
Journal of Statistical Physics         (2023) 190:147 
https://doi.org/10.1007/s10955-023-03156-w

The Coverage Ratio of the Frog Model on Complete Graphs

Gustavo O. de Carvalho1 · Fábio P. Machado1

Received: 25 November 2022 / Accepted: 2 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The frog model is a system of interacting random walks. Initially, there is one particle at
each vertex of a connected graph. All particles are inactive at time zero, except for the one
which is placed at the root of the graph, which is active. At each instant of time, each active
particle may die with probability 1 − p. Once an active particle survives, it jumps on one
of its nearest vertices, chosen with uniform probability, performing a discrete time simple
symmetric random walk (SRW). Up to the time it dies, it activates all inactive particles it
hits along its way. From the moment they are activated, every such particle starts to walk,
performing exactly the same dynamics, independent of everything else. In this paper, we
consider the n−complete graph (a finite graph with each pair of vertices linked by an edge).
We study the limit in n of the coverage ratio, that is, the proportion of visited vertices by
some active particle up to the end of the process, after all active particles have died.

Keywords Complete graph · Coverage ratio · Frog model · Random walks system
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1 Introduction

The frog model is a system of interacting random walks on a given rooted connected graph,
finite or infinite. Initially, the graph contains some configuration (maybe one per vertex)
of inactive particles on its vertices. The particles at the root of the graph start out active
and perform independent simple nearest-neighbor discrete time random walks. Whenever a
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vertex with inactive particles is first visited, all the particles at the vertex wake up and begin
their own independent random walks, waking up inactive particles as they visit them. The
lifetime of a particle, in case it is active, can be finite or infinite. This model is often associated
with the dynamics of the spread of a rumor or the spread of a virus in a connected population.
A formal definition of the frog model can be found in [3].

Part of the literature on the frog model is focused on the case where active particles
have infinite lifetime on an infinite connected graph. In this setup, a goal is to study recur-
rence/transience, that is, conditions for the root of the graph to be visited infinitely often, as
in [9, 11, 15]. Another approach on infinite graphs is to study the limit shape of the set of
visited vertices, also known as shape theorem, as found in [4]. On finite graphs and particles
with infinite lifetime, one can study the first time where each vertex of the graph is visited
at least once (the coverage time) as in [8, 10]. Finite lifetime on finite graphs are considered
in [5, 8, 16]. The frog model can also be thought of as a toy model for stochastic epidemics
evolution or rumor transmission on a population. An interesting connection between the
Maki–Thompson epidemic model and the frog model on a complete graph is established in
[13]. Formore details on epidemicmodelling, including SIRmodel, see [1] and the references
therein.

In this paper, we are interested in studying the limit coverage ratio for the frog model
on Kn , the n−complete graph, when the lifetime of an active particle follows a geometric
distribution supported on {0, 1, ...} with parameter 1 − p. This is a consequence of the fact
that at each instant of time, independently of everything else, each active particlemay diewith
probability 1 − p or survive with probability p. We know from [2] that, starting from a one
particle per vertex configuration onKn , there exists a phase transition property, which means
the existence of a non-trivial critical parameter pc such that the coverage ratio converges to
zero in distribution for p < pc, while this convergence does not occur for p > pc. See [12]
for some interesting result with this setup. It is also shown in [2] that pc = 1/2. Our main
theorem extend the previous result, giving more details about the number of visited vertices,
and proving also, for p > pc = 1/2, the exact limit in n of the probability that the coverage
ratio is strictly larger than zero.

Let us start with a basic definition

Definition 1.1 Let V∞ = V∞(Kn) be the number of vertices of Kn , visited at least once, up
to the time there are no more active particles.

Our main result is the following.

Theorem 1.2 Consider the frogmodel onKn, starting from the configurationwith one particle
per vertex. Then

(i) For p ≤ 1/2, for every function f : N → R such that limn→∞ f (n) = +∞,

lim
n→∞ P(V∞ ≤ f (n)) = 1.

(ii) For p > 1/2, there are constants c > 0 and c′ ∈ (0, 1) such that

lim
n→∞ P(V∞ ≤ c log n) = 1 − p

p
,

lim
n→∞ P(V∞ ≥ c′n) = 2p − 1

p
.

Observe that the function f (n) in part (i) of Theorem 1.2 can be replaced by c log n, for
any c > 0. Still, part (i) of Theorem 1.2 is valid for any sequence of connected graphs. The
proof we provide in this paper works also in this case.
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The ideas and techniques used in the proof of the Theorem 1.2 are inspired by the study
of the existence of a giant component on Erdös–Rényi graph (see [6, sec. 11.2] for details).
Some basic concepts of branching processes (see [7, sec. 5.4]) are also considered.

The intuition behind Theorem 1.2 comes from the fact that if one considers a stage when
there is a small number of visited vertices on a large graph, what one sees is that the next
surviving particle will, most likely, visit an unvisited vertex, activating a new particle. There-
fore, in the beginning of the process, the number of vertices visited is near to the number of
individuals in a branching process that generates 2 offspring with probability p and 0 off-
spring with probability 1− p. In this setup, the extinction probability equals to 1 for p ≤ 1/2
and to 1−p

p for p > 1/2. Besides that, for p > 1/2, the branching process mentioned above

grows infinitely with probability 2p−1
p , an event that is in some sense analogous to V∞ being

on the order of n.
The paper is organized as follows. In section 2 we describe an auxiliary process aiming

to simplify the computations needed. In section 3 one finds the proofs of Theorem 1.2. The
sub-critical phase (p ≤ 1/2) is proved in subsection 3.1, for any sequence of connected
graphs, while the supercritical phase (p > 1/2) is proved in subsection 3.2.

2 The Auxiliary Process

Let us define an auxiliary process starting from a small modification on the frog model. Let
us start from the n + 1-complete graph, Kn+1, picking one of its vertices and defining it as
its root. We denote the set of vertices of Kn+1 by V(Kn+1). At time zero, there is one active
particle at the root and one inactive particle at each other vertices of Kn+1. All particles
present at time zero are declared original. This is done because at some point, extra particles
are considered.

The auxiliary process has the following characteristics

• It is taken in rounds, so that only one particle acts (dying or moving) in each round. The
particle which is being considered each time, survives with probability p and, if so, it
jumps on one of its nearest vertices, chosen with uniform probability.

• Let R be the time that the last original active particle dies. It is the time that the original
frog model dies out. At this very time, every remaining inactive particles become extra
inactive particles. Besides that, a brand new extra active particle is placed at the root of
Kn+1, so it acts in round R + 1.

• From now on every time the last extra active particle dies, another extra active particle
is placed at the root of Kn+1.

Observe that there are only extra particles from the round R + 1 on. Observe also that
R < ∞ with probability 1, as the number of original particles activated up to a given time
is at most |V(Kn+1)| = n + 1 < ∞ and the lifetime of any active particle is given by a
geometric random variable of parameter 1− p. The lifetime is finite with probability 1, since
we are restricted to p < 1.

Even though R < ∞, the auxiliary process as a whole is infinite, as it always renews itself
when we consider an extra particle at the origin. This rule makes it possible to analyze the
behavior of the particle (original or extra) that performs the kth round for any k ∈ N, without
the need to check whether the original process has finished or not.

Now, for k ∈ N we define the random variable Xk which depends on what happens with
the particle that acts in round k during the auxiliary process:

• Xk = 0 if it dies.
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• Xk = 1 if it survives and jumps to a vertex which has been visited before round k.
• Xk = 2 if it survives and jumps to a vertex which has never been visited before round k.

Therefore, Xk can be interpreted as the number of descendants (in the branching process
sense) of the particle that acts in the kth round. Observe that the sequence X1, X2, ... is
neither independent nor identically distributed.

From the number of descendants in each round, we define the number of potentially active
particles at the end of the k-th round as

A′
0 := 1; A′

k := 1 +
k∑

j=1

(X j − 1), k ≥ 1. (2.1)

The term potential comes from the fact that the previous expression also considers descen-
dants of extra particles. We can disregard this by taking

R = inf{k : A′
k = 0} (2.2)

and setting the number of active particles at the end of the kth round as

Ak := A′
k1(k<R), k ∈ N. (2.3)

Similarly, we define the number of potentially visited vertices by the end of the kth round
as

V ′
0 := 1; V ′

k := 1 +
k∑

j=1

1(X j=2), k ∈ N (2.4)

and the number of vertices visited at the end of the kth round as

Vk := V ′
k1(k<R) + V ′

R1(k≥R), k ∈ N. (2.5)

We define the total number of vertices visited during the whole process by

V∞ := lim
k→∞ Vk = VR . (2.6)

Note that V∞ = VR is not affected by the extra particles, as they are triggered only after
R. The extra particles are useful for computational purposes, as they make it possible to keep
track of the number of potentially active particles and potentially visited vertices without
having to worry about whether all the original particles have died or not.

It is important to note that V∞ also describes the total number of vertices visited in the
original frog model. Therefore, the study of the frog model will be done from the auxiliary
process, using V∞.

Note that the auxiliary process and its definitions could be done for any connected graph.
In some cases one could have R = ∞ with positive probability. The auxiliary process fits
well the complete graph due to the fact that some computations can be easily done, as

P(Xk = x |V ′
k−1 = v) =

⎧
⎪⎨

⎪⎩

1 − p if x = 0,
p(v−1)

n if x = 1,
p(n−v+1)

n if x = 2.

(2.7)
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3 Proofs

We start off with a basic probability result involving Chernoff bounds that will be useful later
on.

Lemma 3.1 ([14], Theorem 4.5) For X a random variable with binomial distribution, X ∼
B(n, p), it holds that

P(X ≤ E(X) − t) ≤ exp

( −t2

2E(X)

)
, t > 0.

3.1 The Sub-Critical Phase: p ≤ 1
2

Proof of Theorem 1.2 part (i) Consider {Gn}n∈N a sequence of connected graphs. Let us define
a process such that every time there is an active particle jumping to a neighboring vertex, it
chooses one that has never been visited before. Our aim is to define a process whose number
of visited vertices at any given time dominates the same quantity computed for the auxiliary
process defined in Sect. 2.

Let us define a sequence of random variables {X+
j } j∈N

X+
j =

{
0 if X j = 0,

2 if (X j = 1) ∪ (X j = 2).
(3.1)

Note that X+
1 , X

+
2 , ... are independent and identically distributed, as they rely only on the

survival event of particles. Consider also X+ a random variable with the same distribution
as X+

1 . It holds that
E(X+) = 2P(X+ = 2) = 2p ≤ 1. (3.2)

Next, we consider a branching process where the number of children of each individual is
distributed as X+. As done for the auxiliary process, we keep track of this branching process
by the number of descendants of each individual per turn.

Analogously to definitions (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6), denote the number of
potentially alive individuals at the end of the k-th round of the branching process by

A′+
k := 1 +

k∑

j=1

(X+
j − 1), (3.3)

and the number of rounds until the extinction of this population by

R+ := inf{k ∈ N : A′+
k = 0}. (3.4)

The total number of individuals in this branching process can be written as

V+∞ := 1 +
R+∑

j=1

1(X+
j =2).

Note that (3.2) tells us that the branching process with offspring distribution X+ becomes
extinct, and therefore its total number of individuals is finite,with probability 1. The extinction
probability does not change ifwe count the descendants of one individual at a time each round.
As, by hypothesis, limn→∞ f (n) = +∞, it follows that:

lim
n→∞ P(V+∞ ≤ f (n)) = 1.
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From (3.1), we have that for every k ∈ N it holds that X+
k ≥ Xk , which by its turn implies

that A′+
k ≥ A′

k and so R+ ≥ R. It is also true that V+∞ ≥ V∞. So, we conclude that

lim
n→∞ P(V∞ ≤ f (n)) = 1. 
�

3.2 The Super-Critical Phase: p > 1
2

Proof of Theorem 1.2 part (ii) As the case p = 1 is trivial, we focus on p ∈ (1/2, 1), splitting
the proof in the three following statements

(a) For k− = 2 4p
(1+2p)[ 2p−1

8p+4 ]2 log n and k+ = (1 − 2
1+2p )n, it holds that

lim
n→∞ P(R ∈ [k−, k+]) = 0.

(b) limn→∞ P(V∞ ≤ c log n|R < k−) = 1 and limn→∞ P(V∞ ≥ c′n|R > k+) = 1.
(c) limn→∞ P(R < k−) = 1−p

p .

Note that with these 3 items, the proof comes to an end. Next, we prove (a), (b) and (c).
Proof of (a). First we define

k− = k−(n) := 2
4p

(1 + 2p)
[
2p−1
8p+4

]2 log n;

and

k+ = k+(n) :=
(
1 − 2

1 + 2p

)
n.

See that 0 < 1 − 2
1+2p < 1 when p > 1/2. For k ∈ N ∩ [k−, k+], we may consider

independent random variables Y1, ..., Yk such that for j ∈ {1, ..., k}
P(Y j = x) =

⎧
⎪⎨

⎪⎩

1 − p if x = 0,
pk+
n if x = 1,

p(n−k+)
n if x = 2.

(3.5)

For any j ∈ {1, ..., k} it is true that V ′
j−1 − 1 ≤ j ≤ k ≤ k+. Note that Y j can be

interpreted as the number of descendants of the particle participating in the kth round, when
we maximize the number of visited vertices (compare with the equations (3.5) and (2.7)). So,
by coupling, we can assume that

∑k
j=1 X j is always greater than

∑k
j=1 Y j . Let us denote

this fact by
∑k

j=1 X j  ∑k
j=1 Y j .

Next, let us define define ak := (
2p

1+2p − 1
2 )k. Note that 0 <

2p
1+2p − 1

2 < 1 for p > 1/2.

P(A′
k ≤ ak + 1) = P

⎛

⎝
k∑

j=1

X j ≤ k + ak

⎞

⎠

≤ P

⎛

⎝
k∑

j=1

Y j ≤ k + ak

⎞

⎠

≤ P

⎛

⎝
k∑

j=1

1(Y j=2) ≤ k + ak
2

⎞

⎠

= P

⎛

⎝
k∑

j=1

1(Y j=2) ≤ kp − pkk+
n

− k

(
p − 1

2

)
+ pkk+

n
+ ak

2

⎞

⎠ (3.6)
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By using the Chernoff bounds from Lemma 3.1, with t = k[ 2p−1
8p+4 ] > 0 as p > 1/2, together

with the fact that

k∑

j=1

1(Y j=2) ∼ Bin

(
k,

p(n − k+)
n

)
,

substituting ak and (3.6), we have that

P(A′
k ≤ ak + 1) ≤ P

⎛

⎝
k∑

j=1

1(Y j=2) ≤ E

⎛

⎝
k∑

j=1

1(Y j=2)

⎞

⎠ − k

[
2p − 1

8p + 4

]⎞

⎠

≤ exp

⎛

⎜⎝−
k2

[
2p−1
8p+4

]2

2kp
(
1 − k+

n

)

⎞

⎟⎠

(∗)≤ exp

⎛

⎜⎝−
k−

[
2p−1
8p+4

]2
(1 + 2p)

4p

⎞

⎟⎠

= exp(−2 log n) = o(n−1), (3.7)

where for two sequences of functions f1, f2, ... and g1, g2, ..., we write fn = o(gn) if
limn→∞ fn

gn
= 0. Observe that we can exchange k by k− in (*) as k− ≤ k and exp(−x) is

decreasing in x .
Now, consider the set

A :=
⋃

k∈N∩[k−,k+]
(A′

k ≤ ak + 1)

In words, it means that for some k ∈ N ∪ [k−, k+] there is at most ak +1 potentially active
particles. By the subaditivity of the probability measure, (3.6) and (3.7), we have

P(A) ≤
∑

k∈N∩[k−,k+]
P(A′

k ≤ ak + 1) ≤ k+o(n−1) = o(1).

Then

P(Ac) = P(∩k∈N∩[k−,k+](A′
k > ak + 1))

n→∞→ 1.

As R := inf{k : A′
k = 0},

lim
n→∞ P(R ∈ [k−, k+]) = 0.

Proof of (b). From the definition of R, we know that X j = 0 for some j ∈ {1, . . . , R}.
Therefore, for R < k−, from (2.4), (2.5) and (2.6), we know that

V∞ = VR = V ′
R = 1 +

R∑

j=1

1(X j=2) ≤ 1 + R − 1 < k−.

So, we conclude that

lim
n→∞ P(V∞ ≤ k−|R < k−) = 1.
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Furthermore, for �k+� = max{x ∈ Z : x ≤ k+}, we have that the probability of having
k++ak+

2 = n( 12p
2−4p−1

4(1+2p)2
) or fewer potentially visited vertices equals to

P

(
V ′�k+� ≤ k+ + ak+

2

)
= P

⎛

⎝
�k+�∑

k=1

1(Xk=2) + 1 ≤ k+ + ak+
2

⎞

⎠

= P

⎛

⎝
�k+�∑

k=1

1(Xk=2) ≤ (k+ − 1) + (ak+ − 1)

2

⎞

⎠

(∗)≤ P

⎛

⎝
�k+�∑

k=1

1(Xk=2) ≤ �k+� + a�k+�
2

⎞

⎠

≤ P

⎛

⎝
�k+�∑

k=1

1(Yk=2) ≤ �k+� + a�k+�
2

⎞

⎠ = o(1). (3.8)

The inequality (*) holds as �k+� ≥ k+ −1 and that, ak = ck, for some constant c ∈ (0, 1).
Therefore, a�k+� = c�k+� ≥ c(k+ − 1) = ak+ − c ≥ ak+ − 1.

Moreover, see that (3.8) is o(1) because �k+� ∈ N ∩ [k−, k+] and that term shows up in
(3.6) and (3.7).

Therefore,

P(V ′�k+� ≤ k+ + ak+
2

|R > k+)P(R > k+)

+ P

(
V ′�k+� ≤ k+ + ak+

2
|R ≤ k+

)
P(R ≤ k+)

n→∞→ 0.

So, if limn→∞ P(R > k+) > 0 (see part c), it holds that limn→∞ P(V ′�k+� >
k++ak+

2 |R >

k+) = 1. In addition, by (2.4), (2.5) and (2.6) when R > k+ ≥ �k+�, it is true that
V∞ = VR ≥ V�k+� = V ′�k+�.

From this, we conclude that

lim
n→∞ P

(
V∞ ≥ k+ + ak+

2
|R > k+

)
= 1.

Remember that k+ = c1n for a constant c1 ∈ (0, 1) and that ak+ = c2k+ = c1c2n for a

constant c2 ∈ (0, 1), then
k++ak+

2 = c′n for some c′ ∈ (0, 1), thus concluding the proof of
(b).
Proof of (c).

Let us return to the random variable X+ presented in sub-section 3.1.

P(X+ = x) =
{
1 − p, if x = 0,

p, if x = 2.
(3.9)

Again, we consider a branching process with offspring distribution given by X+, where
the number of descendants of the individuals is evaluated in turns, and return to definitions
(3.3), (3.4), rewritten below.

A′+
k := 1 +

k∑

j=1

(X+
j − 1)
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representing the number of potentially active particles of this branching process at the end
of the kth round and

R+ := inf{k ∈ N : A′+
k = 0}

representing the instant where the branching process ends. It is now necessary to define
R+ := +∞ if {k ∈ N : A′+

k = 0} = ∅, since it can happen, with positive probability in the
case p > 1/2, of having a never ending process. Furthermore, we define

A+
k := A′+

k I(k < R+) (3.10)

representing the number of effectively active particles of this branching process at the end of
the kth round.

Let us define the event for which the branching process with offspring distribution X+
extinguishes, but after the round k− by

B+
k− := {k− < R+ < +∞}.

We define one last branching process, with the same rounds scheme, with offspring dis-
tribution X−, where

P(X− = x) =

⎧
⎪⎨

⎪⎩

1 − p if x = 0,
pk−
n if x = 1,

p(n−k−)
n if x = 2.

(3.11)

Similarly, consider X−
1 , X

−
2 , ... as identically distributed independent random variables

with the same distribution of X− and define

A′−
k := 1 +

k∑

j=1

(X−
j − 1)

as the number of potentially alive individuals at the end of the kth round.
Furthermore, define

R− := inf{k ∈ N : A′−
k = 0}

as the moment when the branching process with offspring given by X− ends. Consider that
R− := +∞ if {k ∈ N : A′−

k = 0} = ∅.
We have that k ≤ k− implies V ′

k−1 = 1 + ∑k−1
j=1 1(X j=2) ≤ k−. Therefore, comparing

(3.9) and (3.11) with (2.7), we conclude that
∑k

j=1 X
−
j � ∑k

j=1 X j � ∑k
j=1 X

+
j , and so

A′−
k � A′

k � A′+
k for all k ∈ N ∩ [1, k−]. We then see that it is possible to couple the three

process so that R+ ≤ k− implies R ≤ k− and also that R ≤ k− implies R− ≤ k−.
So, it is true that

P(R+ < ∞) − P(B+
k−) = P(R+ ≤ k−) ≤ P(R ≤ k−) ≤ P(R− ≤ k−) ≤ P(R− < ∞).

(3.12)
By properties of branching processes, P(R+ < ∞) is the smallest positive solution of

P(R+ < ∞) = 1 − p + P(R+ < ∞)2 p.

Solving the quadratic equation above, we realize that

P(R+ < ∞) = 1 − p

p
.
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It also holds that P(R− < ∞) is the smallest positive solution of

P(R− < ∞) = 1 − p + P(R− < ∞)
pk−
n

+ P(R− < ∞)2
p(n − k−)

n
.

Solving the quadratic equation above, we see that

P(R− < ∞) = n(1 − p)

pn − pk−
n→∞→ 1 − p

p
.

Denote �k−� = min{x ∈ Z : x ≥ k−}. From (3.6) and (3.7), it holds that
limn→∞ P(A′�k−� > a�k−� + 1) = 1 and therefore limn→∞ P(A′+

�k−� > a�k−� + 1) = 1.

Then, if limn→∞ P(R+ > k−) > 0 (which is true because E(X+) > 1), we have that
limn→∞ P(A′+

�k−� > a�k−� + 1|R+ > k−) = 1. Besides that, when R+ > k−, it holds that
R+ ≥ �k−� and from (3.10), we have that A+

�k−� = A′+
�k−�. Then, we conclude

P(B+
k− ) = P(R+ > k−, R+ < ∞)

= P(R+ > k−, R+ < ∞, A+
�k−� > a�k−� + 1) + P(R+ > k−, R+ < ∞, A+

�k−� ≤ a�k−� + 1)

≤ P(R+ > k−, R+ < ∞, A+
�k−� > a�k−� + 1)

P(R+ > k−, A+
�k−� > a�k−� + 1)

+ P(R+ > k−, A+
�k−� ≤ a�k−� + 1)

P(R+ > k−)

= P(R+ < ∞, |R+ > k−, A+
�k−� > a�k−� + 1) + P(A+

�k−� ≤ a�k−� + 1|R+ > k−)

≤
(
1 − p

p

)a�k−�+1

+ P(A+
�k−� ≤ a�k−� + 1|R+ > k−)

n→∞→ 0

where the last inequality is given by the extinction probability of at least a�k−� + 1 inde-
pendent branching processes, each with extinction probability 1−p

p .
Applying to (3.12) all limits found, we conclude that

lim
n→∞ P(R < k−) = 1 − p

p
.


�
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