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We evaluate the mass of the Bs0 scalar meson and the coupling constant in the Bs0BK vertex in the

framework of QCD sum rules. We consider the Bs0 as a tetraquark state to evaluate its mass. We get

mBs0
¼ ð5:85� 0:13Þ GeV, which is in agreement, considering the uncertainties, with predictions

supposing it as a b�s state or a B �K bound state with JP ¼ 0þ. To evaluate the gBs0BK coupling, we use

the three-point correlation functions of the vertex, considering Bs0 as a normal b�s state. The obtained

coupling constant is: gBs0BK ¼ ð16:3� 3:2Þ GeV. This number is in agreement with light-cone QCD sum

rules calculation. We have also compared the decay width of the Bs0 ! BK process considering the Bs0 to

be a b�s state and a BK molecular state. The width obtained for the BK molecular state is twice as big as

the width obtained for the b�s state. Therefore, we conclude that with the knowledge of the mass and the

decay width of the Bs0 meson, one can discriminate between the different theoretical proposals for its

structure.
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I. INTRODUCTION

In recent years the observation of heavy flavor hadrons
have raised strong interest in interpreting these states as
multiquark states, like tetraquarks states and hadronic
molecules. Famous examples are the scalar Ds0ð2317Þ
and the axial Ds1ð2460Þ charmed mesons, and the
Xð3872Þ hidden charm meson. In the bottom sector, the
recent observations of the JP ¼ 1þBs1ð5830Þ by the CDF
collaboration [1] and the JP ¼ 2þ Bs2ð5840Þ by the CDF
and D0 collaborations [1,2] enrich the spectrum of the
bottom-strange system and stimulate our interest in the
possible interpretation of these states as multiquark states.
In particular, the yet unobserved JP ¼ 0þBs0 state, could
be very broad and, therefore, very difficult to be observed,
if it is a multiquark system with mass above the BK
threshold. There are already some predictions for the Bs0

mass supposing it is a B �K bound state [3], as a b�s state [4],
and as a mixture between a b�s and a ðbqÞð�s �qÞ states [5].
Although the structure for the Bs0 in these calculations is
very different, the predictions for its mass are very similar:
ð5:725� 0:039Þ GeV in Ref. [3], ð5:70� 0:11Þ GeV in
Ref. [4] and 5.68 GeV in Ref. [5], for a state with 30% of
the four-quark component.

There are also predictions for the Bs0BK coupling con-
stant, supposing the Bs0 to be a B �K bound state [3] and a b�s
state [6], and for the Bs0Bs� coupling constant, supposing
the Bs0 to be a B �K bound state [7]. The knowledge of the
coupling constant at the Bs0BK vertex is very important
since the decay width in this channel, the most important
channel if it is allowed, can give an idea of the total width
of the state. For one still unobserved state, it is very
important for the experimentalists to have theoretical pre-

dictions not only about its mass, but also about its width.
As an example, the mass of the scalar Ds0ð2317Þ meson is
below the DK threshold, therefore the decay Ds0ð2317Þ !
DK is not allowed. As a consequence, the Ds0ð2317Þ is
very narrow since the main decay channel for this state is
the isospin violating mode Ds0ð2317Þ ! D�. The same
could happen with the scalar Bs0 if its mass is bellow the
BK threshold. On the other hand, if its mass is above the
BK threshold, two scenarios are possible:
(i) it can be a very broad state if it is a tetraquark state,

like the light scalars, since the decay Bs0 ! BK will
be super allowed

(ii) or it can still be narrow if it is a normal b�s state, like
the new recently observed states Bs1ð5830Þ and
Bs2ð5840Þ, if the coupling at the vertex Bs0BK is
not very large.

In the last case, the knowledge of the Bs0BK coupling
constant is indeed very important, and could help the
experimentalists in the search for such state.
In this work we use the QCD sum rule (QCDSR) ap-

proach [8–10] to study the mass of the Bs0 supposing it is a
tetraquark state in a diquark-antidiquark configuration,
similar to the supposition made for the Ds0ð2317Þ scalar
meson in Ref. [11]. We get a bigger mass as compared with
predictions supposing it as a b�s state [4] or a B �K bound
state [3] but, considering the uncertainties, still compatible
with these predictions. Since the mass obtained is above
the BK threshold, as explained above, a tetraquark scalar
Bs0 will be very broad and, therefore, very difficult to be
observed.
Since the prediction for the mass of Bs0, supposing it is a

normal b�s state: ð5:70� 0:11Þ GeV [4], can be above the
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BKð5774Þ threshold, as explained above, it is very impor-
tant to know the Bs0BK coupling constant, therefore, in this
work we also evaluate the Bs0BK coupling constant sup-
posing the Bs0 to be a normal b�s state.

This paper is organized as follows: in Sec. II we intro-
duce the two-point function to evaluate the mass of the
tetraquark state. In Sec. III we study the three-point func-
tion for the Bs0BK vertex. In Sec. IV we present our
conclusions.

II. SUM RULE FOR THE MASS OF THE Bs0

SCALAR MESON

In the QCDSR approach, the short range perturbative
QCD is extended by an operator product expansion (OPE)
of the correlator, which results in a series in powers of the
squared momentum with Wilson coefficients. The conver-
gence at low momentum is improved by using a Borel
transform. The expansion involves universal quark and
gluon condensates. The quark-based calculation of a given
correlator is equated to the same correlator, calculated
using hadronic degrees of freedom via a dispersion rela-
tion, providing sum rules from which a hadronic quantity
can be estimated.

Considering the Bs0 scalar meson as a S-wave bound
state of a diquark-antidiquark pair, and considering the
diquark in a spin zero color antitriplet, a possible current
describing such state is given by

j ¼ �abc�decffiffiffi
2

p ½ðuTaC�5bbÞð �ud�5C�sTe Þ þ ðdTaC�5bbÞ

� ð �dd�5C�sTe Þ�; (1)

where a; b; c; . . . are color indices and C is the charge
conjugation matrix.

The QCDSR for the bottom-strange scalar meson is
constructed from the two-point correlation function

�ðqÞ ¼ i
Z

d4xeiq:xh0jT½jðxÞjyð0Þ�j0i: (2)

In the OPE side we work at leading order in �S and
consider condensates up to dimension eight. We treat the
strange quark as a light quark and consider the diagrams up
to order ms. In Ref. [12] it was shown that the q �q annihi-
lation diagrams are more important for the 4-quark corre-
lators than for the normal 2-quark mesonic correlators.
Therefore, the q �q annihilation diagrams can not be ne-
glected a priori. Also, due to these q �q annihilation dia-
grams, the current in Eq. (1) can mix with a two-quark b�s
current. Mixed tetraquark two-quark currents were consid-
ered to the study of the light scalars [13] and also for the
study of the Xð3872Þ meson [14,15] in the framework of
QCDSR. In this work we will not consider the q �q annihi-
lation diagrams neither the mixed tetraquark two-quark
current. Therefore, our calculation will provide only the
4-quark contributions to the 4-quark correlator in Eq. (2).

The correlation function in the OPE side can be written
in terms of a dispersion relation:

�OPEðq2Þ ¼
Z 1

m2
b

ds
�ðsÞ
s� q2

; (3)

where the spectral density is given by the imaginary part of
the correlation function: �ðsÞ ¼ 1

� Im½�OPEðsÞ�.
In the phenomenological side the coupling of the scalar

Bs0 meson to the scalar current in Eq. (1) can be parame-
trized in terms of a parameter � as h0jjjBs0i ¼ �.
Therefore, the phenomenological side of Eq. (2) can be
written in terms of � as

�phenðq2Þ ¼ �2

m2
Bs0

� q2
þ � � � ; (4)

where the dots denote higher resonance contributions that
will be parametrized, as usual, through the introduction of
the continuum threshold parameter s0 [16].
After making a Borel transform on both sides, and trans-

ferring the continuum contribution to the OPE side, the
sum rule for the scalar meson Bs0 can be written as

�2e
�m2

Bs0
=M2 ¼

Z s0

m2
b

dse�s=M2
�ðsÞ; (5)

where �ðsÞ ¼ �pertðsÞ þ �msðsÞ þ �h �qqiðsÞ þ �hG2iðsÞ þ
�mixðsÞ þ �h �qqi2ðsÞ þ �hG3iðsÞ, with

�pertðsÞ ¼ 1

2103�6

Z 1

�
d�

�
1� �

�

�
3ðm2

b � s�Þ4; (6)

�msðsÞ ¼ 0; (7)

�h �qqiðsÞ ¼ 1

26�4

Z 1

�
d�

1� �

�
ðm2

b � s�Þ2

�
�
�h �qqi

�
2ms þmb

1� �

�

�
þmsh�ssi

�
; (8)

�hG2iðsÞ ¼ hg2G2i
210�6

Z 1

�
d�ðm2

b � s�Þ
�
m2

b

9

�
1� �

�

�
3

þ ðm2
b � s�Þ

�
1� �

2�
þ ð1� �Þ2

4�2

��
; (9)

�hG3iðsÞ ¼ hg3G3i
2129�6

Z 1

�
d�

�
1� �

�

�
3ð3m2

b � s�Þ; (10)

�mixðsÞ ¼ 1

26�4

Z 1

�
d�ðm2

b � s�Þ
�
�msh�sg�:Gsi

6

þ h �qg�:Gqi
�
�msð1� lnð1� �ÞÞ

�mb

1� �

�

�
1� 1� �

2�

���
; (11)
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�h �qqi2ðsÞ ¼ � h �qqi
24�2

�
h �ssi

�
2m2

b � s�m4
b

s

�
þmsmbðh�ssi

� 2h �qqiÞ
�
1�m2

b

s

��
: (12)

The lower limit of the integrations is given by � ¼ m2
b=s.

Results for the mass

In the numerical analysis of the sum rules, the values
used for the quark masses and condensates are [10,17–19]
ms ¼ 0:13 GeV, mbðmbÞ ¼ ð4:24� 0:06Þ GeV, h �qqi ¼
�ð0:23Þ3 GeV3, h�ssi ¼ 0:8h �qqi, h �qg� �Gqi ¼ m2

0h �qqi,
h �sg� �Gsi ¼ m2

0h �ssi with m2
0 ¼ 0:8 GeV2, hg2G2i ¼

0:88 GeV4 and hg3G3i ¼ 0:045 GeV6.
The Borel window is determined by analysing the OPE

convergence, the Borel stability and the pole contribution.
To determine the minimum value of the Borel mass, we
impose that the contribution of the higher dimension con-
densate should be smaller than 20% of the total contribu-
tion: M2

min is such that

��������
OPE summed up dim n� 1ðM2

minÞ
total contribution ðM2

minÞ
��������¼ 0:8: (13)

In Fig. 1 we show the contribution of all the terms in the
OPE side of the sum rule. From this figure, we see that only
for M2 � 5:3 GeV2 the contribution of the dimension-6
condensate is around 20% of the total contribution.
However, for such large value of the Borel mass there is
no dominance of the pole contribution for

ffiffiffiffiffi
s0

p ¼ 6:6 GeV.
We interpret this as an indication that the dimension-6

condensate does not saturate the OPE. To improve the
OPE convergence, we also include the dimension-8 con-
densate:

�D¼8ðsÞ ¼ m2
0h �qqi
24�2

�
h �ssi þmsmb

4

�
ð4h �qqi � ssÞ

�
Z 1

0

d�

1� �
�

�
s� m2

b

1� �

�

� ð4h �qqi � 2h �ssiÞ�ðs�m2
bÞ
��

: (14)

From Fig. 2, we see that for M2 � 4:0 GeV2 the con-
tribution of the dimension-8 condensate is smaller than
20% of the total contribution. Therefore, the inclusion of
the dimension-8 condensate improved the OPE conver-
gence of the sum rule. We fix the lower value of M2 in
the sum rule window as M2

min ¼ 4:0 GeV2. One should

note that a complete evaluation of higher dimension con-
densates contributions require more involved analysis in-
cluding a nontrivial choice of the factorization assumption
basis [20]. Therefore, in this work we do not consider
condensates with dimension higher than 8.
The maximum value of the Borel mass is determined by

imposing that the pole contribution must be bigger than the
continuum contribution: M2

max is such that

Rs0
m2

b

dse�s=M2
max�ðsÞ

R1
m2

b

dse�s=M2
max�ðsÞ ¼ 0:5: (15)

From a physical point of view, the continuum threshold
parameter is related with the value of the mass of the first
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FIG. 1 (color online). The OPE convergence for the JP ¼ 0þ,
Bs0 meson in the region 3 � M2 � 8 GeV2 for

ffiffiffiffiffi
s0

p ¼ 6:6 GeV.

We plot the relative contributions starting with the perturbative
contribution (long-dashed line), and each other line represents
the relative contribution after adding of one extra condensate in
the expansion: þquark condensate (dashed line), þgluon
condensate (dotted line), þmixed condensate (dot-dashed
line), þfour-quark condensate (solid line).
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FIG. 2 (color online). Same as Fig. 1 for
ffiffiffiffiffi
s0

p ¼ 6:7 GeV:
perturbative contribution (long-dashed line), þguark
condensate (dashed line), þgluon condensate (dotted line),
þmixed condensate (dot-dashed line), þfour-quark condensate
(solid line with dots)þ dimension-8 condensate (solid line).
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excited state, that has the same quantum numbers of the
studied state. In general, the mass of the first excited state
state is around 0.5 GeV above the mass of the low-lying
state. Therefore, the continuum threshold can be related
with the mass of the low-lying state, H, through the rela-
tion: s0 � ðmH þ 0:5 GeVÞ2. To choose a good range of
the values of s0, we extract the mass from the sum rule, for
a given s0, and accept such value if the obtained mass is in
the range 0.4 to 0.6 GeV smaller than

ffiffiffiffiffi
s0

p
. Using this

criterion, we obtain s0 in the range 6:4 � ffiffiffiffiffi
s0

p �
6:7 GeV. However, for

ffiffiffiffiffi
s0

p ¼ 6:4 GeV, the allowed

Borel region is very small, therefore, we only consider
values of

ffiffiffiffiffi
s0

p
in the range 6:5 � ffiffiffiffiffi

s0
p � 6:7 GeV. We

show in Table I the values of Mmax for different values offfiffiffiffiffi
s0

p
.

As pointed out in Ref. [12], the determination of a
sufficiently wide Borel window is the most important
step for the application of the sum rule. In particular,
without imposing correct criteria on the determination of
the Borel window, artifacts as the appearance of pseudo-
peaks [12], could spoil the validity of the QCDSR results.
As explained above, we have used the two most important
criteria to the determination of the Borel window: OPE
convergence in Eq. (13) and pole contribution dominance
in Eq. (15). Therefore, we do believe that the QCDSR
studied here can be used to extract physical information
about the Bs0 scalar meson.

The resonance mass,mBs0
, can be obtained by taking the

derivative of Eq. (5) with respect to 1=M2 and dividing it
by Eq. (5):

m2
Bs0

¼
Rs0
m2

b

dse�s=M2
s�ðsÞ

Rs0
m2

b

dse�s=M2
�ðsÞ : (16)

In Fig. 3 we show the obtained mass as a function of the
Borel mass, for different values of

ffiffiffiffiffi
s0

p
. From this figure,

we see that the Borel stability is good in the allowed Borel
window for all considered values of s0. This is different
from the case of the scalar charmed-strange meson
Ds0ð2317Þ, where no Borel window could be determined
using the above mentioned criterious [21]. For complete-
ness, we also include in this figure (through the dotted line)
the result obtained for the mass when considering only
condensates up to dimension 6. We see that the inclusion of
the dimension-8 condensates not only improves the OPE

convergence but also reduces the mass of the state that
couples with the current in Eq. (1).
Considering the variations on the quark masses, the

quark condensate and on the continuum threshold dis-
cussed above, in the Borel window considered here, our
results for the ressonance mass is

mBs0
¼ ð5:85� 0:13Þ GeV; (17)

which is compatible, considering the uncertainties, with
the predictions from Ref. [3]: ð5:725� 0:039Þ GeV, where
the Bs0 is considered as a B �K bound state, and from
Ref. [4]: ð5:70� 0:11Þ GeV, where the Bs0 is considered
as a normal b�s state.
Since we have not considered the q �q annihilation dia-

grams in our calculation, the result in Eq. (17) gives only
the 4-quark contribution to the mass of the Bs0. Therefore,
the result in Eq. (17) is also in agreement with the findings
in Ref. [5], where the authors have considered the Bs0 as
being a mixture of b�s and ðbqÞð�s �qÞ states. They find that
the mass of the Bs0 state is smaller than the BK threshold
only when the four-quark componet is smaller than 30%.
For a state where the four-quark component is dominant
(51%), they get a mass 6.17 GeV.
Since the prediction for the mass of a Bs0 scalar meson

with a dominant four-quark component is above the BK
threshold at 5774 MeV, the decay Bs0 ! BK will be super
allowed for a Bs0 scalar meson with a dominant four-quark
component. As a consequence, such state will be very
broad, like the light scalars, and very difficult to be ob-
served. However, a two-quark state with a mass above the
BK threshold could still be narrow if the coupling at the

TABLE I. Upper limits in the Borel window for the 0þ, Bs0

meson obtained from the sum rule for different values of
ffiffiffiffiffi
s0

p
.

ffiffiffiffiffi
s0

p ðGeVÞ M2
maxðGeV2Þ

6.5 4.30

6.6 4.47

6.7 4.66

4 4.2 4.4 4.6 4.8 5
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FIG. 3 (color online). The Bs0 meson mass, described with a
diquark-antidiquark current, as a function of the sum rule pa-
rameter (M2) for

ffiffiffiffiffi
s0

p ¼ 6:5 GeV (dashed line),
ffiffiffiffiffi
s0

p ¼ 6:6 GeV

(solid line), and
ffiffiffiffiffi
s0

p ¼ 6:7 GeV (dot-dashed line). The dotted

line shows the result obtained for the mass, for
ffiffiffiffiffi
s0

p ¼ 6:6 GeV,

considering only the condensates up to dimension 6. The crosses
indicate the upper limits in the Borel region.
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Bs0BK vertex is not very large. Therefore, in the next
section we will evaluate the coupling at the Bs0BK vertex,
considering the Bs0 scalar meson as a b�s state.

III. THE SUM RULE FOR THE Bs0BK VERTEX
WITH Bs0 BEING A b�s STATE

The coupling at the Bs0BK vertex can be evaluated by
using the three-point function QCDSR. Here, we use the
same technique developed in previous work for the evalu-
ation of the couplings in the vertices D	D� [22,23], DD�
[24], DDJ=c [25], D	DJ=c [26], D	D	� [27],
D	D	J=c [28], DsD

	K, D	
sDK [29], DD! [30], D	D	�

[31], and DsjDK [32].

A. Sum rules for the form factors

The three-point function associated with the Bs0BK
vertex, for an off-shell B meson, is given by

�ðBÞ
	 ðp; p0Þ ¼

Z
d4xd4yeip

0�xe�iðp0�pÞ�y

� h0jTfjK	ðxÞjByðyÞjBs0yð0Þj0i; (18)

and for an off-shell K meson:

�ðK0Þ
	 ðp; p0Þ ¼

Z
d4xd4yeip

0�xe�iðp0�pÞ�y

� h0jTfjBðxÞjKy
	 ðyÞjBs0yð0Þgj0i: (19)

The general expression for the vertices (18) and (19) has
two independent Lorentz structures. We can write each �	

in terms of the invariant amplitudes associated with each
one of these structures in the following form:

�	ðp; p0Þ ¼ F1ðp2; p02; q2Þp	 þ F2ðp2; p02; q2Þp0
	; (20)

where q ¼ p0 � p.
Equations (18) and (19) can be calculated in two differ-

ent ways: using quark degrees of freedom –the theoretical
or OPE side– or using hadronic degrees of freedom –the
phenomenological side.

The phenomenological side of the vertex function,
�	ðp; p0Þ, is obtained by the consideration of K and B

states contribution to the matrix element in Eqs. (18) and
(19). The coupling at the vertex Bs0BK is defined through
the following effective Lagrangian:

L Bs0BK ¼ gBs0BKð �Bs0
�BK þ Bs0B �KÞ; (21)

from where one can deduce the matrix elements associated
with the Bs0BK momentum dependent vertices, that can be
written it in terms of the form factors:

hBs0ðpÞjKðp0ÞBðqÞi ¼ gðBÞBs0BK
ðq2Þ; (22)

and

hBs0ðpÞjBðp0ÞKðqÞi ¼ gðKÞ
Bs0BK

ðq2Þ: (23)

The meson decay constants, fBs0
, fB and fK, are defined

by the following matrix elements:

h0jjBs0 jBs0ðpÞi ¼ mBs0
fBs0

; (24)

h0jjBjBðpÞi ¼ m2
B

mb

fB; (25)

and

h0jjK
 jKðpÞi ¼ ifKp	; (26)

Saturating Eqs. (18) and (19) with B andK states and using
Eqs. (22)–(26), we arrive at

�
ðBÞphen
	 ðp; p0Þ ¼ gðBÞBs0BK

ðq2Þ

� fBs0
fKfB

m2
B

mb
mBs0

mK

ðp2 �m2
Bs0

Þðq2 �m2
BÞðp02 �m2

KÞ
p0
	;

(27)

when the B is off-shell, with a similar expression for the K
off-shell:

�ðKÞphen
	 ðp; p0Þ ¼ gðKÞ

Bs0BK
ðq2Þ

� fBs0
fBfK

m2
B

mb
mBs0

mK

ðp2 �m2
Bs0

Þðq2 �m2
KÞðp02 �m2

BÞ
q	:

(28)

In the OPE or theoretical side the currents appearing in
Eqs. (18) and (19) can be written in terms of the quark field
operators in the following form:

jK	ðxÞ ¼ �sðxÞ�	�5uðxÞ; (29)

jBðxÞ ¼ i �bðxÞ�5uðxÞ; (30)

and

jBs0ðxÞ ¼ �sðxÞbðxÞ: (31)

Each one of these currents has the same quantum numbers
of the associated meson.
For each one of the invariant amplitudes appearing in

Eq. (20), we can write a double dispersion relation over the
virtualities p2 and p02, holding Q2 ¼ �q2 fixed:

Fiðp2; p02;Q2Þ ¼ � 1

4�2

Z 1

smin

ds
Z 1

umin

du
�iðs; u;Q2Þ

ðs�p2Þðu�p02Þ ;

i¼ 1;2; (32)

where �iðs; u;Q2Þ equals the double discontinuity of the
amplitude Fiðp2; p02; Q2Þ, calculated using the Cutkosky’s
rules.
We can work with any structure appearing in Eq. (20).

However, since in Eq. (27) only the p0
	 structure appears

we choose to work with the p0 structure. In order to reduce
the influence of higher resonances and the pole-continuum
transition contribution, we perform a double Borel trans-
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form in both variables P2 ¼ �p2 ! M2 and P02 ¼
�p02 ! M02 and equate the two representations described
above. We get the following sum rules:

mBs0
m2

B

mb

fKfBfBs0
gðBÞBs0BK

ðQ2Þe�m2
Bs0

=M2

e�m2
K=M

02

¼ ðQ2 þm2
BÞ
�
mbh�ssie�m2

b
=M2 � 1

4�2

�
Z s0

m2
b

ds
Z umax

0
du expð�s=M2Þ

� expð�u=M02Þfðs; t; uÞ�ðu0 � uÞ
�

(33)

for an off-shell B, and

mBs0
m2

B

mb

fKfBfBs0
gðKÞBs0BK

ðQ2Þe�m2
Bs0

=M2

e�m2
B=M

02

¼ �Q2 þm2
K

4�2

Z s0

m2
b

ds
Z u0

umin

due�s=M2
e�u=M02

gðs; t; uÞ
(34)

for an off-shell K.
In Eqs. (33) and (34), t ¼ �Q2,

fðs; t; uÞ ¼ 3

2½�ðs; u; tÞ�1=2
�
m2

b þ 2mbms � sþ ð2m2
b þ 2mbms � s� tþ uÞðm2

bðs� tþ uÞ þ sðtþ u� sÞÞ
�ðs; u; tÞ

�
; (35)

gðs; t; uÞ ¼ 3

½�ðs; u; tÞ�3=2 ½m
4
bðs� tþ 3uÞ þ uðmbmsðsþ t� uÞ þ sð�sþ tþ uÞÞ þm2

bð�2uðs� tþ uÞ

þmbmsðs� tþ 3uÞÞ�:
(36)

�ðs; u; tÞ ¼ s2 þ u2 þ t2 � 2su� 2st� 2tu, umin ¼
m2

b � m2
b
t

s�m2
b

, and umax ¼ sþ t�m2
b � st

m2
b

.

Since we are dealing with heavy quarks, we expect the
perturbative contribution to dominate the OPE. For this
reason, we do not include the gluon and quark-gluon con-
densates in the present work.

In this work we use the following relations between the

Borel masses M2 and M02: M2

M02 ¼ m2
Bs0

�m2
b

0:64 GeV2 for a B off-shell

and M2

M02 ¼ m2
Bs0

m2
B

for a K off-shell.

B. Results for the form factors

Table II shows the values of the parameters used in the
present calculation. We take fBs0

and mBs0
and mb from

Ref. [4], where a QCDSR calculation is used to study the
Bs0 considered as a b�s scalar meson. The continuum
thresholds are given by s0 ¼ ðmBs0

þ �sÞ2 and u0 ¼ ðmþ
�uÞ2, where m is the kaon mass, for a B off-shell and the B
meson mass, for a K off-shell.

Using �s ¼ �u ¼ 0:5 GeV for the continuum thresh-
olds and fixingQ2 ¼ 1 GeV2, we found a good stability of

the sum rule for gðBÞBs0BK
for M2 � 20 GeV2, as can be seen

in Fig. 4.
Within this interval, we need to choose the best value of

the Borel mass to study the Q2 dependence of the form

factor. It is well known in QCDSR that for small values of
the Borel variable, M2, the sum rule is dominated by the
pole. However, the convergence of the OPE always get
better for large values of M2. On the other hand, for very
large values of M2 the OPE convergence is perfect but the
sum rule is dominated by the continuum. The best value of
the Borel mass is the one for which one has a good OPE
convergence and the pole contribution is bigger than the
continuum contribution. In this case both criteria are rea-
sonably satisfied for M2 
 35 GeV2 
 m2

Bs0
.

In the case of gðKÞ
Bs0BK

ðQ2Þ, doing a similar analysis

described above, we also fix M2 
 35 GeV2 
 m2
Bs0

.

Having determined M2 we show, in Fig. 5, the Q2

dependence of the form factors. The squares correspond

to the gðBÞBs0BK
ðQ2Þ form factor in the interval where the sum

rule is valid. The circles are the results of the sum rule for

the gðKÞBs0BK
ðQ2Þ form factor.

In the case of an off-shell Bmeson, our numerical results
can be fitted by the following monopolar parametrization
(shown by the dashed line in Fig. 5):

gðBÞBs0BK
ðQ2Þ ¼ 1; 629:12 GeV3

Q2 þ 128:25 GeV2
: (37)

The coupling constant is defined as the value of the form
factor atQ2 ¼ �m2

m, wheremm is the mass of the off-shell

TABLE II. Parameters used in the calculation.

mbðGeVÞ mBs0
ðGeVÞ mBðGeVÞ mKðGeVÞ fBs0

ðGeVÞ fBðGeVÞ fKðGeVÞ h �qqiðGeVÞ3
4.7 5.70 5.28 0.49 0.24 0.17 0.16 ð�0:23Þ3
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meson. Therefore, using Q2 ¼ �m2
B in Eq. (37), the re-

sulting coupling constant is

gBs0BK ¼ 17:01 GeV: (38)

For an off-shell K meson, our sum rule results can also
be fitted by an exponential parametrization, which is rep-
resented by the solid line in Fig. 5:

gðKÞ
Bs0BK

ðQ2Þ ¼ 14:14 GeVe�Q2=1:25 GeV2
: (39)

Using Q2 ¼ �m2
K in Eq. (39), we get

gBs0BK ¼ 17:23 GeV; (40)

in a good agreement with the result of Eq. (38).
In order to study the dependence of our results with the

continuum threshold, we vary �s;u between 0:4 GeV �
�s;u � 0:6 GeV in the parametrization corresponding to

the case of an off-shell K. As can be seen in Fig. 6, this
procedure gives us an uncertainty interval of 13:13 GeV �
gBs0BK � 19:46 GeV for the coupling constant.

We see that in the two cases considered here, off-shell B
or K, we get compatible results for the coupling constant,
evaluated using the QCDSR approach. Considering the
uncertainties in the continuum thresholds, we obtain

gBs0BK ¼ ð16:29� 3:16Þ GeV (41)

in a very good agreement with the coupling evaluated in
Ref. [6] using light-cone QCDSR: gBs0BK ¼ ð19:6�
5:7Þ GeV.
In Ref. [3] the authors use a heavy-light chiral

Lagrangian and find the Bs0 to be a BK bound state with
the strong coupling gBs0BK ¼ 23:442 GeV. This coupling

is bigger than our result in Eq. (41), which is compatible
with the expectation that a multiquark system would decay
easily into its constituents.
The decay width for the decay Bs0 ! BK is given in

terms of the coupling constant gBs0BK through:

�ðBs0 ! BKÞ ¼ 1

16�m3
Bs0

g2Bs0BK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðm2

Bs0
; m2

B;m
2
KÞ

q
: (42)

Considering the result in Eq. (41) and using two differ-
ent values for mBs0

, we give in Table III the predictions for

the Bs0 ! BK decay width. We also include in this Table,
the decay width obtained with the result from Ref. [3].

FIG. 5 (color online). gðBÞBs0BK
(squares) and gðKÞBs0BK

(circles)
QCDSR form factors as a function of Q2. The dashed and solid
lines correspond to the monopolar and exponential parametriza-
tions, respectively.

FIG. 6 (color online). Dependence of the form factor on the
continuum threshold for the K off-shell case. The solid curve
corresponds to �s;u ¼ 0:5 GeV, the dashed one to �s;u ¼
0:6 GeV and the dotted curve to �s;u ¼ 0:4 GeV.

FIG. 4 (color online). gðBÞBs0BK
ðQ2 ¼ 1:0 GeV2Þ as a function of

the Borel mass M2. The dot-dashed dashed and solid lines
correspond to the perturbative, quark condensate and total con-
tributions, respectively.
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IV. CONCLUSIONS

We have used the QCDSR to study the two-point func-
tion for the Bs0 scalar meson, considered as a tetraquark
state in a diquark-antidiquark configuration. The mass
obtained for the ðbqÞð �q �sÞ scalar state, mBs0

¼ ð5:85�
0:13Þ GeV, is in agreement with other predictions using
different structures. Therefore, if the Bs0 scalar meson is
observed with a mass around 5.7–5.8 GeV, only this infor-
mation will not be enough to discriminate its structure.
However, the width of the state can also be used to help in
this task. For this purpose, we have also considered the
QCDSR three-point function for the vertex Bs0BK to eval-
uated the Bs0BK coupling constant, considering the Bs0

scalar meson to be a normal b�s state. With this configura-
tion, we find the coupling constant at the Bs0BK vertex to
be gBs0BK ¼ ð16:29� 3:16Þ GeV, in a very good agree-

ment with calculation using light-cone QCDSR.
In Table III we have presented the predictions for the

Bs0 ! BK decay width, using two different values for
mBs0

, and the couplings obtained considering the Bs0 as a

b�s state and a BK bound state. As expected, the width
obtained in the case that Bs0 state is a multiquark state is
much bigger than the width obtained for a b�s state with the
same mass. Therefore, with the knowledge of the decay
width and the mass of the Bs0 it will be possible to
discriminate between possible structures for this state.
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