
Received 16 July 2024, accepted 22 July 2024, date of publication 29 July 2024, date of current version 7 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3435027

ChaSAM: An Architecture Based on Perceptual
Hashing for Image Detection in
Computer Forensics
HERICSON DOS SANTOS 1, TIAGO DOS SANTOS MARTINS 1,
JORGE ANDRE DOMINGUES BARRETO2, LUIS HIDEO VASCONCELOS NAKAMURA3,4,
CAETANO MAZZONI RANIERI 5, ROBSON E. DE GRANDE 6, (Member, IEEE),
GERALDO P. ROCHA FILHO 7, AND RODOLFO I. MENEGUETTE 3, (Senior Member, IEEE)
1São Paulo Scientific Police, Araçatuba 16018-120, Brazil
2São Paulo State Police, São Paulo 15015-400, Brazil
3Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Carlos 13566-590, Brazil
4Federal Institute of Science, Education and Technology of São Paulo (IFSP), Catanduva 15808-305, Brazil
5Institute of Geosciences and Exact Sciences, São Paulo State University (UNESP), Rio Claro 13506-692, Brazil
6Department of Computer Science, Brock University, St. Catharines, ON L2S 3A1, Canada
7Department of Exact and Technological Sciences, State University of Southwest Bahia (UESB), Vitória da Conquista 45083-900, Brazil

Corresponding author: Rodolfo I. Meneguette (meneguette@icmc.usp.br)

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES).

ABSTRACT The growing prevalence of digital crimes, especially those involving Child Sexual Abuse
Material (CSAM) and revenge pornography, highlights the need for advanced forensic techniques to
identify and analyze illicit content. While cryptographic hashing is commonly used in computer forensics,
its effectiveness is often challenged because criminals can modify original information to create a new
cryptographic hash. Perceptual hashes address this problem by focusing on the visual identity of the file
rather than its bit-by-bit representation. This study introduces ChaSAM Forensics, a methodology that
efficiently identifies illicit material using perceptual hashing techniques to track and identify illicit content,
with a focus on child abuse material. Two new perceptual hashing algorithms, chHash and domiHash, were
designed for integration into ChaSAM. The results showed that, under the tested conditions, the proposed
chHash algorithmwas more accurate than the established pHash algorithmwhen applied in a single iteration.
Combinations of algorithms in two iterations were also assessed.

INDEX TERMS Forensic computing, perceptual hashing, image detection, similarity.

I. INTRODUCTION
The phenomenon of digital inclusion in Brazil began in the
early 2000s with the introduction of broadband connectivity,
which allowed access to the internet for a wider population,
rather than being limited to only affluent individuals,
businesses, and universities [1], [2], [3]. At the same
time, technological advancements have led to significant
increases in the processing power and storage capacity
of computing equipment, allowing for a plethora of new
potential applications of digital systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

However, access to technology has brought with it various
forms of cybercrimes [4], [5], [6], including copyright
infringement of music, movies and software, crimes against
honor perpetrated through social networks, crimes involving
the acquisition, storage and distribution of material contain-
ing scenes of child sexual abuse [7], [8], and other crimes
recently incorporated into Brazilian law, such as revenge
pornography and sextortion [9], [10].
Currently, one of the most prevalent forms of cybercrime

in the digital realm is the sharing of CSAM (Child Sexual
Abuse Material). Between January and April of 2021,
Safernet Brazil reported approximately 15,800 pages related
to CSAM. Out of these, 7,248 pages were removed due to

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 104611

https://orcid.org/0000-0003-2549-584X
https://orcid.org/0009-0008-2146-8071
https://orcid.org/0000-0001-5680-9085
https://orcid.org/0000-0001-9448-2036
https://orcid.org/0000-0001-6795-2768
https://orcid.org/0000-0003-2982-4006
https://orcid.org/0000-0002-0651-4278


H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

suspected criminal activity. This reflects a 33.45% increase
in reports compared to the same period in 2020 when more
than 11,800 pages were reported [11].

Computer Forensics or Digital Forensic Analysis has
become an important tool in assisting the justice system
in fighting digital crimes by using analysis and methods
to identify and collect efficient evidence [12], [13], [14].
When examining digital files such as videos and photos, for
instance in the case of CSAM files, most methods extract
the cryptographic hash code of the file and compare it to a
database of pre-existing hashes [15], [16], [17]. If the file
matches a hash in the database, it is considered a positive
match; otherwise, it is discarded.

This verification becomes highly cumbersome to the
forensic analyst when analyzing large volumes of data from
different types of seized computer equipment in operations is
necessary. Furthermore, criminals have been applying what
the doctrine calls anti-forensic techniques to digital media
files (videos and photos) [18], [19], [20], [21]. These are
intentional alterations to part of the digital file content to
produce a result contrary to the truth to deceive detection and
hash-to-hash comparison software. The most common digital
alterations or modifications include inserting watermarks or
texts, resizing the image, vertical or horizontal mirroring,
color alteration, and application of tilts [22].

Modified or adulterated images have a different crypto-
graphic hash from the original, which hinders the matching
procedure. In other words, forensic systems based on
cryptographic hashes identify these adulterated images as
new and without matches in the database [15], [23], [24].
To mitigate this identification issue and reduce the

occurrence of false negatives in forensic examinations, one
possible solution is the application of perceptual hashing
concepts that consider the visual identity [25] of the file rather
than its bit-by-bit computational representation. Thus, in a
hypothetical scenario, supposed modified or altered images
would not be discarded but instead separated and presented
for the forensic analyst to decide visually whether they are
relevant for examination. Several studies in the literature have
addressed perceptual hashing and the challenge of comparing
large volumes of images [15], [22], [25], [26].
This paper presents a forensic methodology named

ChaSAMForensics and the chHash algorithm, which consists
of a computational architecture capable of identifying images
based on their similarities, particularly in the search for
CSAM files and revenge pornography on computer devices
seized in police operations. To achieve this, ChaSAM
searches for files within the target folder only if they have
similar counterparts in the candidate files folder within
the source folder. Additionally, we propose two perceptual
hashes to minimize false negative results.

For evaluation purposes, we compared the proposed hash-
ing algorithms with the main perceptual hashes established
in the literature using images produced and cataloged by the
authors. The proposed image set consisted of 12,920 diverse

files housed in a folder named target, supported by a second
folder named source for the comparison of candidate images.

The main contribution of this work lies in the development
and integration of two novel perceptual hashing algorithms,
chHash and domiHash, within the ChaSAM Forensics
tool. Unlike existing perceptual hash algorithms, chHash
is particularly effective in identifying similar images while
minimizing false positives, especially when used in combi-
nation with dHash or dHash-v algorithms. This dual-iteration
approach significantly enhances accuracy and efficiency in
detecting manipulated images, such as those found in CSAM.
Additionally, the use of parallel processing routines within
ChaSAM further improves performance, making it a robust
tool for forensic investigations involving large volumes of
digital images.

More specifically, the contributions of this work include:
• Designing a forensic analysis tool for processing and
identifying modified or adulterated images;

• Designing and evaluating two perceptual hashing algo-
rithms;

• Building a test image database and using it in the
simulations for evaluating the proposed methodology.

The remainder of this paper is organized as follows.
Section II presents the background and fundamentals on
hashing and hamming distance. Section III describes recent
works related to the scope of image detection in computer
forensics. Section IV introduces ChaSAM Forensics and its
architecture. Section V describes the study case utilizing
ChaSAM Forensics and assesses its efficiency. Section VI
presents an effectiveness analysis of ChaSAM Forensics and
discusses it. Finally, Section VII concludes the paper and
presents future work directions.

II. BACKGROUND
This section briefly reviews the technical definitions of con-
ventional hash functions, perceptual hashes, and supporting
variables.

A. HASH FUNCTION
A hash function is an alphanumeric representation of fixed
length resulting from a mathematical formula uniquely
identifying digital data. Once the hash function is calculated
and its value h obtained, it is not possible to identify the
original message m [27], [28], [29].

One of the basic requirements of any cryptographic hash
function is that it is computationally unfeasible to find two
distinct values from the same input content. The opposite
premise is also valid: the hash function must always yield
different outputs for different contents [29].
Conventional hash functions are very efficient for compar-

ing two files with identical content. Thus, if A and B are two
samples being compared and h is a hash function, A = B if
and only if h(A) = h(B). In other words, two images will be
identical whenever their hash values are equal. However, even
the slightest alteration, imperceptible to the naked eye in one

104612 VOLUME 12, 2024



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

of the images, will result in h(A) being different from h(B).
Perceptual hashes are used to compare different images with
visually similar content.

B. PERCEPTUAL HASH
According to [30], a perceptual hash is a fingerprint of a
multimedia file derived from various features of its content.
Unlike conventional cryptographic hash functions that rely on
the avalanche effect of small input changes leading to drastic
output changes, perceptual hashes are close to each other if
the features are similar.

In the same sense [31] asserts that the perceptual hash is
a fingerprint of the content of a digital media. He adds that
if the perceptual hash is compared with the cryptographic
hash, the former showsmany advantages in defending against
image-based fake news attacks, because it is possible to detect
deliberate manipulation of images, while at the same time
tolerating normal changes in format or resolution.

In practice, the result of applying a perceptual hash to two
different but visually similar images is presented as possible
matches as long as their differences fall within a minimum
value range. Unlike conventional cryptographic hash func-
tions, which are highly sensitive to bit changes, perceptual
image hash is scalable and tolerates the imprecision of how
computers represent image content.

The perceptual image hash, which maps the content of
an image to a short binary string, can be considered a
digital summary of the image content. It is essentially a
mapping that satisfies some constraints [32]. There are
several types of perceptual hash algorithms. Among them,
the most well-known ones are: Average hashing (aHash),
Perceptual hashing (pHash), Difference hashing (dHash), and
Wavelet hashing (wHash) [25].

C. HAMMING DISTANCE AND THRESHOLD
The Hamming Distance (HD) calculates the number of
positions in which two strings differ. The objective is to
identify, within a set of characters, their counterparts in
another set, pointing out divergent ones [25]. One point is
added to this distance for each of the divergent characters. The
greater the value of the Hamming Distance, the less similar
the compared binary strings are.

In the context of similarity matching, it is necessary to
assign an acceptable limit to this distance so that visually,
the strings retain some similarity [33], [34]. This acceptable
limit is given by the Threshold variable Th. Thus, two binary
strings or two images are similar if, and only if, the Hamming
Distance is less than or equal to the previously configured
threshold [25].
We need to compute the respective binary strings to apply

this concept in image comparison. Consider two different
images computationally but with similar perceptual elements,
as shown in Figure 1.

When we apply the conventional binarization method,
we found the binary strings of the image on the left and right

horses as shown in Figure 2. The images have seven different
bits between them, it is, their Hamming Distance equals 7.
The algorithm considers an image a possible similarity match
if the Hamming distance is less than a threshold.

Suppose the variable has been configured with the
threshold limit set to five; in this case, the algorithm would
not indicate the two images as similar because the Hamming
Distance is higher than the threshold. However, if the
threshold were configured to ten, then the two images would
be considered similar.

It is possible to calculate another variable called Percentage
of Equality (PE), which is the percentage of similarity
between the images. For the previous example, seven
different bits out of a total of 64 equal 57 corresponding bits;
that is, the images are 89% similar or 11% different from each
other.

III. RELATED WORK
The cryptographic hash comparison process takes into
account the computational identity of the images, while the
perceptual hash considers their similar characteristics. The
latter is capable of presenting as search results images that
are not computationally the same, but are visually similar.
The big problem with this method is that it can present a
large number of false positive results, reducing qualitative
effectiveness. Furthermore, by presenting a larger set of
images as a result, the processing power of the comparisons
is greater, requiring the algorithm responsible for this work to
be efficient, that is, faster than currently existing algorithms.

An overview of perceptual hashing was presented by
Farid [35], which addressed the persistence of harmful online
content such as terror-relatedmaterials and child sexual abuse
imagery. The paper reviews the mechanisms, advantages,
disadvantages, and real-world applications of perceptual
hashing.

Samanta and Jain [22] analyzed the detection of image
manipulations using perceptual hash algorithms and dis-
cussed the efficiency of the algorithms in detecting image
similarity. They mentioned that simple modifications such
as changes in color, brightness, and texture are perfectly
detected by the algorithms. However, the same does not occur
when drastic changes are present, such as cropping, rotations,
and mirroring.

McKeown and Buchanan [36] presented a large-scale
evaluation of several perceptual hashing algorithms against
various image modifications to understand the effectiveness
of these algorithms in detecting similar images despite these
modifications. The study provided insights into the strengths
and weaknesses of popular perceptual hashing algorithms
against content-preserving modifications.

Zheng et al [37] proposed MR-DCAE, a deep convolu-
tional autoencoder based on manifold regularization, which
aims to improve the detection of unauthorized transmissions.
This method uses manifold regularization to preserve the
intrinsic structure of the data, providing more accurate and
robust detection. The approach has demonstrated superior

VOLUME 12, 2024 104613



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

FIGURE 1. Hamming Distance and image binarization.

FIGURE 2. Bit-by-bit comparison of images.

effectiveness compared to traditional techniques, especially
in scenarios with noisy and complex data.

Zheng et al. [38] propuseram um método de classificação
de imagens de constelação em tempo real utilizando a rede
leve MobileViT. Esta abordagem combina a eficiência com-
putacional do MobileNet com a capacidade de modelagem
de visões globais do ViT (Vision Transformer), resultando
em um modelo que oferece alta precisão de classificação
enquanto mantém baixos requisitos de processamento.

Torres [25] addresses the television and film industry’s
difficulty in protecting their media content against digital
pirates. His work involved detecting alterations in video
files transmitted by cable TVs. According to the author, this
analysis resulted in a significant computational processing
problem, as it required the computational analysis of each
frame of a video that has 30 frames per second, resulting
in thousands of static images to be processed and compared
in search of possible channels on the Internet that are
broadcasting the content without legal authorization.

Faria [15] argues that the analysis of files performed by
computer experts is limited to the hash-to-hash comparison
of cryptographic algorithms, mainly in examinations where
files of child pornography are sought, and there is a lack
of methods that allow the computational expert to compare
similar files. He also mentions free software tools and
general-purpose similarity hashes; however, they are not very
performative.

The work by Menezes and Silva [26] addressed what
the authors called the problem of the modern world, which
is the accumulation of various identical or similar files at
the expense of disk storage space. The author argues that
programs can compare files for similarity; some are available
for free download on the Internet. However, he points out that
these programs are slow.

In light of this problem, the work of Santos [8] discusses
the exponential increase in crimes related to the production,
storage, and sharing of child sexual abuse material on the
internet, which, after police operations, will be subject to
forensic examination to seek the criminal materiality, thus
requiring computational methods capable of supporting the
work of the criminal expert.

Hao et al. [39] examined the robustness of perceptual
hashing algorithms used in digital forensics and cybercrime
studies. The study highlighted the vulnerabilities of percep-
tual hashing algorithms and demonstrated the need for more
robust designs to protect against such attacks

It is observed, therefore, that the studies converge to the
increasing existence of devices and files to be analyzed by
criminal experts, with the aggravating factor that many of
these files undergo some anti-forensic technique for their
malicious manipulation, aiming to cover up or produce
adverse results from the truth.

Much of these manipulations are related to copyright
infringement [25], revenge pornography [10], and/or produc-
tion and storage of child sexual abuse material [8]. In the
first type of crime, Torres [25] encountered the difficulty of
processing thousands of frames (video frames) of interest to
detect whether there was an alteration of the original media.
In the last type of crime mentioned, the authors [8], [15]
discuss the lack of methods to examine files containing child
abuse content, mainly in the search for similarities, whose
cryptographic hash databases are deficient in this regard.

We sought to test the most common perceptual hashes in
the literature and, from them, develop two variants: chHash
and domiHash.

Unlike the other described works, our work compre-
hensively evaluates the main perceptual hashes, comparing
them with two new strategies proposed in this paper. For

104614 VOLUME 12, 2024



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

deal with the difficulties of comparing images that have
undergone major modifications, such as: drastic cropping
and inclinations with angulations above 5◦. The domiHash
algorithm proved to be very effective when detecting files
with inclinations above 5◦, however its efficiency drops
drastically in relation to other modifications such as: vertical
and horizontal mirroring. Furthermore, in our evaluation,
we employ parallelism in the execution of the image
comparison process to enhance the efficiency of the results.

IV. CHASAM FORENSICS
The ChaSAM Forensics acronym combines the meanings of
two keywords: Child Sexual Abuse Material (CSAM) and
the word ‘‘hash’’. This section outlines this methodology in
terms of the computational architecture, the construction of
the original image dataset, and the two proposed perceptual
hashes. The architecture source code is available in the
GitHub repository.1

A. CHASAM FORENSICS ARCHITECTURE
The ChaSAM Forensics architecture is depicted in Figure 3.
The basic module is named ‘‘Media Search Stream’’ (1), and
its purpose is to load candidate files from the ‘‘Target’’ image
folder into memory, extract their respective perceptual hashes
using the chosen algorithm during execution, and compare
them with the files from the ‘‘Source’’ folder.

In the ‘‘Media Search Stream’’ module, the parallel
routines of ChaSAM are triggered to increase the speed of
obtaining results. Each routine is responsible for extracting
the perceptual hash (2) from an image in the ‘‘Target’’ folder
(3) and comparing it with the input images from the ‘‘Source’’
folder (4).

In our prototype of ChaSAM, it is possible to specify the
number of parallel routines to be used. In a hypothetical case,
by specifying that ChaSAM should use 32 routines, each
routine will execute the loading, extraction, and comparison
actions on an image from the ‘‘Target’’ folder, thus increasing
the system’s execution performance. When a routine finishes
its work, and there are still images to be processed, it will
move to the next image until all images in the folder
are compared and the final result is synchronized and
presented (5).

B. DATASET IMAGES DEFINITON
The dataset images’ definition is shown in Figure 4.
We produce a dataset of 380 static images from a Xiaomi

Redmi Note 10 mobile device. The images have dimensions
of 4000 × 2250 pixels in landscape orientation and 2250 ×
4000 pixels in portrait orientation, with a resolution of 72
DPI. The set of images used in these tests was produced by
these authors focusing on urban and rural landscapes, animals
and vehicles.

Subsequently, the dataset was balanced and the images
resized keeping all other attributes 640 × 480 pixels in

1Available at: https://github.com/tsmweb/chasam-cli.git

landscape orientation and 480 × 640 pixels in portrait
orientation. All metadata, including EXIF and geolocation,
was preserved. This process was necessary to reduce the
average size, saving approximately 90% of disk storage
space (1).

After creating the set of original images, we generated
the set of altered images by applying the most common
transformations found in alterations or tampering of images
in forensic examinations [19], [22] to each image (2).

A total of nine different transformations were applied: blur,
crop, flip-h, flip-v, grayscale, text insertion, and threshold.
These resulted in 3,420 distinct files.

However, in the rotation transformations, 17 different
inclinations were applied. Only the folder containing rotated
images contained 6,460 files with the following rotations: 1◦,
2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦, 9◦, 10◦, 45◦, 90◦, 135◦, 180◦, 225◦,
270◦, and 315◦.
The ‘‘Watermark’’ folder holds the images with water-

marks. For each image in this folder, nine possibilities
of tampering were assigned by dividing the image into
3×3 quadrants, foreseeing the insertion of an element in each
of these nine possible positions, resulting in a total of 3,420
files.

The ‘‘original’’ image folder was added without tampering
or transformation to complete the dataset’s set of images,
serving as the control file folder. Therefore, the final set
comprised 12,920 files distributed across 10 different folders.
This collection of folders and files was named ‘‘target’’.

Finally, for the simulations in this article, a folder of
candidate images (3) was created, whose files were extracted
from the set of images in the ‘‘target’’ folder (2). The
ChaSAM algorithm should search the ‘‘target’’ image folder
for all images similar to those in the ‘‘source’’ image folder
and present the results in a third folder labeled ‘‘extract’’ (5)
using parallel routines (4).

C. PROPOSALS FOR PERCEPTUAL HASHES
For this work, we propose two perceptual hashes. The first
one is a derivation of the dHash algorithm called Domi Hash
(domiHash). The second one is the ChaSAMHash (chHash),
which, unlike perceptual algorithms found in the literature,
does not utilize conventional grayscale transformation. In the
following subsections, we describe the two proposed hashes
in detail.

1) DOMI HASH (DOMIHASH)
The domiHash is a perceptual hash algorithm derived from
dHash. It was developed to enhance the detection of rotated
images, which is a limitation of existing perceptual hash
algorithms. While the former performs a linear comparison,
either by row or column, domiHash compares the difference
along the diagonal of the image matrix, making it possible
to identify rotated images. To achieve this, the algorithm
performs the following tasks for perceptual hash extraction:

VOLUME 12, 2024 104615



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

FIGURE 3. ChaSAM Forensics architecture.

FIGURE 4. Dataset images’ definition.

• Resizing: The image is resized to a fixed dimension,
typically 9×9 pixels. Note that in thismethod, thematrix
must be square, unlike dHash;

• Conversion: The image is converted to grayscale. This
reduces the complexity of the image by retaining only
pixel intensities;

• Calculation: The difference between the values of each
pixel along the diagonal of the image is calculated,
starting from the upper-left corner of the matrix and
extending radially to the other corners;

• Binarization: Each resulting difference is compared
with the corresponding pixel. If the pixel value exceeds

the difference, it is considered 1; otherwise, it is 0. This
step transforms the image into its binary representation;

• Hash Generation: The resulting 64-bit binary string
is transformed into its hexadecimal representation. This
representation is the perceptual hash of the image.

Algorithm 1 describe the domihash, first of all, the image
is resized to a width and height of 9 X 9 pixels using
the bilinear resizing method (lines 5 and 6). Then, we use
the ConvertToGrayArray method to convert the pixels to
grayscale (line 7):

In the sequence, the domiHash algorithm utilizes the first
‘‘for’’ loop (lines 10 to 18) to iterate over the pixel matrix

104616 VOLUME 12, 2024



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

Algorithm 1 domiHash Function
1: function domiHash(image: Image)
2: if image = null then
3: return 0, error.New(‘‘The Image cannot null’’)
4: end if
5: width, height← 9, 9
6: resized← Resize(image, width, height, Bilinear)
7: pixels← transform.ConvertToGrayArray(resized)
8: index← 0
9: hash_value (64 bits integer)

10: for x← width − 1; x ≥ 0; x−− do
11: for y← 0; y < (width − x −1); y++ do
12: _x← x + y
13: if pixels[y][_x] > pixels[y+1][_x+1] then
14: hash_value |= 1≪ integer(64−index−1)
15: end if
16: index← index+1
17: end for
18: end for
19: for y← height − 1; y > 0; y−− do
20: for x← 0; x < (w − y − 1); x++ do
21: _y← y + x
22: if pixels[_y][x] > pixels[_y+1][x+1] then
23: hash_value | = 1≪ integer(64-index-1)
24: end if
25: end for
26: end for
27: return hash_value, null
28: end function

and compare their adjacent values. If the current pixel is
greater than the pixel in the bottom-right diagonal, the bit 1 is
appended to the binary string; otherwise, the string receives
the bit 0.

After completing the iterations of the first ‘‘for’’ loop, the
algorithm traverses the second half of the matrix (lines 19
to 26). This time, the algorithm iterates the pixel matrix from
bottom to top. If the current pixel is greater than the pixel in
the bottom-right diagonal, the bit 1 (one) is appended to the
binary string; otherwise, the string receives the bit 0 (zero).

2) CHASAM HASH (CHHASH)
The chHash is a perceptual hashing algorithm different
from others in several aspects: first, the dimensions of the
reduced image form a matrix of 32 × 32 pixels, whereas
in most conventional algorithms, the pixel matrix is reduced
to 8 × 8 pixels. We do not use the traditional luminance
grayscale transformation but rather a process called image
thresholding, which aims to convert grayscale images into
two distinct threshold categories: black and white [40].
Therefore, chHash combines image thresholding methods
with perceptual hashing concepts.

The chHash algorithm starts to differentiate itself from
the standard when the chosen threshold for its programming

is not 127 [41] but 114.2 For the binarization, we use the
Discrete Cosine Transform (DCT) concept, similar to the
pHash algorithm.

In summary, the algorithm performs the following tasks for
extracting the perceptual hash of an image:
• Resizing: Initially, the image is resized to a fixed
dimension of 32 × 32 pixels, unlike other methods that
resize images to dimensions close to 8× 8;

• Conversion: The image is converted to black and
white (thresholding) with a threshold of 114, unlike the
original method that works with a luminance of 128;

• Calculation: The Discrete Cosine Transform (DCT) is
applied to the image to convert space information to
frequency information. The low-frequency part of the
spectrum is retained, while higher frequencies are cut
off, reducing the amount of information to an 8 × 8-bit
matrix, similar to the pHash algorithm;

• Binarization: Each image pixel is compared with the
calculatedmean. If the pixel value exceeds themean, it is
considered 1; otherwise, it is considered 0. This process
transforms the image into its binary representation;

• Hash Generation: The resulting 64-bit binary string
is transformed into its hexadecimal representation. This
representation is the perceptual hash of the image;

The chHash was developed as an alternative to conven-
tional perceptual hashes to improve the image comparison
process.

Algorithm 2 demonstrates how chHash works in image
processing: initially, it is resized to a width and height
of 32 X 32 pixels using the bilinear resizing method (lines 5
and 6). Then, we use the ConvertToBlackWhiteArray method
to convert the pixels to black and white (line 7) using the
‘‘Thresholding’’ method. chHash uses a luminance threshold
of 114, unlike the standard algorithm that uses 128 for pixel
comparison. Next, the Discrete Cosine Transform is applied
to the resulting pixel matrix (line 8). Algorithm.

Algorithm 2 demonstrates how chHash works in image
processing: initially, it is resized to a width and height
of 32 X 32 pixels using the bilinear resizing method (lines 5
and 6). Then, we use the ConvertToBlackWhiteArray method
to convert the pixels to black and white (line 7) using the
‘‘Thresholding’’ method. chHash uses a luminance threshold
of 114, unlike the standard algorithm that uses 128 for pixel
comparison. Next, the Discrete Cosine Transform is applied
to the resulting pixel matrix (line 8).

We redefine the width and height variables to be used in
the second part of the code. This step reduces the pixel matrix
from 32× 32 to 8× 8 positions (line 9). Using a concatenated
‘‘for’’ loop, we calculate the sum of the resulting values of this
matrix and extract its average (lines 12 to 21).

Finally, we use another ‘‘for’’ loop (lines 23 to 27) to iterate
through the pixel matrix row by row. If the current pixel is
greater than the average of the matrix, bit 1 is appended to

2Value obtained empirically, by conducting tests and observing the
behaviour of the results.

VOLUME 12, 2024 104617



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

Algorithm 2 chHash Function
1: function chasamHash(image: Image)
2: if image = null then
3: return 0, error.New(‘‘The Image cannot null’’)
4: end if
5: width, height← 32, 32
6: resized← Resize(image, width, height, Bilinear)
7: pixels← transform.ConvertBWarray(resized, 114)
8: dct← transform.cosine_transform(pix, wd, hg)
9: width, height← 8, 8

10: flatDct [64]float64
11: sum← 0.0
12: for y← 0; y < height; y++ do
13: for y← 0; y < (width − x -1); y++ do
14: for x← 0; x < width; x++ do
15: sum← sum + dct[y][x]
16: flatDct[height*width+x]← dct[y][x]
17: end for
18: end for
19: end for
20: sum← sum − dct[0], [0]
21: average← sum / float64(63)
22: var hash_value (64 bits integer)
23: for index, pixel← range flatDct do
24: if pixel > average then
25: hash_value | = 1≪ integer(64-index-1)
26: end if
27: end for
28: return hash_value, null
29: end function

the binary string; otherwise, the string receives the bit 0. This
part of the code (lines 9 to 28) forms the aHash (average hash
algorithm) basis.

V. CHASAM EFFICIENCY CASE STUDY
This section presents the case study conducted with ChaSAM
Forensics to obtain efficiency metrics regarding the number
of parallel routines to be triggered while comparing similari-
ties between large volumes of images.

The programming of ChaSAM Forensics was conducted
using the Go programming language, developed by Google.
Its main characteristic is high performance achieved through
better utilization of processing hardware, using parallelism
and concurrency with the goroutines mechanism, as these
parallel routines are called in this language.

A. CHASAM FORENSICS EXECUTION SYNTAX
A basic version of ChaSAM Forensics was built for the
simulations in this work, usable on both Windows and
Linux operating system architectures. It compares all images
through perceptual hash algorithms, with parameters being
the source and target folders. As a result, ChaSAM creates
a third folder named ‘‘extracted’’, which stores the result of
files that the algorithm deemed similar.

The system call consists of providing the following
parameters: (i) the path of the source image folder, which
contains the candidate files; (ii) the path of the target image
folder, which contains the volume of files to be examined;
(iii) the type of perceptual hash used in the comparison;
(iv) the number of tolerable different bits considering the
Hamming distance; and (v) the number of parallel routines
for task execution.

At this initial stage, we only analyzed ChaSAM’s execu-
tion efficiency. This characteristic is linked to the execution
time of the comparison task and is directly proportional to the
number of parallel routines used by the program. In the first
simulation, with 128 parallel routines, ChaSAM completed
the task in just 23.97 seconds. In contrast, when configured
to run with two parallel routines, the execution time jumped
to 52.18 seconds.

The results of these initial tests aimed to demonstrate
that parallelism is necessary for comparing large volumes of
images. We also sought to ascertain whether this assertion
holds true for all computing platforms. In other words,
whether different types of hardware (computers) and software
(operating systems) behave similarly when configuring more
or fewer parallel routines for task execution.

B. HARDWARE AND SOFTWARE DEVICES USED IN THE
SIMULATION
For the simulations, 6 (six) different configurations of
hardware and software were used, including desktops,
notebooks, and workstations running Windows (in various
versions) and Linux (Ubuntu 22).

The tests were conducted on computers accessible to
most people in Brazil, except for the workstation named
‘‘Gray’’ which has more advanced hardware and software
configurations. All other machines have configurations
commonly used by home users, which are also found in most
locations involved in cybercrime, especially in operations
combating child sexual abuse.

The computers used in the tests were given color names
to facilitate the presentation of results in tables and graphs
that we will present. During the tests, all six machines
performed the same type of processing: comparing the
similarity between candidate files in the source folder with
the volume of files transformed from the target folder. In each
of the simulations, we varied only the number of parallel
routines to observe the algorithm’s behavior during the
processing and comparison of large volumes of images to
measure its efficiency in execution time.

C. SIMULATION COMPILATION AND RESULTS
Each of the computers described in Figure 5 performed
400 iterations (comparison task), expecting as a return the
time consumed in seconds to process and compare the
similarity between the images in the source and target folders.
After each cycle, the simple arithmetic mean of the execution
times was extracted to compare the tested equipment. The
results were compiled into their respective tables and graphs.

104618 VOLUME 12, 2024



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

FIGURE 5. Configuration of tested devices.

1) SIMULATION RESULTS
Table 1 presents the consolidated data from the iterations
of each tested computer according to the number of parallel
routines. These numbers express the arithmetic mean of the
40 iterations, each performed using a specific number of
parallel routines. The perceptual hashing algorithm used was
aHash.

The analyses of each of the results from the simulations
conducted on the respective tested computers are as follows:
• Gray workstation: the temporal average of this
computer executing with only one routine was
253.06 seconds. When the same task was executed with
two parallel routines, the execution time dropped to
127.81 seconds, an efficiency of 50%. Increasing the
execution to four routines, the efficiency reached 84%
(40.25 seconds). Finally, with 128 routines, ChaSAM
completed the task in just 10.35 seconds, representing
a 95% increase in speed. An important observation is
that, after configuring the task execution for 32 parallel
routines, the subsequent temporal averages remained
practically stable. Between 32 and 512 routines, the
observed gain was less than 7%, at the cost of high
processor overload.

• Yellow desktop: The temporal average of this computer
executing with only one parallel routine was 81.97 sec-
onds; with two routines, the execution time decreased
by 40% to 49.59 seconds, and with four routines, the
efficiency reached 63%, with 29.99 seconds. When
configured to be executed with 32 routines, ChaSAM
performed the comparison in just 23.20 seconds, or 71%
faster. After configuring the execution for 64 parallel
routines, the temporal average remained stable. With

256 routines, the temporal average execution time of the
task was 22.43 seconds, representing a gain of only 3%
compared to execution with 32 routines.

• Red laptop: The temporal average of this computer
executing with only one routine was 77.73 seconds,
the best average among the tested equipment; with two
parallel routines, the execution time dropped by 43% to
44.20 seconds; with four routines, the efficiency reached
60% (31.11 seconds); with 32 routines, ChaSAM
performed the task in just 25.27 seconds, or 67% more
efficient. After configuring the execution for 64 parallel
routines, the temporal average remained stable. With
128 routines, the temporal average execution time of the
task was 24.80 seconds, representing a gain of less than
2% compared to execution with 32 parallel routines.

• Green laptop: The temporal average of this computer
executing with only one routine was 259.60 seconds,
representing the worst average observed among the
tested machines. When configured to execute with two
parallel routines, the execution time dropped by 71% to
73.76 seconds; with four routines, the efficiency reached
81% (48.04 seconds); with 32 routines, ChaSAM
performed the task in just 39.93 seconds, or 84%
more efficiently. After configuring the execution from
32 routines, the temporal average remained relatively
stable. With 512 routines, the average execution time
was 36.83 seconds, a decrease of only 7% compared to
execution with 32 parallel routines;

• Blue laptop: The temporal average of this equipment
executing with only one routine was 116.56 sec-
onds. When configured to execute with two par-
allel routines, the comparison time dropped by

VOLUME 12, 2024 104619



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

TABLE 1. Compilation of simulation data from the computers tested in relation to the number of parallel routines, resulting in the average time of forty
simulations per computer.

42% to 66.63 seconds; with four routines, the efficiency
reached 56% (50.76 seconds). With 32 routines,
ChaSAM performed the task in 40.65 seconds, or 65%
faster. The temporal average remained stable after
configuring 16 parallel routines. With 512 routines,
the temporal average execution time of the task was
40.52 seconds, a gain of only 0.31% compared to
execution with 32 routines;

• Purple desktop: The temporal average of this computer
executing with only one routine is 178.12 seconds; with
two parallel routines, the execution time decreased by
38% (110.26 seconds); with four routines, the efficiency
reached 39% (108.30 seconds). With 32 routines,
ChaSAM performed the task in 102.68 seconds, or 42%
more efficiently. The temporal average remained stable
after configuring ChaSAM to execute with 32 par-
allel routines. The greatest gain was observed when
configuring the execution for 256 parallel routines,
where the temporal average execution time of the
task was 98.79 seconds, representing a gain of almost
4% compared to execution with 32 routines. Another
observation is that this computer showed a gain of
only 10% when configured to trigger above two up to
512 parallel routines, while the other tested computers
showed gains above 80% when configured with 64 or
more routines;

The graph illustrated in Figure 6 depicts, in the form of
colored bars, each of the average execution times achieved
by the tested computers. Concisely, it is possible to observe
that the Gray computer performed the best, while the Purple
computer performed the worst. The explanation for this
difference is that the former is a robust forensic workstation,
whereas the latter is a relatively modest desktop, as shown in
Figure 5.
Another observation is that the computers labeled Green

and Blue have exactly the same hardware configuration.
The difference lies in the operating system; while the
former used a version of Linux Ubuntu, the latter used
Windows 10. In practice, the Blue computer is 55% more
efficient than the Green one. However, Green becomes faster
in processing when we configure ChaSAM to use four or
more parallel routines. This is because Linux inherently
supports multitasking. Ultimately, the Green computer with
Linux is about 9% better than the Blue one with Windows
operating system.

D. CONCLUSIONS ABOUT PERFORMANCE
The performance simulations conducted in this case study
demonstrated that utilizing parallel routines in applications
requiring high computational processing power can reduce
task execution time by an average of 70%, especially when
processing and comparing large volumes of images.
We infer that the performance, i.e., processing speed,

increases up to the configuration of 16 parallel routines,
as illustrated by the graph in Figure 7. Afterward, the
performance stabilizes with minimal gains when further
routines are added.
Regarding this, it was observed that the excessive increase

in parallel routines does not reduce the execution time
of the ChaSAM comparison task, as the algorithm needs
to synchronize the result at the end of each comparison,
consuming the time gained in processing. Therefore, a high
number of parallel routines nullifies the performance gain.
Hence, the simulations indicated that the ideal number for

executing the similarity comparison used by ChaSAM ranges
between 32 and 64 parallel routines, providing performance
for the ‘‘speed’’ processing variable.

VI. CHASAM EFFECTIVENESS CASE STUDY
This section demonstrates the case study conducted with
ChaSAM Forensics to obtain effectiveness metrics regarding
the various established perceptual hash algorithms and the
variants presented in Section IV-C: the domiHash and the
chHash.
In addition to the domiHash and chHash algorithms,

the literature presents other perceptual hash algorithms we
employ in this case study to provide reference results.
Specifically, we consider the Average hashing (aHash), the
Perceptual hashing (pHash), the Difference hashing (dHash),
and the Wavelet hashing (wHash) [25].
The answer to the second question of this research is

related to the simulation and analysis of the comparison
results of each of these algorithms, thus defining which is the
most effective in comparing similar images.

A. ESTABLISHED PERCEPTUAL HASHING ALGORITHMS
According to Samanta and Jain [22], several steps are
involved in extracting an image’s perceptual hash, including
preprocessing, feature extraction, bit quantization, and hash
generation. As in Section IV-C, we have organize these steps

104620 VOLUME 12, 2024



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

FIGURE 6. Comparison of the simulation data extracted from the tested machines.

FIGURE 7. Stabilization of the number of parallel routines.

as follows: resizing, conversion, calculation, and perceptual
hash generation:

• Average Hashing (aHash): The average hashing
algorithm is a perceptual hash algorithm used to repre-
sent the average structure of an image by quickly iden-
tifying visual similarities between images. To achieve

this, the algorithm performs the following tasks for
perceptual hash extraction:

– Resizing: The image is resized to a fixed dimension
of 8×8 pixels. This is done to ensure that the image
has consistent resolution regardless of its original
size;

VOLUME 12, 2024 104621



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

– Conversion: The image is converted to grayscale.
This reduces the image’s complexity, retaining only
luminance information;

– Calculation: The average of the grayscale values of
each pixel in the image is calculated. This results in
an average value representing the image’s average
luminosity. Subsequently, each pixel in the image
is compared to the calculated average. If the pixel
value is greater than the average, it is considered
1; otherwise, it is considered 0. This transforms the
image into its binary representation;

– Hash Generation: The resulting 64-bit binary string
is transformed into its hexadecimal representation.
This representation is the perceptual hash of the
image.

• Difference Hashing (dHash): The difference hashing
algorithm is a perceptual hash algorithm that focuses
on capturing the differences between neighboring pixels
in an image column by column. To achieve this, the
algorithm performs the following tasks for perceptual
hash extraction:
– Resizing: Similar to aHash, the image is resized to a

fixed dimension, typically 8×9 pixels, one column
more than aHash;

– Conversion: The image is converted to grayscale,
reducing its complexity and retaining only lumi-
nance information;

– Calculation: The difference between pixels in
each image column is calculated. Each resulting
difference is compared to the corresponding pixel.
If the pixel value is greater than the difference, it is
considered 1; otherwise, it is 0. This transforms the
image into its binary representation;

– Hash Generation: The resulting 64-bit binary string
is transformed into its hexadecimal representation.
This representation is the perceptual hash of the
image.

• Vertical Difference Hashing (dHashv): Vertical dif-
ference hashing is a variant of the conventional dHash
algorithm. Similar to the original algorithm, it focuses
on capturing the differences between neighboring pixels
in an image, but the comparison is made row by row.
To achieve this, the algorithm performs the following
tasks for perceptual hash extraction:
– Resizing: Similar to aHash, the image is resized to

a fixed dimension, typically 9 × 8 pixels, one row
more than aHash;

– Conversion: The image is converted to grayscale,
reducing its complexity and retaining only lumi-
nance information;

– Calculation: The difference between pixels in each
image row is calculated. Each resulting difference
is compared to the corresponding pixel. If the pixel
value is greater than the difference, it is considered
1; otherwise, it is 0. This transforms the image into
its binary representation;

– Hash Generation: The resulting 64-bit binary string
is transformed into its hexadecimal representation.
This representation is the perceptual hash of the
image.

• Perceptual Hashing (pHash): Perceptual hashing is a
more complex algorithm than others, as it incorporates
concepts of Fourier transform to extract perceptual
features from the image. To achieve this, the algorithm
performs the following tasks for perceptual hash
extraction:
– Resizing: Initially, the image is resized to a fixed

dimension of 32× 32 pixels;
– Conversion: The image is converted to grayscale;
– Calculation: The Discrete Cosine Transform (DCT)

is applied to the image to convert space information
into frequency information. The low-frequency part
of the spectrum is retained while higher frequencies
are cut off, reducing the amount of information to
an 8 × 8-bit matrix. Then, the same concept as
the calculation of aHash is applied: calculating the
average of the pixels. Subsequently, each pixel in
the image is compared to the calculated average.
If the pixel value is greater than the average, it is
considered 1; otherwise, it is considered 0. This
transforms the image into its binary representation;

– Hash Generation: The resulting 64-bit binary string
is transformed into its hexadecimal representation.
This representation is the perceptual hash of the
image.

Indeed, we observe that the perceptual hash extraction
phases follow a similar logic. The exception lies in the
treatment of the resized image and the calculation method
that each algorithm applies to the corresponding pixels.
Table 2 presents the parameters of literature algorithm and
the proposed solutions: domiHash and chHash.

B. IMAGES USED IN CHASAM EFFECTIVENESS
SIMULATIONS
Nine images were selected from the dataset described in
Section IV-B belonging to the ‘‘original’’ subfolder which has
no modification or tampering.

We selected five more images from the same folder
of original files to which we applied modifications such
as cropping, watermarks, and text. These transformations
simulated the most common alterations found in images
during a digital forensic examination, especially when
forensic examiners analyze large volumes of files containing
scenes of child sexual abuse.

Furthermore, we selected an external file obtained from
outside the dataset, though with perceptual characteristics
common to some files in the image collection. The purpose of
inserting this image was to test the behavior of the different
algorithms, knowing that it does not have any corresponding
image in the dataset housed in the target folder, as seen in
Figure 8.

104622 VOLUME 12, 2024



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

TABLE 2. Parameter of the algorithms.

FIGURE 8. Images used in the simulations.

Therefore, 15 images were selected for the simulations,
on which we performed the similarity comparison process
using each of the algorithms described in Table 2 to assess
the efficacy results.

C. SIMULATION ENVIRONMENT AND PARAMETERS
In extracting the perceptual hash from the image, it is resized
(final resize) to an 8 × 8 pixel matrix, generating a 64-bit
binary string. Therefore, the Hamming distance discussed in
Section II-C plays a fundamental role in our simulations.
The simulations conducted in this study demonstrated that

the comparison process within 1 (one) to 20 (twenty) bits of
difference between the compared images yielded interesting
results.

By using the variation of bits or Hamming distance, we are
instructing the algorithm to include in its results not only
the identical images (100%) but also those that are similar,
varying up to 20 bits of difference, that is, those that are
100% to 68.75% similar. The tests showed that increasing
the Hamming distance above 20 bits resulted in many false
positive files, rendering its use unfeasible.

A table is built for each of our simulations with the
Hamming distance ranging from 1 to 20. The rows of the table
represent the number of different bits that limit the compari-
son of image similarity, and the columns of the table received
the transformations applied to the images that formed our
dataset of transformed images, as described in Section IV-B.
For each transformation, three sub-columns are introduced

to receive the quantification of visually similar (positive)
and visually different (negative) images, and a third column
contains the total number of files compared by the algorithm.

As a result, we have a Positive column with the total
number of files visually similar to the human eye and a
False Positive column, which received all images considered
similar by the algorithm but visually showed no similarity.

The quantity of False Positives and their percentage repre-
sentation is a limiting factor for the algorithm’s effectiveness,
since the higher this number, the less effective the results
presented by the algorithm are.

We conducted two types of simulations: the first, which
had as a parameter the singular execution of each of the
algorithms, and the second, which had the execution in pairs,

VOLUME 12, 2024 104623



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

to identify which of them or their combination presented the
best results.

D. RESULTS OBTAINED IN THE FIRST ITERATION OF THE
ALGORITHMS
For each of the 15 images, 20 iterations were performed per
algorithm, totaling 120 iterations per image. The 20 iterations
per algorithm refer to the Hamming distance that ranged from
one to 20 different bits tolerated in the similarity comparison.

Based on the simulations from the first iteration, it was
possible to identify that the chHash algorithm exhibited the
lowest false positive rate, making it ideal for cleaning the
results of files that are visually dissimilar, with an efficiency
of 43.75%, while pHash achieved 37.50%.

However, due to their stricter nature, the positive results
tend to be more conservative than those of other algorithms.
This characteristic led us to select it for application in a
second iteration, aiming to provide the analyst with a set of
genuinely similar files with a low false positive rate.

E. RESULTS OBTAINED IN THE SECOND ITERATION OF
THE ALGORITHMS
Just like in the first iteration, in the second one, we used the
same 15 images. In this stage, we aimed to identify the ideal
pair of algorithms for the ChSAM Forensics tool.

Hypothetically, an algorithm with many positive files
would be a good choice for the first iteration. We observed
that this algorithm could be aHash. However, the number of
false positives it generates is very high, and not even chHash,
considered a rigid algorithm, could ‘‘clean up’’ these results.

Therefore, we decided to create a table with various
combinations of pairs of algorithms used in this paper.
We performed several dual iterations for each of the six
algorithms to determine which one would be the ideal pair.
Table 3 is an example of these simulations.

TABLE 3. Example of algorithm pair simulation.

In Table 3, we present an example where the dHash
algorithm forms pairs with the other five algorithms,
including chHash. We then performed the first iteration using
dHash and subsequently applied the chHash, domiHash,
pHash, dHashV, and aHash algorithms, with both iterations
using a Hamming distance limit of 20.

In the example, the first iteration of the dHash algorithm for
the image generated 31 positive files, i.e., 31 visually similar
images, and 74 files that do not have any similarity (false
positives), achieving a positivity rate of 29.52% and efficacy.

When we performed the second iteration by applying the
other algorithms in pairs, we found that the efficacy rates

increased significantly, as shown in the example table. It can
be observed that the dHash+ chHash pair showed a positivity
rate of 96.43% compared to the initial 29.52% with just one
iteration.

For this pair, the second iteration eliminated nothing less
than 73 false positive files, and only four positive files were
removed from the results, representing less than 5.5%.

The other algorithms, i.e., the pairs dHash + domiHash,
dHash + dHash-v, and dHash + pHash, also achieved high
true positive rates. Even the aHash algorithm (with poor
performance, as demonstrated), when used as a pair in this
simulation, increased the initial accuracy percentage from
29.52% to 50.82%.

1) BEST PAIR OF ALGORITHMS
We conducted double iterations with all six tested algorithms
to determine the best pair for ChaSAM Forensics. To perform
these tests, we used the same set of images described in
Section VI-B. We fixed the first algorithm for each image
and varied the second one. The graph in Figure 9 displays
the efficacy of the dHash + chHash pair compared to the
other pairs of tested algorithms, with dHash fixed as the first
algorithm in the first iteration.

Analyzing the results of the simulations, we noticed that
the chHash demonstrates significant efficiency as a second
iteration algorithm. Out of the five possible combinations of
pairs of algorithms, it ranked first in 80%of the cases, as listed
below:
• The aHash as the first iteration algorithm, had the most
efficient pair with the chHash algorithm, where 50% of
the simulations using the 15 images achieved the best
performance percentage compared to other pairs;

• The dHash as the first iteration algorithm had the most
efficient pair with the chHash algorithm, where 81.25%
of the simulations using the 15 images achieved the best
performance percentage compared to other pairs;

• The dHashv as the first iteration algorithm had the most
efficient pair with the chHash algorithm, where 50% of
the simulations using the 15 images achieved the best
performance percentage compared to other pairs;

• The pHash, as the first iteration algorithm, had the
most efficient pair with the dHashv algorithm, where
43.75% of the simulations using the 15 images achieved
the best performance percentage compared to other
pairs;

• The domiHash as the first iteration algorithm had the
most efficient pair with the chHash algorithm, where
75% of the simulations using the 15 images achieved the
best performance percentage compared to other pairs;

We also conducted double iterations with chHash as the
first algorithm in partnership with the other algorithms.
In this case, chHash as the first iteration algorithm, had the
most efficient pair with the dHash algorithm, where 62.50%
of the simulations using the 15 images achieved the best
performance percentage compared to other pairs, as shown
in Figure 10:

104624 VOLUME 12, 2024



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

FIGURE 9. The dHash and the other algorithms used in the second iteration.

FIGURE 10. chHash and other algorithms used in the 2nd iteration.

Therefore, after analyzing the data and graphs presented
throughout this section, we observed that the pair of
algorithms dHash and chHash exhibited the best overall
performance, achieving over 80% of the top-performing
results tested.

F. AI-SYNTHESIZED VERSUS REAL-WORLD IMAGE
To bring veracity to our dataset, an artificial intelligence tool
was used to generate images of children to validate ChaSAM.
Subsequently, the real police database was used for final
implementation.

The artificial image generation tool used was Bing,
by Microsoft. The prompt for generating the content of one
of the images was: ‘‘Generation of an image of a small child
sitting on the floor in a photography studio’’. The result was

the generation of images of young children, as shown in
Figure 11.

Subsequently, we applied to each of the images generated
by artificial intelligence the same transformations carried out
to the set of dataset files used for the general simulations of
this work: blurring, cropping, tilting, inserting a watermark,
and other modifications commonly found in tampered
images.

The simulations demonstrated that our chHash algorithm
was again very effective for detecting similarity between
files generated from artificial intelligence, whose content
impersonated the image of a child. Like chHash, the
well-known pHash algorithm also provided good results.
The result of the first iteration using the six algorithms is
described in Table 4:

VOLUME 12, 2024 104625



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

FIGURE 11. Child generated by artificial intelligence.

TABLE 4. Result of the 1st iteration using AI-generated image.

In the first iteration, it is possible to observe that chHash
identified 65 images as being similar to the little girl
generated by artificial intelligence. However, when we
visually checked the files, we found that only 26 were similar.
This represented a 40% success rate. The most assertive
algorithm is triggered.

When we performed the second iteration fixing the chHash
algorithm, we obtained the data tabulated in Table 5. Note
that the pair of dHash-v+ chHash algorithms achieved 100%
accuracy, and the other pairs with chHash also presented
extremely interesting results.

TABLE 5. Result of the 2nd iteration using AI-generated image.

If we compare the data from the first iteration with the
second, focusing only on the files visually separated as
‘‘positive’’, that is, the second columns of both tables, it is
possible to observe that the number of files remains relatively
stable.

However, one thing that makes the percentage of assertive-
ness increase a lot is the cleaning of the ‘‘negative’’ files with
the application of the second iteration. An example of this
is the simulation using the dHash-v algorithm (third line of

Table 4). This algorithm finds 25 (twenty-five) ‘‘positive’’
files in the first iteration. However, it also found 50 files that
we checked and concluded that they are not similar. Thus, the
accuracy of this algorithm for the tested image was 33.33%.

When we apply the second iteration using chHash, the
same 25 ‘‘positive’’ files remain (third row of the Table 5).
However, in this second iteration, chHash eliminated all
‘‘negative’’ files, and thus, this pair of algorithms achieved
100% accuracy, thus representing excellent performance
compared to the other pairs of simulated algorithms.

Finally, to test the robustness of the chHash algorithm,
we submitted a real CSAM image, collected in one of the
police operations, but for legal reasons we cannot replicate it
in this paper, and we applied several modifications, creating
a set of 40 images. The result of the simulation of the first
iteration with a real image is distributed in Table 6:

TABLE 6. Real CSAM file: 1st iteraction.

It is possible to observe that the dHash algorithm
performedwell (61.54%), as did chHash itself with 48.15%of
positive results and finally the pHash algorithm with 30.51%.
These three algorithms are, in fact, the most effective. Even
so, the number of false-positive files was quite significant.
Therefore, after the first iteration, we applied the second
iteration, whose data is below:

TABLE 7. Real CSAM file: best pair of algorithms.

After the second iteration, it was possible to observe that
chHash together with the dHash and dHash-v algorithms
could clean all ‘‘negative’’ files from the first iteration.

VII. CONCLUSION
In the context of increasing digital content and the necessity
for accurate and efficient forensic tools, this work explores
the application of perceptual hashing in computer forensics.
The primary motivation was to develop and evaluate methods
for comparing manipulated images to identify similarities,
particularly in cases involving child sexual abuse material
(CSAM). Traditional cryptographic hashes fall short in this
context, necessitating the use of perceptual hashes which can
detect visual similarities despite manipulations.

Perceptual hashing algorithms, such as average hash
(aHash), difference hash (dHash), vertical difference hash
(dHash-v), and perceptual hash (pHash), were implemented
and evaluated. Additionally, two novel variations, diagonal

104626 VOLUME 12, 2024



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

difference hash (domiHash) and chHash (based on image
thresholding), were developed. These algorithms were inte-
grated into ChaSAM Forensics, a tool designed to efficiently
process and compare large volumes of images.

The evaluation involved extensive simulations comparing
images with various manipulations using the different hash-
ing algorithms. The results indicated that chHash, particularly
when used in conjunction with dHash or dHash-v, was highly
effective in identifying similar images while minimizing
false positives. The use of parallel processing significantly
improved the efficiency, with optimal performance observed
using 32 to 64 parallel routines.

Future work will focus on extending ChaSAM Forensics
to handle video content, which presents a unique challenge
due to the large number of frames per second that need to
be processed and compared. Addressing this challenge will
require further advancements in both algorithmic efficiency
and computational power to maintain the accuracy and speed
necessary for forensic investigations.

REFERENCES

[1] R. Martini, ‘‘Inclusão digital & inclusão social,’’ Inclusão social, vol. 1,
no. 1, pp. 21–23, 2005.

[2] M. C. Neri, ‘‘Mapa da inclusão digital,’’ CPS/FGV, Rio de Janeiro, Brazil,
Tech. Rep. 1, 2012.

[3] Lei N◦ 9.998, De 17 De Agosto De 2000, Diário Oficial da União, Brazil,
2000.

[4] W. Halboob and J. Almuhtadi, ‘‘Computer forensics framework for
efficient and lawful privacy-preserved investigation,’’ Comput. Syst. Sci.
Eng., vol. 45, no. 2, pp. 2071–2092, 2023.

[5] A. G. Barreto and H. Santos, ‘‘Deep web investigação no submundo da
internet,’’ Brasport, Washington, DC, USA, Tech. Rep. 1, 2019, p. 144.

[6] I. S. D. Almeida, J. C. Santana, and J. Araújo, ‘‘Cybercrimes no
Brasil: Uma abordagem sobre a tipificação dos crimes virtuais,’’ in Proc.
Anais do XVII Workshop de Informática na Escola (WIE), Nov. 2011,
pp. 1592–1595.

[7] A. Al-Dhaqm, W. M. Yafooz, S. H. Othman, and A. Ali, ‘‘Database
forensics field and children crimes,’’ in Kids Cybersecurity Using
Computational Intelligence Techniques. Springer, 2023, pp. 81–92.

[8] H. D. Santos, J. A. D. Barreto, N. V. Dalarmelina, M. A. Teixeira, and
R. I. Meneguette, ‘‘Similitude de ocorrências de CSAM na internet e
o registro perante às autoridades no estado de São Paulo,’’ in Proc.
Anais do V Workshop de Computação Urbana (CoUrb), Aug. 2021,
pp. 209–222.

[9] D. Aja-Eke, R. Gillanders, I. Ouedraogo, and W. H. E. Maiga, ‘‘Sextortion
and corruption,’’ Appl. Econ. Lett., vol. 30, pp. 1–5, Dec. 2023.

[10] S. T. Sydow, ‘‘Cybercrimes: A sextorsão chega ao Brasil,’’ Revista dos
Tribunais, São Paulo, Brazil, Tech. Rep., 2018.

[11] S. Brasil, ‘‘Denúncias de pornografia infantil cresceram 33,45% em 2021,
aponta a safernet Brasil,’’ Safernet, São Paulo, Brazil, Tech. Rep. 1, 2021.

[12] K.-S. Choi and H. Lee, ‘‘The trend of online child sexual abuse and
exploitations: A profile of online sexual offenders and criminal justice
response,’’ J. Child Sexual Abuse, vol. 32, pp. 1–20, May 2023.

[13] N. Lorenzo-Dus, C. Evans, and R.Mullineux-Morgan,Online Child Sexual
Grooming Discourse (Elements Forensic Linguistics). Cambridge, U.K.:
Cambridge Univ. Press, 2023.

[14] P. M. da Silva Eleutério and M. P. Machado, Desvendando a Computação
Forense. São Paulo, Brazil: Novatec Editora, 2019.

[15] J. F. P. Faria-Joao. (2018). Detecção De Imagens Similares:
Aplicabilidade De Ferramentas Software Livre De Hash De
Similaridade De Uso Geral. [Online]. Available: https://www.ipog.edu.br/
revista-especialize-online/edicao-16-2018-dez/deteccao-de-imagens-
similares-aplicabilidade-deferramentas-software-livre-de-hash-de-
similaridade-de-usogeral

[16] Q. Zheng, X. Tian, Z. Yu, Y. Ding, A. Elhanashi, S. Saponara, and
K. Kpalma, ‘‘MobileRaT: A lightweight radio transformer method for
automatic modulation classification in drone communication systems,’’
Drones, vol. 7, no. 10, p. 596, Sep. 2023.

[17] J. McGarvie, ‘‘From hashtag to hash value: Using the hash value model to
report child sex abuse material,’’ Seattle J. Technol., Environ. Innov. Law,
vol. 13, no. 2, p. 4, 2023.

[18] I. Kara, C. Korkmaz, A. Karatatar, and M. Aydos, ‘‘A forensic method
for investigating manipulated video recordings,’’ Comput. Fraud Secur.,
vol. 2023, no. 1, pp. 1–12, Jan. 2023.

[19] E. D. Vecchia, D. Weber, and A. Zorzo, ‘‘Antiforense digital: Conceitos,
técnicas, ferramentas e estudos de caso,’’ in Minicursos Do XIII Simpósio
Brasileiro De Segurança Da Informação E De Sistemas Computacionais.
Ghaziabad: SBC, 2013.

[20] Q. Zheng, P. Zhao, H. Wang, A. Elhanashi, and S. Saponara, ‘‘Fine-
grained modulation classification using multi-scale radio transformer
with dual-channel representation,’’ IEEE Commun. Lett., vol. 26, no. 6,
pp. 1298–1302, Jun. 2022.

[21] T. S. Rodrigues, F. Junior, and D. César, ‘‘Análise de ferramentas forenses
na investigação digital,’’ in Revista De Engenharia E Tecnologia. Ponta
Grossa, Brazil: UEPG, 2010.

[22] P. Samanta and S. Jain, ‘‘Analysis of perceptual hashing algorithms
in image manipulation detection,’’ Proc. Comput. Sci., vol. 185,
pp. 203–212, 2021.

[23] L. Twenning, H. Baier, and T. Göbel, ‘‘Using perceptual hashing for
targeted content scanning,’’ in Proc. IFIP Int. Conf. Digit. Forensics. New
York, NY, USA: Springer, 2023, pp. 125–142.

[24] B. Westlake and E. Guerra, ‘‘Using file and folder naming and structuring
to improve automated detection of child sexual abuse images on the dark
web,’’ Forensic Sci. Int., Digit. Invest., vol. 47, Dec. 2023, Art. no. 301620.

[25] A. dos Santos Silva Torres, ‘‘Hash perceptivo de imagens e sua aplicação na
identificação de cópia de vídeo,’’ Master’s thesis, Pontifícia Universidade
Católica de Campinas, Campinas, 2019.

[26] R. Menezes and V. Silva, ‘‘Uso da abordagem hash como ferramenta
de análise de similaridade entre imagens,’’ in Proc. Anais da XIX
Escola Regional de Computação Bahia, Alagoas e Sergipe, 2019,
pp. 202–207.

[27] S. Vale, ‘‘Confira a definição, funcionamento e aplicações do hash, função
popular da criptografia,’’ Voitto, Juiz de Fora, Brazil, Tech. Rep. 1, 2020.

[28] Assegurando a Integridade Dos Dados Com Códigos Hash, Microsoft,
Redmond, WA, USA, 2022.

[29] F. Souza, ‘‘Funções hash ou hashing,’’ Medium, San Francisco, CA, USA,
Tech. Rep. 1, 2020.

[30] E. Klinger and D. Starkweather, ‘‘Phash: The open source perceptual hash
library,’’ Upper Austria Univ. Appl., Hagenberg, Austria, Tech. Rep. 1,
2010.

[31] M. Alkhowaiter, K. Almubarak, and C. Zou, ‘‘Evaluating perceptual
hashing algorithms in detecting image manipulation over social media
platforms,’’ in Proc. IEEE Int. Conf. Cyber Secur. Resilience (CSR),
Jul. 2022, pp. 149–156.

[32] X. Wang, K. Pang, X. Zhou, Y. Zhou, L. Li, and J. Xue, ‘‘A visual model-
based perceptual image hash for content authentication,’’ IEEE Trans. Inf.
Forensics Security, vol. 10, no. 7, pp. 1336–1349, Jul. 2015.

[33] R. W. Hamming, ‘‘Error detecting and error correcting codes,’’ Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147–160, Apr. 1950.

[34] V. Pless, Introduction to Theory Error-Correcting Codes, vol. 48.
Hoboken, NJ, USA: Wiley, 1998.

[35] H. Farid, ‘‘An overview of perceptual hashing,’’ J. Online Trust Saf., vol. 1,
no. 1, pp. 1–22, Oct. 2021.

[36] S. McKeown and W. J. Buchanan, ‘‘Hamming distributions of popular
perceptual hashing techniques,’’ Forensic Sci. International: Digit. Invest.,
vol. 44, Mar. 2023, Art. no. 301509.

[37] Q. Zheng, P. Zhao, D. Zhang, and H. Wang, ‘‘MR-DCAE: Manifold
regularization-based deep convolutional autoencoder for unauthorized
broadcasting identification,’’ Int. J. Intell. Syst., vol. 36, no. 12,
pp. 7204–7238, Dec. 2021.

[38] Q. Zheng, S. Saponara, X. Tian, Z. Yu, A. Elhanashi, and R. Yu,
‘‘A real-time constellation image classification method of wireless
communication signals based on the lightweight network MobileViT,’’
Cognit. Neurodynamics, vol. 18, no. 2, pp. 659–671, Apr. 2024.

VOLUME 12, 2024 104627



H. D. Santos et al.: ChaSAM: An Architecture Based on Perceptual Hashing

[39] Q. Hao, L. Luo, S. T. K. Jan, and G. Wang, ‘‘It’s not what it looks
like: Manipulating perceptual hashing based applications,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2021, pp. 69–85.

[40] N. Krawetz, ‘‘Looks like it,’’ Hacker Factor, Fort Collins, CO, USA,
Tech. Rep. 2, 2011.

[41] S. Patra, R. Gautam, and A. Singla, ‘‘A novel context sensitive multilevel
thresholding for image segmentation,’’ Appl. Soft Comput., vol. 23,
pp. 122–127, Oct. 2014.

HERICSON DOS SANTOS is currently pursuing
the bachelor’s and master’s degrees in computer
science with the Institute of Mathematical and
Computer Sciences, University of São Paulo
(ICMC/USP). He is also a Forensic Expert of
São Paulo Scientific Police, a Professor of Police
Investigation with the Police Academy of São
Paulo, a Professor of cyber intelligence with the
Ministry of Justice and Public Security, and an
Instructor of Child Sexual Abuse Investigation,

Child Rescue Coalition (CRC), USA, accredited by Homeland Security
Investigation (HSI), United States Embassy. He specialist in networks
and telecommunications and forensic computing. He is the author of the
book Deep Web: Investigation in the Underworld of the Internet and
the co-author of the books Treatise on Technological Investigation and
Combating Corruption and Technological Criminal Investigation. He is an
active member of the Internet Governance and Crimes Against Children
working group, University of São Paulo.

TIAGO DOS SANTOS MARTINS received the
degree in internet systems technology. He is cur-
rently pursuing the bachelor’s degree in computer
engineering with the Federal Institute of São
Paulo. He is also a Forensic Technical Photogra-
pher of São Paulo Scientific Police, an Enthusiast
of Open-Source Software and Embedded Systems,
and a Systems Developer.

JORGE ANDRE DOMINGUES BARRETO
received the bachelor’s degree in electrical
engineering and the master’s degree in computer
science from the Institute of Mathematical and
Computer Sciences, University of São Paulo
(ICMC/USP), Brazil. He is currently an Investi-
gator of the Civil Police of the State of São Paulo,
a Professor of cyber intelligence with the Ministry
of Justice and Public Security, and an Instructor of
Child Sexual Abuse Investigation, Child Rescue

Coalition (CRC), USA, accredited by Homeland Security Investigation
(HSI), United States Embassy. He is also a Specialist in Police Intelligence.
He is the co-author of the books Treatise on Technological Investigation
and Combating Corruption and Technological Criminal Investigation. He is
an active member of the Internet Governance and Crimes Against Children
working group, University of São Paulo.

LUIS HIDEO VASCONCELOS NAKAMURA
received the degree in data processing technology
from the Faculty of Technology of Taquaritinga
(FATEC-TQ), in 2006, and the master’s and
Ph.D. degrees in mathematical and computational
sciences from the Institute of Mathematical and
Computer Sciences (ICMC), University of São
Paulo (USP), in 2012 and 2017, respectively. He
is currently a Professor and a Researcher with
the Federal Institute of Education, Science and

Technology, Catanduva Campus. His research interests include distributed
systems, the Internet of Things, intelligent transportation systems, the
semantic web, ontologies, and cloud computing.

CAETANO MAZZONI RANIERI graduated in
computer science from Sao Paulo State University
(UNESP) in 2013, and the master’s and Ph.D.
degrees from ICMC-USP, in 2016 and 2021,
respectively. During his Ph.D., he worked as
a Visiting Scholar at Heriot-Watt University,
Scotland in 2020. He has experience in Activ-
ity Recognition, Deep Learning, the Internet of
Things, Machine Learning, and Robotics. He is an
Assistant Professor at the Institute of Geosciences

and Exact Scientes, Sao Paulo State University (IGCE-UNESP). He was a
Postdoctoral Research Fellow at the Institute of Mathematical and Computer
Sciences, University of Sao Paulo (ICMC-USP), with research focused on
artificial intelligence in the context of the Internet of Things.

ROBSON E. DE GRANDE (Member, IEEE)
received the Ph.D. degree in computer science
from the University of Ottawa, Canada, in 2012.
He is currently an Associate Professor with the
Department of Computer Science, Brock Uni-
versity, Canada. His research interests include
large-scale distributed and mobile systems, cloud
computing, performance modeling and simula-
tion, computer networks, vehicular networks,
intelligent transportation systems, and distributed

simulation systems, actively contributing to these areas. He has served
as a Technical Program and the Special Session Co-Chair of several
IEEE and ACM-sponsored conferences, including IEEE/ACMDS-RT, ACM
MobiWac, ACM DIVANet, and IEEE DCOSS International Workshop on
Urban Computing.

GERALDO P. ROCHA FILHO received the mas-
ter’s and Ph.D. degrees in computer science and
computational mathematics from the Institute of
Mathematical and Computer Sciences, University
of São Paulo (ICMC-USP). From 2019 to 2022,
he was an effective Professor with the Depart-
ment of Computer Science, University of Brasília
(UnB). In 2022, he requested a vacancy from UnB
to UESB. He was a Researcher with the Institute of
Computing, UNICAMP, through the Postdoctorate

funded by FAPESP. He is currently a Professor with the Department of
Exact and Technological Sciences, State University of Southwest Bahia
(UESB). In the last five years, he has obtained more than 24 publications
in international journals and more than 32 publications in conferences. His
research interests include wireless sensor networks, vehicular networks,
smart grids, smart homes, and machine learning. He received the FAPESP
Scholarship for the master’s and Ph.D. studies.

RODOLFO I. MENEGUETTE (Senior Member,
IEEE) received the bachelor’s degree in computer
science from Paulista University (UNIP), Brazil,
in 2006, the master’s degree from the Federal
University of São Carlos (UFSCar), in 2009, and
the Ph.D. degree from the University of Campinas
(Unicamp), Brazil, in 2013. In 2017, he was a Post-
doctoral Researcher with the Paradise Research
Laboratory, University of Ottawa, Ottawa, ON,
Canada. He is currently a Professor with the

University of São Paulo (USP). His research interests include vehicular
networks, resource management, flow of mobility, and vehicular clouds.

104628 VOLUME 12, 2024


