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Abstract

Disentangling the effect of initial conditions and medium properties is an open question in the field of relativistic heavy-
ion collisions. We argue that, while one can study the impact of initial inhomogeneities by varying their size, it is
important to maintain the global properties fixed. We present a method to do this. We show that many observables
are insensitive to the the hot spot sizes, including integrated vn, scaled distributions of vn, symmetric cumulants, event-
plane correlations, and differential vn(pT ). We find however that the factorization breaking ratio rn and sub-leading
component in a Principal Component Analysis are more sensitive to the initial granularity and can be used to probe
short-scale features of the initial density.
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1. Objective

Relativistic viscous hydrodynamic models have been successful in describing dynamics of the Quark
Gluon Plasma within in the context of heavy-ion collisions. For these models, initial conditions that describe
the brief far-from-equilibrium state immediately after the collisions are needed and heavily influence the
final flow harmonics measured in experiments. Depending on the underlying physical assumptions of these
initial conditions, both the geometrical large scale structure quantified through eccentricities and the small
scale structure known as “hot spots” may differ. In this work, we study the influence that the size of these
hot spots have on measured observables while maintaining the eccentricities approximately constant, further
details can be found in [1].

2. Method: smoothing of initial conditions

Small scale structure is systematically smoothed out using a cubic spline filter, W, where the transverse
energy density, ε, at any point in space is determined through a weighted sum of energy density values at �rα
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around it in the transverse plane:

ε(τ0,�r; λ) =
N∑
α=1

ε(τ0, �rα)W
( |�r − �rα|
λ

; λ
)

(1)

A cubic spline ensures that its nearest neighbors contribute the most (i.e. W peaks at �r − �rα = 0) and that
no contributions are considered beyond a distance of 2λ. Additionally,

∫
W

( |�r|
λ

; λ
)

d�r = 1 to ensure that
the integral of ε(τ0,�r; λ) is not modified by changes in λ. Increasing λ consistently smooths out small scale
structure within initial conditions [2], as shown in Figure 1.

Fig. 1. Initial energy density at midrapidity for a Pb-Pb collision at
√

sNN = 2.76 TeV without modification (left) and with a cubic
spline filter using λ=0.3 and 1 fm for NEXUS initial conditions (top) and MCKLN initial conditions (bottom) [1].

In order to quantify the effect of the coarse-graining, we decompose the initial energy density in a way
that is ordered according to length scale [3]. The generating function associated to the Fourier transform of
ε(τ0,�r; λ) can be expanded as a power series in transformed momenta and a Fourier series. The resulting
coefficients are the cumulants Wn,m where n identifies the rotational mode and m the order of the Taylor series
around k=0. The standard eccentricity, then, is the dimensionless ratio of the lowest cumulant Wn,n (which
contains information only about the largest-scale global structure) by 〈rn〉. We found that the Wn,n’s are
unaffected by smoothing out λ, while higher-order cumulants Wn,m more strongly depend on the smoothing
parameter λ, with increasing sensitivity for larger m, as expected. However the smoothing process does
have a small effect on 〈rn〉 such that the magnitude of eccentricities decrease. Thus, any observables whose
effect can be explained by this decrease in the eccentricities is not sensitive to the magnitude of small
scale structure encoded through the Wn,m’s (m > n) but rather on the large scale structure quantified by
the magnitude of the eccentricities. Thus, if quantities that are rescaled by their eccentricities are affected
beyond what is probable just from statistical uncertainty, this can be an indication that there is a dependence
on the coarse graining of small scale structure. In [1] we checked that both the eccentricities and their scaled
event-by-event distributions are not significantly affected by the small scale λ.

3. Results for observables

Here we used the hydrodynamic models NeXSPheRIO [4] with NEXUS initial conditions [5] and v-
USPhydro [6, 7] coupled to MC-KLN initial conditions [8].

It is well know that for n = 2, 3 that there is roughly linear scaling between vn ∝ εn on an event-by-event
basis, however, non-linear scaling can occur in peripheral collisions [9, 10, 11]. Thus, we compared the
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event-by-event distributions of flow harmonics and their dependence on λ but we found no strong depen-
dence across a variety of centralities.

One could argue that the vn distributions are only dependent on a single flow harmonic and mixed
harmonic correlations may be more sensitive to small scale structure, as first measured in [12, 13]. Here we
used the same methodology including multiplicity weighing and centrality rebinning as discussed in [14].
While there is not always linear scaling between symmetric cumulants and their eccentricities, we found
an insensitivity to λ for various normalized symmetric cumulants using both NeXus and MC-KLN initial
conditions. Similarly, we found that event plane correlations (as first measured by ATLAS in [15]) also do
not exhibit a sensitivity to λ. This is, however, unsurprising since a connection can be derived between the
symmetric cumulants and the event plane correlations [16].

Because we did not find clear evidence of a sensitivity to λ = 0.3 − 1 fm in pT integrated observables of
all charged particles, we instead turn to more differential quantities. Previous work compared the spectra of
coarse grained UrQMD and MCKLN initial conditions in [17, 2] and found little effect for coarse graining
less than 1 fm. Additionally in [17, 2, 18] the differential flow harmonics vn(pT )’s were studied that also did
not depend strongly on coarse graining.

An alternative is to instead look at the factorization breaking [19] that utilizes the information of the
Fourier coefficients of the event-averaged pair correlations VnΔ(p1, p2) defined as

rn(p1, p2) =
VnΔ(p1, p2)√

VnΔ(p1, p1)VnΔ(p2, p2)
. (2)

where VnΔ(p1, p2) denotes the Fourier coefficients of the event-averaged pair distribution with respect to
relative azimuthal angle Δφ. The factorization breaking was measured by CMS [20] and ALICE [21]. In a
previous paper [22] it was shown that rn is sensitive to coarse graining, although other considerations such
as shear viscosity in ultra central collisions [23] and bulk viscosity and hadronic rescattering are discussed
in [24].

Our results for the factorization breaking from NEXUS initial conditions are shown in Fig. 2. Note that
the slight decrease in the eccentricities from λ smoothing should approximately cancel out in Eq. (2), so the
effects is, indeed, from small scale structure. Thus, one can say with confidence that there is up to ∼ 15%
effect of small scale structure in the initial conditions on the factorization breaking. Similar observations
hold for the MC-KLN initial conditions [1].

Fig. 2. Flow factorization ratio for NeXus with a range of λ’s in 20-25% centrality and 2.5 GeV < pb
T < 3.0 GeV [1].

As an additional check, we carried out a Principal Component Analysis [25]. Not surprisingly, we found
that the leading principal flow vector is almost independent of the smoothing length whereas the subleading
principal flow vector does demonstrate some dependence on λ.

4. Conclusion

In order to answer the question of the influence of small scale structure within initial conditions on the
final flow observables, we systematically filter a variety of initial conditions using a cubic spline such that
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global large scale structures (e.g. eccentricities) are not significantly changed but small scale structure is
filtered out. Using relativistic hydrodynamics, we find that a variety of integrated vn flow observables and
vn distributions remain insensitive to small scale structure. However, other more discriminating observables
(related to details of the two-particle correlations) such as the factorization breaking and the subleading
principle components do demonstrate a sensitivity to the small scale structure. Because the factorization
breaking ratio is not strongly dependent on η/s, it is a strong candidate for distinguishing between initial
conditions that exhibit different size hot spots.
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