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Abstract: This article proposes the use of the Bayesian reference analysis to estimate the parameters
of the generalized normal linear regression model. It is shown that the reference prior led to a proper
posterior distribution, while the Jeffreys prior returned an improper one. The inferential purposes
were obtained via Markov Chain Monte Carlo (MCMC). Furthermore, diagnostic techniques based
on the Kullback–Leibler divergence were used. The proposed method was illustrated using artificial
data and real data on the height and diameter of Eucalyptus clones from Brazil.

Keywords: Bayesian inference; generalized normal linear regression model; normal linear regression
model; reference prior; Jeffreys prior; Kullback–Leibler divergence

1. Introduction

Although the normal distribution is used in many fields for symmetrical data modeling,
when the data come from a distribution with lighter or heavier tails, the assumption of
normality becomes inappropriate. Such circumstances show the need for more flexible
models such as the Generalized Normal (GN) distribution [1], which encompasses various
distributions such as the Laplace, normal, and uniform distributions.

In the presence of covariates, the normal linear regression model can be used to
investigate and model the relationship between variables, assuming that the observations
follow a normal distribution. However, it is well known that a normal linear regression
model can be influenced by the presence of outliers [2,3]. In these circumstances, as
discussed above, it is necessary to use models in which the error distribution presents
heavier or lighter tails than normal such as the GN distribution.

Due to its flexibility, the GN distribution is considered a tool to reduce the impact
of the outliers and obtain robust estimates [4–6]. This distribution has been used in
different contexts, with different parameterizations, but the main difficulties to adopting
GN distribution modeling have been computational problems since there are no explicit
expressions for estimators of the shape parameter. The estimation of the shape parameter
should be done through numerical methods. However, in the classical context, there are
problems of convergence, as demonstrated in the studies [7,8].
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In the Bayesian context, the methods presented in the literature for the estimation of
the parameters of the GN distribution are restricted and applied to particular cases. West [9]
proved that a scale mixture of the normal distribution could represent the GN distribution.
Choy and Smith [10] used the prior GN distribution for the location parameter in the Gaussian
model. They obtained the summaries of the posterior distribution, estimated through the
Laplace method, and examined their robustness properties. Additionally, the authors used
the representation of the GN distribution as a scale mixture of the normal distribution in
random effect models and considered the Markov Chain Monte Carlo method (MCMC) to
obtain the posterior summaries of the parameter of interest.

Bayesian procedures for regression models with GN errors have been discussed
earlier. Box and Tiao [4] used the GN distribution from the Bayesian approach in which
they proposed robust regression models as an alternative to the assumptions of normality
of errors in regression models. Salazar et al. [11] considered an objective Bayesian analysis
for exponential power regression models, i.e., a reparametrized version of the GDN. They
derived the Jeffreys prior and showed that such a prior results in an improper posterior.
To overcome this limitation, they considered a modified version of the Jeffreys prior
under the assumption of independence of the parameters. This assumption does not
hold since the scale and the shape parameters correlate with the proposed distribution.
Additionally, the use of the Jeffreys prior is not appropriate in many cases and can cause
strong inconsistencies and marginalization paradoxes (see Bernardo [12], p. 41).

Reference priors, also called objective priors, can be used to overcome this problem.
This method was introduced by Bernardo [13] and enhanced by Berger and Bernardo [14].
For the proposed methodology, the prior information is dominated by the information
provided by the data, resulting in a vague influence of the prior distribution. Estimations
are made based on priors through the maximization of the expected Kullback–Leibler (KL)
divergence between the posterior and prior distributions. The resulting reference prior
affords a posterior distribution that has interesting features, such as consistent marginaliza-
tion, one-to-one invariance, and consistent sampling properties [12]. Some applications of
reference priors can be seen for other distributions in [15–20].

In this paper, we considered the reference approach for estimating the parameters
of the GN linear regression model. We showed that the reference prior led to a proper
posterior distribution, whereas the Jeffreys prior brought an improper one and should not
be used. The posterior summaries were obtained via Markov Chain Monte Carlo (MCMC)
methods. Furthermore, diagnostic techniques based on the Kullback–Leibler divergence
were used.

To exemplify the proposed model, we considered the 1309 entries on the height and
diameter of Eucalyptus clones (more details are given in Section 8). For these data, a linear
regression model using the normal distribution for the residuals was not adequate, and so,
we used the GN linear regression approach.

This paper is composed as follows. Section 2 presents the GN distribution with
some special cases, and in the following Section 3, we introduce the GN linear regression
model. Section 4 shows the reference and Jeffreys priors, respectively, for a GN linear
regression model. Then, the model selection criteria, in Section 6, are discussed, as well as
their applications. Section 7 shows the proposed method for analyzing compelling cases
considering the Bayesian reference prior approach through the use of the Kullback–Leibler
divergence. Section 8 presents studies with an artificial and a real application, respectively.
Finally, we discuss the conclusions in Section 9.

2. Generalized Normal Distribution

The Generalized Normal distribution (GN distribution) has been referred to in the
literature under different names and parametrizations such as the exponential power dis-
tribution or the generalized error distribution. The first formulation of this distribution [1]
as a generalization of the normal distribution was characterized by the location, scale, and
shape parameters.
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Here, we considered the form presented by Nadarajah [21]. It is understood that the
random variable Y is the GN distribution given its probability density function (pdf) as:

f (y|µ, τ, s) =
s

2τΓ
(

1
s

) exp
{
−
(
|y− µ|

τ

)s}
, y, µ ∈ <, τ, s > 0. (1)

The parameter µ is the mean; τ is the scale factor; and s is the shape parameter. In
particular, the mean, variance, and coefficient of the kurtosis of Y are given by:

E(Y) = µ, Var(Y) =
τ2Γ

( 3
s
)

Γ
(

1
s

) and γ =
Γ
(

1
s

)
Γ
( 5

s
)

Γ
( 3

s
)2 ,

respectively.
The GN distribution characterizes leptokurtic distributions if s < 2 and platykurtic

distributions if s > 2. In particular, the GN distribution displays the Laplace distribution
when s = 1 and the normal distribution when s = 2 and τ is equal to

√
2 σ, where σ is the

standard deviation, and when s→ ∞, the pdf converges to a uniform distribution in (1).
This distribution is flexible-symmetrical concerning the average and unimodality.

Moreover, it allows a more flexible fit for the kurtosis than a normal distribution. Further-
more, the ability of the GN distribution to provide a precise fit for the data depends on
its shape.

Zhu and Zinde-Walsh [22] proposed a reparameterization of the asymmetric exponen-
tial power distribution that allows us to observe the effect of the shape parameter on the
distribution, which was adapted for the GN distribution. Using a similar reparameteriza-
tion, σ = τ Γ

(
1 + 1

s

)
, the GN distribution in (1) is given by:

f (y|µ, σ, s) = 2−1σ−1 exp

−
Γ

(
1 + 1

s

)
|y− µ|

σ

s y, µ ∈ <, σ > 0, s > 0. (2)

The reparametrization above is used throughout the paper. Figure 1 shows the density
functions of the GN distribution in (2) for various parameter values.
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Figure 1. Density functions of the GN distribution with the parameters (a) µ = 0 and σ = 1 fixed and varying s and
(b) µ = 0 and s = 1.5 fixed and varying σ.
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3. Generalized Normal Linear Regression Model

The GN linear regression model is defined as:

Yi = x>i β + εi, i = 1, . . . , n, (3)

where Yi is the vector of the response for the ith case, x>i = (xi1, . . . , xip) contains the values
of the explanatory variables, β = (β1, . . . , βp)> is the vector of regression coefficients, and
εi is the vector of random errors that follows a GN distribution with mean zero, scale
parameter σ, and shape parameter s.

Therefore, the likelihood function is:

L(y|β, σ, s) = 2−nσ−n exp

−
n

∑
i=1

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

s. (4)

The log-likelihood function (4) is given by:

log L(y|β, σ, s) = −n log 2− n log σ−
n

∑
i=1

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

s

. (5)

The first-order derivatives of the log-likelihood function in (5) are given by:

∂ log L
∂β

=
sΓ
(

1 + 1
s

)
σ

n

∑
i=1

x>i

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

s−1

sign(yi − x>i β) , (6)

∂ log L
∂σ

= −n
σ
+

s
σ

n

∑
i=1

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

s

, (7)

∂ log L
∂s

= −
n

∑
i=1

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

slog

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

− Ψ
(

1 + 1
s

)
s

 , (8)

where Ψ(s) = Γ
′
(s)

Γ(s) is the digamma function.
The score function obtains the Fisher information matrix. This matrix is helpful to

get the reference priors for the model parameters. The following proposition obtains the
elements of the Fisher information matrix for the model in (3).

Proposition 1. Let I(θ) be the Fisher information matrix, with θ = (β, σ, s). The elements of the
Fisher information matrix,

Iij(θ) = −E

(
∂2 log f (y|θ)

∂θi∂θj

)
= E

(
∂ log f (y|θ)

∂θi

∂ log f (y|θ)
∂θj

)
, i, j = 1, 2, 3,

with Iij(θ) = Iji(θ) and θj the jth element of θ, are given by,



Symmetry 2021, 13, 856 5 of 20

I11(θ) = E
[(

∂ log L
∂β

)(
∂ log L

∂β>

)]
=

Γ
(

1
s

)
Γ
(

2− 1
s

)
σ2

n

∑
i=1

xix>i ,

I12(θ) = E
[(

∂ log L
∂β

)(
∂ log L

∂σ

)]
= 0,

I13(θ) = E
[(

∂ log L
∂β

)(
∂ log L

∂s

)]
= 0,

I22(θ) = E

[(
∂ log L

∂σ

)2
]
=

ns
σ2 ,

I23(θ) = E
[(

∂ log L
∂σ

)(
∂ log L

∂s

)]
= − n

σs
,

I33(θ) = E

[(
∂ log L

∂s

)2
]
=

n
s3

{(
1 +

1
s

)
Ψ
′
(

1 +
1
s

)}
,

where s > 1 and Ψ
′
(s) = ∂Ψ(s)

∂s is the trigamma function. The restriction s > 1 ensures that
the elements Iij(θ), calculated for i, j = 1, 2, 3, are finite and the information matrix I(θ) is
positive definite.

For further details of this proof, please see Proposition 5 in Zhu and Zinde-Walsh [22].
Then, Fisher’s information matrix is given by:

I(θ) =


Γ( 1

s )Γ(2− 1
s )

σ2 ∑n
i=1 xix>i 0 0

0 ns
σ2 − n

σs

0 − n
σs

n
s3

{(
1 + 1

s

)
Ψ
′
(

1 + 1
s

)}
. (9)

The corresponding inverse Fisher’s information matrix is given by:

B(θ) =


σ2

Γ( 1
s )Γ(2− 1

s )∑n
i=1 xix>i

0 0

0 σ2

ns

[
1− s

(1+s)Ψ′(1+ 1
s )

] σs2

n[−s+(1+s)Ψ′(1+ 1
s )]

0 σs2

n[−s+(1+s)Ψ′(1+ 1
s )]

s4

n[−s+(1+s)Ψ′(1+ 1
s )]

. (10)

The matrix in (9) coincides with the Fisher information matrix found by Salazar et al. [11]
due to the one-to-one invariance property.

4. Objective Bayesian Analysis

An important class of objective priors was introduced by Bernardo [13] and later
developed by Berger and Bernardo [14]. This class of prior is known as reference priors. A
vital feature of the method developed by Berger–Bernardo is the specific treatment given
to interest and nuisance parameters. The construction of the reference prior, in the case of
nuisance parameters, must be made using an ordered parameterization. The parameter of
interest is selected, and the procedure is followed below (see Bernardo [12], for a detailed
discussion).

Proposition 2. (Reference priors under asymptotic normality) Let a probability model
f (y|θ, ω), y ∈ Rn, ω = (ω1, . . . , ωm), θ ∈ Φ, ω ∈ Ω = ∏m

j=1 Ωj, with m + 1 real-valued
parameters, and let θ be the quantity of interest. For instance, the posterior distribution of the
parameters (θ, ω1, . . . , ωm) is asymptotically normal with covariance matrix B(θ̂, ω̂1, . . . , ω̂m),
where H = B−1, Bj is the upper left j× j submatrix of B, Hj = B−1

j , and hjj(θ, ω1, . . . , ωm) is the
lower right element of Hj.
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Then, it holds that the conditional reference priors can be represented as:

πR(ωm|θ, ω1, . . . , ωm−1) ∝ h
1
2
m+1,m+1(θ, ω1, . . . , ωm),

and:

πR(ωi|θ, ω1, . . . , ωi−1) ∝ exp

{∫
Ωi+1

· · ·
∫

Ωm
log h

1
2
i+1,i+1(θ, ω1, . . . , ωm)×{

m

∏
j=i+1

πR(ωj|θ, ω1, . . . , ωj−1)

}
dωi+1

}
,

where dωj = dωj × · · · × dωm and πR(ωi|θ, ω1, . . . , ωi−1), i = 1, . . . , m are all proper. A
compact approximation will be only required, for the corresponding integrals, if any of those
conditional reference priors is not proper.

Furthermore, the marginal reference prior of θ is:

πR(θ) ∝ exp


∫

Ω1

· · ·
∫

Ωm

log B11
− 1

2 (θ, ω1, . . . , ωm)

 m

∏
j=1

πR(ωj|θ, ω1, . . . , ωj−1)

dω1

,

where B−
1
2

11 (θ, ω1, . . . , ωm) = h
1
2
11(θ, ω1, . . . , ωm).

The reference posterior distribution associated with θ, after y, is given by:

πR(θ|y) ∝ πR(θ)
∫

Ω1

· · ·
∫

Ωm

f (y|θ, ω1, . . . , ωm)

 m

∏
j=1

πR(ωj|ω1, . . . , ωj−1)

dω1, . . . , dωm.

The proposition is first presented for the presence of one nuisance parameter and
further extended to a vector of nuisance parameters (see Bernardo [12] for a detailed
discussion and proofs). Here, as our model has a special structure, we also considered an
additional result presented in the following corollary that will be used to construct the
reference prior to the GN distribution.

Corollary 1. If the nuisance parameter spaces Ωi do not depend on {θ, ω1, . . . , ωi−1} and the
functions h11, h22, . . . , hmm, hm+1 m+1 factorize in the form:

h
1
2
11(θ, ω1, . . . , ωm) = f0(θ)g0(ω1, . . . , ωm) and

h
1
2
i+1,i+1(θ, ω1, . . . , ωm) = fi(ωi)gi(θ, ωi, . . . , ωi−1, ωi+1, . . . , ωm), i = 1, . . . , m,

then πR(θ) ∝ f0(θ) and πR(ωi|θ, ω1, . . . , ωi−1) ∝ fi(ωi), i = 1, . . . , m, and there is no need
for compact approximations, even if πR(ωi|θ, ω1, . . . , ωi−1) are not proper.

Under appropriate regularity conditions (see Bernardo [12]), the posterior distri-
bution of (θ, ω1, . . . , ωm) is asymptotically normal with mean (θ̂, ω̂1, . . . , ω̂m), the cor-
responding MLEs and covariance matrix B(θ̂, ω̂1, . . . , ω̂m), where B(θ̂, ω̂1, . . . , ω̂m) =
I−1(θ̂, ω̂1, . . . , ω̂m) and I(θ, ω1, . . . , ωm) is the corresponding (m + 1) × (m + 1) Fisher
information matrix; in that case, H(θ, ω1, . . . , ωm) = I(θ, ω1, . . . , ωm), and the reference
prior may be computed from the elements of Fisher matrix I(θ, ω1, . . . , ωm).

4.1. Reference Prior

The parameter vector (β, σ, s) is ordered and divided into three distinct groups, ac-
cording to their inferential importance. We considered here the case in which β is the
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parameter of interest and σ and s are the nuisance parameters. To obtain a joint reference
prior for the parameters β, σ, and s, the following ordered parameterization was adopted:

πR(β, σ, s) = πR(s|β, σ)πR(σ|β)πR(β).

Consider the Fisher matrix in (9), the inverse Fisher matrix in (10), and Corollary 1. Let

H(θ) = I(θ); it follows that h
1
2
33(β, σ, s) =

√
n
s3

(
1 + 1

s

)
Ψ′
(

1 + 1
s

)
= f2(s)g2(β, σ). Then,

πR(s|β, σ) ∝ s−
3
2

[(
1 +

1
s

)
Ψ
′
(

1 +
1
s

)] 1
2
.

Let H2(θ) = B−1
2 (θ), where B2(θ) is the upper left 2× 2 submatrix of B(θ); it follows

that h
1
2
22(β, σ, s) = 1

σ

√
ns
[

1− s
(1+s)Ψ′(1+ 1

s )

]
= f1(σ)g1(β, s). Then,

πR(σ|β) ∝
1
σ

.

Finally, let h11(β, σ, s) = B−1
11 (β, σ, s); it follows that h

1
2
11(β, σ, s) =

√
∑n

i=1 xix>i√
Γ( 1

s )Γ(2− 1
s )

σ2 = f0(β)g0(σ, s). Then,

πR(β) ∝ 1.

Therefore, a joint reference prior for the ordered parameter is given by:

πR(β, σ, s) ∝
1
σ
× s−

3
2

[(
1 +

1
s

)
Ψ
′
(

1 +
1
s

)] 1
2

, (11)

where β ∈ <p, σ ∈ <+, and s > 1.
Using the likelihood function (4) and the joint reference prior (11), we obtain the joint

posterior distribution for β, σ, and s,

πR(β, σ, s|y) ∝ σ−(n+1)s−
3
2

[(
1 +

1
s

)
Ψ
′
(

1 +
1
s

)] 1
2

exp

−
n

∑
i=1

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

s. (12)

The posterior conditional probability densities are given by,

πR(β|σ, s, y) ∝ exp

−
n

∑
i=1

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

s, (13)

πR(σ|β, s, y) ∝ σ−(n+1) exp

−
n

∑
i=1

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

s, (14)

πR(s|β, σ, y) ∝ s−
3
2

[(
1 +

1
s

)
Ψ
′
(

1 +
1
s

)] 1
2

exp

−
n

∑
i=1

Γ
(

1 + 1
s

)
|yi − x>i β|
σ

s. (15)

The densities in (13) and (15) do not belong to any known parametric family, and
the densities in (14) can be easily reduced to an inverse-gamma distribution form by the
transformation λ = σs. The parameters of interest were obtained by Monte Carlo methods
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in a Markov Chain (MCMC). Thus, the posterior densities were evaluated by applying the
Metropolis–Hastings algorithm; see, e.g., Chen et al. [23].

4.2. A Problem with the Jeffreys Prior

The use of the Jeffreys prior in the multiparametric case is often controversial.
Bernardo ([12], p. 41) argued that the use of the Jeffreys prior is not appropriate in many
cases and can cause strong inconsistencies and marginalization paradoxes. This prior is
obtained from the square root of the determinant of the Fisher information matrix of (9),

πJ(β, σ, s) ∝
√

det(I(θ)) =
√

det(I11)[I22 I33 − I2
23],

where:

det(I11) =

Γ
(

1
s

)
Γ
(

2− 1
s

)
σ2

p

det

(
n

∑
i=1

xix>i

)
,

and:

[I22 I33 − I2
23] =

n2

σ2 s2

[(
1 +

1
s

)
Ψ
′
(

1 +
1
s

)
− 1
]

,

is given by:

πJ(β, σ, s) ∝ σ−(p+1)
[

Γ
(

1
s

)
Γ
(

2− 1
s

)] p
2

s−1
[(

1 +
1
s

)
Ψ
′
(

1 +
1
s

)
− 1
] 1

2
. (16)

Such a prior was also presented in Salazar et al. [11]. Both priors are from the family
of prior distributions represented as:

π(β, σ, s) ∝
π(s)

σc , a ∈ <; (17)

they are usually improper, and c is a hyperparameter, while π(s) is the prior related to the
shape parameter.

The Jeffreys prior and reference prior are of the form (17) with, respectively,

c = 1 and πR(s) ∝ s−
3
2

[(
1 +

1
s

)
Ψ
′
(

1 +
1
s

)] 1
2
, (18)

c = p + 1 and πJ(s) ∝ s−1
[(

1 +
1
s

)
Ψ
′
(

1 +
1
s

)
− 1
] 1

2
[

Γ
(

1
s

)
Γ
(

2− 1
s

)] p
2

. (19)

The posterior distribution associated with the prior in (17) is proper if:∫ ∞

1
L(s|y)π(s)ds < ∞, (20)

where L(s|y) is the integrated likelihood for s, given by:∫
<p

∫ ∞

0
L(β, σ, s|y) σ−c dσ dβ. (21)

Corollary 2. The marginal prior for s given in Equations (18) and (19) is a continuous function in

[1, ∞], and as s→ ∞, we have πR(s) = O(s−3/2) and πJ(s) = O(s
p−2

2 ).

Proof. See Appendix A.
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Corollary 3. For n > p + 1− c, the likelihood function for the parameter s, L(s|y), under the
class of priors (17), is a continuous function bounded in [1, ∞] and with complexity O(1) when
s→ ∞.

Proof. See Appendix A.

Proposition 3. The reference prior given in (11) yields a proper posterior distribution, and the
Jeffreys prior given in (16) leads to an improper posterior distribution.

Proof. See Appendix A.

Therefore, the Jeffreys prior leads to an improper posterior distribution and cannot
be used in a Bayesian analysis. Another objective prior known as the maximum data
information prior could be considered [16,24–26]; however, such a prior is not invariant
under one-to-one transformations, which limits its use. Additionally, the main aim was
to consider objective priors. We avoided the use of normal or gamma priors due to the
lack of invariance in the parameters. Moreover, the prior may depend on hyperparameters
that are not easy to elicit for the GN distributions, and the posterior estimates may vary
depending on the included information. Finally, Bernardo [12] pointed out that the use
of our “flat” priors to assign “non-informative” priors should be strongly discouraged
because they often result in the suppression of important inappropriate and unjustified
assumptions that can easily have a strong influence on the analysis, or even make it invalid.

5. Metropolis–Hastings Algorithm

Here, the Metropolis–Hastings algorithm is considered to sample from µ, σ, and s. In
this case, the following conditional distributions are considered: πR(µ|σ, s, y), πR(σ|µ, s, y),
and πR(s|µ, σ, y), respectively. On the other hand, µ ∈ <, σ > 0, s > 1, we considered
the following change of variables (µ, σ, s) forω = (ω1, ω2, ω3) = (µ, log(σ), log(s− 1)).
This modification leads the parametric space to <3, which allows us to sample from the
posterior distribution in a more efficient way. Considering the Jacobian transformation, the
posterior distribution is given by:

πR(ω|y) ∝ exp(ω2)
−n exp(ω3)

[(
1 +

1
(1 + exp(ω3))

)
Ψ
′
(

1 +
1

(1 + exp(ω3))

)] 1
2

× (1 + exp(ω3))
− 3

2 exp

−
n

∑
i=1

Γ
(

1 + 1
(1+exp(ω3))

)
|yi −ω1|

exp(ω2)

(1+exp(ω3))
.

The construction of the Metropolis–Hastings algorithm is done using a random walk
for the parameter ω1, for instance the transition is obtained using q(ω1, ω∗1 ), where ω∗1
is generated from ω∗1 = ω1 + kz where z ∼ N(0, η2) and k is a constant that controls the
acceptance rate. We have that η2 is the diagonal element of the covariance matrix from the
joint posterior distribution of ω, obtained assuming the maximum a posterior estimate of
πR(ω|y).

The computational stability was improved considering the logarithm scale. The steps
to sample from the posterior distribution are:

1. Set the values ω(0) =
(

ω
(0)
1 , ω

(0)
2 , ω

(0)
3

)
=
(

µ(0), log(σ(0)), log(s(0) − 1)
)

.

2. Generate ω∗1 from the proposal distribution q(ω(0)
1 , ω∗1 ).

3. Sample u from a uniform distribution U(0, 1).

4. If u ≤ min
{

1, exp
[
log πR

(
ω∗1 |ω

(0)
2 , ω

(0)
3 , y

)
− log πR

(
ω
(0)
1 |ω

(0)
2 , ω

(0)
3 , y

)]}
, then up-

date ω
(1)
1 from ω∗1 ; otherwise, use the value of ω

(0)
1 , i.e., ω

(1)
1 = ω

(0)
1 .

5. Repeat the same steps above for ω
(1)
2 and ω

(1)
3 .
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6. Repeat Steps 2–5 until we obtain the target sample size.

After we generated the values of ω, we computed (µ, σ = exp(ω2), s = 1 + exp(ω3)).
It was assumed that η has the same values for all steps. The value of k is defined as aiming
for the acceptance rate to be between 20% and 80% [27]. To confirm the convergence of the
chains, the Geweke diagnostic [28] was used, as well as graphical analysis.

6. Selection Criteria for Models

In the Bayesian context, there are a variety of criteria that can be adopted to select the
best fit between a collection of models. This paper considered the following criteria: the
Deviation Information Criterion (DIC) defined by Spiegelhalter et al. [29] and the Expected
Bayesian Information Criterion (EBIC) proposed by Brooks [30]. These criteria are based on
the posterior mean deviation, E(D(ω)), which is the deviation evaluated at the posterior
mean of ω; thus, it is estimated with D̂ = 1

Q ∑Q
q=1 D(ω(q)), where the index q indicates the

q− threalization of a total of Q realizations and D(ω) = −2 ∑n
i=1 log( f (yi|ω)), where f (.)

is the probability density of the GN distribution. The criteria DIC and EBIC are given by:

DIC = D + pD = 2D− D̂ and EBIC = D + 2b,

where b is the number of parameters in the model and pD is the effective number of
parameters, defined as E[D(ω)]−D[E(ω)], where D[E(ω)] is the mean posterior deviation,
which can be estimated as D̂ = D

(
1
Q ∑Q

q=1 D(ω(q))
)

. Smaller values for the DIC and EBIC
indicate the preferred model.

Another widely accepted criterion for model selection is the Conditional Predictive
Ordinate (CPO). A detailed description of this selection criterion and the CPO statistic,
as well as the applicability of the method for selecting models can be found in Gelfand
et al. [31,32]. Let D denote the complete data set and D(−i) denote the data with the i-th
observation excluded. Consider π(ω|D(−i)) for i = 1, . . . , n, the posterior density of ω
given D(−i). Thus, we can define the i-th observation of the CPOi by:

CPOi =
∫

ω
f (yi|ω)π(ω|D(−i))dω =

{∫
ω

π(ω|D(−i))

f (yi|ω)
dω

}−1

, i = 1, . . . , n,

where f (yi|ω) is the probability density function. High values of CPOi indicate the best
model. An estimate for CPOi can be obtained using an MCMC sample of the posterior
distribution of ω given D, π(ω|D). For this, let ω1, . . . , ωQ be a sample of the distribution
π(ω|D), of size Q. A Monte Carlo approximation of the CPOi [23] is given by:

ĈPOi =

{
1
Q

Q

∑
q=1

1
f (yi|θq)

}−1

.

A summary statistic of the CPOi’s is ∑n
i=1 log(ĈPOi), wherein the higher the value of

B, the better the fit of the model. To illustrate the proposed methodology, a comparison
between the normal and GN models is presented in Section 8.

7. Bayesian Case Influence Diagnostics

One way to observe the influence of observations on a fit of the model is via the global
diagnosis; for instance, one can remove some cases from the analysis and analyze the effect
of the removal [33]. The diagnostics of the case influence in a Bayesian perspective are
based on the Kullback–Leibler divergence (K-L). Let K(π, π(−i)) denote the K-L divergence
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between π and π(−i), where π denotes the posterior distribution of ω for all data and π(−i)
denotes the posterior distribution of ω without the i-th case. Specifically,

K(π, π(−i)) =
∫

π(ω|D) log

{
π(ω|D)

π(ω|D(−i))

}
dω, (22)

and therefore, K(π, π(−i)) measures the effect of deleting the i-th case from the full one
on the joint posterior distribution of ω. The calibration can be obtained by solving
the equation:

K(π, π(−i)) = K(B(0.5), B(pi)) =
− log{4pi(1− pi)}

2
,

where the Bernoulli distribution B(p) is expressed by the parameter p with success prob-
ability [34] and pi is a calibration measure of the K-L divergence. After some algebraic
manipulation, the obtained expression is:

pi = 0.5
(

1 +
√

1− exp{−2K(π, π(−i))}
)

,

bounded by 0.5 ≤ pi ≤ 1. Therefore, if pi is significantly higher than 0.5, then the i-th case
is influential.

The posterior expectation (22) can also be written in the form:

K(π, π(−i)) = log Eω|D{[ f (yi|ω)]−1}+ Eω|D{log[ f (yi|ω)]} (23)

= − log(CPOi) + Eω|D{log[ f (yi|ω)]},

where Eω|D(.) denotes the expectation from the posterior π(ω|D). Thus, (23) can be
estimated by using the MCMC methods to achieve the sample from the posterior π(ω|D).
Therefore, if ω1, . . . , ωQ is a sample of size Q of π(ω|D), then:

̂K(π, π(−i)) = − log(ĈPOi) +
1
Q

Q

∑
q=1

log[ f (yi|ω(q))].

8. Applications

In this section, the proposed method is illustrated using artificial and real data.

8.1. Artificial Data

An artificial sample of size n = 500 was generated in accordance with (3) with p = 2,
xi
> = (1, xi1), xi1 ∼ N(2.5, 1), β = (2,−1.5)>, σ = 1, and s = 2.5. The posterior samples

were generated by the Metropolis–Hastings technique through the MCMC implemented
in the R software [35]. A single chain of dimensions 300,000 was considered for each
parameter, and also, we discarded the first 150,000 iterations (burn-in), aiming to reduce
correlation problems. A space with a size of 15 was used, resulting in a final sample size of
10,000. The convergence of the chain was verified by the criterion proposed by Geweke [28].
Table 1 shows the posterior summaries for the parameters of the GN linear regression
model. It can be seen that the estimates were close to the true values, and the 95% HPD
credibility intervals covered the true values of the parameters.



Symmetry 2021, 13, 856 12 of 20

Table 1. Artificial data. Posterior mean, median, standard deviation (SD), and 95% HDP intervals for
the parameters of the model.

Parameters Mean Median SD 95% HDP

β1 1.995 1.996 0.086 (1.826; 2.164)
β2 −1.510 −1.510 0.032 (−1.572;−1.447)
σ 1.027 1.028 0.055 (0.922; 1.135)
s 2.657 2.631 0.320 (2.042; 3.293)

We used the same sample previously simulated to investigate the K-L divergence
measure in detecting the GN linear regression model’s influential observations. We selected
Cases 50 and 250 for perturbation. For each of these two cases and also considering both
cases simultaneously, the response variable was disturbed as follows: ỹi = yi + 5Sy, where
Sy is the standard deviation of yi. The MCMC estimates were done similarly to those in the
last section. Note that, due to the invariance property, µ can be computed for the standard
GN distribution using the Bayes estimates of β1 and β2, that is µ = x>i β.

To reveal the impact of the influential observations in the estimates of β1, β2, σ, and
s, we calculated the measure of Relative Variation (RV), which was obtained by RV =∣∣∣∣∣ θ̂ − θ̂0

θ̂

∣∣∣∣∣ × 100%, where θ̂ and θ̂0 are the posterior averages of the model parameters

considering the original data and perturbed data, respectively.
Table 2 shows the posterior estimates for the artificial data and the RVs of the estimates

of the parameters concerning the original simulated data. The data set denoted by (a)
consisted of the original simulated data set without perturbation, and the data sets denoted
by (b) to (d) consisted of data sets resulting from perturbations in the original simulated
data set. Higher values of the relative variations for the parameters σ and s showed the
presence of influential points in the data set. However, the estimate of s did not differ so
much from the perturbed Cases (c) and (d).

Table 2. Artificial data. Posterior mean, RV(%), and 95% HDP intervals for the parameters of the model.

Data Names Perturbed Case Parameters Mean RV (%) 95% HDP

a

β1 1.995 − (1.826; 2.164)

None β2 −1.510 − (−1.572;−1.447)
σ 1.027 − (0.922; 1.135)
s 2.657 − (2.041; 3.293)

b

β1 2.026 1.554 (1.841; 2.211)

50 β2 −1.517 0.464 (−1.585;−1.449)
σ 0.970 5.550 (0.866; 1.073)
s 2.188 17.651 (1.763; 2.613)

c

β1 1.966 1.454 (1.775; 2.154)

250 β2 −1.495 0.993 (−1.564;−1.423)
σ 0.916 10.808 (0.816; 1.016)
s 1.867 29.733 (1.565; 2.165)

d

β1 2.002 1.332 (1.807; 2.198)

{50, 250} β2 −1.506 0.265 (−1.578;−1.436)
σ 0.902 12.171 (0.801; 1.003)
s 1.773 33.271 (1.496; 2.052)

Considering the samples generated from the posterior distribution of the GN linear
regression model parameters, we estimated the measures of the K-L divergence and their
respective calibrations for each of the cases considered (a–d), as described in Section 7.
The results in Table 3 show that for the data without perturbation (a), the selected cases
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were not influential because they had small values for K(π, π(−i)) and calibration close
to 0.577. However, when the data were perturbed (b,d), the values of K(π, π(−i)) were
more extensive, and their calibrations were close or equal to one, indicating that these data
were influential.

Table 3. Diagnostic measures for the artificial data.

Data Names Case Number K(π, π(−i)) Calibration

a 50 0.0121 0.5774
250 0.0014 0.5262

b 50 16.1593 1.0000

c 250 19.2236 1.0000

d 50 2.8796 0.9992
250 18.2292 1.0000

8.2. Real Data Set

In order to illustrate the proposed methodology, recall the Brazilian Eucalyptus clones
data set on the height (in meters) and the diameter (in centimeters) of Eucalyptus clones.
The data belong to a large pulp and paper company from Brazil. As a strategy for the rising
rentability of the forestry enterprise and keeping pulp and paper production under control,
the company needs to keep an intensive Eucalyptus clone silviculture. The height of the
trees is an important measure for selecting different clone species. Moreover, it is desirable
to have trees of similar heights, possibly with a slight variation, and consequently with a
distribution function with lighter tails.

The objective is to relate the tree’s diameter (explanatory variable) with its height
(response variable). The GN and normal linear regression models were fit to the data via
the Bayesian reference process. The posterior samples were generated by the Metropolis–
Hastings technique, similar to the simulation study, in which we considered a single chain
of dimensions 300,000 for each parameter, with a burn-in of 150,000 iterations; additionally,
jumps with a size of 15 were used, resulting in a final sample size of 10,000. The Geweke
criteria verified the convergence of the chain.

Table 4 shows the posterior summaries for the parameters of both distributions and the
model selection criteria. The GN linear regression model was the most suitable to represent
the data as it performed better than the normal linear regression model for all the criteria
used. For the fit regression model chosen, note that β2 was significant, and then, for every
one-unit increase in the diameter, the average height of Eucalyptus 0.95 meters increased.
In particular, the analysis of the shape parameter (s > 2) provided strong evidence of a
platykurtic distribution for the errors, and this favored the GN linear regression model.
This was further confirmed by graphical analyses of the quantile residuals of the GN linear
regression model presented in Figure 2d.

Table 4. Real data. Posterior mean and 95% HPD intervals for the parameters of the model and
Bayesian comparison criteria.

Model Parameters Mean 95% HDP DIC EBIC B
β1 7.066 (6.398; 7.724)

Generalized β2 0.948 (0.907; 0.990) 5829.180 5847.96 −2914.595
Normal σ 3.237 (3.034; 3.440)

s 2.865 (2.436; 3.305)

Normal
β1 7.002 (6.331; 7.671)
β2 0.949 (0.907; 0.991) 6248.652 6262.98 −3126.614
σ 1.993 (1.916; 2.068)
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Figure 2. Real data. Generalized normal linear regression model with s = 2.865. (a) Scatterplot of
the data and fit generalized normal linear regression model. (b) Quantile residuals versus fit values.
(c) Quantile residuals versus the index. (d) Graph of the quantiles of the GN distribution for the
residuals of the model.

Figures 2a and 3a show the scatter plot of the data and the adjusted normal and GN
linear regression models. It was observed that, on average, the estimated heights were
close to those observed, indicating that the models considered had a good fit. The residuals
graph by the fit values and the residuals graph by the observations were also quite similar
for both models. The presence of heteroscedasticity (see Figures 2b and 3b) was noted, as
well as the quadratic trend (see Figures 2c and 3c) for the height-to-diameter ratio of the
Eucalyptus. The graphs of the quantiles of the GN distribution and the normal distribution
for the residuals of the models are presented in Figures 2d and 3d, respectively. It can be
seen that in the setting of the normal linear regression model, many points were far from
their tails, indicating an inadequate specification of the error distribution for the model. On
the other hand, using our proposed approach in the GN distribution, we observed a good
fit as points were following the line, indicating that the theoretical residuals were close to
the observed residuals. Therefore, there was evidence that the model chosen outperformed
the normal linear regression model in fitting the data.
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Figure 3. Real data. Normal linear regression model. (a) Scatterplot of the data and fit normal linear
regression model. (b) Quantile residuals versus fit values. (c) Quantile residuals versus the index.
(d) Graph of the quantiles of the normal distribution for the residuals of the model.

To investigate the influence of height and diameter data from Eucalyptus on the fit of
the generalized normal linear regression model chosen, we calculated the K-L divergence
measures and their respective calibrations. Figure 4 shows the K-L measurements for
each observation. Note that Cases 335, 479, and 803 exhibited higher values of the K-L
divergence when compared with other observations. The K-L divergences and calibrations
concerning three observations that showed the highest calibration values are presented in
Table 5. It can be seen that Observation 803 was possibly an influential case, which was
also shown to be an outlier from the visual analysis. To assess whether this observation
altered the parameter estimates of the GN linear regression model, we carried out a
sensitivity analysis.



Symmetry 2021, 13, 856 16 of 20

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

Index

K
−

L 
di

ve
rg

en
ce

335 479

803

Figure 4. Index plot of K(π, π(−i)) for the height and diameter data of Eucalyptus.

Table 5. Diagnostic measures for the height and diameter data of Eucalyptus.

Case Number K(π, π(−i)) Calibration

335 0.1683 0.7673
479 0.1734 0.7707
803 0.4936 0.8960

Table 6 shows the new estimates of the model parameters after excluding the case with
the greatest calibration value and the relative variations (RV) for these estimates regarding

the Eucalyptus data. Here, the relative variations were obtained by RV =

∣∣∣∣∣ θ̂ − θ̂0

θ̂

∣∣∣∣∣× 100%,

where θ̂ and θ̂0 are the posterior averages of the model parameters obtained from the
original data and from the data without influential observation, respectively. We noted
a slight change in the RV of the s parameter when we excluded influential observations.
However, such a change was insignificant. This indicated that the GN linear regression
model was not affected by the compelling cases.

Table 6. Posterior estimates and RV(%) for Eucalyptus height and diameter data following the
removal of the influential case.

Cases Deletions Parameter Mean RV(%) 95% HDP

803

β1 7.067 0.014 (6.375; 7.753)
β2 0.948 - (0.905; 0.991)
σ 3.252 0.463 (3.054; 3.454)
s 2.936 2.478 (2.486; 3.390)

Overall, regardless of the unit measurement/scale in both cases (synthetic and real
data sets), the visual representation corroborated the explainability/adjustment of the GN
model, by the quantile-quantile plot, residuals versus fits plot, and standardized errors
showing no pattern left to explain equal error variances, as well as no outliers.
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9. Discussion

In this paper, we presented the generalized normal linear regression model from
objective Bayesian analysis. The Jeffreys prior and reference prior for the generalized
normal model were discussed in detail. We proved that the Jeffreys prior leads to an
improper posterior distribution and cannot be used in a Bayesian analysis. On the other
hand, the reference prior leads to a proper posterior distribution.

The parameter estimates were based on a Bayesian reference analysis procedure via
MCMC. Diagnostic techniques based on the Kullback–Leibler divergence were built for
the generalized typical linear regression model. Studies with artificial and real data were
performed to verify the adequacy of the proposed inferential method.

The result of the application to a set of actual data showed that the generalized normal
linear regression model outperformed the normal linear regression model, regardless of
the model selection criteria. Furthermore, through a study of artificial data and real data,
the Kullback–Leibler divergence effectively detected the points that were influential in the
fit of the generalized normal linear regression model. The withdrawal of such influential
points from the set of real data showed that the generalized normal model was not affected
by influential observations. This result was corroborated by the fact that the generalized
normal distribution was considered a tool for reducing outliers and achieving robust
estimates. The proposed methodology showed consistent marginalization and sampling
properties and thus eliminated the problem of estimating the parameters of this important
regression model. Moreover, adopting the reference (objective) prior, we obtained one-
to-one consistent results, under the Bayesian paradigm, enabling the GN distribution in
a practicalform.

Further works can explore a great number of extensions using this study. For instance,
the method developed in this article may be applied to other regression models such as the
Student t regression model and the Birnbaum–Saunders regression model, among others.
Additionally, other generalizations of the normal distribution should be considered [36–38].
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Appendix A

Proof of Corollary 2. Equations (18) and (19) are continuous functions in [1, ∞]. When
s→ ∞, we have that Γ

(
1
s

)
= O(s) and Ψ′

(
1 + 1

s

)
→ 1.6449.
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Proof of Corollary 3. It is known that σ can be obtained analytically. Integrating σ, we
obtain the integrated likelihood function for (β, s),

L(β, s|y) =
∫ ∞

0
L(β, σ, s|y)π(σ)dσ (A1)

∝ s−1Γ
(

n + c− 1
s

)[ n

∑
i=1

(
Γ
(

1 +
1
s

)∣∣∣yi − x>i β
∣∣∣)s
]−(n+c−1)

s

.

Considering the likelihood L(β, s|y), we integrate β, obtaining:

L(s|y) =
∫
<p

L(β, s|y)π(β)dβ (A2)

∝ s−1Γ
(

n + c− 1
s

)
Γ
(

1 +
1
s

)−(n+c−1) ∫
<p

[
n

∑
i=1

∣∣∣yi − x>i β
∣∣∣s]

−(n+c−1)
s

dβ.

Moreover, by Lemma 3.2 in [11],
∫
<p

[
∑n

i=1
∣∣yi − x>i β

∣∣s]−(n+c−1)
s dβ is limited and of

order n
−(n+c−1)

s for n > p + 1− c.
Therefore,

L(s|y) ∝ s−1Γ
(

n + c− 1
s

)
Γ
(

1 +
1
s

)−(n+c−1)
O
(

n−
(n+c−1)

s

)
. (A3)

In order to understand the behavior of the integrated likelihood of s, we consider the
following result: the expansion of the series 1

Γ(z) ≈ z for z approaching zero [39]. Therefore,

if s→ ∞, we have Γ
(

1
s

)
≈ s. Moreover, considering the expansion of the first-order Taylor

series of log Γ(1 + z) for values near z = 0, it follows that log Γ(1 + z) ≈ zΨ(1), where

Ψ(1) ≈ −0.57721. Thus, Γ
(

1 + 1
s

)
≈ e

Ψ(1)
s for large values of s. Therefore, for s→ ∞, we

have Γ
(

n+c−1
s

)
≈ s

n+c−1 . Therefore:

L(s|y) ≈ s−1 s
n + c− 1

(
e

Ψ(1)
s

)−(n+c−1)
O
(

n−
(n+c−1)

s

)
(A4)

≈ e
−Ψ(1)(n+c−1)

s O
(

n−
(n+c−1)

s

)
= O

(
e
−(n+c−1)

s {Ψ(1)+log n}
)

= O(1).

Completing the proof.

Proof of Proposition 3. Considering the reference prior given in Corollary 2, the result
of Corollary 3, and Condition (20), it follows that the posterior reference distribution is
proper if: ∫ ∞

1
O(1)O

(
s−

3
2

)
ds < ∞.

Thus, ∫ ∞

1
O(1)O

(
s−

3
2

)
ds =

∫ ∞

1
s−

3
2 ds = −2 < ∞. (A5)

Therefore, the reference prior leads to a proper posterior distribution.
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Considering the Jeffreys prior given in Corollary 2, the result of Corollary 3, and
Condition (20), it follows that the Jeffreys posterior distribution is proper if:∫ ∞

1
O(1)O

(
s

p−2
2

)
ds < ∞.

Thus, ∫ ∞

1
O(1)O

(
s

p−2
2

)
ds =

∫ ∞

1
s

p−2
2 ds = ∞. (A6)

Therefore, the Jeffreys prior returned a posterior that is improper, completing the proof.
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