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Currently, polycyclic aromatic compounds in organic solar cells (OSCs) have gained substantial 
consideration in research communities due to their promising characteristics. Herein, polycyclic 
aromatic hydrocarbons (PAHs) core-based chromophores (TTFD1-TTFD6) were designed by structural 
modifications of peripheral acceptor groups into TTFR. The density functional theory (DFT) and time 
dependent density functional theory (TD-DFT) calculations were carried out at B3LYP/6-311G (d, 
p) functional to explore insights for their structural, electronic, and photonic characteristics. The 
structural modulation unveiled notable electronic impact on the HOMO and LUMO levels across 
all derivatives, leading to decreased band gaps. All the designed compounds exhibited band gap 
ranging from 2.246 to 1.957 eV, along with wide absorption spectra of 897.071-492.274 nm. An 
elevated exciton dissociation rate was observed due to the lower binding energy values (Eb = 0.381 
to 0.365 eV) calculated in the derivatives compared to the reference (Eb = 0.394 eV). Furthermore, 
data from the transition density matrix (TDM) and density of states (DOS) also corroborated the 
effective charge transfer process. Comparable results of Voc for reference and designed chromophores 
were obtained via HOMOdonor−LUMOPC71BM. The declining Voc order values was noted as 
TTFD5 > TTFD6 > TTFD4 > TTFD3 > TTFD2 > TTFD1 > TTFR. Interestingly, TTFD5 was found with the 
smallest energy gap and highest absorption value, resulting in better charge transference among all 
the derivatives. The results illustrated that the modification in indenofluorene based chromophores 
with end-capped small acceptors proved to be a significant approach in achieving favorable 
photovoltaic properties.
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Nowadays, organic solar cells (OSCs) have garnered considerable interest owing to their simple processing, 
remarkable mechanical flexibility, and a notable rise in their power conversion efficiency (PCE) to above 18%1–4. 
The progress of organic photovoltaics (OPVs) is accomplished by tuning the optoelectronic characteristics of 
organic compounds5. OSCs usually employ either fullerene or non-fullerene (NF) based compounds as the 
primary types of organic materials6. During the previous two decades, fullerene-based electron acceptors (FAs) 
are seen with significant progress in the field of solar cells7. Fullerene-based OSCs have become increasingly valued 
in the market due to their lower molecular weight, cost-effectiveness, reproducibility, and ease of processing. 
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However, the drawbacks of these solar cells include limited light absorption, weak acceptor capabilities, and low 
tunable energy levels8.

In the modern era, researchers are intrigued by using non-fullerene acceptors in photovoltaic applications 
which is driven by their versatility, cost-effectiveness, higher energy conversion efficiency and transparency9–11. 
The NF small molecule acceptors demonstrate strong optical absorption, extending their absorption range into 
the infrared region of spectra12–14. Non-fullerene organic solar cells (NF-OSCs) are classified into two groups: 
small molecular acceptors (SMAs) and polymer solar cells (PSCs)15–17. Organic solar cells are built upon the 
foundational design of inorganic solar cells, replacing n-type and p-type materials with acceptor and donor 
type components, respectively, that are more significant18,19. From last two decades, significant efforts have 
been devoted to develop polymer bulk heterojunction (BHJ) solar cells (SCs) based on fullerene acceptors and 
polymeric donors, resulting in an efficacy improvement to 8.3%.20 On the other hand, SMAs exhibit improved 
photovoltaic characteristics than PSCs because of enhanced reproducibility, simplified purification processes, 
and a unique molecular structure21–23. The PCEs of organic photovoltaics is boosted through the increased 
molar absorption coefficient of NFAs24. The NFAs possess broader absorption spectra, elevated absorption 
coefficients, flexible power levels, and organized packing arrangements in contrast to fullerene-based ones25,26. 
Moreover, NFAs offer a wide array of structural configurations that are recognized for their high efficiency 
in promoting intramolecular charge transfer (ICT)27. These include various structural configurations such as 
donor-acceptor-donor28, acceptor-donor-acceptor29, and acceptor-donor-acceptor-donor-acceptor etc. Over 
the past few years, the utilization of NFAs has facilitated the development of OSCs, achieving 16% PCE with 
A-D-A type configuration30. The NFA namely ITIC, exhibited an A-D-A configuration, comprises two electron-
withdrawing groups characterized by a donor core is repoted with significant efficacy31. It is commonly observed 
that modifying molecular properties such as crystallinity, energy levels, and optical absorption capability 
through structural adjustments can significantly enhance the performance of NFA-based devices32–34. Literature 
is flooded with many examples in which compounds with central donor core having electron withdrawing 
bracing units are successfully synthesized for high efficacy organic solar cells35,36. 

A novel synthesized compound dcIF-TTF is taken from literature and utilized as reference chromophore to 
designed new derivatives for current study37 This compound is part of a class called indenofluorene extended 
tetrathiafulvalenes (IF-TTFs). These compounds are synthesized by extending the indenofluorene core (IF), 
which is a type of polycyclic aromatic hydrocarbon (PAH), with tetrathiafulvalene (TTF) units. PAHs are 
important in organic optoelectronic materials due to their extensive π-conjugation and charge delocalization38. 
The chromophore dcIF-TTF was made by attaching a dicyano indenofluorene core (dcIF) to TTF units. This 
design aimed to create an effective photovoltaic material that shows a significant bathochromic shift, lower 
excitation energies, a narrow band gap with higher power conversion efficiency. The name of reference 
chromophore (dcIF-TTF) is changed as TTFR in current study. Based on these properties, six new derivatives 
with A-π-A architecture of TTFR have been designed in this research abbreviated as TTF1-TTF6. After designing 
of tetrathiafulvalenes based compounds, their photovoltaic properties were investigated through DFT approach. 
The structural modification involves the attachment of various strong electron-withdrawing end-capped small 
acceptors around the central unit π-bridge to examine the impact of these end groups on the photovoltaic 
characteristics of newly designed compounds utilized as solar cell materials. Earlier research has demonstrated 
that introducing the terminal moieties during the designing of compounds is a successful method for achieving 
elevated optoelectronic attributes and noteworthy PCE in NFA39. It is anticipated that aforementioned designed 
derivatives based on dcIF-TTF could serve as effective materials for photovoltaic OSCs.

Results and discussion
The quantum chemical investigation focused on a comprehensive computational analysis of newly designed 
fullerene free organic photovoltaic materials. The literature contains numerous reports where small entities such 
as thiophene, imidazole, selenophene etc. have been employed to enhance the charge transfer properties of 
organic materials40. To achieve this, A-D-A configuration is selected as the parent chromophore, containing 
a donor core, with terminal electron-withdrawing groups (-CN) on either side37. Hence, a set of donor 
photovoltaic compounds, TTFD1-TTFD6 is designed, via structural modulation at the acceptor part of TTFR 
with thiophene-based small acceptors (A1-A6), aiming to attain highly efficient OSCs. The optimized structures 
of aforementioned chromophores are demonstrated in Figure S2 while their structural illustration is portrayed 
in Fig. 1. The IUPAC names of TTFR-TTFD6 compounds and their utilized acceptors (A1-A6) are displayed in 
Table S9 and S1, respectively. Moreover, the cartesian coordinates of designed chromophores are presented in 
Tables S1-S7.

Electronic structure
Frontier molecular orbitals (FMOs) analysis is an eminent method to assess the potential of intermolecular 
charge transfer (ICT) in the studied molecules TTFR and TTFD1-TTFD641,42. The FMOs offers insights into 
a molecule reactivity potential through electronic transitions from HOMO to LUMO43. Additionally, they are 
crucial for influencing solar cell properties, enable them to transport charges efficiently and facilitate the flow of 
electric current44,45. The band gap between HOMO-LUMO is a key factor to determine the exciton dissociation 
energy. Therefore, we have computed the energy levels of FMOs of TTFR and TTFD1-TTFD6 using DFT/
B3LYP/6-311G(d, p) method, and the findings are detailed in Table 1.

The computed HOMO/LUMO values for TTFR were found to be -5.50/-2.59 eV, while the designed 
molecules TTFD1-TTFD6 exhibited values of -5.39/-3.15, -5.42/-3.22, -5.44/-3.29, -5.45/-3.34, -5.58/-3.86 and 
− 5.52/-3.56 eV, respectively. The energy gap (ΔE) of the reference molecule was determined to be 2.91 eV. 
Whereas, for the designed molecules, this gap was measured at 2.25, 2.20, 2.16, 2.11, 1.72, 1.96 eV, respectively, 
as depicted in Table 1. All the designed derivatives (TTFD1-TTFD6) exhibited narrow bandgaps compared to 
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the reference compound. This confirms the effectiveness of our design strategy for synthetic pursuits. Among 
the designed compounds, TTFD5 possess the smallest energy band gap value 1.72 eV as compared to others, 
due to the incorporation of effective terminal acceptor groups namely 5-methylene-4,6-dioxo-3-phosphino-
5,6-dihydro-4 H-cyclopenta[c]thiophene-1-carbonitrile (A5). This band gap increases to 1.96 in TTFD6 when 

Figure 1.  Optimized structures of TTFR and TTFD1-TTFD6
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cyano (-CN) groups were replaced with carbon trifluoride (-CF3) moieties at peripheral acceptors A6. This 
might because of stronger resonance effect exhibited by the cyano group that delocalizes electron density more 
efficiently than inductive effect of the nitro group. TTFD4 exhibits smaller band gap (2.11 eV) than TTFD3 (2.16 
eV), as chloro functions withdraws electron density less effectively from the π-conjugated system compared to 
fluoro moieties at terminal acceptors in TTFD3. Similarly, TTFD1 featuring 5-methylene-4 H-cyclopenta[c]
thiophene-4,6(5 H)-dione showing energy gap of 2.25 eV. This energy gap lowers to 2.20 eV in TTFD2 due 
to the addition of fluoro groups at terminal acceptors. Overall, the decreasing trend of band gap is as follows: 
TTFD6 < TTFD5 < TTFD4 < TTFD3 < TTFD2 < TTFD1 < TTFR. The FMOs help us understand the charge 
transference phenomenon examined in TTFR and TTFD1-TTFD6. Figure 2 depicts that in HOMO of TTFR 
charge density is primarily resides on entire molecule except tetrathiafulvalene moiety and end capped 
cyano acceptors. In the LUMO, the charge density mostly spreads across the entire compound except for the 
tetrathiafulvalene part and the -CH3 group. The FMOs of HOMO-1/LUMO + 1 and HOMO-2/LUMO + 2 are 
depicted in Figure S3. The electronic density for all designed compounds is majorly focused on the central core 
(π-linker) for HOMO. For LUMO, the charge density covers the entire compound except tetrathiafulvalene and 
-CH3 groups.

Optical properties
The optoelectronic behavior of investigated compounds (TTFR and TTFD1-TTFD6) is computed using time 
dependent density functional theory (TD-DFT) approaches in gaseous and solvent phases. The B3LYP/6-
311G(d, p) functional is used to investigate red or blue shifts in the UV-Visible spectrum of all the designed 
chromophores. The results based on maximum absorption (λmax), excitation energy (E), oscillator strength 
(fos), and molecular orbital transitions are presented in Tables S10, S11 and S12 for all entitled compounds. All 
designed molecules TTFD1-TTFD6 show higher degree of red shift in the absorption spectra than reference 
compound.

Normally, a shift towards longer wavelength in the absorption spectrum indicates greater photovoltaic 
efficiency46. The difference in absorption peak illustrates the influence of solvent; i.e., the elevated absorption 
maxima in the toluene indicated a faster rate of solubility for acceptor materials in the solvent media compared 
to the gaseous state (see Fig. 3)47. TTFD5 exhibits the highest absorption rate due to strong electron-withdrawing 
effect of its two cyano groups situated on the terminal acceptors. The absorption trend in toluene is decreases in 
the following sequence: TTFD5 (897.071) > TTFD6 (778.648) > TTFD4 (714.359) > TTFD2 (681.456) > TTFD3 
(663.798) > TTFD1 (664.723) > TTFR (492.274), correlating inversely with Ex. Excitation energy offers another 
avenue to estimate the effectiveness of OSCs. Generally, less excitation energy values indicate higher power 
conversion efficiency PCE in OSCs48. The excitation energies of all examined the compounds are listed as follows: 
TTFR (2.519) > TTFD3 (1.868) > TTFD1 (1.865) > TTFD2 (1.819) > TTFD6 (1.592) > TTFD4 (1.736) > TTFD5 
(1.382) in nm. The λmax values calculated for all examined molecules in the gaseous phase are almost same with 
those observed in the solvent phase. Above findings indicate better optoelectronics properties in all designed 
compounds compared to TTFR. This emphasizes the effectiveness of structural modeling the parent molecule 
with robust acceptor units, resulting in chromophores with narrower bandgaps and broader absorption spectra, 
thus paving the way to develop promising OSCs materials.

Density of state (DOS)
Density of states (DOS) investigation was conducted using the aforedescribed functional and basis set to support 
the results of FMOs, demonstrating a comparable relationship between them. DOS is conducted to reveal the 
electron density distribution across FMOs in the form of percentage composition for all entitled compound49. 
The DOS pictographs depicted in Fig. 4 illustrate how the electron-withdrawing potential of acceptor groups 
causes shifts in charge density around the HOMO and LUMO. For further study DOS, all designed compounds 
are split into two fragments as π-bridge (central core) and acceptor (peripheral moieties) which are presented 
by green and red lines, correspondingly. The central spacer part is connected to the terminal acceptor groups 
which ensure good intermolecular charge transference within entitled compounds. In DOS pictographs, the left 
side values denote HOMOs while right side results signifies the LUMOs along x-axis and the distance between 
HOMOs and LUMOs denote the energy gap50.

In the case of reference compound (TTFR)π-spacer contribution for HOMO and LUMO is 100.0%, and 94.1% 
respectively. While the acceptor contribution is 0.0%, to the HOMO and 88.6, 5.9% to the LUMO for TTFR, 

Compounds HOMO LUMO ∆E

TTFR -5.50 -2.59 2.91

TTFD1 -5.39 -3.15 2.25

TTFD2 -5.42 -3.22 2.20

TTFD3 -5.44 -3.29 2.16

TTFD4 -5.45 -3.34 2.11

TTFD5 -5.58 -3.86 1.72

TTFD6 -5.52 -3.56 1.96

Table 1.  Calculated energies (E) and energy gap (∆E) for TTFR and TTFD1-TTFD6. Band 
gap = ELUMO−EHOMO, units in eV.

 

Scientific Reports |        2024 14:24213 4| https://doi.org/10.1038/s41598-024-74852-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 2.   HOMOs and LUMOs of the designed chromophores (TTFR-TTFD6).
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respectively. Herein, acceptor showed electronic distribution pattern as 61.3%, 62.0%, 62.5%, 65.3%, 79.6% and 
70.1% to LUMO while 99.9% to HOMO for TTFD1-TTFD6, respectively. Similarly, π-spacer participated 38.7%, 
38.0%, 37.5%, 34.7%, 20.4% and 29.9% to LUMO whereas 0.1% to HOMO for TTFD1-TTFD6, respectively as 
shown in Table S13. These results show that the HOMO orbitals are mostly found on the spacer parts and the 
LUMO orbitals are mainly found on the acceptor moieties in the designed compounds.

In all the examined chromophores (TTFD1-TTFD6), the highest charge density on the LUMO is observed 
within the span of -3 to -3.5 eV energy, whereas the maximum density on the HOMO is observed between − 7 to 
-8 eV. The graphs for DOS strongly supported the FMOs diagram, suggesting significant flow of internal charge 
in all the designed derivatives. In nutshell, the charge distribution pattern demonstrates that an efficient charge 
density is transferred from π-spacer to acceptor moieties, making it a good candidate for solar cell applications.

Transition density matrix (TDM)
The Transition Density Matrix (TDM) analysis is used to analyze the transfer of charge density within molecular 
systems51. It is utilized to elucidate the electronic excitations occurring from S0 to S1 excited state. It furnishes 
a spatial representation for identifying the interaction of acceptor and donor moiety in excited state and hole-
electron localization52. The B3LYP/6-311G(d, p) method was employed to analyze transitions in the excited 
state. The role of hydrogen in charge density estimations is negligible due to its minimal impact on overall 
transitions. For suitability, the compound is divided into acceptor (A) and π-spacer. The TDM plots are shown 
in Fig. 5. The electron coherence is detected in all the examined (TTFD1-TTFD6) chromophores; π-spacer 
effectively transfers the electron density which is accepted by efficient acceptor groups. Based on the sequence 
TTFD5 > TTFD6 > TTFD4 = TTFD3 > TTFD3 > TTFD1 > TTFR, there’s a notable interaction coefficient 
between acceptor and donor groups. Among all, TTFD5 has shown improved charge transference from π-linker 
to end capped acceptor moieties without any charge trapping owing to π-π* transition and the π-conjugation. 
Therefore, TTFD5 has auspicious charge delocalization potential. Therefore, as a result of this phenomenon, the 
flow of electron density persists throughout the entire molecule efficiently.

Exciton binding energy (Eb)
The exciton binding energy (Eb) is a fundamental parameter to elucidate the efficacy and optoelectronic 
characteristics of organic photovoltaic solar cells53. It elucidates the relation between the Columbic attraction 
of hole and electrons within the material. Eb is the minimum energy needed to generate free electron and hole 
carriers54. Eb directly influences charge generation, transport, and recombination processes, as well as the 
probability of exciton dissociation at the donor-acceptor interface, thereby impacting overall device performance. 
A decreased binding energy facilitates the disruption of the Columbic forces between the electron and hole, 
therefore aiding in exciton delocalization and enhancing transfer of charge. Furthermore, a smaller ∆E value 
results in increased exciton dissociation and reduced energy loss. It is experimentally calculated by Eq. 1.55

	 Eb = EH−L − Eopt� (1)

In the above equation, EL-H  EH-L and Ex denote the molecular orbitals band gap and energy of excitations, 
correspondingly. Upon reviewing Table 2, it is noted that all designed molecules (TTFD1- TTFD6) exhibit lower 
Eb values compared to reference compound (TTFR), indicating enhanced exciton dissociation in the excited state. 
Among all, TTFD3 exhibits the lowest Eb value due to the introduction of efficient electron capturing acceptor 
moieties at the terminals aids in dropping Columbic forces, thereby facilitating easier dissociation56. The decreasing 
order of Eb  all designed chromophores is TTFR > TTFD2 > TTFD1 > TTFD4 > TTFD6 > TTFD5 > TTFD3.

Figure 3.  Absorption spectra of TTFR and TTFD1-TTFD6 in toluene and gas phase.
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Electron hole analysis
The analysis of holes and electrons aids to determine how charge carriers and excitations behave in photovoltaic 
materials (TTFR- TTFD6)57. Hole-electron analysis is executed by using Multiwfn 3.8 software as shown in 
Fig. 6. In this investigation, analysis of hole-electron interactions is conducted by B3LYP/6-311G (d, p) method 

Figure 4.  The pictographs of density of state for TTFR and TTFD1-TTFD6.
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to comprehend the charge transfer in the designed molecules. Heat maps demonstrate that in TTFR, a hole is 
created at the carbon atom (C14) and electronic cloud at carbon atom (C21) of π-linker. Similarly, in TTFD1, 
TTFD2 and TTFD3 substantial hole potential is found at C10 of π-linker and dense charge density is present at 
C39 of terminal acceptors. While greater hole density in chromophores (TTFD4 and TTFD5) is present at C14 

Figure 5.   TDM heat maps of TTFR and TTFD1 - TTFD6 compounds.
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of π-linker. In TTFD6 greater hole density is located at C14 and significant electron density is observed at C39 
and C40 of end capped terminal acceptors. So, it is evident from maps, hole densities are present across different 
atoms of the π-spacer, accompanied by charge transference in the acceptor part.

Reorganization energy
Reorganization energy is an important approach to analyze molecular structure influences the molecule’s charge 
transference capacity. Moreover, it assists to comprehend the charge transition from donor to acceptor segment 
of a molecule. Compounds with a small RE value displayed enhanced photovoltaic properties, reflecting greater 
charge flexibility58. Therefore, to comprehend the charge mobility, the hole mobility (λh) and electron mobility 
(λe), of the examined chromophores, the RE was computed using the B3LYP/6-311G(d, p) functional as shown 
in Table 3.

The computed RE values of the hole for TTFR is -0.00059988 eV and for TTFD1-TTFD6 are 0.10506045, 
-0.00020501, -0.00033909, -0.00023788, -0.00046074, and − 0.00080507 eV, correspondingly. The decreasing 
trend of λh for the investigated compounds is TTFD1 > TTFD2 > TTFD4 > TTFD3 > TTFD5 > TTFR > TTFD6. 
The calculated value of λe for reference is 0.00066671 eV whereas for TTFD1-TTFD6 are 0.10532127, 0.00066671, 
0.00013195, 0.0001314, 0.00010953, -0.00001172, and − 0.00007836 eV, respectively. The declining order of λe for 
designed compounds is TTFD1 > TTFR > TTFD3 > TTFD4 > TTFD2 > TTFD5 > TTFD6. The analysis reveals 
that all derivatives, exhibit lower λh values, suggesting a superior hole transport. This investigation underscores 
the enhanced charge-transport efficiency of these chromophores, marking them as promising candidates for 
OSCs.

Photovoltaic properties
The open circuit voltage (Voc) analysis serves as a crucial parameter for evaluating device performance, 
manifesting at zero current level. Voc represents the highest electrical potential output by a device when no 
current is flowing59. Voc values are influenced by various factors, including solar cell temperature, light intensity, 
material types, energy levels, and electrode functionalities60. A higher Voc value correlates with a higher fill factor 
(FF), which is pivotal in assessing solar cell efficiency. Voc are further elucidated based on HOMO/LUMO energy 
levels. The possibility of transfer of electron from the HOMO level of donor to the LUMO level of acceptor 
increases, enhancing Voc when the acceptor’s LUMO is resided at lower energy. The Voc for all the designed 
molecules is calculated by blending it to the PC71BM polymer (acceptor nature). The Voc is obtained by the 
energy difference between the HOMO of the donor (π-conjugated molecule) and the LUMO of the acceptor 
(PC71BM polymer), considering energy dissipation during photo-charge generation61. Equation 262 was utilized 
to ascertain Voc as depicted in Table S14, where the computed values are tabulated.

	 VOC =
(∣∣ED

HOMO

∣∣− ∣∣EA
LUMO

∣∣)− 0.3� (2)

The Voc of reference material (TTFR) is 1.771 V, and for designed compounds (TTFD1- TTFD6) is 1.662, 1.692, 
1.714, 1.723, 1.849 and 1.789 V. These values indicate that TTFD5 shows the highest Voc value, attributed to a 
significant red shift (λmax) in the absorption spectra induced by terminal efficient acceptor moieties. Moreover, 
TTFD5 has the potential to serve as a more competent power-generating molecule in future photovoltaic cells. 
All derivatives exhibit comparable Voc values to the reference molecule (TTFR). The declining Voc order for 
the designed chromophores is TTFD5 > TTFD6 > TTFD4 > TTFD3 > TTFD2 > TTFD1. Figure 7 illustrates a 
graphical depiction of the Voc values.

Observations indicate that with increasing Voc, the PCE and ICT also increase. Above mentioned results 
demonstrates that TTFD5 showcased the highest energy and Voc values, making it a dependable choice for 
boosting the efficiency of solar devices.

Conclusion
In this study, a sophisticated quantum chemical approach is utilized to understand the photovoltaic 
characteristics of indenofluorene-tetrathiafulvalenes compounds. By structural modification of TTFR 
molecules, six thiophene based small acceptor chromophores (TTFD1-TTFD6) were designed. The results 
indicated that structural modifications with effective electron-withdrawing components notably improved 
the photovoltaic characteristics of all derivatives as compared to the reference TTFR. Notably, all the entitled 
chromophores exhibit narrow band gaps (2.246 to 1.957 eV) compared to TTFR (2.913 eV), suggesting facile 

Compounds EH-L Eopt Eb

TTFR 2.913 2.519 0.394

TTFD1 2.246 1.865 0.381

TTFD2 2.201 1.819 0.382

TTFD3 2.157 1.868 0.289

TTFD4 2.111 1.736 0.375

TTFD5 1.718 1.382 0.336

TTFD6 1.957 1.592 0.365

Table 2.  Calculated Eb TTFR and TTFD1- TTFD6 compounds. Units in eV.
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charge transference from HOMO to LUMO that was further supported by TDM and DOS analyses. TTFD5 
exhibited the band gap value of 1.718 eV with significant reduction and highest absorption value of 897.071 nm, 
credited to the robust electron-withdrawing capability and prolonged conjugation of the terminal acceptor (A5). 
The open circuit voltage ranges between 1.771 and 1.789 V and the highest Voc was determined to be 1.849 V for 

Figure 6.   Pictorial illustration of hole-electron analysis for TTFR-TTFD6.
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TTFD5. The calculated binding energy (Eb) values for the derivatives (0.381 to 0.365 eV) were found to be less 
than that of the reference compound (0.394 eV), indicating good exciton dissociation rate. The descending order 
of Eb in all designed molecules is found as TTFR > TTFD2 > TTFD1 > TTFD4 > TTFD6 > TTFD5 > TTFD3. In 
short, aforesaid compounds attained by peripheral structural tailoring could be reasonable materials for OSCs, 
offering numerous desirable attributes in the future.

Computational procedure
Gaussian 09 software63 was utilized to compute all the DFT/TD-DFT investigations in the TTFR and TTFD1-
TTFD6  chromophores having A-π-A architecture. Gauss View 6.064 program was used to generate the input 

Figure 7.  Diagrammatic representation of Voc using PC17BM as the acceptor polymer.

 

Compounds λ e(eV)[a] λ h(eV)[b]

TTFR 0.00066671 -0.00059988

TTFD1 0.10532127 0.10506045

TTFD2 0.00010953 -0.00020501

TTFD3 0.00013195 -0.00033909

TTFD4 0.0001314 -0.00023788

TTFD5 -0.00001172 -0.00046074

TTFD6 -0.00007836 -0.00080507

Table 3.  Reorganization energies (eV) of entitled compounds (TTFR-TTFD6). [a] reorganization energy of 
electron. [b] reorganization energy of hole.
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data and display the outcomes. To select the appropriate DFT level, the structural optimization of TTFR was 
conducted using four different levels: M0665, B3LYP66,67, CAM-B3LYP68, and MPW1PW9169, along with 
6-311G(d, p) basis set in the toluene solvent.

After optimization, the simulated UV-Visible values of TTFR conducted in toluene solvent, resulting in 
λmax values at aforementioned functionals: B3LYP (492.274 nm), CAM-B3LYP (477.193 nm), MPW1PW91 
(405.840 nm) and M06 (480.335 nm) were compared with experimental (504 nm) results to select a suitable DFT 
functional for further study. The absorption spectrum from TD-DFT calculation using the B3LYP functional 
closely matched the experimental data as shown in the Table S8 and Fig. 8. Consequently, all the subsequent 
analyses were conducted at B3LYP/6-311G(d, p) functional to explore the optoelectronic and photovoltaic 
characteristics. To elucidate the effect of solvent on maximum absorption the conductor like polarizable 
continuum model (CPCM) was used.

The frontier molecular orbitals (FMOs), UV-Visible, density of state (DOS), transition density matrix (TDM), 
open circuit voltage (Voc) and binding energy analyses were carried out for all the designed compounds at above 
mentioned functionals. Software such as Chemcraft70, PyMOlyze71, Multiwfn72, Origin 8.073, and Avogadro74, 
were utilized to extract the data in the forms of graphs and tables.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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