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Abstract

In this paper, we investigate the mathematical properties of the Lehmann type II inverse Weibull

distribution. We show that this model is a reparameterized version of the Kumaraswamy-inverse

Weibull distribution without identifiability problems. Parameter estimation is discussed using maxi-

mum likelihood (ML) method under a right-censoring scheme. Furthermore, a bootstrap resampling

approach is considered to reduce the bias of the ML estimates. In order to illustrate the proposed

methodology, we consider a real data set related to the failure time of devices in an aircraft.

Keywords: Bootstrap-based bias correction; Maximum likelihood estimation; Reliability data; Right-

censoring; Unimodal failure rate.

1 Introduction

Motivated by researches developed in recent years, many authors have proposed new classes of proba-

bility distributions, which are modifications of the baseline probability distribution functions that provide

hazard rates contemplating various shapes. For instance, Mudholkar et al. (1995) presented the three-

parameter exponentiated Weibull distribution, which, depending on the chosen parameters, can exhibit

a failure rate function with non-monotone (i.e., unimodal or bathtub-shaped) behavior. Carrasco et al.

(2008) derived a four-parameter distribution, named generalized modified Weibull distribution, with the

ability to model monotone as well as non-monotone failure rates. Pescim et al. (2010) proposed distribu-

tion with four parameters called the beta generalized half-normal distribution, which can accommodate

all the forms of the failure rate function. On the other hand, Kumaraswamy (1980) argued that the

beta distribution does not faithfully fit hydrological random variables (as well as other random processes

which are bounded both at the lower and upper ends, and which have a mode occurring between these

two bounds), such as daily rainfall and daily streamflow. Moreover, as stated in Jones (2009), “the beta

distribution is fairly tractable, but in some ways not fabulously so; in particular, its distribution function

is an incomplete beta function ratio and its quantile function the inverse thereof.”
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Still little explored in the statistical literature, the Kumaraswamy distribution (Kumaraswamy, 1980)

has a domain on (0, 1). Such a feature allows the Kumaraswamy distribution to be merged with other

models in order to generate new families of distributions. In this sense, Cordeiro and de Castro (2011)

proposed to use the Kumaraswamy distribution to generalize other distributions and derived many critical

mathematical properties of the new class of models.

Based on these ideas, Shahbaz et al. (2012) presented the Kumaraswamy-inverse Weibull (Kum-IW)

distribution, which includes several well-known distributions used in survival and reliability data analysis

(see Gusmão et al., 2017, Section 2.1). However, in this work, we prove that the Kum-IW distribution

has identifiability problems, which is undesirable. Thus, we propose one way to correct this problem by

considering a useful reparameterization of the model. The obtained (identifiable) distribution can be seen

as the Lehmann type II inverse Weibull (LIW2) distribution, which first appeared in a letter presented by

Gusmão et al. (2012). Although its cumulative distribution function was presented, no mathematical and

inferential issues were discussed for this distribution. Therefore, we provide a comprehensive treatment of

the mathematical properties of the LIW2 distribution. The parameter estimation of this model is carried

out using the maximum likelihood (ML) method in the presence of right-censored observations. Further,

we consider the bootstrap resampling method proposed by Efron (1992), aiming to reduce the bias of the

ML estimates. This approach consists of generating pseudo-samples from the original data to estimate

the bias of the ML estimates. Finally, in order to illustrate our proposed methodology, we consider a real

data set related to the failure time of 194 devices in an aircraft.

The remainder of this paper is organized as follows. In Section 2, we present the Kum-IW distribution

and solve its identifiability problem by considering the LIW2 distribution. In Section 3, we provide

some mathematical properties of the LIW2 distribution. In Section 4, we discuss the ML estimation

approach in the presence of right-censored data. A bootstrap-based bias correction procedure is also

presented to reduce the bias associated with the ML estimation of the model parameters. In Section 5,

we show a simulation study designed to verify the effectiveness of the proposed estimators. In Section

6, we illustrate the usefulness of the LIW2 distribution through an aircraft dataset. Finally, concluding

remarks are provided in Section 7.

2 The LIW2 distribution

The inverse Weibull distribution has received some attention in the literature. Keller et al. (1982)

studied the shapes of the probability density and failure rate functions for the basic inverse model.
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Let T be a random variable with inverse Weibull distribution, i.e. T ∼ IW(α, β). Then, its cumulative

distribution function (cdf) can be written as

G(t;α, β) = exp

{
−
(α
t

)β}
, t > 0, (1)

where α > 0 and β > 0 are, respectively, the scale and shape parameters, and its probability density

function (pdf) is given by

g(t;α, β) = βαβt−(β+1) exp

{
−
(α
t

)β}
.

On the other hand, the class of Kumaraswamy distributions (Kumaraswamy, 1980), denoted by

Kum(λ, b), has cdf given by

F (x;λ, b) = 1−
(

1− xλ
)b
, 0 < x < 1, (2)

and its pdf is

f (x;λ, b) = λbxλ−1
(

1− xλ
)b−1

,

where λ > 0 and b > 0 are the two shape parameters.

Considering that a random variable X has distribution G(·), Cordeiro and de Castro (2011) suggested

to apply the Kumaraswamy distribution to G(x). Note that, since 0 < G(x) < 1 for any distribution G,

then we have, by applying G(x) to Equation (2), that

FG(x;λ, b) = 1−
(

1− [G(x)]λ
)b
, (3)

where λ > 0 and b > 0 are the new shape parameters. Hence, FG is the cdf of the generalized

Kumaraswamy-G distribution. The great advantage of the class of Kumaraswamy distributions is that it

has a closed-form cdf.

Inserting Equation (1) into Equation (3), we get the cdf of the Kum-IW distribution (Shahbaz et al.,

2012), which is given by

FG(t;λ, b, α, β) = 1−
(

1− exp

{
−λ
(α
t

)β})b
, t > 0. (4)

Although the distribution above has a simple structure, its parameters are non-identifiable. A param-

eter θ for a family of distributions F such that F = {f : f(x; θ), x ∈ R, θ ∈ Θ} is said to be identifiable if

different values of θ correspond to different probability density or mass functions. That is to say, if θ 6= θ
′

then f(x; θ) is not the same function as f(x; θ
′
).
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Let T be a positive random variable with cdf given by Equation (4). Also, let θ = (λ, b, α, β) ∈ R4
+.

Then, the Kum-IW model, as defined in Equation (4), is not identifiable. The proof is available in

Appendix A. It is essential to clarify that identifiability is a property of the model and not of a particular

estimation technique, but if a model is not identifiable, then the inference can be difficult.

In order to overcome the identifiability problem pointed out above, we isolate the quantity c in

Equation (10), obtaining c = αλ
1
β (see Gusmão et al., 2017). The proof is available in Appendix B. Then,

we rewrite Equation (4) as

FG(t; b, c, β) = 1−
(

1− exp

{
−
(c
t

)β})b
, t > 0, (5)

where b > 0 and β > 0 are the shape parameters, and c > 0 is the scale parameter. Hence, the new

parameterized (identifiable) Kum-IW distribution (also referred to as the LIW2 distribution) has three

parameters, and its pdf is given by

fG(t; b, c, β) = βbcβt−(β+1) exp

{
−
(c
t

)β}(
1− exp

{
−
(c
t

)β})b−1
. (6)

According to Cordeiro and Castro (2011), we have the following expansions for the cdf and pdf of the

LIW2 distribution:

FG(t; b, c, β) = 1− b
∞∑
r=0

(−1)rΓ(b)

(b− r)Γ(b− r)r!
exp

{
−r
(c
t

)β}
and

fG(t; b, c, β) = βbcβt−(β+1)
∞∑
r=0

(−1)r Γ (b)

Γ (b− r) r!
exp

{
−
(c
t

)β
(r + 1)

}
.

Notice that taking b = 1 in (6), we have the inverse Weibull distribution with pdf given by

g(t; c, β) = βcβt−(β+1) exp

{
−
(c
t

)β}
.

3 Other properties of the LIW2 distribution

The reliability (or survival) and failure rate (or hazard) functions of the LIW2 distribution are given,

respectively, by

SG(t; b, c, β) =

(
1− exp

{
−
(c
t

)β})b
and hG(t; b, c, β) =

βbcβt−(β+1) exp
{
−
(
c
t

)β}
1− exp

{
−
(
c
t

)β} .

Figure 1 shows some examples of the shapes of the density and failure rate functions of the LIW2

distribution, considering different values of b, c, and β.

4



0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t

f(
t)

b=1.5, c=0.4, β=0.7
b=0.5, c=1.8, β=2.5
b=2.0, c=0.5, β=2.0
b=2.5, c=2.0, β=2.0 
b=1.0, c=1.0, β=2.0

0 2 4 6 8

0
1

2
3

4
5

t
h(

t)

b=1.5, c=0.4, β=0.7
b=0.5, c=1.8, β=2.5
b=2.0, c=0.5, β=2.0
b=2.5, c=2.0, β=2.0 
b=1.0, c=1.0, β=2.0

Figure 1: Density and failure rate functions of the LIW2 distribution for different values of b, c and β.

As can be seen in Figure 1, the failure rate function has a unimodal shape for different parameters’

values. The proof that the failure rate function is only unimodal is not an easy task due to the complexity

of the density and failure rate functions.

For p ∈ (0, 1), the quantile function of the LIW2 distribution is given by

QG(p; b, c, β) = F−1G (p; b, c, β) = c
(
− log

(
1− (1− p)

1
b

))− 1
β
.

Corollary 3.1 Let T be a positive random variable with cdf given by Equation (5). Then, the k-th

moment of T about the origin can be computed as

E
[
T k
]

= bck
∞∑
r=0

(−1)r Γ (b)

Γ (b− r) r!
(r + 1)

k
β
−1

Γ

(
1− k

β

)
, for β > k,

where Γ(·) is the gamma function.

Proof. The above result can be obtained as follows:

E
[
T k
]

=

∫ ∞
−∞

tkf(t)dt =

∫ ∞
0

tkβbcβt−(β+1) exp

{
−
(c
t

)β}(
1− exp

{
−
(c
t

)β})b−1
dt

=

∫ ∞
0

tkβbcβt−(β+1)
∞∑
r=0

(−1)r Γ (b)

Γ (b− r) r!
exp

{
−
(c
t

)β
(r + 1)

}
dt

= b

∞∑
r=0

(−1)r Γ (b)

Γ (b− r) r!

∫ ∞
0

βcβtk−β−1 exp
{
−cβt−β(r + 1)

}
dt.
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Then, making the changes of variable:

u = cβt−β(r + 1)

and

du = −βcβt−β−1(r + 1)dt,

we have t−β = uc−β(r + 1)−1 and tk = ck(r + 1)
k
β u
− k
β . Consequently,

E
[
T k
]

= b
∞∑
r=0

(−1)r Γ (b)

Γ (b− r) r!

∫ ∞
0

cku

(
1− k

β

)
−1

(r + 1)
k
β
−1

exp{−u}du

= bck
∞∑
r=0

(−1)r Γ(b)

Γ(b− r)r!
(r + 1)

k
β
−1
∫ ∞
0

u

(
1− k

β

)
−1

exp{−u}du

= bckΓ

(
1− k

β

) ∞∑
r=0

(−1)r Γ (b)

Γ (b− r) r!
(r + 1)

k
β
−1
. �

Similarly to the proof of Corollary 3.1, we obtain that the k-th negative and logarithmic moments of

T are given by

E
[
T−k

]
=

kb

βck
Γ

(
k

β

) ∞∑
r=0

(−1)r Γ (b)

Γ (b− r) r!
(r + 1)

−k
β
−1

and

E
[
log(T k)

]
= kb

∞∑
r=0

(−1)r Γ (b)

Γ (b− r) r!
(r + 1)−1

[
1

β
log(r + 1) + log(c) +

γ

β

]
,

where γ ≈ 0.577 is the Euler-Mascheroni constant.

Corollary 3.2 Let T1, T2, . . . , Tn be independent and identically distributed random variables from a

LIW2 distribution. Then, the density fT(j)(t; b, c, β) of the j-th order statistic, for j = 1, 2, . . . , n, is

given by

fT(j)(t; b, c, β) =
βcβt−(β+1) exp

{
−
(
c
t

)β}
B(j, n− j + 1)

n−j∑
r=0

(−1)r
(
n− j
r

)[
1−

(
1− exp

{
−
(c
t

)β})b]j+r−1
,

where B(., .) denotes the beta function.

Proof. This proof is similar to that given in Casella and Berger (2002, p.299). �

Now, from Corollary 3.2 we get that the minimum and maximum densities are, respectively, expressed

as

fT(1)(t; b, c, β) = nβbcβt−(β+1)

(
1− exp

{
−
(c
t

)β})b(n−1)
exp

{
−
(c
t

)β}(
1− exp

{
−
(c
t

)β})b−1
and

fT(n)(t; b, c, β) = nβbcβt−(β+1)

[
1−

(
1− exp

{
−
(c
t

)β})b]n−1
exp

{
−
(c
t

)β}(
1− exp

{
−
(c
t

)β})b−1
.
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Corollary 3.3 The characteristic function of a random variable T with LIW2 distribution is given by

ΨT (s) = E [exp{isT}] =
∞∑
k=0

b(isc)k

k!
Γ

(
1− k

β

) ∞∑
r=0

(−1)r Γ (b)

Γ (b− r) r!
(r + 1)

k
β
−1
,

for β > k.

Proof. By expanding the exponential function in power series, we have, for random variable T ,

exp{isT} =

∞∑
k=0

(isT )k

k!
.

Now, for β > k, we get

ΨT (s) = E [exp{isT}] =
∞∑
k=0

(is)kE
[
T k
]

k!

and the result follows by using Corollary 3.1. �

It is well known in information theory that entropy is an important measure of uncertainty associated

with a random variable. Perhaps the Shannon’s entropy proposed by Shannon (1948) and defined by

HS(T ) = E[− log f(T )], with f(.) being a particular pdf, is the most widely employed in applications; see

Kapur (1994). However, in recent years, Rényi’s entropy introduced by Rényi (1961) has substantially

attracted several researchers. This is since the Rényi’s entropy generalizes several other entropy measures,

including Shannon’s entropy; see, e.g., Csiszar and Korner (2011) and Jost (2006).

The Rényi’s entropy of a positive random variable T with pdf f(.) is defined by

HR(T ) =
1

1− α
log

{∫ ∞
0

[f(t)]α dt

}
,

where α > 0 and α 6= 1.

Proposition 3.4 The Rényi’s entropy of a random variable T with LIW2 distribution is given by

HR(T ) =
1

1− α
log

{
βα−1bαc1−α

∞∑
r=0

(−1)r
(
α(b− 1)

r

)
(α+ r)

1−α(β+1)
β Γ

(
α(β + 1)− 1

β

)}
, (7)

where α > 1
β+1 , for all β > 0.

Proof. In fact,

HR(T ) =
1

1− α
log

{
βαbαcαβ

∫ ∞
0

t−α(β+1) exp

{
−α

(c
t

)β}(
1− exp

{
−
(c
t

)β})α(b−1)
dt

}
.

By using the expansion (1− x)b−1 =
∑∞

r=0(−1)r
(
b−1
r

)
xr, for −1 < x < 1 and b > 0, we have

HR(T ) =
1

1− α
log

{
βαbαcαβ

∞∑
r=0

(−1)r
(
α(b− 1)

r

)∫ ∞
0

t−α(β+1) exp

{
−(α+ r)

(c
t

)β}
dt

}
.
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Then, making the change of variable:

u = cβt−β(r + 1) ⇒ du = −βcβt−β−1(r + α)dt,

and, hence, we have t−β = uc−β(r + α)−1. Thus, after some algebraic manipulations, we get (7). �

From Proposition 3.4, taking α→ 1, we obtain the Shannon’s entropy expressed as

HS(T ) = − log(βbcβ) + b

∞∑
r=0

(−1)r Γ (b) (r + 1)−1

Γ (b− r) r!

{
(β + 1)

[
log(r + 1)

β
+ log(c) +

γ

β

]
+ (r + 1−1)

}
+

(b− 1)

b
,

where γ ≈ 0.577 is the Euler-Mascheroni constant.

4 Maximum likelihood estimation for right-censored LIW2 data

A model is said to be identifiable when parameter values uniquely determine the probability distribu-

tion of data, and the probability distribution of data uniquely determines the parameter values. Therefore,

when a model is unidentifiable (e.g., the Kum-IW distribution), various parameter values correspond to

the same data distribution. This fact makes impossible the use of classical methods of inference, in which

there is the need for an identifiable model (e.g., the LIW2 distribution) to be obtained, for example, ML

estimators that are unique.

Let Ti be a random variable with a LIW2 distribution (5) indexed by a parameter vector θ = (b, c, β).

Since the data in survival and reliability analysis are generally censored, a straightforward random cen-

soring mechanism, which is often realistic, is one in which each subject or device i is assumed to have a

lifetime Ti and a censoring time Ci, where Ti and Ci are independent random variables. Let δi be an indi-

cator of whether the actual lifetime of the i-th individual or item is observed or not, i.e. δi = 1 if observed

and δi = 0 if not. Suppose that the data set consists of n independent observations ti = min{Ti, Ci}, for

i = 1, 2, . . . , n, where the distribution of Ci does not depend on the parameters of interest (the so-called

non-informative censoring hypothesis). Classical parametric inference for such data is typically based on

likelihood methods and their asymptotic theory.

The censored likelihood function for the LIW2 distribution can be written as

L(θ) =βrbrcrβ
n∏
i=1

t
−δi(β+1)
i

n∏
i=1

(
1− exp

{
−
(
c

ti

)β})δi(b−1)
exp

{
−

n∑
i=1

δi

(
c

ti

)β}

×
n∏
i=1

(
1− exp

{
−
(
c

ti

)β})b(1−δi)
,

8



where r =
∑n

i=1 δi. The log-likelihood function is

`(θ) = r log
(
βbcβ

)
− (β + 1)

n∑
i=1

δi log(ti) + (b− 1)

n∑
i=1

δi log

(
1− exp

{
−
(
c

ti

)β})

+ b

n∑
i=1

(1− δi) log

(
1− exp

{
−
(
c

ti

)β})
− cβ

n∑
i=1

δi

(
1

ti

)β
,

(8)

The score functions of the log-likelihood function (8) are obtained as follows:

Ub(θ) =
∂` (θ)

∂b
=
r

b
+

n∑
i=1

δi log

(
1− exp

{
−
(
c

ti

)β})
+

n∑
i=1

(1− δi) log

(
1− exp

{
−
(
c

ti

)β})
,

Uc(θ) =
∂` (θ)

∂c
=
rβ

c
− βcβ−1

n∑
i=1

δi

(
1

ti

)β
+ βcβ−1(b− 1)

n∑
i=1

δi

t−βi exp

{
−
(
c
ti

)β}
1− exp

{
−
(
c
ti

)β}

+ βbcβ−1
n∑
i=1

(1− δi)
t−βi exp

{
−
(
c
ti

)β}
1− exp

{
−
(
c
ti

)β}
and

Uβ(θ) =
∂` (θ)

∂β
=
r

β
+ r log (c)− cβ log (c)

n∑
i=1

δit
−β
i + cβ

n∑
i=1

δit
−β
i log (ti)

−
n∑
i=1

δi log (ti) + cβ(b− 1)
n∑
i=1

δit
−β
i log

(
c

ti

)
exp

{
−
(
c

ti

)β}(
1− exp

{
−
(
c

ti

)β})−1

+ bcβ
n∑
i=1

(1− δi)t−βi log

(
c

ti

)
exp

{
−
(
c

ti

)β}(
1− exp

{
−
(
c

ti

)β})−1
.

The maximum likelihood estimator (MLE) θ̂ of θ is then obtained by solving the nonlinear likelihood

equations: Ub(θ) = 0, Uc(θ) = 0 and Uβ(θ) = 0. Notice that these equations can not be solved analytically,

but we can use, for instance, the optim or maxLik routines of R software (R Core Team, 2018) to find

the parameter estimates numerically.

Under conditions that are fulfilled for parameters in the interior of the parameter space but not on

the boundary, θ̂ is asymptotically normally distributed with a joint trivariate normal distribution given

by
√
n(θ̂ − θ) ∼ N3(0, I

−1(θ)) for n→∞,

where I(θ) is the expected information matrix. This asymptotic behavior is still valid if I(θ) is replaced

by J(θ̂), which is the observed information matrix evaluated at θ̂. Thus, the asymptotic trivariate

normal distribution N3(0,J
−1(θ̂)) can be used to build approximate confidence intervals for the individual
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parameters, as well as for the failure rate and reliability functions. It is also useful for testing goodness-

of-fit of the LIW2 distribution and for comparing this distribution with some of its special sub-models

using one of the three well-known asymptotically equivalent test statistics, namely the likelihood ratio,

Wald and Rao’s score statistics.

It is well known that the MLEs θ̂ =
(
θ̂1, θ̂2, . . . , θ̂p

)
of the unknown parameters θ = (θ1, θ2, . . . , θp)

are usually biased for small samples, and this bias can be written as (see Cordeiro and Klein, 1994):

Bias(θ̂m) =

p∑
j=1

smj(θ)

p∑
k=1

p∑
l=1

skl(θ)
(
h
(l)
jk (θ)− 0.5hjkl(θ)

)
+O(n−2),

where

hjkl(θ) = E

[
∂3`(θ)

∂θj∂θk∂θl

]
,

h
(l)
jk (θ) =

∂hjk(θ)

∂θl
with hjk(θ) = E

[
∂2`(θ)

∂θjθk

]
,

and sjk(θ) is the negative of the (j, k)-th element of the inverse of the Fisher information matrix for θ,

that is, I−1(θ) = {−hjk(θ)}−1 = {−sjk(θ)}, for j, k, l,m = 1, 2, . . . , p.

However, such terms can not be obtained since the elements of the Fisher information matrix do not

have closed-form expressions. To overcome this problem, we can resort to bias correction using bootstrap

techniques (Efron, 1992). In order to perform the non-parametric bootstrap method, let t = (t1, . . . , tn)

be a sample with n observations randomly drawn from a LIW2 distribution. The pseudo-samples (also

referred to as the bootstrap samples) t∗ = (t∗1, . . . , t
∗
n) are obtained by resampling with replacement

from the original sample t. If B bootstrap samples {t∗(1), . . . , t∗(B)} are generated independently from t

and their respective estimates {θ̂∗(1), . . . , θ̂∗(B)} are calculated using the ML method, then the bootstrap

expectations are approximated by

θ̂∗(.) =
1

B

B∑
b=1

θ̂∗(b). (9)

From (9), the bootstrap bias estimate is given by B̂F (θ̂, θ) = θ̂∗(.) − θ̂, where θ̂ is the MLE of θ. The

bias-corrected MLE obtained by the bootstrap resampling method is given by

θ̂B = θ̂ − B̂F (θ̂, θ) = 2θ̂ − θ̂∗(.).

Here, we have θ̂B denoted by θ̂B = (b̂B, ĉB, β̂B).

10



5 Simulation study

In this section, we perform a Monte Carlo simulation study to check the validity of the results discussed

in the previous sections. All computations were carried out using the R software. The following approach

was adopted:

1. Generate n values from the LIW2 distribution with parameters b, c and β;

2. Using the values obtained at step 1, calculate the estimates (MLEs and bootstrap bias-corrected

MLEs) b̂, ĉ and β̂ of the parameters b, c and β, respectively;

3. Repeat steps 1-2 M times;

4. Considering θ̂ = (θ̂1, θ̂2, θ̂3) = (b̂, ĉ, β̂) and θ = (θ1, θ2, θ3) = (b, c, β), compute the mean relative esti-

mate (MRE), 1
M

∑M
m=1

θ̂l,m
θl

, the mean square error (MSE), 1
M

∑M
m=1(θ̂l,m− θl)2, where θ̂l,m denotes

the estimate of θl obtained from sample m, for l = 1, 2, 3 and m = 1, 2, . . . ,M . Also, calculate the

coverage probability (CP) of the asymptotic normal 95% confidence intervals for these parameters,

1
M

∑M
m=1 I

(
θ̂l,m − 1.959964 sθ̂l,m < θl < θ̂l,m + 1.959964 sθ̂l,m

)
, where I(·) is the indicator function

and sθ̂l,m denotes the estimated standard error of θ̂l,m.

With this approach, it is expected that the bias and MSE will return values closer to zero, and the

MRE will be closer to one. The 95% coverage probabilities were also computed, considering the 95%

confidence interval. For a large number of experiments using a 95% confidence intervals, the frequencies

of these intervals that covered the true values of θ should be closer to 0.95. The coverage probabilities

were calculated using the numeric observed information matrix obtained from the maxLik package results.
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Figure 2: MRE, MSE and CP for the MLEs (solid blue line) and bootstrap bias-corrected MLEs (solid

red line) of b = 1.3, c = 0.5 and β = 2, based on M = 5, 000 generated samples of size n with 30% of

censoring.

The seed used by the pseudo-random number generators was 2018. We set M = 5, 000, n =

{50, 60, . . . , 350} and θ = (1.3, 0.5, 2), as well as two different censoring rates: 30% and 50%. In or-

der to generate randomly censored data, we used the same procedures as in Goodman et al. (2006). Here,

we considered B = 500 for the bootstrap method. The MLEs were computed using the log-likelihood

function (8) with the R routine maxBFGS from the “maxLik” package (Henningsen and Toomet, 2011),

which was able to locate the maximum of the log-likelihood surface for a wide range of starting values.

In this case, the solution for the maximum was unique for all starting values.

Tables 4-5 (see Appendix C) display the MRE, MSE and CP for the MLEs of b, c and β, considering

M = 5, 000 simulated samples with different sizes and different percentages of censored observations.

Figures 2-3 summarize these results. From these tables and figures, we can observe that, for all parameters,

the MSE tends to zero and the MRE tends to one as n increases, i.e., the MLEs are asymptotically unbiased

and consistent. However, the bootstrap bias-corrected MLEs (BCMLEs, whose results are also shown in

12



the tables mentioned above and figures) returned more precise estimates when compared with the MLEs.

Additionally, for all parameters, the estimated CP of the asymptotic normal confidence interval is closer

to the nominal value (0.95) using the bootstrap approach. Based on these results, we can conclude that

the ML estimation method with the bootstrap resampling technique works well to find the estimates for

the LIW2 distribution parameters in the presence of right-censored data.
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Figure 3: MRE, MSE and CP for the MLEs (solid blue line) and bootstrap bias-corrected MLEs (solid

red line) of b = 1.3, c = 0.5 and β = 2, based on M = 5, 000 generated samples of size n with 50% of

censoring.

6 Application

In this section, we recall the real data set related to the failure time (in days) of 194 devices in an

aircraft, first presented in Ramos et al. (2018). All data are available in Table 1, where + indicates the

presence of censorship. The choice of the distribution that better fits these data is essential to avoid

higher costs for the airline company.

The results obtained using the LIW2 distribution were compared to the corresponding ones achieved
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Table 1: Data set related to the failure time (in days) of 194 devices in an aircraft.

43 29 37 88 5 14 9 43+ 1 78 1 77 17 100

3 119+ 22 3 8 80 1 19 157+ 65 34 13 62+ 2

1 1 2 3 6 1 2 5 7 6 1 1 4 1

1 1 2 7 2 1 1 2 1 1 7 1 1 4

1 4 2 4 5 5 4 3 2 2 2 3 3 9

1 6 9 2 5 7 4 2 1 2 2 3 11 8

3 1 2 2 2 2 2 1 3 20+ 8 8 197 20

14 7 29 7 16 34 25 10 80 42 32 1 3 1

12 7 7 39+ 60 53 32 9 8 1 1 27 2 4

8 13 7 7 1 19 7 12 19 5 18 1 4 18

20 9 14 13 70 18 3 7 20 3 11 10 3 38+

278 13 79 145+ 19 2 18 2 65 14 31 10 19 5

9 45 13 5 1 1 31 35 34 4 3 5 12 140+

106 5 40 130+ 21 19 7 10 91 193 64 85+

with the use of the three-parameter extended Poisson-Weibull (EPW) (Ramos et al., 2020), generalized

extended exponential-Poisson (GE2P) (Ramos et al., 2020) and generalized gamma (GG) (Stacy, 1962)

distributions and four-parameter Kum-IW distribution given in Equation (4) due to Shahbaz et al. (2012),

in addition to the non-parametric reliability curve estimated using the Kaplan-Meier method (Kaplan and

Meier, 1958). First, in order to identify the behavior of the empirical failure rate function, we considered

the total-time-on-test (TTT) plot introduced by Barlow and Campo (1975). The TTT plot is obtained

by plotting (r/n,G(r/n)), for r = 1, 2, . . . , n, where G(r/n) =
(∑r

i=1 T(i) + (n− r)T(r)
)
/
∑n

i=1 T(i) and

T(i) is the order statistic of the sample Ti (i = 1, 2, . . . , n). If the TTT plot is concave, convex, first

convex then concave and first concave then convex, the shape of the corresponding failure rate function

is increasing, decreasing, bathtub and unimodal, respectively.

Different model discrimination criteria were also considered, such as the AIC (Akaike Information

Criterion), AICc (Corrected Akaike Information Criterion), HQIC (Hannan-Quinn Information Criterion)

and CAIC (Consistent Akaike Information Criterion), which are calculated as follows: AIC = −2`(θ̂)+2p,

AICc = AIC +[2 p (p+ 1)/(n− p− 1)], HQIC = −2 `(θ̂)+2 p log (log(n)) and CAIC = −2`(θ̂)+p(log(n)+

1), where p is the number of parameters in the model and θ̂ is the bootstrap bias-corrected MLE of θ.
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The best fitted model is the one that provides the minimum values of these criteria.

Figure 4 presents the TTT plot, the reliability function adjusted by different distributions, and the

Kaplan-Meier estimate, as well as the failure rate function adjusted by the LIW2 distribution. Moreover,

Table 2 displays the AIC, AICc, HQIC, and CAIC values for the different probability distributions.
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Figure 4: Left panel: TTT plot. Middle panel: reliability function adjusted by different probability

distributions and the Kaplan-Meier estimate. Right panel: failure rate function adjusted by the LIW2

distribution, considering the data set related to the failure time of 194 devices in an aircraft

.

Table 2: AIC, AICc, HQIC and CAIC values for different probability distributions, considering the data

set related to the failure time of 194 devices in an aircraft.

Criterion LIW2 EPW GE2P GG Kum-IW

AIC 1396.026 1437.686 1451.593 1430.244 1396.373

AICc 1396.153 1437.812 1451.719 1430.371 1396.585

HQIC 1399.996 1441.656 1455.562 1434.214 1401.666

CAIC 1408.830 1450.490 1464.396 1443.048 1413.444

Based on the TTT plot, there is an indication that the failure rate function is unimodal (or upside-
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down bathtub-shaped). By comparing the Kaplan-Meier curve with the fitted curves drawn from the

five candidate parametric models, we can see that the LIW2 distribution gives a better fit to the aircraft

data set. This finding is corroborated by the AIC, AICc, HQIC, and CAIC criteria values, which provide

evidence in favor of the LIW2 distribution.

Table 3 shows the BCMLEs, standard errors (SE) and asymptotic normal 95% confidence intervals

(95% CI) for the parameters of the LIW2 distribution.

Table 3: BCMLEs, SE and 95% CI for the parameters of the LIW2 distribution, considering the aircraft

data set.

Parameter BCMLE SE 95% CI

b 0.744 0.248 (0.259; 1.223)

c 2.808 1.066 (0.718; 4.898)

β 0.859 0.213 (0.446; 1.272)

In order to verify the goodness of fit of the LIW2 distribution to the aircraft data, we calculate the

Cox-Snell residuals (Cox and Snell, 1968) defined by

ei = − log
(
Ŝ(ti)

)
, i = 1, 2, . . . , n,

where Ŝ(ti) is the fitted LIW2 reliability function of the i-th lifetime. If the LIW2 distribution is correctly

specified, then Cox-Snell residuals ei’s are a censored random sample from the standard exponential

distribution, that is, ei ∼ Exp(1), for i = 1, 2, . . . , n.

Figure 5 presents the graph of Kaplan-Meier versus standard exponential survival, both fitted to the

Cox-Snell residuals. Observe that most of the points are over the line, showing the goodness of fit for

the proposed data set using the LIW2 distribution. Therefore, from the proposed methodology, the data

set related to the failure time of 194 devices in an aircraft can be satisfactorily described by the LIW2

distribution.
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Figure 5: Kaplan-Meier vs standard exponential survival, both fitted to the Cox-Snell residuals.

7 Conclusions

In this paper, we revisited the LIW2 distribution and presented several mathematical properties of

this distribution, which can be used in situations where the data present a unimodal failure rate. Initially,

we proved that such a model is the reparameterized version of the Kum-IW model without identifiability

problems. Then, the LIW2 model parameters estimation was discussed under a random right-censored

data scheme, which is often realistic to describe survival and reliability data. Since the MLEs are biased

for small sample sizes, we proposed a bias correction approach using bootstrap techniques.

An extensive numerical simulation study was conducted to assess the performance of our proposed

methodology, which revealed that the bias-corrective approach should be used to achieve good estimates

for the parameters of the LIW2 distribution. These results are of great practical interest since they will

enable the use of the LIW2 distribution in various application issues.

Many possible extensions of the current work can be further considered. The presence of covariates,

as well as of long-term survivals, is ubiquitous in practice. Our approach should be investigated in both

contexts; see, e.g., Perdoná and Louzada-Neto (2011).
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Appendix A: On the non-identifiability of the Kum-IW distribution

In order to prove the identifiability problems of the Kum-IW distribution, note that, it is known that

if θ1 6= θ2 implies FG(t;θ1) 6= FG(t;θ2), then a parameter vector θ for a family of distributions FG is

identifiable. Therefore, the model is identifiable.

Let θ1 and θ2 be parameter vectors in R4
+ such that θ1 6= θ2. Also, let θi = (λi, b, αi, β) and consider

the following relation:

λi =

(
c

αi

)β
, (10)

for i = 1, 2 and c > 0 fixed.

Considering the cdf FG, given by Equation (4), as well as the parameter vector θ1 = (λ1, b, α1, β), we

have

FG(t;θ1) = 1−
(

1− exp

{
−λ1

(α1

t

)β})b
. (11)

Substituting equation (10) into (11), we have

FG(t;θ1) = 1−
(

1− exp

{
−
(c
t

)β})b
.
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Now, using Equation (4) and the parameter vector θ2 = (λ2, b, α2, β), we have

FG(t;θ2) = 1−
(

1− exp

{
−λ2

(α2

t

)β})b
. (12)

Finally, considering Equations (10) and (12), we have

FG(t;θ2) = 1−
(

1− exp

{
−
(c
t

)β})b
.

Thus, FG(t;θ1) = FG(t;θ2) for all θ1 6= θ2 where θi = (λi, b, αi, β), with λi =
(
c
αi

)β
and c > 0 fixed,

for i = 1, 2. Thus, a parameter vector θ for a family of distributions FG, given by Equation (4), is not

identifiable, that is, the model is not identifiable.

Appendix B: On the identifiability of the LIW2 distribution

An important result is that the LIW2 model, as defined in Equation (5), is identifiable. In order to

prove that, we must show that, for all θi 6= θj with i 6= j and i, j ≥ 1, we have FG(t;θi) 6= FG(t;θj).

So, let θi = (bi, ci, βi) and θj = (bj , cj , βj), with bi 6= bj , ci 6= cj and βi 6= βj , for all i 6= j and i, j ≥ 1.

Suppose that FG(t;θi) = FG(t;θj) for any θi 6= θj and for all t > 0, with i 6= j and i, j ≥ 1. Hence,

FG(t;θi) = FG(t;θj) ⇒ 1−
(

1− exp

{
−
(ci
t

)βi})bi
= 1−

(
1− exp

{
−
(cj
t

)βj})bj
,

for all i 6= j and i, j ≥ 1 and for all t > 0.

Let t = 1 and c
βi0
i0

= c
βj0
j0

, where i0 ∈ {1, 2, 3, ...}, j0 ∈ {1, 2, 3, ...} and i0 6= j0. Thus,(
1− exp

{
−
(ci0

1

)βi0})bi0
=

(
1− exp

{
−
(cj0

1

)βj0})bj0 ⇒ bi0 = bj0 .

By hypothesis, bi0 6= bj0 for all i 6= j and i, j ≥ 1 and for all t > 0. Hence, we have a contradiction.

Then, a parameter vector θ for a family of distributions FG, given by Equation (5), is identifiable, i.e.

the model is identifiable.

Appendix C: Simulation tables
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