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Abstract: Soil quality (SQ) pertains to the intricate and ongoing capacity of soil to function as a
thriving ecosystem that supports the growth of plants and animals. However, there is a limited
understanding of SQ assessment in mixed forest plantations. Therefore, we formulated and tested
the hypothesis that the inclusion of a nitrogen-fixing tree species (such as Acacia mangium) improves
SQ indicators in mixed treatments involving Eucalyptus trees. To evaluate the changes in SQ, we
conducted a field experiment that employed the Soil Management Assessment Framework (SMAF)
tool to analyze pure and mixed plantations of Eucalyptus grandis and A. mangium. Soil samples were
collected at a depth of 0–20 cm from different treatments, including pure E. grandis without nitrogen
fertilization (E), pure A. mangium (A), pure E. grandis with nitrogen fertilization (E + N), and mixed E.
grandis and A. mangium (E + A). Sampling took place at 27 and 39 months after planting. We selected
seven indicators of SQ: two biological indicators (soil microbial biomass carbon and β-glucosidase
enzyme activity), four chemical indicators (soil organic carbon, pH, available phosphorus, and
potassium), and one physical indicator (bulk density). By applying the SMAF tool, we determined
the SQ scores for each indicator. The results revealed that E + A stands exhibited higher SMAF scores
than pure stands, particularly in terms of pH (0.49 and 0.52 at 27 and 39 months, respectively) and
phosphorus levels (0.84 and 0.82, at 27 and 39 months), respectively. Forest management practices
and the sampling period had the most pronounced impact on biological and chemical indicators.
Notably, significant positive correlations were observed between SMAF scores and pH, available
phosphorus content, enzymes, soil organic carbon, and microbial biomass in both sampling periods.
This study effectively provided novel information that introducing a nitrogen-fixing tree species in
combination with eucalyptus trees enhances SQ, as indicated by the SMAF tool, which could reduce
the need for external inputs (e.g., mineral fertilizers) by the farmers. Future studies should analyze
the effects of A. mangium not only with other E. grandis varieties but also with other forestry essences.
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1. Introduction

Eucalyptus grandis (W. Hill ex Maiden) is a member of the Myrtaceae family, which is
a diverse botanical group comprising over 5000 species. This family includes significant
timber trees, aromatic spices, essential oils, and cultivated ornamental plants. In Brazil, E.
grandis plantations are economically important, as Brazil is the world’s largest eucalyptus
producer [1]. This plant species is versatile to different climates, soil types, and water
regimes [2]. However, E. grandis, under monocropping, may demand high rates of nutrient
application, mainly N and P [3]. Importantly, when mixed with N2-fixing tree species, E.
grandis can uptake N and P from soil organic matter mineralization [4,5], since the N2-fixing
plant species have been suggested to increase soil fertility and microbiome diversity [5,6].
In a previous study [5], Acacia mangium was proposed as a viable nitrogen-fixing plant
species for integration with E. grandis, aiming to enhance the soil microbiome responsible
for nutrient cycling. However, the soil quality (SQ) assessment in mixed forest plantations
is poorly documented.

Soil quality is the capacity of soil to perform critical functions that support not only
plant growth but also other soil-related ecosystem services [7–12]. The number of stud-
ies evaluating SQ has increased rapidly around the world, including from conceptual
e.g., [13–18], to applied studies in the most diverse soil management systems, such as annual
and semi-perennial crops [3,15,19–21], agroforestry [22,23], and forestry systems [24,25].

The assessment of SQ involves a comprehensive evaluation of soil indicators encom-
passing chemical, physical, and biological aspects [13,26]. Particularly, these indicators
should be selected for their sensitivity and responses to soil management and function-
ing [27]. In recent years, some methods and protocols have been developed worldwide to
assess SQ [7–10]. The Soil Management Assessment Framework (SMAF) was originally
introduced as a robust approach for assessing SQ in the United States of America [11],
and more recently, it has been applied worldwide [8,12,13]. The SMAF presents great
sensitivity and response to soil management, such as tillage systems or land use, and has
been reported to be a useful tool for detecting changes in SQ of tropical soils [14].

Several field experiments have demonstrated positive results of acacia trees inter-
cropped in eucalypt plantations [15]. However, no studies are using SMAF to assess SQ
under monocropping and intercropping forest systems, such as E. grandis and A. mangium
stands, mainly in tropical soils. Ref. [16] showed that mixed plantations increase C and
N concentrations in the labile fractions of soil organic matter (SOM). Also, ref. [5] inves-
tigated the impact of mixed eucalypt and acacia plantations on fungal communities and
demonstrated that mixed plantations significantly increased the number of fungal gen-
era. Thus, the mixed plantation can be an effective strategy to improve SQ, enhancing
microbial diversity and nutrient availability in the soil and promoting eucalypt growth
and development.

This study aimed to assess soil quality in mixed and pure E. grandis and A. mangium
plantations in Brazilian tropical soils. We utilized the Soil Management Assessment Frame-
work (SMAF) tool to explore the hypothesis that intercropping E. grandis with A. mangium
could enhance soil quality (SQ) compared to monocropping E. grandis. We conducted the
assessment at two time points, 27 and 39 months after establishing the tree plantations.
We compared two biological indicators (soil microbial biomass carbon and β-glucosidase
enzyme activity), four chemical indicators (soil organic carbon, pH, available phosphorus,
and potassium), and one physical indicator (bulk density) of SQ between monocropped E.
grandis and intercropped E. grandis with A. mangium.

2. Material and Methods
2.1. Location Description and Soil Sampling Strategy

This research was conducted at the Forest Science Experimental Station, which is
affiliated with the University of São Paulo, located in Itatinga, Brazil (latitude 23◦03′00′′ S,
longitude 48◦37′00′′ W, altitude 840 m). According to the Köppen climate classification
system, the study area falls within the Cfa climate category. The region experiences an
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average annual rainfall of around 1400 mm, with the majority (75%) occurring between
March and October [17]. The soil in the area is classified as a Ferralsol (FAO/WRB) with
a sandy texture, indicating good drainage and significant weathering. This type of soil is
commonly utilized for eucalyptus plantations in Brazil. Additional information regarding
the soil properties can be found in [16].

The experiment was initiated in December 2013 within an area previously occupied
by a 50-year-old Eucalyptus grandis plantation. Following harvest, a randomized complete
block design was implemented, consisting of four treatments: pure E. grandis without
nitrogen fertilization (E), pure A. mangium (A), pure E. grandis with nitrogen fertilization
(E + N), and mixed E. grandis and A. mangium (E + A). The experiment comprised four
blocks (replicates), totaling 16 plots. Each plot measured 36 m × 36 m, with a net area
of 24 m × 24 m to avoid edge effects. The trees were spaced 3 m × 3 m, and the mixed
plantation (E + A) was established in double rows with a plant ratio of 1:1 (Figure 1).
The A. mangium seedlings were inoculated with Rhizobium strains (BR3609T and BR6009),
and nitrogen fertilizer (E + N—ammonium sulfate) was applied in December 2013 and
2014, with doses of 10 and 90 kg ha−1 of nitrogen, respectively [16]. The N-fertilized
treatment followed standardized methods and utilized doses commonly used in commercial
eucalyptus plantations in Brazil [18,19]. The lower dose of nitrogen applied in 2013 aimed
to promote the initial growth of young trees while minimizing nitrogen losses. However, in
2014, a higher dose of nitrogen was applied to meet the increased nutrient requirements for
plant development [3,15]. A comprehensive list of the nutrients applied to all treatments
can be found in Table S1. The soil samples were collected at two different time points,
corresponding to 27 and 39 months after the establishment of the forest plantation. These
periods were chosen to capture the differences between the early stage (27 months) and
the peak stage (39 months) of litterfall, allowing for the detection of contrasting SQ scores.
The soil samples were collected at a depth of 0–20 cm using the Voronoi polygon strategy,
a widely accepted sampling technique for forest systems [18,19]. This strategy involves
measuring the half distance between each tree and its neighboring trees (refer to Figure 2).
Soil and litter samples were collected from six trees within each plot, resulting in a total
of six subsamples per plot. The samples were homogenized to create composite samples
(Figure 2). In total, 32 samples were analyzed (4 treatments × 4 blocks × 2 periods). For
biological analyses, a portion of the soil samples was sieved (2 mm) and stored at 4 ◦C until
further analysis. For physical and chemical analyses, another portion of the soil samples
was sieved (2 mm) and air dried to a constant weight (72 h).

2.2. Soil Quality Indicators and Assessment (SMAF Application)

A total of seven soil indicators were selected for this study based on their availability
in the SMAF spreadsheet and the presence of scoring curves [11,20,21]. These indicators
were chosen to form the minimum dataset and included three biological indicators: soil
organic carbon (SOC), microbial biomass carbon (MBC), and β-glucosidase enzyme activity
(BG); two chemical indicators: pH and the availability of phosphorus (P) and potassium
(K); and one physical indicator: soil bulk density (BD). The selection of these indicators
aligns with SMAF guidelines, which recommend including at least one indicator from each
soil component (chemical, physical, and biological) [20]. Moreover, the importance of these
SQ indicators has been consistently demonstrated in the literature [7,22]. Briefly, pH, P,
and K are commonly used to assess soil acidity and nutrient levels, providing insights
into the soil’s fertility status. Soil bulk density is a key indicator of various important
physical properties and processes, such as aeration, water infiltration, and root dynamics.
Soil organic carbon plays a fundamental role in multiple soil functions, including nutrient
cycling, soil structure, and serving as a carbon source for soil organisms. Microbial biomass
carbon (MBC) serves as a crucial indicator of microbial metabolic activities in the soil.
β-glucosidase enzymatic activity is involved in the mineralization of cellobiose and the
enzymatic breakdown of various polysaccharides [23]. Both MBC and BG are closely
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associated with the carbon cycle and soil biota, making them well-known indicators of SQ
due to their relationship with organic matter, plant nutrition, and microbial processes [24].
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Figure 1. At 27 and 39 months after planting, soil samples were collected from the mixed Eucalyptus
grandis and Acacia mangium plantation, which had a spacing of 3 m × 3 m and a 1:1 proportion of
the two tree species. (a) represents the 27-month sampling period, and (b) represents the 39-month
sampling period. In (c), a visual representation is provided, showing both pure and intercropped
plots, along with the sampling strategy utilizing the Voronoi polygon methodology. The numbers
from 1 to 6 indicate the selected trees from which soil samples were obtained.
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Figure 2. In (A), a schematic representation of the soil and litter grids used for sampling is presented.
The total plot area measures 36 m × 36 m, with the usable plot area being 24 m × 24 m. The spacing
between plants is 3 m × 3 m. The numbers from 1 to 6 indicate the selected trees from which soil
samples were collected, while “X” represents the specific collection points within each tree. In (B), the
“R” denotes the reference tree, and the six rectangles illustrate the dimensions of each sampled point.

2.3. Soil Characterization

Soil pH was determined using a water-to-soil ratio of 1:2.5, while phosphorus (P) and
potassium (K) levels were assessed through ion exchange resin [25]. Total soil nitrogen
was analyzed using the Kjeldahl method. Soil bulk density (BD) was analyzed using
undisturbed soil samples collected with metallic cylinders (100 cm3). The results were
obtained by dividing the dry mass of the soil by the volume of the cylinder. Soil organic
carbon (SOC) was measured using dry combustion on an elemental analyzer (with a furnace
operating at 1350 ◦C in pure O2) (LECO CN-2000). Microbial biomass carbon (MBC) was
estimated using the fumigation–extraction method [26,27].

The activity of β-glucosidase (EC 3.2.1.21), urease (EC 3.5.1.5), and acid phosphatase
(EC 3.1.3.2) enzymes was determined according to the method described in [28]. These
biological properties play a vital role in nutrient biogeochemical cycles, soil aggregation,
and the availability of carbon sources for microbial metabolism. They have a significant
impact on microbial activity and functions in the soil and are considered sensitive indicators
for detecting changes in SQ [28].

The analysis of the functional gene related to N2-fixation (nif H) was conducted using
the StepOne™ Real-Time PCR System machine. The SYBR Green PCR Master Mix (2×) flu-
orescent reagent (10 µL) (Applied BiosSystems®, Waltham, MA, USA), BSA (Bovine Serum
Albumin) (0.5 µL, 20 mg mL−1), DNA template (1 µL), and the primers FGHP19/POLR
(1.6 µM) were used [29,30]. Standard curves were generated by performing ten-fold serial
dilutions of plasmids containing the target gene product (insert) following the guidelines
of the pGEM-T Easy Kit (Promega®, Madison, WI, USA). The amplification efficiency (E)
was calculated using the equation: E = [10(−1/slope) − 1]. The thermal cycle program
consisted of an initial step at 95 ◦C for 10 min, followed by 39 cycles of 94 ◦C for 60 s, 55 ◦C
for 2 s, and 72 ◦C for 60 s.

Total DNA was extracted from 0.4 g of soil using the MoBio Power Soil DNA Isolation
Kit (MoBio Laboratories, Carlsbad, CA, USA), according to the manufacturer’s instruc-
tions. The DNA product was quantified using the Qubit dsDNA HS Assay Kit (Thermo
Fisher Scientific®, Waltham, MA, USA). For the 16S rRNA library preparation, the 16S
metagenomics sequencing library preparation procedures (Illumina®, San Diego, CA, USA)
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targeting the V4 region were followed. The KAPA 2x HiFi HotStart ReadyMix (KAPA
Biosystems, Wilmington, MA, USA) and AM-Pure XP beads Kit were used for PCR reac-
tions and purification, respectively. The first PCR reaction utilized the primers 515F/806R
(5 µL) with Illumina® index and sequencing adapters [31]. Sequencing of the 16S rRNA
was performed on the MiSeq sequencing platform (Illumina®, San Diego, CA, USA) using
the V3 kit (600 cycles) and the paired-end sequencing strategy (2 × 250 bp).

The FASTQ reads were merged, and p”outred-end sequences underwent quality
filtering, while chimeric sequences were identified and removed. High-quality sequences
were utilized to construct operational taxonomic units outU) tables based on a 97% sequence
similarity using the Sumaclust methodology. Bacterial diversity was calculated using the
Shannon diversity index. The analyses were conducted using the Quantitative Insights into
Microbial Ecology software (QIIME, v. 1.9) [32,33].

2.4. SMAF Application

The SQ indicators were scored by transforming the average values into a range be-
tween 0 and 1 (0 to 100%) using established algorithms [11,14,20,21]. These algorithms
considered various factors such as soil organic carbon (SOC), soil texture, climate, slope
(%), location, mineralogy, weathering class, forest system, sampling period, and the influ-
ence of analytical methodologies on different threshold values [11,14]. In this study, the
organic matter class was assigned a value of 1, indicating high organic matter content, for
all treatments. The texture factor was assigned a value of 1, indicating low clay content
(sand or sandy loam texture) for all treatments, as the experimental area has a low clay
content (<8–10%). The climate factor was assigned a value of 1, indicating a mean annual
precipitation of ≥550 mm, which is the case for the Itatinga municipality where the study
was conducted [17]. The sampling was carried out during the fall season, and thus the
season factor was set to 3 (fall) for all treatments. The mineralogy factor was assigned
a value of 3, indicating 1:1 clay, Fe2+, and Al3+ oxides, while the slope and weathering
factors were assigned values of 1 (2–5% slope) and 2 (high weathering), respectively. The
extractable phosphorus (P) was measured using the resin methodology (Class 5). New
“crop” factors, which influence the P and pH scores, were incorporated into the SMAF
spreadsheet to account for eucalyptus trees. Phosphorus and pH thresholds were set up
according to [34] (pp. 427) and [35], of which the optimum P and pH values were 5 mg
dm−3 and 5.5, respectively. We used the SMAF scoring curve for potassium (K) originally
developed by [20] and adapted to be in line with K recommendation classes used in São
Paulo state (Brazil), which is the location of the experiment [36]. The interpretation classes
for nutrients (P and K) are based on extensive experimentation. Finally, the scores for the
soils physical, chemical, and biological indicators were used to calculate a SQ index (SQI)
using the weighted additive methodology (Equation (1)):

SQI =
n

∑
i=1

SiWi (1)

In Equation (1), Si represents the score of each soil indicator, and Wi represents
the corresponding weighted value. The soil indicators were weighted based on their
classification into chemical indicators (pH, P, and K), physical indicator (bulk density), and
biological indicators (SOC, MBC, and BG). Each group of indicators (chemical, physical,
and biological) was assigned an equal weight of 33.33% in the calculation of the final SQ
index [14].

2.5. Statistical Analyses

The data were analyzed using a double factorial design, considering the factors of
treatments and the sampling period, within a randomized block model. Raw data were
subjected to Nemenyi multiple comparison test. A Principal Component Analysis (PCA)
was conducted to explore the correlations between SQ scores and the analyzed soil prop-
erties across different treatments. Spearman’s correlation was employed to examine the
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relationships between SMAF-based SQ scores and the soils physical, chemical, and biologi-
cal indicators. In addition to the SQ indicators included in SMAF, other soil properties such
as the abundance of the nif H gene, urease and acid phosphatase enzyme activities, bacte-
rial diversity, and total soil-nitrogen content were also considered for correlation analysis
(see Supplementary Table S2). Analyses and graphs were prepared using R software (R
4.3.1) [37], using “agricolae (v. 1.3-5)” [38], “gplots (v. 3.1.1)” [39] and “RColorBrewer (v.
1.1-2)” [40] packages, and multivariate tests were performed on Canoco® software (v.4.5).

3. Results
3.1. Soil Quality Indicators in Pure and Intercropped Eucalyptus Plantations

The values of soil pH were acidic (nearly to 4–5) and showed no differences between
treatments or sampling periods (27 or 39 months) (Table 1). SOC contents were lower in
E + N (3.57 and 2.84%) than E + A (4.38 and 4.55%) at 27 and 39 months after plantation,
respectively (p < 0.05). MBC was higher in A (815.97 mg kg−1) and E + A (839.83 mg kg−1),
than pure treatments, specifically at 27 months after plantation (p < 0.05). Available P
was higher in both A and E + A than pure eucalyptus, independently of the sampling
period. Bulk soil density was lower in A (1.16 Mg m−3) and E + A (1.04 Mg m−3) than pure
treatments, mainly at 39 months after plantation (p < 0.05). β-glucosidase showed generally
no significant differences between treatments or sampling periods, except for A treatment,
which presented higher BG activity at 27 months than other treatments. Available K were
higher in E + A than E at 27 and 39 months after planting, respectively. In general, K
contents were higher at 39 months after planting, independently of treatments (Table 1).
Specifically, E + A showed a higher K content at 27 months (205.28 cmolc kg−1) after
plantations, although this difference was not found at 39 months, when E showed the
lowest K content.

Table 1. Soil quality indicators (0–20 cm soil layer) under pure and mixed eucalypt plantations
at 27 and 39 months. 1 Pure eucalypt plantation without (E) and with N-fertilization (E + N),
pure acacia (A) and mixed plantation between eucalypt and acacia (E + A). 2 Soil organic car-
bon C (SOC (%)), microbial biomass C (MBC (mg kg−1)), soil pH, available phosphorus (P-resin
(mg kg−1)), bulk soil density (BD (Mg m−3)), β-glucosidase activity (BG (mg PNF kg−1 h−1)), and
potassium (K (cmolc kg−1)). * For a given parameter, upper-case letters compared treatments within
each period and lower-case letters compared sampling periods within each treatment (p < 0.05).
ns = non-significant effect.

Treatments 1 Sampling Period
Soil Quality Indicators (Mean Values) 2

SOC MBC pH P BD BG K

E

27 months

4.17 Aa* 478 Ba 4.0 ns 3.44 Bb 1.21 Aa 81.93 Aa 195 Bb

E + N 3.57 Ba 562 Ba 3.6 ns 3.40 Bb 1.21 Aa 83.73 Aa 185 Bb

A 4.46 Aa 815 Aa 4.1 ns 5.70 Ab 1.16 Ba 87.31 Aa 185 Bb

E + A 4.38 Aa 839 Aa 4.3 ns 5.90 Ab 1.05 Ba 92.66 Aa 205 Ab

E

39 months

2.75 Bb 475 Aa 3.8 ns 2.40 Bb 1.21 Aa 74.44 Aa 312 Ba

E + N 2.84 Bb 477 Aa 3.7 ns 3.30 Bb 1.21 Aa 76.74 Aa 351 Aa

A 2.93 Bb 617 Aa 4.2 ns 5.80 Aa 1.16 Ba 74.24 Ab 351 Aa

E + A 4.45 Aa 667 Aa 4.3 ns 6.30 Aa 1.04 Ba 81.41 Aa 351 Aa

The average of the additional SQ indicators (not contemplated by SMAF algorithms)
are presented in Table S2. Briefly, the abundance of the nif H gene was higher in A
(7.48 copies g soil−1) and E + A (7.34 copies g soil−1) treatment, mainly at 27 months
after plantation (p < 0.05). At 39 months, treatment A showed a higher abundance of the
nif H gene than E and E + A that did not significantly differ. Interestingly, E + N showed
a lower nif H expression than E + A and A in both 27 and 39 months. The activity of
urease, acid phosphatase, and bacterial diversity was higher in E and E + N at both 27
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and 39 months after plantations. Total soil-nitrogen was lower in E + N at 27 months
(1.60 g kg−1) after plantation than E + A at 39 months (1.31 g kg−1) (p < 0.05).

3.2. Soil Quality Indicators Scores

The pH, P, and BG scores were significantly influenced by the treatments (Table 2).
Thus, the highest pH scores were found in E + A, at 27 months (0.49), and in A (0.46) and
E + A (0.52) at 39 months (p < 0.05). The E + N treatment showed the lowest pH scores at
27 months but showed no differences between the E + N and E scores that were found at
39 months. Interestingly, A (0.85 and 0.88) and E + A (0.84 and 0.82) presented the highest
P scores, in both periods, respectively (p < 0.05). Also, BG presented higher scores in E + A
(0.93 and 0.88), independently of the sampling period (p < 0.05). In contrast, no differences
were found SOC, MBC, BD, and K scores between treatments or sampling periods, with all
treatments showing maximum SQ scores.

Table 2. SMAF scores (0–20 cm soil layer) under pure and mixed eucalypt plantations at 27 and
39 months after planting. 1 Pure eucalypt plantation without (E) and with N-fertilization (E + N),
pure acacia (A) and mixed plantation between eucalypt and acacia (E + A). 2 Soil organic carbon
C (SOC), microbial biomass C (MBC), soil pH, available phosphorus (P-resin), bulk soil density
(BD), β-glucosidase activity (BG), and potassium (K). * For a given parameter, upper-case letters
compared treatments within each period and lower-case letters compared sampling periods within
each treatment (p < 0.05). ns = non-significant effect.

Treatments 1 Sampling Period
SMAF Scores (Mean Values) 2

SOC MBC pH P BD BG K

E

27 months

1 ns* 1 ns 0.34 Ba 0.55 Ba 0.99 ns 0.89 Ba 1 ns

E + N 1 ns 1 ns 0.17 Ca 0.49 Ba 0.99 ns 0.90 Ba 1 ns

A 1 ns 1 ns 0.39 Bb 0.85 Aa 0.99 ns 0.92 Aa 1 ns

E + A 1 ns 1 ns 0.49 Aa 0.84 Aa 0.99 ns 0.93 Aa 1 ns

E

39 months

1 ns 1 ns 0.23 Bb 0.31 Bb 0.99 ns 0.82 Bb 1 ns

E + N 1 ns 1 ns 0.21 Ba 0.48 Ba 0.99 ns 0.84 Bb 1 ns

A 1 ns 1 ns 0.46 Aa 0.88 Aa 0.99 ns 0.80 Bb 1 ns

E + A 1 ns 1 ns 0.52 Aa 0.82 Aa 0.99 ns 0.88 Ab 1 ns

3.3. Soil Quality Indicators Indexes

Overall, the SQ scores were higher for A and E + A than E and E+N, at both periods,
with values higher than 0.9 (p < 0.05). However, only chemical indicators presented signif-
icant differences in SQ scores. In this case, A and E + A treatments presented higher SQ
scores for chemical attributes at both 27 and 39 months after plantation. In contrast, no
changes were present in the physical and biological SQ scores of the treatments, indepen-
dently of the sample period (Figure 3).

3.4. Principal Component Analysis and Spearman Ranking Correlation Tests

The PCA explained 72.59% and 73.41% of the total variation at 27 and 39 months,
respectively. PCA demonstrated that during both periods (27 and 39 months after planting),
data from A and E + A treatments were positively correlated with SMAF scores. How-
ever, the physical component of the SMAF scores presented no significant response to
differentiate the treatments (Figure 4a,b).
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Figure 3. The soil quality index (SQI) scores based on the Soil Management Assessment Framework
(SMAF) for pure and mixed eucalypt plantations at 27 and 39 months (in the 0–20 cm layer). The
treatments included pure eucalypt plantation without nitrogen fertilization (E), pure eucalypt planta-
tion with nitrogen fertilization (E + N), pure acacia plantation (A), and mixed plantation of eucalypt
and acacia (E + A). Upper-case letters compared SQI between treatments within each sampling
periods (p < 0.05); lower-case letters compared treatments within each sampling periods (p < 0.05) for
chemical component. Ns indicate groups with no significant differences.
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The Spearman ranking correlation test showed the main soil indicators positively
or negatively influencing the physical, chemical, biological, and SQI indexes (Figure 5).
In general, the SQI score correlated positively with all soil indicators, except with bulk
soil density and urease at both 27 and 39 months after plantation (p < 0.05). SOC, MBC,
available P, pH, β-glucosidase, nif H abundance, acid phosphatase, bacterial diversity, and
total soil-N contents showed a positive correlation with SQI scores in both 27 and 39 months
(p < 0.05). BD and urease correlated negatively with the physical and chemical properties
and SQI scores, mainly at 39 months (p < 0.05).
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4. Discussion

This study contributes to the knowledge concerning the enhancement of soil qual-
ity (SQ) indicators in mixed eucalyptus plantations (E + A) through the application of
Soil Management Assessment Framework (SMAF) scores, with a particular focus on the
chemical components. The pH, BG, and P were the most important properties to improve
SQ scores in E. grandis intercropped with A. mangium. P and pH are chemical attributes
that significantly change soil microbial community in forest systems [5]. Also, BG could
indicate a more efficient cycling of organic matter, a pivotal service in forest ecosystem to
plant nutrition.

The contribution of P to Increase the SQ in A and E + A treatments is important
since this element is essential to plants, mainly to Eucalyptus [41], being part of several
key macromolecules (e.g., DNA, ATP among others) and necessary to plant growth [41].
Interestingly, P presents low availability in soils from tropical forests [5], which indicates
the importance of intercropping E. grandis with A. mangium. In addition, a recent report
demonstrated that P cycling is stimulated in mixed forest plantations and, more importantly,
mainly due to the presence of active microbial communities that acts on litter layer and soil
organic fractions [5]. In our study, bacterial diversity showed a positive correlation with
SQ, biological, and chemical scores (Figure 4). Also, P content actively participates in the
biological nitrogen fixation, mainly during N2 breakdown by the nitrogenase enzyme [5].
In addition to bacteria, another important microbial group in mixed eucalyptus plantations
is the fungi community, which improves P availability to the associated tree [5]. Ref. [42]
analyzed the dynamics of arbuscular mycorrhizal fungi (AMF) in these two tree species
in both pure and mixed plantations during the first 20 months after planting in Itatinga,
São Paulo state, Brazil. These authors reported an increase in AMF root colonization of E.
grandis when intercropped with A. mangium as well as an increase in the activity of acid and
alkaline phosphatase in the presence of the leguminous tree. More importantly, it could
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partially explain the increased P concentrations in mixed plantations, since phosphatases
are closely related to the mineralization of P-organic compounds [42]. Thus, these findings
reinforce the need for new SMAF algorithms to contemplate other biological indicators due
to their fast responses and connection with many important ecosystem services [11].

Soil properties from A and E + A were positively related with SQ, biological, and
chemical indicators, while E and E + N were positively related to physical components
(Figure 4). These results were expected, since E and E + N treatments presented the lowest
SMAF scores for chemical properties (Figure 1c). Also, as reported by [16], eucalyptus
plantations generally present low-quality litter (high C/N ratio, ~60 a 70/1), which may
contribute to lower nutrient contents, mainly when compared with mixed plantations [16].
However, urease was higher in pure eucalyptus plantations as compared to mixed systems.
This increased enzyme activity may be linked to a low-quality litter with a high carbon-
to-nitrogen ratio of eucalypt litter [16]. The presence of such litter might trigger a higher
production of enzymes, promoting more efficient material cycling in the soil [16]. Thus,
urease activity seems to be an important SQ indicator for eucalyptus plantations, which
can be further studied, mainly relating their relationship with N-pools [16].

Spearman’s analysis showed the SQ presenting a positive correlation with important
soil indicators, such as SOC and MBC. A. mangium is a known N2-fixing tree that is
associated with bacterial communities in the rhizosphere which play an important role
in biological nitrogen fixation [4], depositing nutrient-rich litter into the soil [16], and
increasing soil organic matter [6]. Thus, increased soil organic matter and microbial
biomass can boost SQ in mixed eucalypt and acacia plantations. SOC supports several
ecosystem services, and mixed plantations represent a model of an efficient system to
promote C sequestration [43].

Figure 5 illustrates the positive correlation between β-glucosidase (BG) activity and
the biological and overall SQ scores at both sampling times. The E + A treatment exhibited
the highest BG activity scores, indicating an enhanced cycling of organic matter [44,45].
BG activity is widely regarded as a valuable SQ indicator due to its ability to provide a
rapid assessment of changes in organic matter dynamics [44,45]. The potential activity
of BG is influenced not only by the availability of carbon substrates [46] but also by their
quality, particularly in terms of plant carbon-to-nitrogen (C/N) ratios. The C/N ratio
is a well-established indicator used to evaluate the extent of soil organic carbon (SOC)
decomposition and serves as a sensitive measure for assessing SQ in forest ecosystems. The
plant residues from Acacia mangium (e.g., detritus, rhizodeposition) have a lower C/N ratio
(C/N~34) than eucalyptus (C/N~58), which favors BG activity [16]. It provides evidence of
the advantage of E + A systems over the E. grandis monocropping system (E) in providing
better SQ scores, since greater BG activity results in faster organic matter decomposition
and nutrient releasing for microbial communities in the topsoil [47].

Soil bulk density showed only negative correlations, mainly after 39 months of planting
(Figure 5). BD is an indicator of soil compaction, in which high values of BD are associated
with reduced macroporosity that causes restrictions to root development, air diffusion,
and water movement through the soil [48], thereby affecting microbial metabolism [27].
Although treatments including Acacia presented a reduced BD, the SMAF scores revealed
that the soil was performing its physical function properly, regardless of tree species. Likely,
the favorable physical soil conditions are associated with the absence of machinery traffic
for harvesting, since it is the main driver of physical soil degradation in commercial forest
plantations [49,50].

There are different reports demonstrating N increasing by Acacia through biological N2
fixation [4,51]. Our study showed a positive correlation between nif H gene abundance and
biological score, and SQ score (Figure 3). The nif H gene encodes for the nitrogenase enzyme,
a catalytic protein complex responsible for the reduction in atmospheric N2 into NH3 [52].
Thus, accessing the abundance of functional genes related to biological N2 fixation can be
a sensitive parameter to identify changes in SQ under mixed forest plantations. We also
found a close correlation between total soil N and bacterial diversity with biological and SQ
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scores in both 27 and 39 months after planting. Thus, increased nif H abundance may result
in higher N content in the soil, as detected by [16,53] and, consequently, could explain
the positive correlation between total N and SQ scores (Figure 5). Recently, a positive
correlation between total soil-N with bacterial diversity and nif H in mixed eucalyptus
and acacia plantations was found [53], reinforcing the importance of further studies to
disentangle these relationships regarding SQ.

Acid phosphatase and P presented positive correlations with chemical, biological,
and SQ scores in both 27 and 39 months (Figure 3). Acid phosphatase plays an important
function in P mineralization since it hydrolyses organic P compounds into phosphomo-
noesters and mineralizes these compounds into orthophosphate, boosting P dynamics in
the soil [54]. Thus, in addition to C-cycles enzymes (i.e., β-glucosidase), the P-acquiring
enzyme can also indicate important changes in SQ under mixed forest plantations between
eucalypts and acacia [47,55].

This study highlights several benefits of diversifying eucalypt forest plantations
through the intercropping of A. mangium in Brazil. This approach is shown to enhance
SQ, but the feasibility of implementing these strategies in real-world scenarios depends
on various factors, including local soil and climate conditions, logistical challenges, and
effective land management practices [56]. Further research and practical trials are needed
to refine these strategies and develop best practices for their successful implementation in
different contexts.

5. Conclusions

The diversification of eucalypt forest plantation (E. grandis) occurs by intercropping
with Acacia mangium-enhanced SQ compared to eucalypt monocropping. The mixed
Eucalyptus grandis and Acacia mangium plantations can be a strategy for tropical countries
(such as Brazil) reconciling the reforestation of degraded areas to produce wood/energy
with the provision of other ecosystem services (e.g., nutrient cycling, C sequestration, and
biodiversity). Soil chemical indicators (pH and P) were the main factors of SQ amelioration
detected by SMAF in this short-term assessment. Despite that, the SMAF-based SQ was
well correlated with other key biological indicators (e.g., BG, MBC, nif H, bacterial diversity,
and acid phosphatase). It suggests that SQ (calculated with more user-accessible indicators)
can also reflect the changes in highly sensitive biological indicators, which are crucial to
understanding specific processes and functions in the soil but are still less accessible in
routine lab protocols. Nevertheless, we encourage further efforts to develop new scoring
curves for other key soil indicators to be included in SMAF and refine current algorithms
with data from tropical soils. This study provides insights into the initial stages of forestry
development, spanning 27 and 39 months. Future research could explore whether a mature
system (or multiple rotations in the same soil) would alter more SQ indicators and enhance
the sensitivity of the SMAF tool.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su16062534/s1, Table S1: Soil correctives used in the E. grandis
pure treatments (E and E+N), (A) A. mangium and (E + A) mixed plantation between E. grandis and
A. mangium. Table S2: Mean values of the additional soil properties for the 0–20 cm soil layer under
pure and mixed eucalypt plantations at 27 and 39 months after planting.
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