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Abstract. Recently, different dispersion strategies in population models sub-
ject to geometric catastrophes have been considered as strategies to improve the
chance of population’s survival. Such dispersion strategies have been contrasted
with the strategy where there is no dispersion, comparing the probabilities of
survival. In this article, we contrast survival strategies when extinction occurs
almost surely, evaluating which strategy prolongs population’s life span. Our res-
ults allow one to analyze what is the best strategy based on parameters as the
probability that each individual exposed to catastrophe survives, the growth rate
of the colony, the type of dispersion and the spatial restrictions.
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1. Introduction

When a catastrophe strikes a population, its size is reduced according to some prob-
ability law. The dispersion of the survivors, considering the spatial restrictions, is a
strategy that could help the population to increase its viability. These are the biolo-
gical and environmental forces that influence the chances of survival. Various stochastic
models to represent population growth dynamics subject to catastrophes has been
proposed.

Artalejo et al [1] and Brockwell [2, 3] analyzed models for populations that after
catastrophes, the survivors individuals remain together in the same colony. Schinazi [15],
Machado et al [11] and Junior et al [7, 8, 10] studied models for populations that
after catastrophes, individuals disperse trying to make new colonies to improve the
odds of their species survival. In all these works, different types of catastrophes and
different dispersion strategies were considered. Dispersion holds a central role for both
the dynamics and evolution of spatially structured populations. While it can save a
small population from local extinction, it also can increase global extinction risk if
observed in a very high level. See Ronce [14] for more about dispersal in the biological
context.

Recently, Junior et al [8] analyzed different dispersion strategies in populations sub-
ject to geometric catastrophes, to study how these strategies impact the population
viability, comparing them with the strategy where there is no dispersion. Their analysis
points to establish which is the best strategy (dispersion or no dispersion), based on
the survival probability of the population when some strategy is adopted. For this, at
least one of the compared models (model with dispersion and model without dispersion)
has to have survival probability greater than zero. However, when both models have
the survival probability equal zero the analysis does not give information regarding to
the best strategy. In this work, we propose to evaluate which strategy is better when
extinction occurs almost surely, considering the mean extinction times. The extinction
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time of a population is of particular importance in view of its relevance to the estim-
ation of ‘minimum viable population size’ to guarantee survival for a certain time, see
Brockwell [2].

In section 2 we present the non dispersion model proposed in Artalejo et al [1]
and the models with dispersion proposed in Junior et al [8]. Moreover, we added new
results for these models. In section 3 we discuss dispersal strategies for increasing life
expectancy. Finally, in section 4 we prove the results presented in section 2.

2. Models and results

2.1. Geometric catastrophe

Populations are frequently exposed to catastrophic events that cause massive elim-
ination of their individuals, for example, habitat destruction, environmental disaster,
epidemics, etc. A catastrophe can instantly wipe out the entire population or just a
part of it. In order to model such events, it is assumed that when a population is hit by
a catastrophe, its size is reduced according to some law of probability. For catastrophes
that reach the individuals sequentially and the effects of a disaster stop as soon as
the first individual survives, if there is any survivor, the appropriate model assume a
geometric probability law. That is, if at a catastrophe time the size of the population
is i, it is reduced to j with probability

µij =

{
(1− p)i, j = 0
p(1− p)i−j, 1⩽ j ⩽ i,

where 0< p < 1. The form of µij represents what is called geometric catastrophe.
The geometric catastrophe would correspond to cases where the decline in the pop-

ulation is halted as soon as any individual survives the catastrophic event. This may
be appropriate for some forms of catastrophic epidemics or when the catastrophe has a
sequential propagation effect like in the predator–prey models—the predator kills prey
until it becomes satisfied. More examples can be found in Artalejo et al [1], Cairns and
Pollett [4], Economou and Gomez-Corral [5], Huillet [6] and Kumar et al [9].

2.2. Growth model without dispersion

Artalejo et al [1] present a model for a population which sticks together in one colony,
without dispersion. That colony gives birth to new individuals at rate λ> 0, while
geometric catastrophes happen at rate µ.

The population size (number of individuals in the colony) at time t is a continuous
time Markov process {X(t) : t⩾ 0} that we denote by C(λ,p). We assume µ=1 and
X(0) = 1.

Artalejo et al [1] use the word extinction to describe the event that X(t) = 0, for
some t > 0, for a process where state 0 is not an absorbing state. In fact the extinction
time here is the first hitting time to the state 0,

τA := inf{t > 0 :X(t) = 0}.
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The probability of extinction of C(λ,p) is denoted by ψA = P[τA <∞]. Its complement,
1−ψA, is called survival probability. The next result establishes the mean time of extinc-
tion for C(λ,p).

Theorem 2.1 (Artalejo et al [1]). For the process C(λ,p),

E[τA] =


1

1− p−λp
, if p <

1

λ+1
;

∞, if p⩾ 1

λ+1
.

2.3. Growth models with dispersion and spatial restriction

Let T+
d be an infinite rooted tree whose vertices have degree d +1, except the root

that has degree d. Let us define a process with dispersion on T+
d , starting from a single

colony placed at the root of T+
d , with just one individual. The number of individuals in

a colony grows following a Poisson process of rate λ> 0. To each colony we associate
an exponential time of mean 1 that indicates when the geometric catastrophe strikes
a colony. The individuals that survived the catastrophe are dispersed between the d
neighboring vertices furthest from the root to create new colonies. Among the survivors
that go to the same vertex to create a new colony at it, only one succeeds, the others
die. So in this case when a catastrophe occurs in a colony, that colony is replaced by
0,1, . . . or d colonies. We consider two types of dispersion:

• Optimal dispersion: Individuals are distributed in a ordered fashion, from left to
right, in order to create the largest possible number of new colonies. If r individuals
survive to a catastrophe, then the number of colonies that are created equals min{r,d}.
Let us denote the process with optimal dispersion by Co

d(λ,p).

• Independent dispersion: Each one of the individuals that survived the cata-
strophe picks randomly a neighbor vertex and tries to create a new colony at it.
When the amount of survivors is r, the probability of having y ⩽ min{d,r} vertices
colonized is

T (r,y)

dr

(
d

y

)
,

where T (r,y) denote the number of surjective functions f :A→B, with |A|= r and
|B|= y. Let us denote the process with independent dispersion by Ci

d(λ,p).

Co
d(λ,p) and Ci

d(λ,p) are continuous-time Markov processes with state space NTd
0 .

For each particular realization of these processes, we say that it survives if for any
instant of time there is at least one colony somewhere. Otherwise, we say that it dies
out.

Theorem 2.2 (Junior et al [8]). Let ψod and ψid the extinction probabilities for the processes
Co
d(λ,p) and C

i
d(λ,p), respectively. Then
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(i) ψo2 < 1 if and only if p > 1
λ+1 .

(ii) ψo3 < 1 if and only if p > λ+1
2λ2+2λ+1 .

(iii) ψi2 < 1 if and only if p > λ+2
λ2+2λ+2 .

(iv) ψi3 < 1 if and only if p > λ+3
2λ2+3λ+3 .

It is clear that when the survival probability is positive, the mean extinction time
for the processes Co

d(λ,p) and C
i
d(λ,p) is infinite. In the next results, we derive the mean

extinction time when extinction occurs almost surely, when d =2 and d =3.

Theorem 2.3. Let τ od the extinction time of the process Co
d(λ,p).

(i) If p <
1

λ+1
, then E[τ o2 ] =

(
1+

1

λp

)
ln
(

1− p

1− p−λp

)
.

If p=
1

λ+1
, then E[τ o2 ] =∞.

(ii) If p <
λ+1

2λ2+2λ+1
, then

E[τ o3 ] =
λp+1

λp

√
p(λ+1)

4+λp− 3p
ln
[
(2− 2p−λp)

√
p(λ+1)+λp

√
4+λp− 3p

(2− 2p−λp)
√
p(λ+1)−λp

√
4+λp− 3p

]
.

If p=
λ+1

2λ2+2λ+1
, then E[τ o3 ] =∞.

Theorem 2.4. Let τ id the extinction time of the process Ci
d(λ,p).

(i) If p <
λ+2

λ2+2λ+2
, then

E[τ i2] =
(λ+2)(λp+1)

λp(λ+1)
ln
(

(1− p)(λ+2)

λ+2− p(λ2+2λ+2)

)
.

If p=
λ+2

λ2+2λ+2
, then E[τ i2] =∞.

(ii) If p <
λ+3

2λ2+3λ+3
, then

E[τ i3] =
(λp+1)(2λ+3)(λ+3)

2h(λ,p)
ln
[
g(λ,p)+h(λ,p)

g(λ,p)−h(λ,p)

]
,

where

g(λ,p) = (λ+3)(2λ+3− 3λp− 3p−λ2p), (2.1)
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and

h(λ,p) = λ
√
p(λ+1)(pλ2+4λ+6− 3p)(λ+3). (2.2)

If p=
λ+3

2λ2+3λ+3
, then E[τ i3] =∞.

Remark 2.5. Theorems 2.3 and 2.4 show explicitly the formulas for the mean extinction
times of the processes Co

d(λ,p) and Ci
d(λ,p) for d= 2,3. Observe that for d=∞ the

only model that makes sense is the optimal model, which corresponds to the scheme
with no spatial restriction where each individual that survives a catastrophe, creates its
own new colony independently of everything else. This model is presented in the next
section.

2.4. Growth model with dispersion but no spatial restrictions

Consider a population of individuals divided into separate colonies. Each colony begins
with an individual. The number of individuals in each colony increases independently
according to a Poisson process of rate λ> 0. To each colony we associate an exponential
time of mean 1 that indicates when the geometric catastrophe strikes a colony. Each indi-
vidual that survived the catastrophe begins a new colony independently of everything
else. We denote this process by C∗(λ,p) and consider it starting from a single colony
with just one individual.

For each particular realization of C∗(λ,p), we say that it survives if for any instant
of time there is at least one colony somewhere. Otherwise, we say that it dies out. We
denoted by ψ∗, the probability of extinction of C∗(λ,p). Junior et al [7, theorem 2.3]

showed that ψ∗ < 1 if and only if p >
1

λ2+λ+1
.

It is clear that when ψ∗ < 1, the mean extinction time of C∗(λ,p) is infinite. The
following theorem establishes the mean time of extinction for C∗(λ,p) when ψ∗ = 1.

Theorem 2.6. Let τ∗ the extinction time of the process C∗(λ,p). Then

E[τ∗] =


1− p(λ+1)2

λ(λp+1)
ln
[
1− λ(λp+1)

(λ+1)(1− p)

]
, if p <

1

λ2+λ+1
;

∞, if p⩾ 1

λ2+λ+1
.

Next we compare the dispersal strategies of the models Co
d(λ,p), C

i
d(λ,p) and

C∗(λ,p) (with spatial dispersion) and C(λ,p) (without dispersion) for increasing life
expectancy.

https://doi.org/10.1088/1742-5468/acc72e 6
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Figure 1. In the gray region, E[τA]< E[τ o2 ]. In the yellow region, E[τA]> E[τ o2 ].

3. Discussion

3.1. Non-dispersion vs dispersion with spatial restriction

By coupling arguments one can see that the extinction times, τ od and τ id, are a non-
decreasing functions of d, λ and p. Moreover, as the optimal dispersion (due to spatial
restriction) maximizes the number of new colonies whenever there are individuals that
survived from the latest catastrophe, that type of dispersion is the one which maximizes
the extinction time. Thus,

E[τ od ]⩾ E[τ id].

Junior et al [8] compute explicitly the extinction probabilities (ψo2, ψ
o
3, ψ

i
2, and ψ

i
3)

as functions of λ and p. In particular, they showed that extinction probabilities for the
models C(λ,p) and Co

2(λ,p) are equal (ψA = ψo2). An interesting question is to determine
whether, when the models C(λ,p) and Co

2(λ,p) die out almost surely, dispersion is an
advantage or not to extend the population’s life span. This question is answered by the
following proposition.

Proposition 3.1. Assume p < 1
λ+1 . Then, E[τA]< E[τ o2 ] if and only if

λp

(1− p−λp)(1+λp)
< ln

(
1− p

1− p−λp

)
. (3.1)

Moreover, E[τA] = E[τ o2 ] if and only if we have an equality in (3.1).

Proposition 3.1 is a consequence of theorems 2.1 and 2.3(i). From proposition 3.1 we
can conclude that optimal dispersion is a better strategy compared to non-dispersion,
when the parameters (λ,p) fall in the gray region of figure 1. The opposite (non-
dispersion is a better strategy than optimal dispersion) holds in the yellow region.
Observe that in the white region E[τA] = E[τ o2 ] =∞.

https://doi.org/10.1088/1742-5468/acc72e 7
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Figure 2. In the gray region, E[τA]< E[τ i2]. In the yellow region, E[τA]> E[τ i2].

Example 3.2. The processes C(1,p) and Co
2(1,p) die out if and only if p⩽ 1/2. In this case,

solving (3.1) as an equality, we obtain pc ≈ 0,269059 and the following statements.

• If 0< p < pc, then E[τA]< E[τ o2 ].
• If p= pc, then E[τA] = E[τ o2 ].
• If pc < p < 1/2, then E[τ o2 ]< E[τA].
• If p⩾ 1/2, then E[τ i2] = E[τA] =∞ .

Observe that the phase transition in p for λ=1 occurs for all λ> 0. For λ⩾ 5 (not
shown in figure 1), we observe that if p= 1

λ(λ+1) , then E[τA]< E[τ o2 ], while if p= 1
λ+2 ,

then E[τA]> E[τ o2 ].

The next result considers the Artalejo model and the model with independent
dispersion with d =2 when both models die out almost surely, more precisely when
p <min

{
1

λ+1 ,
λ+2

λ2+2λ+2

}
= 1

λ+1 .

Proposition 3.3. Assume p < 1
λ+1 . Then E[τA]< E[τ i2] if and only if

λp(λ+1)

(1− p−λp)(λ+2)(λp+1)
< ln

(
(1− p)(λ+2)

λ+2− p(λ2+2λ+2)

)
. (3.2)

Moreover, E[τA] = E[τ i2] if and only if we have an equality in (3.2).

Proposition 3.3 is a consequence of theorems 2.1 and 2.4(i). From proposition 3.3
we can conclude that independent dispersion is a better strategy compared to non-
dispersion, when the parameters (λ,p) fall in the gray region of figure 2. The opposite
(non-dispersion is a better strategy than independent dispersion) holds in the yellow
region. Observe that from theorems 2.1 and 2.4(i), we also have that:

• If 1
λ+1 ⩽ p < λ+2

λ2+2λ+2 , then E[τ i2]<∞ and E[τA] =∞.

• If p⩾ λ+2
λ2+2λ+2 , then E[τA] = E[τ i2] =∞.
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Furthermore, Junior et al [8] showed that the extinction probabilities in the white
region of figure 2 satisfies ψi2 > ψA. Thus, in the white region, non-dispersion is a better
strategy than independent dispersion.

Example 3.4. Both processes, C(1,p) and Ci
2(1,p), die out if and only if p⩽ 1/2. In this

case, solving (3.2) as an equality, we obtain pc ≈ 0.170767 and the following statements.

• If 0< p < pc, then E[τA]< E[τ i2].
• If p= pc, then E[τA] = E[τ i2].
• If pc < p < 1/2, then E[τ i2]< E[τA]<∞.

• If 1/2⩽ p < 3/4, then E[τ i2]< E[τA] =∞.

• If p⩾ 3/4, then E[τ i2] = E[τA] =∞.

Observe that the phase transition in p for λ=1 occurs for all λ> 0. For λ⩾ 5 (not
shown in figure 2), we observe that if p= 1

λ(λ+1) , then E[τA]< E[τ i2], while if p= 1
λ+2 ,

then E[τA]> E[τ i2].

The next result considers the Artalejo model and the model with optimal dis-
persion and d =3 when both models die out almost surely, more precisely when
p <min

{
1

λ+1 ,
λ+1

2λ2+2λ+1

}
= λ+1

2λ2+2λ+1 .

Proposition 3.5. Assume p < λ+1
2λ2+2λ+1 . Then, E[τA]< E[τ o3 ] if and only if

λp
√
4+λp− 3p

(1− p−λp)(1+λp)
√
p(λ+1)

< ln
[
(2− 2p−λp)

√
p(λ+1)+λp

√
4+λp− 3p

(2− 2p−λp)
√
p(λ+1)−λp

√
4+λp− 3p

]
. (3.3)

Moreover, E[τA] = E[τ o3 ] if and only if we have an equality in (3.3).

Proposition 3.5 is a consequence of theorems 2.1 and 2.3(ii). From proposition 3.5 we
can conclude that optimal dispersion is a better strategy compared to non-dispersion,
when the parameters (λ,p) fall in the gray region of figure 3. The opposite (non-
dispersion is a better strategy than optimal dispersion) holds in the yellow region.
Observe that from theorems 2.1 and 2.3(ii), we also have that:

• If λ+1
2λ2+2λ+1 ⩽ p < 1

λ+1 , then E[τA]<∞ and E[τ o3 ] =∞.

• If p⩾ 1
λ+1 , then E[τA] = E[τ o3 ] =∞.

Junior et al [8] showed that the extinction probabilities in the white region of figure 3
satisfies ψo3 ⩽ ψA. Thus, in the white region, optimal dispersion is a better strategy than
non-dispersion.

Example 3.6. Both processes, C(0.4,p) and Co
3(0.4,p), die out if and only if p⩽ 35/53. In

this case, considering (3.3), we obtain (and define) the critical parameters p l and pu

such that:

• If 0< p < pl, then E[τA]< E[τ o3 ].
• If p= pl, then E[τA] = E[τ o3 ].
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Figure 3. In the gray region, E[τA]< E[τ o3 ]. In the yellow region, E[τA]> E[τ o3 ].

• If pl < p < pu, then E[τ o3 ]< E[τA].
• If p= pu, then E[τA] = E[τ o3 ].
• If pu < p < 35/53, then E[τA]< E[τ o3 ]<∞.

• If 35/53⩽ p < 5/7, then E[τA]< E[τ o3 ] =∞.

• If p⩾ 5/7, then E[τA] = E[τ o3 ] =∞.

Moreover, from numerical approximations we obtain that pl ≈ 0.4724 and pu ≈
0.6529. Finally, observe that the phase transition in p for λ=0.4 does not occur for
all λ> 0. For example (see figure 3), for λ=0.6 we have that E[τA]< E[τ o3 ] for all
p < 1/(λ+1).

The next result considers the Artalejo model and the model with independent dis-
persion and d =3 when both models die out almost surely.

Proposition 3.7. Assume p <min
{

1
λ+1 ,

λ+3
2λ2+3λ+3

}
. Then E[τA]< E[τ i3] in and only if

2h(λ,p)

(1− p−λp)(λp+1)(2λ+3)(λ+3)
< ln

[
g(λ,p)+h(λ,p)

g(λ,p)−h(λ,p)

]
, (3.4)

where g(λ,p) and h(λ,p) are given in (2.1) and (2.2), respectively. Moreover,
E[τA] = E[τ i3] if and only if we have an equality in (3.4).

Proposition 3.7 is a consequence of theorems 2.1 and 2.4(ii). From proposition 3.7
we can conclude that independent dispersion is a better strategy compared to non-
dispersion, when the parameters (λ,p) fall in the gray region of figure 4. The opposite
(non-dispersion is a better strategy than independent dispersion) holds in the yellow
region. Observe that from theorems 2.1 and 2.4(ii), we also have that:

• If λ> 1 and λ+3
2λ2+3λ+3 ⩽ p < 1

λ+1 , then E[τA]<∞ and E[τ i3] =∞.

• If λ< 1 and 1
λ+1 ⩽ p < λ+3

2λ2+3λ+3 , then E[τ i3]<∞ and E[τA] =∞.
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Figure 4. In the gray region, E[τA]< E[τ i3]. In the yellow region, E[τA]> E[τ i3].

Junior et al [8] showed that for the extinction probabilities in the white region of
figure 3 there are two possible behaviors. For the region (I) we have that ψi3 < ψA; in
the region (II) we have that ψi3 > ψA.

Example 3.8. Both processes, C(2.2,p) and Ci
3(2.2,p), die out if and only if p⩽ 65/241. In

this case, considering (3.4), we obtain pl ≈ 0.2174 and pu ≈ 0.2594 such that:

• If 0< p < pl, then E[τA]< E[τ i3].
• If p= pl, then E[τA] = E[τ i3].
• If pl < p < pu, then E[τ i3]< E[τA].
• If p= pu, then E[τA] = E[τ i3].
• If pu < p < 65/241, then E[τA]< E[τ i3]<∞.

• If 65/241⩽ p < 5/16, then E[τA]< E[τ i3] =∞.

• If p⩾ 5/16, then E[τA] = E[τ i3] =∞.

The phase transition in p observed for λ=2.2 does not occur for all λ> 0. For
example (see figure 4), for λ=3 we have that E[τA]< E[τ i3] for all p < 1/(λ+1).

3.2. Non-dispersion vs dispersion without spatial restriction

The following result establishes a comparison between the mean extinction times for
C(λ,p), the model without dispersion and C∗(λ,p), the model with dispersion without
spatial restriction. We restrict our attention to where both models die out almost surely,
more precisely when p <min

{
1

λ+1 ,
1

λ2+λ+1

}
= 1

λ2+λ+1 .

Proposition 3.9. Assume p < 1
λ2+λ+1 . Then, E[τA]< E[τ∗] if and only if

−λ(λp+1)

(λ+1)(1− p−λp)
> ln

[
1− λ(λp+1)

(λ+1)(1− p)

]
. (3.5)

Moreover, E[τA] = E[τ∗] if and only if we have an equality in (3.5).
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Figure 5. In the gray region, E[τA]< E[τ∗]. In the yellow region, E[τA]> E[τ∗].

Proposition 3.9 is a consequence of theorems 2.1 and 2.6. From proposition 3.9 we
can conclude that dispersion is a better strategy compared to non-dispersion, when
the parameters (λ,p) fall in the gray region of figure 5. The opposite (non-dispersion
is a better strategy than dispersion) holds in the yellow region. Observe that from
theorems 2.1 and 2.6, we also have that:

• If 1
λ2+λ+1 ⩽ p < 1

λ+1 , then E[τA]< E[τ∗] =∞.

• If p⩾ 1
λ+1 , then E[τA] = E[τ∗] =∞.

Junior et al [7, remark 2.7] showed that the extinction probabilities in the white
region of figure 5 satisfies ψ∗ < ψA. Thus, in the white region, dispersion is a better
strategy than non-dispersion.

Example 3.10. Both processes, C(0.4,p) and C∗(0.4,p), die out if and only if p⩽ 25/39. In
this case, considering (3.5), we obtain pl ≈ 0.5209 and pu ≈ 0.6118, therefore

• If 0< p < pl, then E[τA]< E[τ∗].
• If p= pl, then E[τA] = E[τ∗].
• If pl < p < pu, then E[τ∗]< E[τA].
• If p= pu, then E[τA] = E[τ∗].
• If pu < p < 25/39, then E[τA]< E[τ∗]<∞.

• If 25/39⩽ p < 5/7, then E[τA]< E[τ∗] =∞.

• If p⩾ 5/7, then E[τA] = E[τ∗] =∞.

The phase transition in p observed for λ=0.4 does not occur for all λ> 0. For
example (see figure 5), for λ=0.5 we have that E[τA]< E[τ∗] for all p < 1/(λ+1).

Remark 3.11. From remark 2.5 and the monotonicity in d (by coupling arguments) of τ od ,
we have that E[τ∗]⩾ E[τ o3 ]⩾ E[τ o2 ]. Thus, the yellow region of figure 5 is contained in the
yellow region of figure 3, which in its turn is contained in the yellow region of figure 1.
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Consequently, the regions of the parametric space p×λ where E[τA]> E[τ od ] (the yellow
regions) tends from above to the yellow region of figure 5 as d tends to infinity.

3.3. Conclusion

In general, observe that the model without dispersion (with only one colony) has a cata-
strophe rate of 1 while the models with dispersion (multiple colonies) has a catastrophe
rate of n whenever there are n colonies. Moreover, a catastrophe is more likely to wipe
out a smaller colony than a larger one. On the other hand multiple colonies give multiple
chances for survival and this may be a critical advantage of the multiple colonies model
over the single colony model. Also note that in the models with dispersion and spatial
restriction, during the dispersion some individuals could end up at the same spatial
location. In this case, all but one individuals will die. As a result there is a trade-off: on
the one hand, dispersion creates independent populations and thus promotes survival.
On the other hand, dispersion could lead to death due to competition for space.

Therefore, our results show that dispersion may be or may not be an advantage
for prolongs population’s life span depending (not trivially) on the dispersion type,
the spatial restrictions, the growth rate of the colonies, and the probability that each
individual exposed to catastrophe survives.

4. Proofs

Lemma 4.1. Let (Yt)t⩾0 a continuous time branching process, where each particle survives
an exponential time of rate 1 and right before death produces a random number of
particles with probability generating function

f(s) =
∞∑
k=0

pks
k.

Suppose that Y0 = 1 and f ′(1)⩽ 1. Let τ = inf{t > 0 : Yt = 0}, the extinction time of
the process (Yt)t⩾0.

(i) If p2 ̸= 0 and pk = 0 for k ⩾ 3, then

E[τ ] =


1

p2
ln
(

p0
p0− p2

)
, if f ′(1)< 1,

∞, if f ′(1) = 1.

(ii) If p3 ̸= 0 and pk = 0 for k ⩾ 4, then

E[τ ] =


1√

4p0p3 +(p2 + p3)2
ln
[
2p0− p2− p3 +

√
4p0p3 +(p2 + p3)2

2p0− p2− p3−
√

4p0p3 +(p2 + p3)2

]
, if f ′(1)< 1,

∞, if f ′(1) = 1.
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(iii) If p0 = β and pn = αcn for n⩾ 1, where α,β and c are positive constants, then

E[τ ] =


1− 1−β

c
ln
[
1− c

β

]
, if f ′(1)< 1,

∞, if f ′(1) = 1.

Proof of lemma 4.1. If f ′(1)⩽ 1, then P[τ <∞] = 1. Thus, from Narayan [12], we have that

E[τ ] =
ˆ 1

0

1− y

f(y)− y
dy. (4.1)

(i) If p2 ̸= 0 and pk = 0 for k ⩾ 3, from (4.1) we obtain that

E[τ ] =
ˆ 1

0

1− y

p0+ p1y+(1− p0− p1)y2− y
dy

=

ˆ 1

0

1

p0− (1− p0− p1)y
dy

=

ˆ 1

0

1

p0− p2y
dy

=


1

p2
ln
(

p0
p0− p2

)
, if f ′(1)< 1,

∞, if f ′(1) = 1.

(ii) If p3 ̸= 0 and pk = 0 for k ⩾ 4, from (4.1) we obtain that

E[τ ] =
ˆ 1

0

1− y
p0+ p1y+ p2y2+(1− p0− p1− p2)y3− y

dy

=

ˆ 1

0

1

p0− (1− p0− p1)y− (1− p0− p1− p2)y2
dy

=

ˆ 1

0

1

p0− (p2+ p3)y− p3y2
dy

=


1√

4p0p3+(p2+ p3)2
ln
[
2p0− p2− p3+

√
4p0p3+(p2+ p3)2

2p0− p2− p3−
√

4p0p3+(p2+ p3)2

]
, if f ′(1)< 1,

∞, if f ′(1) = 1,
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where the last equality has been obtained using

ˆ dy
ay2+ by+ c

=
1√

b2− 4ac
ln
[
2ay+ b−

√
b2− 4ac

2ay+ b+
√
b2− 4ac

]
+constant,

when b2− 4ac > 0, see Prudnikov et al [13, equation 1.2.8.13]. In our case, a=−p3,
b=−(p2+ p3) and c= p0.

(iii) If p0 = β and pn = αcn for n⩾ 1, we have

β =
1− c−αc

1− c
(4.2)

and

f(s) =
∞∑
k=0

pks
k = β+

αcs

1− cs
.

Thus,

E[τ ] =
ˆ 1

0

(1− y)(1− cy)

cy2− (β+ c)y+β
dy

=

ˆ 1

0

(
1+

1−β

β− cy

)
dy

=


1− 1−β

c
ln
(
1− c

β

)
, if f ′(1)< 1,

∞, if f ′(1) = 1.

In order to prove theorems 2.3, 2.4 and 2.6, observe that the probability distribution
of the number of survivors right after the catastrophe (but before the dispersion) is given
by

P(N = 0) = β, P(N = n) = αcn,n= 1,2, . . . ,

where

β =
1− p

λp+1
, α=

(λ+1)p

λ(λp+1)
and c=

λ

λ+1
. (4.3)

For details see Machado et al [10, section 2.2].

Proof of theorem 2.3. Let Z t be the number of colonies at time t in the model Co
d(λ,p).

Observe that Z t is a continuous-time branching process with Z0 = 1. Each particle
(colony) in Z t survives an exponential time of rate 1 and right before death produces
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k ⩽ d particles (colonies are created right after a catastrophe) with probability pk given
by

pk =


β, if k = 0;
αck, if 1⩽ k < d;

1−β− αc(1− cd−1)

1− c
, if k = d.

Moreover, τ od = inf{t > 0 : Zt = 0}.

• For d =2, we have that

p0 = P(N = 0) = β, p1 = P(N = 1) = αc and p2 = 1−β−αc.

Furthermore, the condition p < 1
λ+1 is equivalent to p1+2p2 < 1. Thus, from

lemma 4.1(i), we have that

E[τ o2 ] =
1

p2
ln
(

p0
p0− p2

)
=

(
1+

1

λp

)
ln
(

1− p

1− p−λp

)
,

where the last line has been obtained using (4.3).
For p= 1

λ+1 , we have that p1+2p2 = 1. Thus, from lemma 4.1(i), it follows that
E[τ o2 ] =∞.

• For d =3, we have that

p0 = P(N = 0) = β, p1 = P(N = 1) = αc, p2 = P(N = 2) = αc2, and p3 = 1−β−αc−αc2.

Furthermore, the condition p < λ+1
2λ2+2λ+1 is equivalent to p1+2p2+3p3 < 1. Thus, from

lemma 4.1(ii), we have that

E[τ o3 ] =
1√

4p0p3+(p2+ p3)2
ln
[
2p0− p2− p3+

√
4p0p3+(p2+ p3)2

2p0− p2− p3−
√
4p0p3+(p2+ p3)2

]

=
λp+1

λp

√
p(λ+1)

4+λp− 3p
ln
[
(2− 2p−λp)

√
p(λ+1)+λp

√
4+λp− 3p

(2− 2p−λp)
√
p(λ+1)−λp

√
4+λp− 3p

]
,

where the last line has been obtained using (4.3).

If p= λ+1
2λ2+2λ+1 , we have that p1+2p2+3p3 = 1. Thus, from lemma 4.1(ii), it follows

that E[τ o3 ] =∞.
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Proof of theorem 2.4. Analogously to the proof of theorem 2.3. In this case,

pk =



β, if k = 0;

α

(
d

k

) ∞∑
n=k

T (n,k)
( c
d

)n
, if 1⩽ k < d;

1−
d−1∑
j=0

pj, if k = d.

• If d =2, we have that

p0 = β, p1 =
2αc

2− c
and p2 = 1−β− 2αc

2− c
.

• If d =3, we have that

p0 = β,p1 =
3αc

3− c
,p2 =

6αc2

(3− 2c)(3− c)
and p3 = 1−β− 3αc

3− c
− 6αc2

(3− 2c)(3− c)
.

Proof of theorem 2.6. Analogously to the proof of theorem 2.3. In this case, p0 = β and
pk = αck for k ⩾ 1.
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