses are coupled. By
Theorem 3.3 we can find λ large enough so that the process on Z with parameters
(p/d, λ) survives locally. Hence, for the same λ the process on Z

d with parameters
(p, λ) survives locally.

For T
d the local survival follows analogously as in Z

d, observing that Z is em-
bedded in T

d. �

Remark 5.3. Our argument shows that both critical values, λc(p,Z
d) and λc(p,T

d),
decrease with d. The more difficult issue is whether the critical value is strictly
decreasing. We conjecture it is but this is a hard question even for the contact
process, see Liggett (1999).
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