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Abstract

We prove an equivariant deformation result for Hamiltonian sta-

tionary Lagrangian submanifolds of a Kähler manifold, with respect

to deformations of its metric and almost complex structure that

are compatible with an isometric Hamiltonian group action. This

yields existence of Hamiltonian stationary Lagrangian submanifolds

in possibly non-Kähler symplectic manifolds whose metric is arbi-

trarily close to a Kähler metric.

1 Introduction

Let (M,ω) be a symplectic manifold with a Riemannian metric g. A

submanifold Σ of M with dimM = 2dimΣ is Lagrangian if the restric-

tion ω|Σ of the symplectic form to this submanifold vanishes identically.

Multiple constrained variational problems related to minimizing volume of

Lagrangian submanifolds have been extensively studied in the literature,
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see for instance [2, 3, 5, 8, 9, 10, 11, 13]. Among these, an important con-

strained variational problem is related to minimizing volume under Hamil-

tonian variations. The corresponding critical points, called Hamiltonian

stationary Lagrangian submanifolds, and their possible deformations in an

equivariant setup, are the main objects of study in this paper.

Denote by L(Σ,M) the space of Lagrangian submanifolds of M that

are diffeomorphic to Σ. A Hamiltonian variation of a Lagrangian sub-

manifold Σ is simply a variation by a Hamiltonian vector field X, i.e., X

is a vector field on M along Σ, such that the 1-form ω(X, ·)|Σ is exact.

In this situation, the submanifolds Σt := {expp(tXp) : p ∈ Σ}, |t| < ε,

are also Lagrangian, i.e., Σt ∈ L(Σ,M) is a curve through Σ = Σ0; but

generally not all Lagrangians near Σ are obtained this way, see Section 3.

More precisely, this curve Σt of Lagrangians stays inside the integral leaf

through Σ of a certain (integrable) distribution of L(Σ,M), with codimen-

sion b1(Σ), that we call the Hamiltonian distribution, see Subsection 4.1.

The integral leaves of this distribution are locally parametrized by the first

de Rham cohomology H1(Σ,R), which is a real vector space of dimension

b1(Σ). Given a closed 1-form η on Σ, we denote by [η] ∈ H1(Σ,R) its

cohomology class and by L(Σ,M)[η] the integral leaf of the Hamiltonian

distribution that corresponds to [η]. When η is exact, i.e., [η] = 0, then

the above means that L(Σ,M)[η] is the space of Hamiltonian variations of

Σ. A Lagrangian submanifold Σ ⊂ M is a g-Hamiltonian stationary La-

grangian submanifold if it has critical volume (with respect to the volume

form induced by g) among all its Hamiltonian variations.

Hamiltonian stationary Lagrangian submanifolds have been used, among

others, to provide canonical representatives of the Lagrangian homology

(the part of the homology generated by Lagrangian cycles), see [13]. Issues

related to their existence in various contexts were discussed in [5, 8, 9, 11],

and questions regarding their stability were addressed in [2, 3, 10]. In the

present paper, we are interested in an equivariant rigidity notion, that

allows to deform g-Hamiltonian stationary Lagrangian submanifolds ac-

cording to a suitable deformation of the metric g. This works in a simi-
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lar fashion to the implicit function theorem, but taking into account the

ambiguity imposed by a group of symmetries of the variational problem.

Namely, we assume that there is an isometric Hamiltonian action of a com-

pact Lie group G on M . Such an action carries Lagrangian submanifolds

to Lagrangian submanifolds (since the action is by symplectomorphisms),

and preserves the volume functional (since the action is by isometries). In

this way, a Hamiltonian stationary Lagrangian submanifold Σ is automat-

ically degenerate due to the presence of action fields, and an appropriate

equivariant G-nondegeneracy condition is introduced, see Definition 4.1.

Our main result concerns deformations of such equivariantly nondegen-

erate submanifolds, corresponding to deformations of the metric g (or of

the associated almost complex structure J) that preserve the group of

symmetries G. More precisely, we prove the following:

Theorem. Let (M,ω, g0, J0) be a Kähler manifold with an isometric

Hamiltonian action of a compact Lie group G. Suppose that either:

(A) There exists a smooth deformation [−δ, δ] ∋ t 7→ gt ∈ Met(M) of the

metric g0, such that G acts by gt-isometries for all t ∈ [−δ, δ]; and
let Jt := Jgt be the corresponding family of ω-compatible almost

complex structures;1

or,

(B) There exists a smooth deformation [−δ, δ] ∋ t 7→ Jt ∈ J (M,ω) of

J0 by ω-compatible almost complex structures, such that G acts by

Jt-biholomorphisms for all t ∈ [−δ, δ]; and let gt(·, ·) := ω(·, Jt·) be

the corresponding family of Riemannian metrics.

Suppose Σ0 ⊂ (M,ω) is a G-nondegenerate g0-Hamiltonian stationary

Lagrangian submanifold. Then there exists ε > 0, a neighborhood V of

Σ0 ∈ L(Σ,M), a neighborhood E of [0] ∈ H1(Σ,R) and a smooth map

Σ: (−ε, ε) × E → V; such that Σt,[η] := Σ(t, [η]) is a gt-Hamiltonian

stationary Lagrangian submanifold in L(Σ,M)[η] for all |t| < ε and all

1See (5) and Corollary 2.1.
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[η] ∈ E , and Σ(0, [0]) = Σ0. Moreover, if Σ∗ ∈ V is a gt-Hamiltonian

stationary Lagrangian submanifold in L(Σ,M)[η] sufficiently close to the

G-orbit of Σ0, then there exists ϕ ∈ G such that ϕ(Σ∗) = Σt,[η].

Note that the manifolds (M,ω, gt, Jt) might not be Kähler for t ̸= 0;

the only requirement is that both the metric gt and the almost complex

structure Jt be compatible with the fixed symplectic form ω. In partic-

ular, this result abstractly yields existence of g-Hamiltonian stationary

Lagrangian submanifolds in certain symplectic manifolds equipped with a

metric g that is a small deformation of a Kähler metric, see [5, 8, 9].

The main ingredients in the proof of the above Theorem are the appro-

priate variational formulation of the problem, which is cast in (quotients

of) Hölder spaces due to Fredholmness reasons and the equivariant im-

plicit function theorem with low regularity studied in [4]. The latter is

an abstract equivariant formulation of the classic implicit function theo-

rem in a low regularity setup tailored to geometric variational problems.

Among the crucial hypotheses are that the linear operator that represents

the second variation of the functional in question be a Fredholm operator

of index zero. This follows easily in the case of Hamiltonian stationary

Lagrangians using standard Schauder estimates, since the corresponding

operator is a (fourth order) elliptic operator.

This paper is organized as follows. In Section 2, we recall basic con-

cepts in symplectic geometry and various Hamiltonian constructions and

deformations preserving their symmetry groups. The main aspects of

the constrained variational problem of Hamiltonian stationary Lagrangian

submanifolds are studied in Section 3, where we also recall the first and

second variations in the Kähler case. The rigorous framework for the proof

of the above Theorem is discussed in Section 4. Finally, Section 5 contains

a few examples of deformations to which this result applies.

Acknowledgement. It is our pleasure to thank André Carneiro, Richard

Hind and Tommaso Pacini for valuable suggestions. We also acknowledge

hurricane Sandy, that despite having many victims and causing terrible

destruction, at the same time forced the first and third named authors to
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be stranded for several days while no transportation was available, pro-
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2 Preliminaries

In this first section, we recall a few basic facts about the interplay of

the isomorphism groups of symplectic, almost complex and Riemannian

structures and basic definitions regarding Hamiltonian actions. The reader

with a working knowledge of such material may proceed to Section 3.

2.1 Compatible triples

Given a (necessarily even dimensional) real vector space V , consider the

following objects on V :

(i) a nondegenerate skew-symmetric bilinear form ω : V × V → R;

(ii) a complex structure J : V → V ;

(iii) a positive-definite inner product g : V × V → R.

Denote by Symp(V, ω) the group of symplectomorphisms of (V, ω), i.e.,

automorphisms T : V → V such that ω(T ·, T ·) = ω(·, ·). Denote by

Aut(V, J) the group of J-biholomorphisms, or automorphisms of (V, J),

i.e., automorphisms T : V → V that commute with J . Finally, denote by

O(V, g) the group of g-orthogonal isomorphisms of V , i.e., automorphisms

T : V → V such that g(T ·, T ·) = g(·, ·).
We say that (ω, J, g) is a compatible triple if ω(·, ·) = g(J ·, ·), or, equiv-

alently, if ω(·, J ·) = g(·, ·). If (ω, J, g) is a compatible triple, then:

O(V, g)∩Aut(V, J) = O(V, g)∩Symp(V, ω) = Aut(V, J)∩Symp(V, ω). (1)

In other words, given vector spaces Vi endowed with compatible triples

(ωi, Ji, gi), i = 1, 2, an isomorphism T : V1 → V2 that preserves any two

of the structures in the triple, automatically preserves the third one. In
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this way, choosing any two structures among {ω, J, g} on a vector space

V determines the third one, so that the triple (ω, J, g) is compatible.

The definition of compatible triples carries over naturally to (even di-

mensional) smooth manifolds M endowed with a symplectic form ω, an

almost complex structure J and a Riemannian metric g. Namely, such

a triple (ω, J, g) is compatible if at every point p ∈ M , (ωp, Jp, gp) is a

compatible triple on TpM . In the special case where J is an integrable

almost complex structure (hence a complex structure), the manifold M

equipped with a compatible triple (ω, J, g) is called a Kähler manifold.

Equation (1) implies that if (ω, J, g) is a compatible triple on M , then

Iso(M, g) ∩ Symp(M,ω) = Iso(M, g) ∩Aut(M,J)

= Aut(M,J) ∩ Symp(M,ω). (2)

Note that, Iso(M, g) is always a (finite-dimensional) Lie group, and it is

compact whenM is compact. The groups Aut(M,J) and Symp(M,ω) are

infinite-dimensional, however both intersections Iso(M, g) ∩ Symp(M,ω)

and Iso(M, g)∩Aut(M,J) are subgroups of Iso(M, g) which are closed in

the C1-topology2, and therefore are Lie subgroups of Iso(M, g).

2.2 Basic Hamiltonian constructions

Suppose (M,ω) is a symplectic manifold and X is a vector field on M .

Contracting X with the symplectic form ω, we get a 1-form onM denoted

ιXω := ω(X, ·). For convenience, we also use the special notation

σX := ιXω = ω(X, ·). (3)

When X is a field along a submanifold Σ ⊂ M , we also write σX for

the 1-form on Σ obtained by pulling back the contracted 1-form ιXω, i.e.,

σX = x∗(ιXω). As a word of caution, this 1-form is unrelated to the

2-form given by the pull-back x∗ω.

2Hence, they are also closed in the C0-topology, since both topologies coincide on

Iso(M, gJ)
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A function h : M → R is called a Hamiltonian function or Hamiltonian

potential for the vector field X on M if

dh = σX . (4)

In this case, X is called the symplectic gradient of h. As a side note, if

(M,ω) is Kähler, then (4) is equivalent to X = −J∇h, where ∇h is the

Riemannian gradient of h.

Vector fields on a symplectic manifold that admit a Hamiltonian po-

tential are called Hamiltonian vector fields. Equivalently, a vector field is

Hamiltonian if σX ∈ B1(M) is an exact 1-form. Vector fields such that

σX ∈ Z1(M) is a closed 1-form are called symplectic vector fields. The jus-

tification for this name is that the flow of such a vector field preserves the

symplectic form ω, i.e., the Lie derivative LXω vanishes if X is symplectic.

Evidently, Hamiltonian fields are always symplectic, and the obstruction

for symplectic fields to be Hamiltonian is measured by the first de Rham

cohomology H1(M,R) = Z1(M)/B1(M).

Now, suppose that a Lie group G acts by symplectomorphisms on

(M,ω), i.e., g : M → M preserves ω for all g ∈ G. Denote by g the Lie

algebra of G and by g∗ its dual. The G-action is said to be Hamiltonian

if there exists a map µ : M → g∗, called moment map, such that

(i) µ : M → g∗ is G-equivariant, where the G-action considered on g∗ is

the coadjoint action;

(ii) For every X ∈ g, denote by X∗
p := d

ds

(
exp(sX) · p

)∣∣
s=0

the induced

action field on M .3 Then ⟨µ(·), X∗⟩ : M → R is a Hamiltonian

potential for the vector field X∗, i.e., d⟨µ(·), X∗⟩ = σX∗ , where, as

above, σX∗ = ιX∗ω = ω(X∗, ·).

In other words, every action field is a Hamiltonian field and the moment

map µ encodes all the corresponding Hamiltonian potentials.

3i.e., X∗ is the vector field on M that is the infinitesimal generator of the 1-

parameter group of diffeomorphisms of M generated by the 1-parameter subgroup

R ∋ s 7→ exp(sX) ∈ G.
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Example 2.1. If G is a closed connected Lie subgroup of U(n + 1), then

the restriction of the transitive U(n+ 1)-action on CPn to G is a Hamil-

tonian action, with moment map µ([z]) = πg(−i zz∗/2∥z∥2), where πg is

the orthogonal projection onto g, with respect to an Ad-invariant inner

product in U(n+ 1).

2.3 Deformations preserving symmetries

Constructing compatible triples on a manifold is quite elementary. We

are interested in a slightly more elaborate problem, namely that of con-

structing 1-parameter families (ω, Jt, gt) of compatible triples for a fixed

symplectic form ω, that preserve a nontrivial subgroup G of (2) that acts

in a Hamiltonian way onM , and for t = 0 turnM into a Kähler manifold.

In general, most deformations of this type do not produce other Kähler

structures, i.e., Jt is non-integrable for t > 0, but this is not an issue for

our applications. For an example in which integrability is preserved, see

Subsection 5.4.

We now observe that, due to (2), such deformations (ω, Jt, gt) can be

obtained by first considering a deformation gt of the metric g0 that pre-

serves the isometric G-action; and then considering the corresponding

deformation Jt of the almost complex structure J0 with respect to the

fixed symplectic form ω, see Corollary 2.1. A few concrete constructions

of deformations of compatible triples are described in Section 5. Let us

give more details on how the above works.

An almost complex structure J is called ω-compatible if the triple (ω, J, gJ),

where gJ(·, ·) := ω(·, J ·), is a compatible triple. In other words, J is ω-

compatible if gJ is a Riemannian metric. Define the spaces:

J (M,ω) :=
{
J : TM → TM : J is an ω-compatible almost complex

structure
}
;

Met(M,ω) :=
{
g ∈ Met(M) : g = gJ for some J ∈ J (M,ω)

}
.

The map J (M,ω) ∋ J 7→ gJ ∈ Met(M,ω) is clearly a bijection, whose

inverse will be denoted by Met(M,ω) ∋ g 7→ Jg ∈ J (M,ω). Let us
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recall the following standard result that, in particular, implies that M is

homotopically equivalent to Met(M) hence contractible, see [6, Prop 2.50,

2.51].

Proposition 2.1. Let (M,ω) be a symplectic manifold. There exists a

smooth retraction r : Met(M) → (M,ω).

Proof. Given g ∈ Met(M), there exists a unique skew-symmetric (1, 1)-

tensor Ag on M that satisfies ω(·, ·) = g(Ag·, ·). Since ω is everywhere

nondegenerate, Ag is everywhere nonsingular. The pointwise polar de-

composition of Ag provides two unique (1, 1)-tensors4 on M ,

Pg = (AgA
∗
g)

1
2 and Jg = P−1

g Ag, (5)

such that:

(i) PgJg = JgPg = Ag;

(ii) Pg is positive, i.e., g(Pg·, ·) is symmetric and positive-definite;

(iii) Jg is g-orthogonal, i.e., J∗
g = J−1

g .

Since Ag is skew-symmetric and Pg is symmetric, then

J−1
g = J∗

g = A∗
gP

−1
g = −AgP

−1
g = −Jg,

i.e., Jg is an almost complex structure. The desired map r is given by

r(g) := g(Pg·, ·). Since Pg = J−1
g Ag = J∗

gAg, then

r(g) = g(Pg·, ·) = g(J∗
gAg·, ·) = g(Ag·, Jg·) = ω(·, Jg·) ∈ Met(M,ω). (6)

By the uniqueness of the polar decomposition, it is also immediate to see

that r(g) = g if g ∈ Met(M,ω), i.e., r is a retraction. Smoothness follows

immediately from the smoothness of the polar decomposition in the open

set of invertible operators. ■

4Here, T ∗ denotes the g-adjoint of a (1, 1)-tensor T on M , defined by g(T ∗·, ·) =

g(·, T ·).
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As an immediate consequence of the above result and (2), we get a

way of deforming compatible triples preserving their symmetry, whose sole

input is a metric deformation preserving an isometric action. This process

fits the set of hypotheses (A) in the Theorem in the Introduction. This

choice of deformation intuitively allows more examples, since it is generally

easier to deform a metric preserving a group action than deforming an

almost complex structure preserving its automorphism group.

Corollary 2.1. Let (ω, J0, g0) be a compatible triple on M , and suppose

that G is a Lie group that acts on M by symplectomorphisms and g0-

isometries (hence by J0-biholomorphisms). Assume gt, t ∈ [−δ, δ], is a

deformation of g0 such that the G-action is by gt-isometries for t ∈ [−δ, δ],
and let Jt := Jgt be the almost complex structure obtained from gt as in

(5). Then the triple (ω, Jt, gt), t ∈ [−δ, δ], is compatible and a deformation

of (ω, J0, g0), so that G acts by gt-isometries and Jt-biholomorphisms,

t ∈ [−δ, δ].

3 Hamiltonian stationary Lagrangian submani-

folds

3.1 Lagrangian submanifolds

Let (M,ω) be a symplectic manifold and Σ be a compact manifold with

dimΣ = 1
2 dimM . An embedding x : Σ ↪→ (M,ω) is called Lagrangian if

x∗ω = 0. In this case, we say x(Σ) ⊂ M is a Lagrangian submanifold.

Lagrangian submanifolds play a central role in symplectic geometry, see

[6] and references therein. A smooth family xs : Σ → M , s ∈ (−ε, ε), of
embeddings is called a Lagrangian (respectively, Hamiltonian) deforma-

tion of x0 = x if its derivative X = d
dsxs

∣∣
s=0

is a symplectic (respectively,

Hamiltonian) vector field along x, i.e., if the 1-form σX := x∗(ω(X, ·)) on
Σ is closed (respectively, exact), see Subsection 2.2.

Example 3.1. Consider the sphere S2 = CP 1 with its standard Kähler

structure. Any great circle Σ on S2 is Lagrangian (and minimal), and
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divides S2 into two domains of same area. Any deformation of Σ through

other smooth curves is a Lagrangian deformation; however only those de-

formations through curves that still bisect the area of S2 are Hamiltonian,

by Stokes’ Theorem.

A particularly interesting feature of a Lagrangian submanifold Σ of a

Kähler manifold (M,ω) is the following. Denote by H the mean curvature

vector of Σ in M and consider the contracted 1-form σH . Then dσH =

Ric |Σ, where Ric is the Ricci 2-form on M . In particular, if (M,ω) is

Kähler-Einstein, i.e., Ric = κω, then dσH = 0 and thus H is a symplectic

vector field, i.e., an infinitesimal Lagrangian deformation. As observed by

[13], this suggests that it is natural to consider variational problems for

volume of submanifolds with a Lagrangian constraint, as follows.

3.2 Minimizing volume

Let (ω, J, g) be a compatible triple onM and consider the corresponding

volume form volg on M . This provides a way to measure the volume of

an embedding x : Σ →M , by setting

Volg
(
x(Σ)

)
=

∫
Σ
x∗(volg). (7)

A Lagrangian embedding x0 : Σ →M is called g-Lagrangian (respectively,

g-Hamiltonian) stationary if it has critical volume with respect to any

Lagrangian (respectively, Hamiltonian) deformations xs : Σ → M , s ∈
(−ε, ε), of x0, i.e.,

d

ds
Volg

(
xs(Σ)

)∣∣∣
s=0

=

∫
Σ
g(H,X) = 0, (8)

where H is the mean curvature vector of Σ in (M, g), Xp = d
dsxs(p)

∣∣
s=0

is the variation field and the integration is with respect to the pulled-

back volume form x∗(volg). In some references, Hamiltonian stationary

Lagrangian submanifolds are also called H-minimal submanifolds. This

reflects the fact that they minimize the volume functional in some direc-

tions, the Hamiltonian directions; while minimal submanifolds are critical
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points of the volume functional with respect to all directions (hence, in

particular, are Hamiltonian stationary).

Notice that the above functional remains invariant if we replace x(Σ)

with ϕ(x(Σ)), where ϕ : M → M is an isometric symplectomorphism.

Namely, ϕ(x(Σ)) is still Lagrangian because ϕ is a symplectomorphism,

and it has the same volume as x(Σ) because ϕ is an isometry.

Let us derive the Euler-Lagrange equations for this functional. If X is

a Hamiltonian variation of x0, then σX = dh, for some h : Σ → R. Thus,

if x0 is g-Hamiltonian stationary Lagrangian, then (8) reads

0 =

∫
Σ
g(H,X) =

∫
Σ
g(σH , σX) =

∫
Σ
g(σH ,dh) =

∫
Σ
(δσH)h,

where δ is the codifferential, i.e., the formal adjoint of the exterior deriva-

tive operator d. Since the above vanishes for all h, we get that the Euler-

Lagrange equations for a Hamiltonian stationary Lagrangian embedding

x0 are

δσH = 0. (9)

As pointed out before, if (M,ω, J) is Kähler-Einstein, then dσH = 0.

Consequently, in the Kähler-Einstein case, (9) is equivalent to ∆σH = 0,

where ∆ = dδ + δd is the (nonnegative) Laplace-de Rham operator; i.e.,

σH is a harmonic 1-form. In particular, it follows by Hodge theory that

if H1(Σ,R) = 0, then the Hamiltonian stationary Lagrangian embedding

x0 is actually minimal.

Example 3.2. An example of a Hamiltonian stationary Lagrangian sub-

manifold that is not minimal is given by the standard tori T = S1(r1) ×
· · · × S1(rn) ⊂ Cn. Note that Cn is Kähler-Einstein however the first

de Rham cohomology of T is not trivial. Another interesting family of

examples of Hamiltonian stationary Lagrangians is given by curves with

constant geodesic curvature on a Riemann surface.
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3.3 Second variation

Following [8, Def 2.6] and [11, Thm 3.4], we now describe the second

variation formula of the functional (7), assuming that the compatible triple

(ω, J, g) turns M into a Kähler manifold. Given a g-Hamiltonian station-

ary Lagrangian embedding x0 : Σ →M and any Hamiltonian deformation

xs of x0,

d2

ds2
Volg

(
xs(Σ)

)∣∣∣
s=0

=

∫
Σ

[
g(∆dh,dh)− Ric(Jdh, Jdh)

− 2g(dh⊗ dh⊗ σH , S) + g(dh, σH)2
]
,

where h is a Hamiltonian potential for the variation Xp = d
dsxs(p)

∣∣
s=0

,

i.e., σX = dh, and S is a (0, 3)-tensor on Σ defined by S(X,Y, Z) =

g(J(B(X,Y )), Z), where B is the second fundamental form of x0(Σ) ⊂M .

In particular, we get an expression for the corresponding Jacobi operator

Jacx0 , which represents the above quadratic form and is the linearized

operator of the Euler-Lagrange equations (9),

Jacx0(h) = ∆2h+ δσRic⊥(J∇h) − 2δσB(JH,∇h) − JH(JH(h)), (10)

where Ric⊥(X) for a normal vector X to Σ is defined by g(Ric⊥(X), Y ) =

Ric(X,Y ) for all Y normal to Σ.

4 The variational framework

Let us describe the appropriate variational framework that yields the

proof of the Theorem in the Introduction, as an application of the equiv-

ariant implicit function theorem, as formulated, e.g., in [4, Thm 3.2].

4.1 Unparametrized embeddings

We denote by EmbL(Σ,M) the space of Lagrangian embeddings x : Σ ↪→
(M,ω) of class Ck,α, k ≥ 4, where the regularity choice is due to Fred-

holmness reasons. The space EmbL(Σ,M) endowed with the correspond-

ing C4,α topology is a smooth Banach manifold, and its tangent space at
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x ∈ EmbL(Σ,M) can be identified with the space of C4,α vector fields

along x that are Lagrangian variations of x, see Subsection 3.1.

There is a natural action of the diffeomorphism group Diff(Σ) on

EmbL(Σ,M). Two Lagrangian embeddings xi ∈ EmbL(Σ,M), i = 1, 2,

are congruent if there exists a diffeomorphism ψ : Σ → Σ such that x1 =

x2 ◦ ψ, i.e., if they belong to the same orbit of this action. Given a

Lagrangian embedding x ∈ EmbL(Σ,M), we denote by [x] its congru-

ence class, i.e., the orbit of x. Denote by L(Σ,M) the orbit space of

unparametrized Lagrangian embeddings of Σ in (M,ω):

L(Σ,M) := EmbL(Σ,M)/Diff(Σ), (11)

i.e., the set of congruence classes of Lagrangian embeddings of Σ into M .

In other words, an element [x] ∈ L(Σ,M) is a class of embeddings of Σ in

M whose elements can be obtained from one another by reparametriza-

tions. The set L(Σ,M) can be thus identified with the set of Lagrangian

submanifolds of M (of class C4,α) that are diffeomorphic to Σ. We con-

sider L(Σ,M) endowed with the induced quotient topology. The action

of Diff(Σ) is neither free nor proper, and the orbit space L(Σ,M) fails to

be a smooth Banach manifold.

Let us briefly describe the structure of L(Σ,M). A classic result due

to Weinstein [14] states that given a smooth (i.e., C∞) Lagrangian em-

bedding x0 : Σ → M , there exists a smooth symplectomorphism Ψ from

a neighborhood U of x0(Σ) in (M,ω) to a neighborhood V of the zero

section of the cotangent bundle TΣ∗ endowed with its canonical symplec-

tic structure, such that Ψ ◦ x0 is the inclusion of the zero section into

TΣ∗. It is an easy observation that the image of a 1-form is a Lagrangian

submanifold of TΣ∗ if and only if this 1-form is closed. Consequently,

small Lagrangian deformations of x0 : Σ →M are parametrized by closed

1-forms on Σ. More precisely, given any Lagrangian embedding x : Σ → U

of class C4,α sufficiently close to x0, there exists a (unique) closed 1-form

ηx on Σ such that Ψ
(
x(Σ)

)
is the image of ηx : Σ → TΣ∗. In other words,

the Lagrangian embeddings Ψ◦x and ηx are congruent. The map [x] 7→ ηx
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gives a continuous bijection from a neighborhood of [x0] in L(Σ,M) to a

neighborhood of the origin in the Banach space of closed 1-forms on Σ

of class C4,α. As x varies in the set of smooth Lagrangian embeddings

of Σ into M , such bijections form an atlas of charts for the topological

manifold L(Σ,M).

We observe, however, that the transition maps between two of these

charts are in general only continuous, and not differentiable. This is due

to a subtle technicality, which in particular implies that right-composition

with a diffeomorphism of class C4,α is not a differentiable map in the set of

maps of class C4,α between two smooth manifolds. This and other relevant

issues concerning the lack of regularity of the space of unparametrized em-

beddings are discussed thoroughly in [1]. As explained in this reference,

since we are only interested in local questions around a smooth embed-

ding, we can use the above chart as an identification and formally treat

L(Σ,M) as a smooth manifold. In this way, for convenience of notation we

henceforth refer to, e.g., tangent spaces, distributions and smooth func-

tions on L(Σ,M), and the implicit rigorous version of these objects are

the corresponding objects defined in a small neighborhood of the origin of

the Banach space of closed 1-forms on Σ of class C4,α.

Under the above convention, if x0 ∈ EmbL(Σ,M) is smooth, the tangent

space at [x0] to L(Σ,M) can be identified as

T[x0]L(Σ,M) = Z1(Σ), (12)

i.e., with the Banach space Z1(Σ) of closed 1-forms on Σ of class C4,α.

Note this is the image of the surjective linear map Tx0EmbL(Σ,M) ∋ X 7→
σX ∈ Z1(Σ), whose kernel corresponds to variations tangent to x0, i.e.,

reparametrizations, which form the tangent space to the orbit of Diff(Σ)

that passes through x0. This linear map is precisely the linearization of the

orbit space projection EmbL(Σ,M) → L(Σ,M) at the smooth embedding

x0.

The tangent space (12) has a distinguished subspace, namely B1(Σ),

formed by exact 1-forms on Σ of class C4,α. This subspace corresponds
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to Hamiltonian variations of x0, and gives rise to an integrable distribu-

tion5 of L(Σ,M) with codimension b1(Σ) = dimH1(Σ,R), see [15]. We

call this distribution the Hamiltonian distribution in L(Σ,M). Given a

Lagrangian embedding x0 : Σ →M , the integral leaves of the Hamiltonian

distribution near [x0] are parametrized by elements of the first de Rham

cohomology H1(Σ,R). Given a closed 1-form η on Σ, we denote by [η]

its cohomology class and by L(Σ,M)[η] the integral leaf of the Hamilto-

nian distribution corresponding to [η]. In particular, when η is exact, i.e.,

[η] = 0, then L(Σ,M)[η] is the integral leaf through [x0], i.e., consists of

all the Hamiltonian deformations of x0.

4.2 Volume functional

We now describe how to encode the variational problem described in

Subsection 3.2 in the above setup, for a varying family of metrics. Namely,

we start from a family of volume functionals parametrized by a family

gt ∈ Met(M), t ∈ [−δ, δ], of metrics on M ,

Vol : EmbL(Σ,M)× [−δ, δ] → R, Vol(x, t) = Volgt
(
x(Σ)

)
.

This functional is clearly invariant under reparametrizations, i.e., under

the action of Diff(Σ). Hence, it passes to the quotient, defining a contin-

uous map

Vol : L(Σ,M)× [−δ, δ] → R, (13)

that is smooth in every local chart around [x0] ∈ L(Σ,M), where x0 ∈
EmbL(Σ,M) is smooth, see [1, Cor 4.4].

For any fixed t ∈ [−δ, δ], the critical points of (13) are exactly the

gt-Lagrangian stationary Lagrangian embeddings of Σ in M . Consider

now a Lagrangian embedding x0 : Σ → M , and and let η be a closed

1-form on Σ whose cohomology class [η] belongs to a sufficiently small

5Since we are working locally around smooth points, consider this distribution de-

fined in an open subset that is the domain of a chart; where it is integrable in the usual

sense that it is tangent to a foliation of this subset.
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neighborhood of 0 in the vector space H1(Σ,R). For any fixed t ∈ [−δ, δ],
the critical points of the restriction of (13) to L(Σ,M)[η] are precisely

the gt-Hamiltonian stationary Lagrangian embeddings of Σ in M that

belong to L(Σ,M)[η]. This is the constrained variational problem that we

use to prove our main result. Under the appropriate identifications, the

Euler-Lagrange equation and Jacobi operator of this variational problem

coincide with the ones discussed in the previous section.

Note that if there is an isometric Hamiltonian action of a Lie group G

on M , the induced G-action by left-composition on the space of embed-

dings EmbL(Σ,M) commutes with the Diff(Σ)-action and hence induces a

G-action on L(Σ,M). It is a straightforward observation that the Hamil-

tonian distribution in L(Σ,M) is preserved by this G-action, and that the

above constrained variational problem is also invariant under such action.

4.3 G-nondegenerate embeddings

Since the variational problem in question is G-invariant, the lineariza-

tion of deformations that correspond to the G-action will automatically

produce elements in the kernel of the Jacobi operator (10). More precisely,

for each x0 consider the linear map

g ∋ X 7−→ σX∗ ∈ B1(Σ), (14)

which associates toX ∈ g the exact 1-form on Σ given by σX∗ = x∗0
(
ω(X∗, ·)

)
,

where X∗ is the action field corresponding to X. Such 1-form is exact,

because the G-action is Hamiltonian. Since the action preserves ω, g0

and the Hamiltonian distribution, the image Nx0 of the linear map (14)

is contained in the kernel of Jacx0 , since this is the second variation of

the volume functional (restricted to the integral leaf L(Σ,M)[0] through

[x0] ∈ L(Σ,M) of the Hamiltonian distribution). Here we are identifying

the space of exact 1-forms B1(Σ) of class Ck,α on Σ with the space of real-

valued functions modulo constants Ck,α(Σ)/R; and Nx0 can be identified

with the tangent space at [x0] to the G-orbit of [x0] ∈ L(Σ,M)[0].
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Definition 4.1. The g0-Hamiltonian stationary embedding x0 is said to

be G-nondegenerate if Nx0 coincides with the kernel of Jacx0 in B1(Σ).

In other words, x0 is G-nondegenerate if the kernel of Jacx0 is as small as

it can be, since fields originating from (14) are necessarily in it. Examples

of G-nondegenerate embeddings will be given in Section 5.

4.4 Proof of main result

We are now ready for the proof of the Theorem in the Introduction. For

convenience, we restate it below in the language of compatible triples and

unparametrized embeddings.

Theorem. Let (M,ω, g0, J0) be a Kähler manifold with an isometric

Hamiltonian action of a compact Lie group G. Let (ω, gt, Jt) be a deforma-

tion of the compatible triple (ω, g0, J0), such that G acts by gt-isometries

and Jt-biholomorphisms, for all t ∈ [−δ, δ]. Suppose x0 : Σ → (M,ω)

is a G-nondegenerate g0-Hamiltonian stationary Lagrangian embedding.

Then, there exists ε > 0, a neighborhood V of [x0] ∈ L(Σ,M), a neigh-

borhood E of [0] ∈ H1(Σ,R) and a map x : (−ε, ε) × E → V; such that

x(0, 0) = [x0] and x(t, [η]) is a gt-Hamiltonian stationary Lagrangian un-

parametrized embedding in L(Σ,M)[η], for all |t| < ε and all [η] ∈ E .
Moreover, given (t, [η]) ∈ (−ε, ε) × E , if [x∗] ∈ V is a gt-Hamiltonian sta-

tionary Lagrangian unparametrized embedding in L(Σ,M)[η] sufficiently

close to the G-orbit of [x0], then there exists ϕ ∈ G such that ϕ([x∗]) =

x(t, [η]).

Proof. By assumption, the G-action preserves ω and gt, for all t ∈ [−δ, δ].
Thus, the induced G-action by left-composition on the space of embed-

dings x : Σ → M preserves Lagrangian embeddings, as well as their gt-

volume. Moreover, since the action is assumed Hamiltonian, it also pre-

serves the leaves of the Hamiltonian distribution. This means that by

choosing a G-nondegenerate g0-Hamiltonian stationary Lagrangian em-

bedding x0 we are in the setup of the G-equivariant implicit function

theorem studied in [4].
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Using identification (12) and the canonical splitting Z1(Σ) = B1(Σ) ⊕
H1(Σ,R), we can write a sufficiently small neighborhood U of [x0] ∈
L(Σ,M) as a product U = UB × UH , where UB is a neighborhood of

0 ∈ B1(Σ) and UH is a neighborhood of [0] ∈ H1(Σ). In this way, any

[x] ∈ U corresponds to a unique pair (β, [η]) ∈ UB × UH , and [x0] cor-

responds to (0, [0]). Moreover, each slice L[η] := {(β, [η]) : β ∈ UB}
of UB ×UH corresponds to the intersection of the leaf L(Σ,M)[η] with U .
The abstract implicit function theorem is applied to the volume functional

Vol in (13), considered as a function of three variables in the neighbor-

hood U of [x0]; Vol(t, β, [η]), where t varies in [−δ, δ], β varies in UB and

[η] varies in UH . Thus, gt-Hamiltonian stationary Lagrangian embeddings

correspond to points where the derivative of Vol(t, β, [η]) with respect to

β vanishes.

In this setup, the only hypothesis in the equivariant implicit function

theorem that requires additional explanation is the Fredholmness of the

Jacobi operator Jacx0 , which corresponds to the second variation of Vol

with respect to the variable β at the point (0, 0, [0]). This operator is

defined on the tangent space to UB at the origin, which is B1(Σ), that we

now write as B1
k,α(Σ) to emphasize that its elements are exact 1-forms on

Σ of class Ck,α. Such linear space is canonically identified with Ck,α(Σ)/R,
the real-valued functions Hölder space Ck,α modulo constants. Although

so far we were implicitly using this identification for convenience, it is now

important to write it explicitly. The Jacobi operator of the variational

problem above mentioned is given by the composition of the linear maps

in the bottom line of the following commutative diagram:

Ck,α(Σ)
Jacx0 //

��

Ck−4,α(Σ)

��
B1

k,α(Σ)
∼= // Ck,α(Σ)/R

[Jacx0 ] //

88

Ck−4,α(Σ)/R
∼= // B1

k−4,α(Σ),

where the vertical arrows are the natural projections and the top line op-

erator Jacx0 is given by formula (10). This formula shows that Jacx0 is
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a fourth-order (formally self-adjoint) linear elliptic operator. Thus, from

standard Schauder estimates, such an operator is Fredholm of index 0.

Since constant functions are in the kernel of Jacx0 , it induces an oper-

ator from the quotient Ck,α(Σ)/R, denoted by the dotted arrow. Such

operator the has same image as Jacx0 and its kernel is (ker Jacx0)/R.
Hence, it is a Fredholm operator of index −1. The Jacobi operator

[Jacx0 ] : C
k,α(Σ)/R → Ck−4,α(Σ)/R is given by the composition of the

latter with the projection Ck−4,α(Σ) → Ck−4,α(Σ)/R, which is a Fred-

holm operator of index +1. Thus, [Jacx0 ] is also Fredholm and its in-

dex is the sum of the indices of its factors, which is 0. This proves the

desired Fredholmness condition. From6 [4, Thm 3.2], we now get that

there exists a map β(t, [η]) (defined locally) such that the map x(t, [η]) :=

(β(t, [η]), [η]) ∈ UB × UH = U ⊂ L(Σ,M) satisfies the desired condi-

tions. ■

5 Examples of deformations

In this section, we describe some deformations of compatible triples,

and a few examples to which the result proved above applies.

5.1 Cheeger deformations

We now briefly outline an important example of metric deformation

preserving symmetries, the so-called Cheeger deformation, and the cor-

responding deformation of almost complex structures via Corollary 2.1.

Cheeger deformations are very important tools in Riemannian geometry

(see [16, 17]), and its counterpart in almost complex manifolds given by the

above correspondence apparently has not yet been thoroughly explored.

Let J0 ∈ J (M,ω) be an ω-compatible almost complex structure on

(M,ω), and g0(·, ·) = ω(·, J0·). Suppose G is a compact Lie group of

6For further details, the reader may follow the proof of the constant mean curvature

hypersurfaces version of the equivariant implicit function theorem discussed in [4], which

has many analogies with the application discussed here.
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symplectomorphisms of (M,ω), that acts on (M, g0) by isometries. This

gives a partition of M into G-orbits, and the deformation gt of g0 we

now describe essentially works by rescaling g0 in the direction of these

orbits, leaving it unchanged in the complementary directions. This will

then automatically cause gt to be G-invariant, i.e., the deformation will be

through metrics that still have an isometric G-action. Such deformations

have been extensively used in many situations, see [16, 17], and we outline

its construction following the notation of the above references.

Fix a bi-invariant metric Q on G, and consider the product manifold

M × G endowed with the product metric g + 1
tQ. Denote by g · p the

action of g ∈ G on p ∈M and define a submersion

ρ : M ×G→M, ρ(p, g) = (g−1) · p.

Let gt ∈ Met(M) be the unique metric that makes ρ a Riemannian sub-

mersion. It is immediate from its definition that gt is G-invariant, i.e.,

G acts isometrically on (M, gt), t > 0. The curve of metrics gt, t > 0,

extends smoothly across t = 0, and coincides with the original metric g0

at this point. In this sense, gt is a deformation of g0.

In order to analyze how gt, t > 0, differs from g0, we have to introduce

some more notation. Let Gp be the isotropy group at p ∈M and gp its Lie

algebra. Fix the Q-orthogonal decomposition g = gp ⊕ mp, and identify

mp with the tangent space TpG(p) to the G-orbit through p, via action

fields; i.e., X ∈ mp is identified with X∗
p = d

ds exp(sX)|s=0 ∈ TpG(p). This

induces a gt-orthogonal decomposition TpM = Vp ⊕ Hp in vertical space

Vp = {X∗
p ∈ TpG(p) : X ∈ mp} and horizontal space Hp = V⊥

p , where ⊥ is

the gt-orthogonal complement. Let

Pt : mp → mp, Q(Pt(X), Y ) = gt(X
∗
p , Y

∗
p ).

Then Pt is a Q-symmetric automorphism that represents gt in terms of Q,

and it can be easily computed (see [16, Prop 1.1]) that Pt = P0 (id+tP0)
−1,

t ≥ 0. Thus, defining

Ct : TpM → TpM, g(Ct(X), Y ) = gt(X,Y ),
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we get

Ct(X) = P−1
0 Pt(X

V) +XH,

where XV and XH are the vertical and horizontal components of X re-

spectively. If P0 has eigenvalues λi, then by the above formula, Ct has

eigenvalues 1
1+tλi

in the vertical directions and 1 in the horizontal direc-

tions. This means that as t increases, the metric gt shrinks in the direction

of the G-orbits and stays unchanged in the remaining directions.

By Corollary 2.1, given the above deformation gt of g0, there is a corre-

sponding deformation Jt = Jgt of J0, such that the G-action by symplec-

tomorphisms on M is also by gt-isometries and Jt-biholomorphisms, for

t > 0.

5.2 Minimal Lagrangians in Kähler-Einstein manifolds

Hamiltonian stationary Lagrangians in Kähler-Einstein manifolds have

been extensively studied in the literature, see e.g. [2, 3, 5, 9, 10, 11, 12].

In this subsection, we are interested in the particular case of minimal La-

grangians Σ of these manifolds, which are automatically Hamiltonian sta-

tionary, see Subsection 3.2. In this case, the Jacobi operator (10) assumes

a very simple form. Namely, if κ is the Einstein constant of (M, g0), i.e.,

Ric = κ g0 and x0 : Σ →M is a minimal Lagrangian submanifold, then

Jacx0(h) = ∆2h+ κ δσJ∇h = ∆(∆h− κh), (15)

since σJ∇h = −dh. Let us analyze the kernel of this operator. Since Σ is

compact, the function ∆h − κh is harmonic if and only if it is constant.

We are working on Ck,α(Σ)/R, i.e., modulo constants, so it follows that

elements in the kernel of the Jacobi operator are precisely the exact 1-

forms dh such that

∆h− κh = 0, (16)

i.e., h is an eigenfunction of the Laplacian on Σ, corresponding to the

Einstein constant κ of M .
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The Hamiltonian stability of such minimal Lagrangian submanifolds,

i.e., whether their Jacobi operator is nonnegative, plays an important

role in the theory. An immediate conclusion from the above is that Σ

is Hamiltonian stable if and only if λ1(Σ) ≥ κ, where λ1(Σ) is the first

eigenvalue of the Laplacian on (functions on) Σ, cf. [10, Thm 4.4].

For our equivariant setup, the Kähler-Einstein manifold M has an iso-

metric Hamiltonian G-action, hence every action field not tangent to Σ

induces an element of its Jacobi operator through the map (14). In par-

ticular, (16) always has nontrivial solutions, i.e., the Einstein constant κ

is an eigenvalue of the Laplacian on Σ. Such a minimal Lagrangian is

G-nondegenerate if and only if all solutions h of (16) are of this form, i.e.,

if there exists an action field X∗ such that h = ⟨µ(·), X∗⟩|Σ, where µ is the

moment map of the action. For example, one way to verify this condition

is by dimensional reasons. Namely, if the dimension of the span of action

fields normal to x0(Σ) ⊂ M is larger than or equal to the multiplicity

of κ as an eigenvalue of the Laplacian on Σ, then Σ is G-nondegenerate.

This provides a setup to which our main result applies, considering the

1-parameter family of compatible triples (ω, Jt, gt) obtained by a Cheeger

deformation of g0 with respect to the G-action.

Let us give a few concrete examples in the case (M, g0) is CPn with its

standard Kähler structure, for which κ = 2n+ 2. More precisely, we will

consider totally real minimal submanifolds x0 : Σ → CPn with parallel

second fundamental form. These were classified by Naitoh and Takeuchi,

see [2, Sec 2]. Following the classification, Amarzaya and Ohnita [2] de-

termined which of those submanifolds are Hamiltonian stable. Namely,

they obtained the following, see [2, Thm 4.1].

Theorem 5.1 (Amarzaya-Ohnita). Let Σ be a n-dimensional totally real

minimal submanifold embedded in CPn with parallel second fundamental

form in the following table:
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Σ n

SU(p)/Zp p2 − 1

SU(p)/SO(p)Zp (p− 1)(p+ 2)/2

SU(2p)/Sp(p)Z2p (p− 1)(2p+ 1)

E6/F4Z3 26

Then Σ is a Hamiltonian stable minimal Lagrangian submanifold in CPn.

Moreover, the kernel of the Jacobi operator of Σ is exactly the span of the

normal projections of Killing vector fields on CPn.

With the above result at hand, one can apply our deformation methods

to a such Σ using any Cheeger deformation of CPn with respect to a G-

action that has the following extra property: the normal space at each

p ∈ x0(Σ) must be contained in the tangent space TpG(p) to the G-

orbit through p. It then automatically follows that the image of the map

(14) is precisely the kernel of the Jacobi operator Jacx0 , i.e., x0 is G-

nondegenerate.

5.3 Sasaki metrics on tangent bundles

Let (N, g) be a Riemannian manifold, and consider its tangent bundle

M = TN . We recall a standard construction of a Riemannian metric on

M , starting from a metric on N , see also [7]. Let π : TN → N denote the

canonical projection; for v ∈ TN , write Tv(TN) = Verv ⊕ Horv, where

Verv is the vertical subspace, i.e., the tangent space to the fiber TpN ,

where p = π(v), and Horv is the horizontal subspace determined by the

Levi-Civita connection of g. Given ξ ∈ Tv(TN), we denote by ξver and

ξhor its vertical and horizontal component, respectively.

The spaces Verv and Horv are gS-orthogonal. There is a canonical iso-

morphism Verv = Tv(TpN) → TpN ; the restriction of gS to Verv is defined

to be equal to the pull-back of gp through such isomorphism. Moreover,

the restriction of the differential dπ(p)
∣∣
Horv

: Horv → TpN is an isomor-

phism, the restriction of gS to Horv is defined to be equal to the pull-back
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of gp through such isomorphism. This defines a smooth Riemannian tensor

gS on M = TN , called the Sasaki metric associated to g.

In addition, a symplectic form ωg can be defined on M , as follows.

Given v ∈ TN , and ξ, η ∈ Tv(TN), let

ωg(ξ, η) := g(ξver, ηhor)− g(ξhor, ηver).

This symplectic structure interacts well with the Sasaki metric, due to the

following observation.

Lemma 5.1. Let f : N → N be a g-isometry. Then, df : TN → TN

preserves both the Sasaki metric gS and the symplectic form ωg. Moreover,

the map

Iso(N, g) ∋ f 7→ df ∈ Iso(TN, gS) ∩ Symp(TN, ωg)

is an injective Lie group homomorphism with closed image. ■

In particular, if G is a Lie group acting by isometries on a Rieman-

nian manifold (N, g), we also have a G-action on M by gS-isometries

that preserve ωg. If the G-action on N preserves a 1-parameter family

of Riemannian metrics gt (e.g., a Cheeger deformation), then the corre-

sponding action on M provides an example of the situation considered in

the Theorem in the Introduction, with the choice of a G-nondegenerate

Hamiltonian stationary Lagrangian of M .

5.4 Kähler-Ricci flow

One situation in which the deformation (ω, Jt, gt) preserves the integra-

bility of Jt, i.e., the fact that (M,ω, Jt, gt) is Kähler, is when gt evolves

by the Kähler-Ricci flow. This means gt is a solution of the evolution

equation ∂
∂tgt = −2Ric(gt), which also clearly preserves the isometries of

the initial metric g0. Thus, if there is a Hamiltonian isometric action of G

on (M, g0), we automatically get that G acts on M by gt-isometries and

Jt-biholomorphisms. In this way, G-nondegenerate g0-Hamiltonian sta-

tionary Lagrangians of (M,ω, J0, g0) may be deformed to gt-Hamiltonian
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stationary Lagrangians up to the G-action, where gt is the Kähler-Ricci

flow of g0.
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