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Abstract
Discrete (DTCs) and continuous time crystals (CTCs) are novel dynamical many-body states,
that are characterized by robust sel-sustained oscillations, emerging via spontaneous breaking
o discrete or continuous time translation symmetry. DTCs are periodically driven systems that
oscillate with a subharmonic o the external drive, while CTCs are continuously driven and
oscillate with a requency intrinsic to the system. Here, we explore a phase transition rom a
continuous time crystal to a discrete time crystal. A CTC with a characteristic oscillation
requency ωCTC is prepared in a continuously pumped atom-cavity system. Modulating the pump
intensity o the CTC with a requency ωdr close to 2ωCTC leads to robust locking o ωCTC to
ωdr2, and hence a DTC arises. This phase transition in a quantum many-body system is related
to subharmonic injection locking o non-linear mechanical and electronic oscillators or lasers.

Supplementary material or this article is available online
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1. Introduction

The conceptual idea o time crystals (TCs) was rst described
as a sel-sustaining oscillatory behavior in biological systems
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[1], and then established as a dynamical many-body state in
physical systems in [2, 3]. A dening eature o these states
is the spontaneous breaking o discrete or continuous time
translation symmetry, giving rise to robust oscillatory motion
in an extended region o their parameter space. Two dis-
tinct scenarios or the emergence o these states are as ol-
lows: Firstly, or closed systems, the continuous time trans-
lation symmetry (CTTS) can be explicitly broken by a peri-
odic external drive and the remaining discrete time translation
symmetry (DTTS) is spontaneously broken by an oscillatory
response o the system with a period longer than that o the
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drive. An ergodicity slowdown mechanism prevents the sys-
tem rom heating up to an innite temperature or long times
[4, 5]. This scenario is reerred to as a ‘discrete TC’ (DTC).
Secondly, a TC state can also arise or open systems coupled to
a bath. Similar to the DTC in closed systems, a periodic drive
triggers a subharmonic oscillatory motion o the system, res-
ulting in a dissipative DTC. The appropriately designed bath
can act as a sink or the entropy produced by the system. [6].
We note that, in contrast to closed systems, in open systems,
a TC can also emerge in the absence o periodic driving, res-
ulting in the spontaneous breaking o CTTS. This dynamical
state is reerred to as a ‘continuous TC’ (CTC) [7–9].
The theoretical conceptualization o TCs in the context o

many-body physics was ollowed by rapid experimental pro-
gress. DTCs in nearly closed systems have been realized in
arrays o trapped ions, nitrogen vacancy centers, and in a
mechanically kicked Bose–Einstein condensate (BEC) [10–
12]. Discrete dissipative TCs were demonstrated in a BEC o
neutral atoms in an optical cavity [13–16] and in an optical
microcavity lled with a Kerr medium [17]. Finally, continu-
ous dissipative TCs were, or example, realized in magnon
BECs [18], BECs o neutral atoms [19], in collections o spins
in a semi-conductor matrix [20], in photonic metamaterials
[21], or doped crystals [22].
Injection locking (IL) is a phenomenon, which can arise

i a nonlinear dissipative oscillator in a limit-cycle state [23],
that is driven externally with a driving requency ωdr. For su-
ciently strong driving, the oscillator locks to the external drive.
This locking can occur at the driving requency itsel, or, more
generally, at a rational ratio o the driving requency [24, 25].
A specic case is subharmonic IL, in which the phase-locking
occurs at an integer raction o the driving requency, i.e. ωdrn
with n ∈ {1,2,   }. We note that IL is a key phenomenon in
electronic circuits, laser systems, and biological systems, such
as the circadian rhythms o organisms [26] or the synchroniza-
tion o fashing o refies exposed to a periodically switching
torch [27]. In biological systems or mathematical science this
phenomenon is reerred to as entrainment [23].

2. Results

In this article, we demonstrate subharmonic IL in the con-
text o time crystals. Here, a limit cycle is provided by a CTC
produced in an atom-cavity system, oscillating at a requency
ωCTC. We drive the system with a perturbation with a re-
quencyωdr, which is close to 2ωCTC. As a result, the CTC locks
to the driving requency, perorming an oscillatory motion at
ωdr2, i.e. at a subharmonic requency. In the language o
time crystals, we realize a non-equilibrium phase transition
between a CTC and DTC. In the terminology o laser physics,
we establish subharmonic IL in a quantummany-body system.
Our setup is shown in gure 1(a). We start with a CTC pre-

pared in an atom-cavity system (c gure 1(a)) consisting o
a BEC located in a high-nesse optical cavity, pumped trans-
versally by an optical standing wave at constant intensity. As
reported in [19], this leads to robust sel-sustained oscillations
o the intra-cavity photon number NP(t), which establishes a

CTC. Its requencyωCTC can be associated with the emergence
o a limit cycle [8, 28–32]. As seen in gure 1(b), the oscilla-
tion o the CTC breaks the CTTS. The real and imaginary parts
o the Fourier spectrum o NP(t) at the dominant requency
ωCTC are plotted here or dierent experimental implement-
ations. The phase values o the Fourier spectra are randomly
distributed between 0 and 2π, conrming the expected spon-
taneous breaking o CTTS.
Next, we modulate the intensity o the pump eld (t) at

a requency ωdr close to 2ωCTC. The periodic drive breaks
the CTTS o the atom-cavity platorm such that the modu-
lated system only retains DTTS. Under the infuence o the
modulation, the system converts into a DTC (see [14]) with
an oscillation requency ωDTC approaching ωdr2 or su-
ciently strong driving. In gure 1(c), we analyze the Fourier
spectra at the emission requency ωDTC or dierent experi-
mental implementations. Only two almost equiprobable (49%
and 51%) phase values, approximately diering by π, are
observed, conrming spontaneous breaking o the DTTS (c
video in the supplementary inormation [33]). The modula-
tion, in addition to the observed requency pulling towards
subharmonic response, also gives rise to a line narrowing o
the DTC emission as presented in the histogram in gure 1(d).
This is also seen in gures 1(e) and (), showing that the oscil-
lations observed in NP(t) become more regular as the mod-
ulation sets in at t= 0 and the lietime o the TC extends to
more than a hundred driving cycles. The lie time in both
regimes, CTC and DTC, is mainly limited by atom loss rom
the trap and the associated decrease o the collective atom-light
coupling.
We note that the transition o the CTC to the DTC occurs

in two steps, as f 0 is increased rom zero to a value above the
critical value o the DTC phase. As we demonstrate in the sup-
plementary inormation (c gure 9), the intermediate regime
is a quasicrystalline state [18, 34], in which the limit cycle
dynamics o the CTC state transitions to a limit torus dynam-
ics. In the requency representation NP(ω), this transitions
maniests itsel as side-bands close to the dominant requency
peak ωCTC at requencies ωCTC± (ωCTC−ωdr2. When f 0 is
urther increased above a critical value o the DTC phase, the
dominant emission is shited towards ωdr2) and all side bands
disappear. Hence, a phase transition towards a DTC arises. We
nd this intermediate limit torus regime not to be detectable
experimentally, in the regime and in the experimental setup
used here, due to the nite lietime o the atoms, and other
imperections that limit the requency resolution.

3. Methods

The experimental set-up consists o a Bose–Einstein condens-
ate (BEC) o Na = 4× 104 87Rb atoms strongly coupled to a
single mode o an optical high-nesse cavity. The system is
pumped transversally, perpendicular to the cavity axis at a
wavelength o λp = 79159nm (c gure 1(a)). The pump light
is blue detuned with respect to the relevant atomic transition,
the D1-line o 87Rb at 79498nm. The eective pump-cavity
detuning is chosen to be negative or all experiments presented
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Figure 1. (a) Schematic sketch o the atom-cavity system psystem, which is periodically pumped by an optical standing wave potential
transverse to the cavity axis. (b) and (c) Distributions o the time phase intra-cavity photon number NP(t) oscillating with the main response
requencies ωCTC in the CTC case shown in (b) and ωDTC in the DTC case shown in (c). The error bars represent the phase uncertainty
within the discrete FFT resolution o 100 Hz. The uncertainty with regard to the radial dimension, i.e. the amplitude uncertainty, is
negligibly small. Note that the tilt o the two observed phase values by an angle o about π4 with respect to the modulation signal is due to
the retardation o the cavity eld dynamics, which is caused by the small cavity bandwidth.. (d) Histogram o the relative number o counts
o the response requency ωDTC in units o the driving requency ωdr = 2π× 225kHz or the non-modulated (f 0 = 0) case in purple (dark)
and the modulated case (f0 = 045) in pink (bright), respectively. Here, the same data is used as or (b) and (c), respectively. (e) Pump
protocol and () evolution o NP(t) or a typical experimental realization. Below t=−14Tdr (rst dashed vertical line), (t) is ramped up
while the systems is in the superradiant (SR) phase, indicated by a non-zero, non-oscillatory NP(t). Between t=−14Tdr and t= 0Tdr, (t)
reaches a critical value  and the CTC phase arises, displayed by an oscillatory NP(t). Above t= 0Tdr (second dashed vertical line),
modulation results in a DTC, indicated by an oscillatory NP(t) with a signicantly lower bandwidth than that o the CTC (c (d). The inset in
() shows a zoom o (t) and NP(t) or the time interval marked by the gray rectangle. The eective cavity pump detuning is
e =−2π × 82 kHz and the nal pump strength  = 20 Erec or all measurements presented in the main text.

here and is dened as e ≡ c − −, where c ≡ ωp −ωc is the
detuning between the pump eld requency ωp and the cavity
resonance requency ωc, and − = 1

2NaU0 denotes the collect-
ive light shit o the cavity resonance caused by the atomic
ensemble or the relevant let circular polarisation mode o
the cavity. For the chosen pump wavelength λp, the light shit
per photon is U0 = 2π× 07Hz. The cavity operates in the
recoil resolved regime, meaning that the eld decay rate o
the cavity κ= 2π× 32 kHz, which sets the time scale or the
intra-cavity light eld dynamics, is comparable to the recoil
requency ωrec = 2π × 37 kHz. The latter sets the time scale
or the density distribution o the BEC to adapt to changes
o the intra-cavity light eld [35, 36]. This unique regime
is a key prerequisite or the existence o the time crystalline
phases [13, 14, 19], which are the starting point o the work

presented here. The experimental cycle starts with preparing a
CTC. For this, we rst prepare the superradiant (SR) phase
[36–39] by linearly increasing the pump-eld strength (t).
When  exceeds a critical value, we observe a non-zero intra-
cavity photon number NP, indicating the ormation o the SR
phase, in which the atoms sel-organize to orm a density wave
that enables superradiant scattering o pump light into the cav-
ity mode. The phase transition to the SR phase goes along
with spontaneous breaking o a Z2 translation symmetry in
space [40]. Increasing (t) urther and holding it at a constant
value = , or appropriate settings o e and , causes the
system to develop periodic motion, corresponding to a CTC
[19]. Subsequently, the pump strength is modulated according
to (t) =  [1+ f0 cos(ωdrt)], with the mean pump strength ,
driving strength f 0, and requencyωdr. I the driving strength f 0
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is suciently large, the response requency ωDTC locks to the
rst subharmonic o ωdr and a DTC is realized (c gures 1(e)
and ()). Note that, in contrast to the DTC observed in [13],
here the system does not periodically switch back and orth
between the two density gratings associated with the two sym-
metry broken states o the SR phase but spontaneously chooses
one or the other.

4. Discussion

As a rst experiment, we identiy the optimal parameter val-
ues o f0 and ωdr where the IL o the CTC works most e-
ciently. We x the eective detuning e =−2π× 82kHz
and the nal pump strength  = 20Erec. For these para-
meters, we observed the strongest subharmonic response
while keeping f0 and ωdr xed (c gure 1 in the sup-
plementary inormation [33]). The protocol used or the
measurement presented in gure 2 is as ollows: We lin-
early increase the pump strength (t) to its desired nal
value  = 20Erec or xed e =−2π× 82kHz. This is ol-
lowed by a waiting time and a linear ramp-up o the driv-
ing strength f0, both with a duration o 05ms. Then, we
hold all the pump parameters constant, record NP(t) during
10 ms, and calculate the Fourier transorm NP(ω) o NP(t)
(using a Fast Fourier transorm method (FFT)). To quantiy
the degree o IL, we extract the subharmonic response S=
NP(ωdr2)Max{ωdr,f0}[NP(ωdr2)], which is the amplitude o
the single-sided spectrum at hal o the driving requency
NP(ωdr2), normalized to its maximal value observed across
the considered portion o the {ωdr, f0}-space.

In gure 2(a), we observe a large area showing a strong
subharmonic response S. For the optimal choice o e and 
(see supplementary inormation [33]), S is increasedmore than
ourold when compared to its value without modulation. The
maximal value o S arises or a driving requency ωdr close to
twice the CTC requency ωCTC, where ωCTC ≈ 2π × 11kHz
or the optimal choice o e and . The optimal driving
strength o about f0 = 045 exceeds the value predicted in our
simulations (c supplementary inormation [33] gure 6(a)),
which may be attributed to the limited experimental lietime
and the contact interaction o the BEC, which is not accoun-
ted or in the calculations. For increasing f 0, the synchroniza-
tion happens aster and is more robust in the sense that larger
values o the subharmonic response S are observed together
with an extension over longer time periods. Based upon the
observation o spontaneous breaking o DTTS (c gure 1(d))
and robustness o the subharmonic response against temporal
perturbations o all our pump and modulation parameters
(e,,ωdr, f0), we claim to observe a transition between a
CTC and a DTC (see supplementary inormation or details
[33]). We investigate this transition urther or a xed driving
requency ωdr = 2π× 225kHz. For each experimental real-
ization, we obtain the Fourier spectrum as described above,
but instead o considering its amplitude at ωdr2, we t a
Gaussian to extract the dominant response requency ωDTC

as the requency at the maximum o the Gaussian and its
corresponding amplitude. These quantities are plotted versus

Figure 2. (a) Relative subharmonic response S versus driving
strength f 0 and requency ωdr or xed eective detuning
e =−2π × 82 kHz and nal pump strength  = 20 Erec. To
obtain (a), we ramped the pump strength (t) to its nal value  or
xed e. Ater a 0.5 ms long hold time, the driving strength is
ramped to its desired value f0 or a selected driving requency ωdr
within 0.5 ms and subsequently held constant or 10 ms. The
parameter space is divided into 15 × 18 plaquettes and averaged
over 5 to 10 experimental realizations. The white cross indicates the
parameter values f0 = 045kHz and ωdr = 2π× 225kHz, which are
used or the measurements in gures 1(c)–(), 3 and 4. (b) Response
requency ωDTC in units o the driving requency ωdr, plotted versus
the driving strength f 0. ωDTC is extracted as the position o a
Gaussian t to the Fourier spectrum o the intra-cavity photon
number NP(t). (c) Relative amplitude o the main spectral
component at requency ωDTC, plotted versus f 0. The plots in
(b) and (c) correspond to the path marked in (a) by the gray dashed
line. The error bars show the standard deviation and hence represent
the shot-to-shot fuctuations.

the driving strength f0 in gures 2(b) and (c), respectively.
For increasing f 0, the response requency ωDTC approaches
the value ωdr2. Each data point is an average o around ten
experimental realizations and the error bars in gures 2(b) and
(c) indicate the standard deviation, representing shot-to-shot
fuctuations. These fuctuations are due to atom number vari-
ations in the BEC, originating rom a combination o inher-
ent quantum noise and technical instabilities. Interestingly, we
nd that or suciently strong driving, the emergence o the
DTC is accompanied by a strong suppression o the shot-to-
shot fuctuations o ωDTC (c gure 2(b)), while at the same
time, the relative amplitude o the dominant spectral compon-
ent at requency ωDTC increases by almost a actor o 5 (c
gure 2(c)).

To urther assess the eciency o the IL process with
respect to requency pulling and locking, we plot in gure 3
the response requency ωDTC, averaged over about ten experi-
mental realizations, against the driving strength f 0, using three
dierent modulation waveorms: sinusoidal (blue circles),
square wave (red squares), and sawtooth (green diamonds).
The protocol is otherwise the same as the one described in
the previous paragraph. For all three waveorms, ωDTC is
pulled towards ωdr2 or suciently strong driving strength
and we observe a plateauing o ωDTC above f0 ≈ 03. The
shot-to-shot fuctuations, given by the error bars, are seen to
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Figure 3. The blue markers show the response requency ωDTC in units o the driving requency ωdr plotted versus the driving strength f 0
or a sinusoidal modulation waveorm as used or the measurements presented in gures 1, 2 and 4. The error bars show the standard
deviation and hence represent the shot-to-shot fuctuations, which are strongly suppressed with increasing values o f 0. The red (square) and
green (diamond) markers show the cases o modulation with square wave or sawtooth waveorms, respectively. The experimental protocol is
the same as or the measurements in gures 2(b) and (c).

Figure 4. (a) Blue solid line: intra-cavity photon number NP(t) averaged over ve experimental realizations. Orange and gray markers:
N11Na, sum o the populations o the our momentum modes {py,pz}= {±1,±1}h̄k normalized to the total atom number Na. The dashed
orange line connects the data points to guide the eyes. (b)–() Averaged momentum spectra used to obtain the data points marked in (a) by
the symbols highlighted in black. We chose the same parameters as or the data presented in gure 1. Since the system spontaneously picks
one o the two possible phases o the DTC state, we rst extract the time phase as in gure 1(c) rom a Fourier spectrum and then post-select
realizations with similar phase values beore averaging. More details about the post-selection process are ound in the supplementary
inormation together with a video showing the time evolution o the momentum spectra. (g) Phases o the oscillations o NP(t). The error
bars show statistical errors or averaging over multiple realizations.

signicantly decrease as the response locks onto the subhar-
monic o the drive. Moreover, requency locking is reached
or smaller f0 when using a square wave or sinusoidal mod-
ulation when compared to a sawtooth modulation. This may
be explained as ollows: the modulation is implemented as
(t) =  [1+ f0 g(t)], where g(t) denotes one o the three wave-
orms oscillating between the maximal and minimal values 1
and −1. For this specication o f 0, the amplitude o the un-
damental harmonic contribution o the square, sinusoidal, and

sawtooth waveorms are {4π,1,2π}, respectively. Hence,
when compared to the sinusoidal waveorm, the square wave
and the sawtooth modulation should produce tighter or weaker
locking, respectively. For the square wave, however, the higher
harmonic components give rise to increased heating, which
reduces the atom-cavity coupling and hence acts to com-
pensate or the tighter locking.

So ar, we have restricted ourselves to obtaining inorma-
tion about the atom-cavity system by analyzing the light eld
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leaking out o the cavity, which serves as a non-destructive
monitor or the light-matter dynamics. However, we also have
direct access to the matter sector via momentum spectra meas-
ured ater a 25ms long ree expansion o the ensemble. This
time-o-fight (TOF) technique is destructive, and we need to
prepare a new matter sample every time a momentum spec-
trum is recorded. In the CTC phase, in each experimental
realization, the intra-cavity light eld and the corresponding
matter grating oscillate with a random time phase as a con-
sequence o CTTS breaking (c gure 1(b)). Hence, aver-
aging over multiple realizations, in order to improve signal-
to-noise, washes out the dynamical signatures o the observed
momentum distributions. In the DTC regime, only two time
phases, diering by π, emerge. These phases can be discrim-
inated by analyzing Fourier spectra according to gure 1(c),
such that post-selection allows or averaging momentum spec-
tra with the same phase value. With this, we directly observe
the dynamics o the atomic matter grating. In gure 4(a), the
time evolution o NP(t) is plotted as a solid blue line, and the
time evolution o the sum N11 o the populations o the our
momentum modes {py,pz}= {±1,±1}h̄k, normalized to the
total atom numberNa, is shown by orange and graymarkers. In
order to obtain N11Na, momentum spectra like those shown
in gures 4(b)–() are recorded, post-selected to only account
or similar time phase values, and averaged. We observe an
oscillation in the dynamics o N11Na at a requency similar to
that o the intra-cavity photon number but notably with a time
phase shited relative to the time phase o NP(t). This retard-
ation between the dynamics o the light eld and the matter
distribution is a key eature o our recoil resolved atom-cavity
system [41, 42] and is consistent with simulations using an
idealized model or the atom-cavity system (c supplement-
ary inormation). In gure 4(g), the phase o the oscillation o
NP(t) with respect to the phase o the drive is plotted versus
ωdr, which is tuned across the resonance ωdr = 2ωCTC. The
observed dissipation-induced change o the phase, when ωdr is
varied, is a characteristic signature o IL or entrainment. The
nearly linear decrease with a negative slope is reproduced by
the simulations in the supplementary inormation [33].

5. Conclusion

In conclusion, we have demonstrated dynamical control
o a phase transition between two time crystalline phases.
Taking the continuous time crystalline phase o a transvers-
ally pumped atom-cavity system as a starting point, we have
applied external driving at a requency o approximately twice
the requency o the continuous time crystal. For suciently
strong driving, the system locks to the external drive in a
subharmonic manner, resulting in a discrete time crystal. This
phenomenon establishes subharmonic IL o limit cycles o
a nonlinear dissipative oscillator in the context o many-
body systems. Thereore, we establish a non-trivial inter-
ace between classical non-linear dynamics and time crys-
tals, which suggests a vast range o dynamical phenomena
to be understood and established in time crystals and related
dynamical many-body states [43, 44].
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