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Abstract

In this paper, we present an adaptive numerical methodology for a reacting three-dimensional low-Mach number flow. This
omputational strategy combines an adaptive mesh refinement (AMR), an implicit–explicit time stepping strategy (IMEX),
n extension of increment-pressure projection method, and a mixture fraction to model the chemistry combustion dynamics.
o accurately resolve sharp gradients, vorticity shedding, and localized small length scale flow features, dynamic adaptive
esh refinement (given by hierarchical nested Cartesian grid patches) is employed. That spatial dynamic adaptation is used in

onjunction with a variable time step, second-order, linearly implicit time integration scheme. The capabilities of the present
umerical method are demonstrated by numerical verification and simulation of two classical diffusion flame examples from
iterature.

2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.
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1. Introduction

Combustion is an important research area in Fluid Dynamics which involves many phenomena such as high speed
ows, heat transfer, chemical reactions, and turbulence — among others. The understanding of these phenomena

s of significant technological and scientific interest since they are present in a variety of industrial and natural
rocesses. Computer simulation is one of the most fundamental tools employed to that end. As an example, one
ay mention non-premixed flames [8,17,37,41] which are being studied in different scenarios. Computer simulations

f a three-dimensional unsteady reacting low-Mach number flows can be computationally quite expensive. Grid
esolution and detailed chemical mechanism demand huge computational resources due to the total number of
hemical species and to time-step restrictions because of the stiffness present in the reaction kinetics.

In this context, adaptivity is an important component to be considered for efficient numerical solutions of
he partial differential equations involved. Many techniques appeared through the years and, nowadays, the term
adaptive mesh refinement” (or simply AMR) embraces an entire collection of approaches which spread to a variety
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of different application fields [31]. However, the key idea behind all those approaches is still the same: to concentrate
computational power where it is most needed by increasing the resolution in space on regions of special interest
in the computational domain. Several refinement criteria may be used to identify these regions. For example, one
needs more grid resolution where there are immersed interfaces/bodies to describe accurately intricate geometry
details, where there is high vorticity/turbulence, where boundary layers develop, and, more generally, where there
are flow features of special interest (with highly localized span) [3,9,13,14,27,36].

There are several studies which have introduced numerical methods for simulating non-premixed laminar flames.
ilditch and Colella [18] have proposed a numerical technique that includes fast chemistry. The reaction effects

re generated using a conserved scalar, the mixture fraction. According to Bilger [7] the mixture fraction has been
n important concept to understand many phenomena, as mixing and combustion in non-premixed turbulent flows.
ember et al. [27] have presented an adaptive projection method for low-Mach number combustion with a reduced
inetics mechanism. Mohammed et al. [23] have investigated computationally and experimentally the structure of
forced, time-varying, axisymmetric laminar methane–air diffusion flame. Day and Bell [13] have presented a

eneralization of the numerical methodology proposed in [27] that incorporates complex chemistry for simulating
remixed and non-premixed flames described in [23].

The purpose of this work is to use a simplified chemistry model where a conserved scalar is responsible for all
eaction effects in conjunction with an adaptive mesh refinement strategy in order to reduce the computational cost.
o this end, we combine here methods and techniques discussed and developed in several studies [1,9,18,27] to
erform computer simulations of reacting low-Mach number flows. The main ingredients of this combination are an
mplicit–explicit time integration scheme (IMEX [1,40]), a fast chemistry non-premixed combustion model [18,32],
nd an extension of a projection method [13,27] to solve the resulting equations. The present work extends
he numerical methods introduced previously in different contexts [9–11,14,26,30,36] to reacting flow problems.
t includes a verification analysis of the adaptive numerical technique proposed and its application to perform
imulations of three-dimensional non-premixed flame jets.

Next section presents a mathematical formulation for the unsteady low-Mach number reacting flow. Section 3
escribes the numerical methods, including the time–space discretization, and an extension of projection method to
e used. Section 4 presents the numerical experiments which include, besides a numerical verification of the overall
lgorithm, diffusion flame jet simulations. Concluding remarks appear in Section 5.

. Mathematical formulation

The mathematical formulation is based on a low-Mach number combustion model proposed by [22,34]. In the
ow-Mach number limit [13,27], we may write the pressure

p(x, t) = p0 + p̃(x, t), (1)

where p0 is the constant thermodynamic pressure and p̃ is the dynamic pressure. Thus, the equations expressing
he mass and linear momentum balances, and a conserved scalar transport (for chemical species and temperature)
re given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

∂(ρz)
∂t

+ ∇ · (ρuz) = ∇ · (ρD∇z), (3)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p̃ + ∇ ·

[
µ

(
∇u + (∇u)T

−
2
3

I∇ · u
)]

+ f, (4)

here ρ is the density, u the velocity, µ the viscosity, I is the identity tensor, f represents the sum of all external
orces acting on the fluid, z is the conserved scalar, and D the diffusion coefficient (the same for all chemical
pecies). The set of governing equations is closed if we assume valid the equation of state for an ideal gas law,

p0 =
ρRu T

W
, (5)

where T is temperature distribution, W = (
∑

k Yk/Wk)−1 is the mixture-averaged molecular weight, and Ru is the
niversal gas constant. The terms Y and W are, respectively, the mass fraction and the molecular weight of the
k k
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kth chemical species. By differentiating (5) as in [13,18,27] with respect to time and by using Eq. (2), we obtain
the constraint on the divergence of the velocity,

∇ · u =
1
T

DT
Dt

+ W
∑

k

1
Wk

DYk

Dt
≡ S, (6)

here the differential operator D/Dt is the material derivative and S ̸= 0.
We have considered a fast chemistry model (also called Burke–Schumann flame structure) for a non-premixed

ame. In other words, we assume a one step infinitely fast and irreversible chemistry reaction, where the Lewis
umber is unity [32,35,39]. In this case, fuel and oxidizer coexist only in a thin reaction zone. The chemical reaction
nvolves only fuel (F), oxidizer (O), and products (P): υF F + υO O −→ υP P , where υk are the stoichiometric
oefficients of species k with k = F, O, P .

The combustion process is described using a conserved scalar variable z which involves chemical species and
emperature. Following Poinsot and Veynante [32], we obtain (3) from the conservation equation for the kth mass
raction and temperature which is given by

∂ρYk

∂t
+ ∇ · (ρuYk) = ∇ · (ρD∇Yk) + ω̇k, with k = F, O, (7)

∂ρT
∂t

+ ∇ · (ρuT ) = ∇ ·

(
κ

cp
∇T

)
+ ω̇T , (8)

here ω̇k is the production rate for ρYk , ω̇T the heat release due to chemical reactions, κ thermal conductivity, and
cp the constant pressure specific heat capacity.

The product mass fraction YP is given by the mass conservation law YP = 1 − (YO + YF ). Moreover, as the
Lewis number is unity, we obtain ρD = κ/cp which means that all chemical species and temperature diffuse in the
same way. In stoichiometric chemical reactions, fuel and oxidizer react completely, combining instantly into reaction
products. Thus, the oxidizer consumption rate satisfies ω̇O = sω̇F and the heat release rate is ω̇T = −∆h∗

F ω̇F , where
s = (υO WO )/(υF WF ) is the mass stoichiometric ratio, and ∆h∗

F is the heat of formation of YF . The stoichiometric
value is given by zst = 1/(1 +Φ), where this quantity Φ is the ratio of fuel to oxidizer in the injected streams with
respect to the ratio corresponding to stoichiometric conditions, given by Φ = s(Y ⋆

F/Y ⋆
O ), where Y ⋆

O is the stream
oxidizer mass fraction and Y ⋆

F is the stream fuel mass fraction. Therefore, combining Eqs. (7)–(8), we can define
three conserved scalars,

Z1 = sYF − YO , Z2 =
cpT
∆h∗

F
+ YF , Z3 =

scpT
∆h∗

F
+ YO . (9)

The scalar Z1 is called mixture fraction. Each scalar Z i , i = 1, 2, 3, satisfies (3). In non-premixed flames, they
assume two values in the reaction zone inlet: Z i,F (inlet fuel) and Z i,O (inlet oxidizer). Therefore, we can define
the normalized scalar, z = (Z i − Z i,O )/(Z i,F − Z i,O ). Thus, when Z i = Z i,F we have z = 1 (fuel indication) and
when Z i = Z i,O , z = 0 (oxidizer indication).

The Burke–Schumann flame structure [32,35] connects temperature and chemical species with conserved scalar
z assuming that fuel and oxidizer do not coexist. If the mixture is lean (z ≤ zst ) then YF (z) = 0 and

YO (z) = Y ⋆
O

(
1 −

z
zst

)
,

T (z) = zT ⋆
F + (1 − z)T ⋆

O +
∆h∗

F Y ⋆
F

cp
z,

(10)

where T ⋆
F and T ⋆

O are the fuel and oxidizer temperature stream. If the mixture is rich (z ≥ zst ) then YO (z) = 0 and

YF (z) = Y ⋆
F

z − zst

1 − zst
,

T (z) = zT ⋆
F + (1 − z)T ⋆

O +
∆h∗

F Y ⋆
F

cp
zst

1 − z
1 − zst

.
(11)

The flame position occurs when YF and YO are both null, i.e. z = zst . This means that fuel and oxidizer became
reaction products and the temperature of the flame gets the maximum value. Fig. 1 presents the possible states of
a flame.
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Fig. 1. Example of diffusion flame structure in the conserved scalar z.

Chemical reactions may contain inert species, such as the Nitrogen (N2) [32,39]. In this case, the inert mass
raction is obtained by YI (z) = YI,O (1 − z) + YI,F z, where YI,O is the inert mass fraction in the oxidizer
tream and YI,F is the inert mass fraction in the fuel stream. In this case, the product mass fraction is given by

YP = 1 − (YO + YF + YI ).
In summary, our mathematical model is given by (2)–(4), with temperature, oxidizer, and fuel mass fraction

iven by (10)–(11). The mathematical model requires boundary and initial conditions which will be detailed in
ection 4. Following Pember et al. [27] the coefficients, µ and D, are given, respectively, by µ = µO (T/TO )0.7

nd ρD = µ/Pr , with µO = 1.85 × 10−5kg/m.sec, TO = 298 K, and Pr = 0.75. Next, we present the adaptive
umerical method.

. Numerical method

We present in this section the combination of an adaptive spatial discretization and a variable-step time integration
ith an extended version of an increment-pressure projection method, geared by a multilevel-multigrid method to

olve linear systems.

.1. Adaptive spatial discretization

In the discretization of the computational domain, we follow closely the adaptive mesh refinement technique
AMR) first proposed by Berger and Colella [4–6]. The technique is based on a grid structure given by a set of
ested, Cartesian grid patches which form a level hierarchy, usually referred to as composite grid. These rectangular
rid patches obey certain rules, targeting for easiness in their construction and efficiency in their use:

1. a fine grid starts and ends at the corner of a cell in the next coarser grid, and
2. all fine grid cells at level l must be surrounded either level l cells or by level l − 1 cells except when it

touches the border of the physical domain.

In a composite grid a level l is given by the union of the grid patches with the same computational cell size,
.e., Gl =

⋃nl
k=1 Gl,k , where Gl,k is the kth grid patch and nl is the number of patches in level l. Two different

rid patches in the same level do not overlap, i.e., Gl,i ∩ Gl, j = ∅, if i ̸= j . The composite grid is given by
G =

⋃L
l=0 Gl , where L is the number of levels and Gl is a set of grid patches in level l. Fig. 2 shows an example

f two-dimensional composite grid.
Based on techniques common in computer vision and pattern recognition, the mesh generation is performed by

he point clustering algorithm proposed by Berger and Rigoutsos [6]. The number of refinement levels is an input
ata. First, we define the refinement criteria which is responsible for flagging grid points needing more resolution
e.g. regions with some special feature such as high temperature, high vorticity, high turbulence, and so on — see
ection 4). Afterwards, the point clustering algorithm returns an optimal set of blocks enclosing all the flagged
100
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Fig. 2. A sequence of nested grid patches.

Fig. 3. (a) MAC fashion variable: • scalars and - vector field and (b) Computational cells: • visible cells and ◦ auxiliary cells (ghosts and
covered).

points to generate the new composite grid. For efficiency, our simulations use composite grids for which at least
85% of cells have been flagged.

We place the variables in a “marker-and-cell” (MAC) fashion: scalars at the cell centers (e.g. density, pressure,
temperature, conserved scalar and viscosity), and vectors have their components on cell faces. It is important to
highlight that the existence of computational ghost cells, which form layers around each grid patch Gl,k , is an
essential part of this technique. Ghost cells furnish boundary conditions from polynomial interpolations of values at
neighboring coarse/fine levels. Fig. 3(a) displays variable location in a MAC fashion and Fig. 3(b) displays auxiliary
ghost and covered cells for a sample two-dimensional grid.

We use standard second-order finite difference operators for the discretizations of the gradient and divergent
differential operators as well as for the stress tensor [9,36]. Such discretizations need only one layer of ghost
cells along the interface between patches. In the conservation of mass and conserved scalar equations, (2) and (3)
respectively, we use a third-order Quadratic Upstream Interpolation for Convective Kinematics (QUICK) for the
advective terms [16,39]. They need two ghost cells along the interfaces between patches.

3.2. Temporal discretization

We perform a variable-step time discretization using a linearly-implicit integration scheme based on a second-
order, two-step IMEX (Implicit–Explicit) method [1,40]. Nonlinearities in the diffusive term (e.g. coming from the
turbulence modeling) are handled by rewriting (4) as

∂u
=

1 (
λ∆u − ∇ p̃ + f̃

)
, (12)
∂t ρ
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where f̃ = ∇ ·

[
µ

(
∇u + ∇uT

−
2
3
∇ · u

)]
− ρu · ∇u − λ∆u + f and λ is an ad hoc constant chosen through

numerical experimentation. The resulting time integration scheme is

α2un+1
+ α1un

+ α0un−1

∆tn+1 =
θ2

ρn+1 (λ∆un+1
− ∇ p̃n+1) +

θ1

ρn
(λ∆un

− ∇ p̃)n
+

θ0

ρn−1 (λ∆un−1
− ∇ p̃n−1) +

β1̃fn

ρn
+

β0̃fn−1

ρn−1 ,

(13)

where ∆tn+1 is the time-step size in tn+1, the parameters αi , βi and θi are given by

α2 =
∆tn

+ 2γ∆tn+1

∆tn + ∆tn+1 , α1 =
∆tn+1

− ∆tn
− 2γ∆tn+1

∆tn
, α0 = −α2 − α1, (14)

β1 =
∆tn

+ γ∆tn+1

∆tn
, β0 = −

γ∆tn+1

∆tn
, (15)

θ2 = γ + c
∆tn+1

∆tn + ∆tn+1 , θ1 = 1 − γ − c
∆tn+1

∆tn
, θ0 = c

(
∆tn+1

∆tn
−

∆tn+1

∆tn + ∆tn+1

)
, (16)

nd the parameters c and γ define the chosen method. In (14),(15), and (16), we may select methods such as a
rank–Nicolson/Adams–Bashforth (CNAB), Modified CNAB (MCNAB), Gear, and Crank–Nicolson/ Leap-Frog

CNLF), which we obtain by specifying, respectively, the values (c, γ ): (0, 1/2), (1/8, 1/2), (0, 1), and (1, 0). We
have used Crank–Nicolson method to approximate the first time step. Note that, in (13), we need an iterative process
to split the solution into two parts, one for the velocity and one for the pressure-increment. The number of iterations
per time-step is fixed.

We use the same scheme to approximate (2) and (3) in time. In (2), we add a numerical artificial diffusion term
in the lines of the classical approach of artificial viscosity for advection-dominated problems [38]. To complete
the description, the only stability constraint left comes from the explicit discretization of the advection term. The
time-step restriction due to the CFL condition, ∆t = C∆x/Umax , with C < 1, ∆x the width of a cell of the finest
level, and Umax the maximum velocity component anywhere in the domain.

3.3. Pressure–velocity coupling and projection method

We decouple the pressure from the velocity in (4) by an extended version of the pressure-increment method [3,
9,27,36]. Using (13), we compute a “preliminary” velocity u⋆ field which is given by

α2u⋆,k
+ α1un

+ α0un−1

∆tn+1 =
θ2

ρn+1,k
(λ∆u⋆,k

− ∇ p̃n+1,k−1) +
θ1

ρn
(λ∆un

− ∇ p̃n)

+
θ0

ρn−1 (λ∆un−1
− ∇ p̃n−1) +

β1̃fn

ρn
+

β0̃fn−1

ρn−1 .

(17)

This approximation u⋆,k does not satisfy the constraint ∇ ·u = Sn+1 where Sn+1 is given by (6) (note that Sn+1
̸= 0

because the flow is not incompressible). To satisfy this constraint, we decompose the velocity field u⋆,k as

u⋆,k
= un+1,k

+
∆tn+1θ2λ

α2ρn+1,k
∇q, (18)

here q is the pressure increment. Therefore un+1,k satisfies the constraint (6). Applying a differential operator in
18) we obtain an elliptic equation for q,

∇ ·

(
1

ρn+1,k
∇q

)
=

α2

λθ2∆tn+1

(
∇ · u⋆,k

− Sn+1) . (19)

olving (19), q is determined and we can update the pressure and velocity field by

p̃n+1,k
= p̃n+1,k−1

+ q,

un+1,k
= u⋆,k

−
∆tn+1θ2λ

∇q.
(20)
α2ρn+1,k
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In our numerical experiments, two iterations (that is, k = 1, 2), were enough to get a second-order accuracy in time,
ith p̃n+1,0

= p̃n being the initial approximation taken for the pressure.

.4. Multilevel-multigrid method

Once we have introduced the discretization in space and in time, the numerical method requires the solution of
welve linear systems per time step (six for k = 1 and six for k = 2): ten of them come from parabolic equations

(for the velocity components, mass density, and for the conserved scalar) and two of them come from elliptic
equations (for the pressure-increment). To solve these linear systems, we use a multilevel-multigrid method [9].
The block-structured grid used suggests the use of a geometric multigrid strategy. Here multilevel refers to the
fact that refinement levels belonging to the grid structure are also considered as multigrid levels. These refinement
levels differ from usual multigrid levels because they do not necessarily cover the entire computational domain. Our
multilevel-multigrid is based on V-cycles with red-black Gauss–Seidel relaxations, fine-to-coarse transfers given by
simple average, and coarse-to-fine transfers by trilinear interpolation [9,38]. Cycling stops when the maximum
norm of the residual vector is O(∆x2), which proved to be enough to maintain overall second-order accuracy.

We summarize the algorithm below. One time step corresponds to an IMEX step combined with a projection
method that satisfy the velocity divergence constraint. Given ρn , zn , p̃n , and un at time tn , we obtain their updates
in time by:
Algorithm 1: A time step solution procedure summarized

Compute ∆tn+1;
Compute α, β and γ using (14), (15), and (16);
while k ≤ kmax do

Update the density equation (2) to obtain ρn+1,k ;
Compute µn+1,k e Dn+1,k , see Section 2.
Update the mixture fraction equation (3) to obtain zn+1,k ;
Compute T n+1,k , Y n+1,k

O , and Y n+1,k
F , using (10) and (11);

Compute Sn+1 using equation (6);
Update the velocity u⋆,k using equation(17);
Solve the elliptic equation (19) for q;
Update un+1,k and p̃n+1,k using (20).

nd

4. Numerical examples

We present in this section numerical results to verify the convergence and the accuracy properties displayed by
he described methodology for smooth problems (“manufactured solution” approach). Afterwards, we apply it to
wo flame-jet problems found in the literature to validate the modeling approach: in the first problem, we present
ull numerical results for a laminar methane diffusion flame and, in the second problem, we have investigated the
erformance of the numerical methodology in a turbulent, piloted methane/air diffusion flame.

.1. Numerical verification: manufactured solution approach

In this test, we use a manufactured solution to investigate the convergence order of the adaptive numerical
ethod [9,24]. The computational domain is [a1, b1] × [a2, b2] × [a3, b3] with ai = 0, bi = 1, and i = 1, 2, 3.
he manufactured solutions for the velocity components are given by u1,e = sin2[2π (x1 + x2 + x3) + t],
2,e = cos2[2π (x1+x2+x3)+t], and u3,e = sin[2π (x1+x2+x3)+t], for the pressure, p̃e = cos[2π (x1+x2+x3)+t],
nd for the density ρe = ρ0 +sin2[2π (x1 + x2 + x3)+ t], with ρ0 = 0.5. In this test, the equation of state is p0 = ρz,
herefore ze = p0/ρe, with p0 = 1. In (2)–(4) and (6) are included source terms to keep the equations balanced.
ther parameters are given by µ = µ0 + µ1 cos2[2π (x1 + x2 + x3) + t], µ0 = 1, µ1 = 0.5, and ρD = µ/0.75.
The composite grid is given by a single block with N 3 computational cells in the base level, G0, on the top of
hich we add one refinement level. For the spatial–temporal convergence rate test, the composite grid patches and
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Table 1
Errors in L2 norm and observed convergence order.

N ∥u1,e − u1∥2 Order ∥u2,e − u2∥2 Order ∥u3,e − u3∥2 Order

16 1.7730 · 10−2 – 1.8726 · 10−2 – 3.4106 · 10−3 –
32 4.4185 · 10−3 2.00 4.6506 · 10−3 2.00 9.1857 · 10−4 1.89
64 1.1145 · 10−3 1.98 1.1676 · 10−3 1.99 2.5448 · 10−4 1.85
128 2.8220 · 10−4 1.98 2.9866 · 10−4 1.96 7.0944 · 10−5 1.84

N ∥ p̃e − p̃∥2 Order ∥ρe − ρ∥2 Order ∥ze − z∥2 Order

16 7.3144 · 10−1 – 4.0612 · 10−3 – 3.4434 · 10−3 –
32 2.0906 · 10−1 1.80 9.8890 · 10−4 2.03 8.3116 · 10−4 2.08
64 5.8046 · 10−2 1.84 2.4180 · 10−4 2.03 2.0215 · 10−4 2.01
128 2.0189 · 10−2 1.52 5.9304 · 10−5 2.02 5.0875 · 10−5 1.99

Fig. 4. Errors in L2 norm at t = 0.5.

final time are kept fixed for all the runs. The number of grid cells in the base level are taken to be N × N × N ,
with N = 16, 32, 64, 128. Note that ∆x0 = (bi − ai )/N is the coarsest grid spacing. The refinement level is
omposed by two patches: G1,1 which covers the subdomain [0, 0.2] × [0, 0.15] × [0, 0.5] and G1,2 which covers
0, 0.2] × [0.15, 0.35] × [0.4, 0.5]. Note that the refined region is always the same, kept fixed in all the runs. The
oal is to identify eventual loss of accuracy or the introduction of non-physical features in the numerical solution
ue to the interpolation schemes involving ghost/covered cells. We supply Dirichlet boundary conditions for the
elocity u = (u1, u2, u3), for the density ρ, and for the conserved scalar z on the plane x1x3 in x2 = 0 (see the
artesian axis in Fig. 5) and Neumann boundary conditions on the other boundaries. For the dynamic pressure, we
dopt Neumann boundary conditions on the plane x1x3 in x2 = 0 and Dirichlet conditions on the other boundaries.

Table 1 presents the observed convergence order and the errors in the L2 norm for the velocity components,
ressure, density, and for the conserved scalar at t = 0.5. The plots in Fig. 4 present these errors as functions of the
oarsest grid spacing, ∆x0. By comparing their slopes with slopes equal to one and equal to two (which indicate
rst and second order of convergence, respectively), we conclude, as expected, that the methodology is second-order
or the velocity components, density, and conserved scalar, and order better than one for the dynamic pressure [12].
hus interpolation schemes are working properly.

.2. Laminar diffusion flame

The first numerical simulation we perform is based on the experimental studies of a laminar diffusion flame
resented by Mohammed et al. [23] and by Dworkin et al. [15]. There are plenty of articles which present a
ariety of combustion models and numerical methods to perform simulations of such a flame [13,23,25]. Moreover,
ecent studies used this experiment to help to understand the role of pressure and the fuel dilution on the flame
tructure [8,15].

In this numerical experiment, the computational flow domain is given by the Cartesian product [0, b1]× [0, b2]×
0, b ] with b = b = b = 0.1 m. Initially, the fluid is at rest with null dynamic pressure (see (1)), the inflow
3 1 2 3
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n
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w

Fig. 5. Schematic diagram of the inlet computational domain and Cartesian axis.

Fig. 6. Laminar diffusion flame temperature: (a) in the cross section plane x1 = 0.05 m and (b) in the cross section plane x2 = 0.03 m —
ote the adaptive mesh refinement patches in this cross section.

oundary (x2 = 0) contains in its center a main jet with diameter d0 = 4 mm, and the velocity components are
iven by u1,in = u3,in = 0 m/s, and

u2,in = vF

[
1 −

(x1 − x1c)2
+ (x3 − x3c)2

r0

]
, (21)

here vF = 0.7 m/s, xic = bi/2, r0 = d0/2. The nozzle injects the fuel (methane diluted with nitrogen,
YC H4 = 0.5149 and YN2 = 0.4851) at 298 K and the conserved scalar is given by z = 1. The oxidizer, air at
298 K (YO2 = 0.232 and YN2 = 0.768), is injected through the annular region between d0 and d1 = 0.05 m
with a uniform velocity profile of 0.35 m/s and z = 0. At the inflow boundary, homogeneous Neumann boundary
condition is adopted for the pressure increment. On the other computational boundaries, we have homogeneous
Neumann boundary conditions for the velocity, for the conserved scalar, and for the density, and Dirichlet boundary
conditions for the pressure increment. Fig. 5 shows a schematic diagram of the inlet computational domain and
Cartesian axis.

The computation employs a three-dimensional block-structured grid having a base level with 32 × 32 × 32
computational cells and three refinement levels (four levels in total). We refine regions of the flow where the
temperature satisfies ∥T ∥ > 800 K, constrained to 85% efficiency (i.e. the ratio between the number of cells
in need of refinement over the total number of cells that end up being refined to get a grid patch). In the finest
level, we have ∆x ≈ 3.9 · 10−2 cm and the time step size is O(∆x). Fig. 6 presents the temperature distribution
and composite grid in two cross sections.

Mohammed et al. [23] compute the solution in a two-dimensional non-uniform grid with 91 × 82 cells in radial
and axial directions, respectively. Day and Bell [13] compute the solution in a two-dimensional AMR grid where

−2 −3
the finest level has ∆x = 2 · 10 cm (“base case”) and ∆x = 5 · 10 cm (“refined case”). We compare our results
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Table 2
Comparison of flame characteristics.

Maximum temperature Flame length

Present work 2081 K (at 2.77 cm) 2.77 cm
Day and Bell [13] 2029 K (at 3.08 cm) 2.81 cm
Mohammed et al. [23] 2025 K (at 3.48 cm) 2.82 cm
Northup and Groth [25] 2080 K 3.30 cm

to Day and Bell [13] “base case” results since they use grid resolutions similar to ours. Both, Mohammed et al. [23]
and Day and Bell [13] use complex chemical kinetics mechanism with 26 species and 83 reactions. Northrup and
Groth [25] use an AMR grid and a two-step reaction mechanism.

Despite of the simpler chemical model and of the smaller spatial resolution, our numerical results keep up with
iterature [13,23,25]. The maximum centerline temperature is 2081 K compared to 2029 K [13], 2025 K [23],
nd 2080 K [25], which represent a relative difference of 2.56%, 2.57%, and 0.05%, respectively. The maximum
enterline temperature is attained at 2.77 cm compared to 3.08 cm [13] and 3.48 cm [23], which represent a relative
ifference of 10.06% and 20.40%, respectively. This measure is not reported in [25]. Mohammed et al. [23] have
efined the flame length as the difference between the location of the maximum temperature at the centerline and
he lift-off height. Our data predict a flame length of 2.77 cm compared with 2.81 cm [13], 2.82 cm [23], and
.3 cm [25], which represents a relative difference of 1.42%, 1.77%, and 16.06%, respectively. Table 2 summarizes
he measured flame quantities.

It is important to notice that with less grid resolution and with a reduced chemical model, we have obtained
esults that agree with previous studies. Moreover, when we compare our results with the “refined case” [13], we
hould include two more refinement levels. In this case, the relative differences for the centerline location where
he maximum temperature is reached, and for the flame length, are 12.62% and 5.78%, respectively.

.3. Turbulent diffusion flame

Next, we present a numerical simulation of a turbulent diffusion flame based on experimental data [2] and on
umerical results [19–21,29,41]. The fuel is a mixture made up of 25% of CH4 and of 75% air (by volume). The

fuel nozzle diameter is d0 = 7.2 mm and is enclosed by an annular pilot nozzle with a diameter of d1 = 18.2 mm.
The pilot stream is a lean premixed gas mixture of C2H2, H2, CO2, N2, corresponding to a mixture fraction of
z = 0.271 [19]. The computational domain is [a1, b1] × [a2, b2] × [a3, b3], with a1 = a2 = a3 = 0, b1 = b3 = 40d0,
nd b2 = 80d0. The velocity profile is u1,in = u3,in = 0 m/s and u2,in = ud0 + ud1 at the inflow boundary, with

ud1 =
v1 + v0

2
−

(
v1 − v0

2

)
tanh

[
25

(
r j

r1
−

r1

r j

)]
,

ud0 =
v2 + v0

2
−

(
v2 − v0

2

)
tanh

[
25

(
r j

r0
−

r0

r j

)]
,

(22)

here r j =
√

(x1 − x1c)2 + (x3 − x3c)2, v0 = 0.9 m/s is the coflow velocity, v1 = 11.4 m/s the pilot gas
elocity, and v2 = 49.6 m/s the fuel exit velocity; r1 and r0 are, respectively, the pilot and fuel nozzle radii,
nd x1c = x3c = 20d0. Moreover, we add a uniform noise to u2,in which is given by 0.01 · ω · u2,in , where ω

s a random number normally distributed in [−0.5, 0.5]. We adopt homogeneous Neumann boundary condition
or the pressure increment. In the other computational boundaries, we impose homogeneous Neumann boundary
onditions for the velocity and Dirichlet boundary conditions for the pressure increment. The Reynolds number is

Re = 2.24×104 [21,29]. Even for turbulent reacting flows, the sound speed is in the range of 300 m/s to 600 m/s,
sing the values of our example, Ma = 0.16 < 0.3 and the low-Mach approximation is still valid (see [27]). The
ixture fraction profile inlet is prescribed as a step function with experimental value z = 1 at fuel nozzle, z = 0.271

n the pilot stream, and z = 0 in the coflow [20]. The stoichiometric fraction mixture is zst = 0.351 [19,29].
We use the Large Eddy Simulation (LES) approach to model the turbulence and solve the Favre filtered transport

qs. (2)–(3) with the subgrid scale stresses determined by the Smagorinsky model. In that context, the eddy viscosity
2
s µt = C∆ |S| and the turbulent diffusivity Dt = µt/σt , where C is the Smagorinsky constant, ∆ the filter size,
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Fig. 7. Instantaneous temperature distribution and adaptive mesh refinement: (a) cross section in x2 = 40d0 and (b) cutting section in
x1 = 20d0.

|S| the characteristic filtered rate of strain and σt is turbulent Schmidt-number [28,33]. The filtered species mass
fraction and temperature are evaluated by a presumed β-PDF approach of the conserved scalar z [28,29].

The block-structured grid has 32 × 64 × 32 cells in the base level G0 and three refinement levels. The finest
evel has ∆x = 1.125 × 10−3 m. This ∆x size retains the time-step size in our simulation at O(10−6). Ihme and
itsch [19] have reported that ∆xmin = O(10−4) m and ∆xmax = O(10−3) m. The refinement criteria are based
n the maximum norms of the turbulent viscosity, of the vorticity, and of the temperature, constrained to 85% of
fficiency.

For turbulent flows, it is desirable to wait for the numerical simulations to reach a statistically stationary state.
emenov and Pope [20] and Ihme and Pitsch [19] report that, for this turbulent diffusion flame, this should occur

fter running over 10 flow-through times. While aware of the importance of this fact, the results we report here
ave not statistically reached the steady state due to the limitation of the hardware at our disposal.1 When the flame
s fully developed, the processing time spent per time step is approximately 15 min in average. The bottleneck
s the numerical solution of the elliptic equation which takes about 25 V-cycles to be solved, representing almost
0% of the time spent in one time step. The other linear systems take 5 to 7 cycles to be solved. At these later
imulation times, composite grids often have about 3 million cells (plus ghost and covered cells), resulting in
bout 3 million unknown variables in each of the six linear systems that must be solved twice. For the given
onditions, a typical run may take easily about three months to run for this case. However, despite the simplified
hemical reaction model and the relatively low spatial resolution that were adopted, our numerical results capture
urprisingly well qualitatively important characteristics of the fluid dynamics such as the temperature and mixture
raction distributions, thus exhibiting, even in this more stringent example, the prediction capabilities of the adaptive
esh refinement in conjunction with the fast chemistry approach proposed.
Fig. 7 shows instantaneous temperature distribution and the adaptive mesh refinement in two cutting sections.

ig. 7(a) presents a cross section in flow direction (top view) with an adaptive mesh. Fig. 7(b) shows an enlarged
iew of the temperature with some turbulent structures. Fig. 8 shows a snapshot of, respectively, instantaneous
onserved scalar (a) and (c), and temperature distribution (b) and (d), in two instants of time. The comparison
etween two time steps shows the dynamics of turbulent structures.

We point out that the maximum temperature occurs where the conserved scalar assumes the stoichiometric value.
uel and oxidizer are represented by the value one and zero, respectively, of the conserved scalar. Both have the
ame value 298 K. The intermediate values of conserved scalar indicate the region where the mixing and reaction
ccurs.

Our instantaneous temperature distribution results shown in Figs. 8(b) and 8(d) capture the turbulent flame
ynamics and are in agreement with results presented by Ihme and Pitsch ([19], Fig. 2(a)), by Yang et al. ([41],

1 Serial code running on core 2 Quad 2.4 GHz processors, 16 Gb of RAM.
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Fig. 8. Turbulent diffusion flame in two time steps: instantaneous (a)–(c) conserved scalar, and (b)–(d) temperature distribution in x1 = 20d0.

ig. 4), and by Pitsch and Steiner ([29], Figs. 5–6) which, and we highlight that fact, were produced with more
omplex mechanism and parallel codes. These results indicate that our strategy may very well be suited to perform
imulations of certain turbulent flame dynamics, although this has to be investigated further.

. Concluding remarks

In this paper, we present an adaptive numerical methodology for simulating low-Mach number reacting flows.
he overall approach combines an adaptive mesh refinement technique with an IMEX time integration scheme, a
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projection method, and a fast chemistry approach. This combination extends the capabilities of our methodologies
introduced in previous works [9–11,14,26,30,36]. The numerical verification performed using the manufactured
solution strategy indicates that the numerical method has second-order convergence accuracy for problems with
smooth solutions. We illustrate the performance of the numerical method through simulations of diffusion flame
jets. For a laminar diffusion flame, the strategy used to model the fast chemistry presents good quantitative results
at a lower cost when compared to other more expensive approaches found in the literature. Performance tests reveal
that the adaptive feature of the current approach makes it about 150 times faster, initially, than the same approach on
uniform meshes for the reported problems, and about 5 times faster towards the end of the simulation. In the more
stringent example of a turbulent diffusion flame, our approach is capable of capturing some important fluid dynamic
characteristics such as temperature and conserved scalar distributions in time and space, performing surprisingly
well on regular hardware with a serial code.
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