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Abstract

We study wave propagation in a non-relativistic cold quark-gluon plasma immersed in a constant mag-
netic field. Starting from the Euler equation we derive linear wave equations and investigate their stability 
and causality. We use a generic form for the equation of state, the EOS derived from the MIT bag model 
and also a variant of the this model which includes gluon degrees of freedom. The results of this analysis 
may be relevant for perturbations propagating through the quark matter phase in the core of compact stars 
and also for perturbations propagating in the low temperature quark-gluon plasma formed in low energy 
heavy ion collisions, to be carried out at FAIR and NICA.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

There is a strong belief that quark gluon plasma (QGP) has been formed in heavy ion collisions 
at RHIC and at LHC [1,2]. Deconfined quark matter may also exist in the core of compact stars 
[3]. Waves may be formed in the QGP [4–6]. In heavy ion collisions waves may be produced, 
for example, by fluctuations in baryon number, energy density or temperature caused by inho-
mogeneous initial conditions [7]. Furthermore, there may be fluctuations induced by energetic 
partons, which have been scattered in the initial collision of the two nuclei and propagate through 
the medium, loosing energy and acting as a source term for the hydrodynamical equations.
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In [5] we have studied wave propagation in cold and dense matter both in a hadron gas phase 
and in a quark gluon plasma phase. In deriving wave equations from the equations of hydro-
dynamics, we have considered both small and large amplitude waves. The former were treated 
with the linearization approximation while the latter were treated with the reductive perturbation 
method. Linear waves were obtained by solving an inhomogeneous viscous wave equation and 
they have the familiar form of sinusoidal traveling waves multiplied by an exponential damping 
factor, which depends on the viscosity coefficients. Since these coefficients differ by two orders 
of magnitude, even without any numerical calculation we concluded that, apart from extremely 
special parameter choices, in contrast to the quark gluon plasma there will be no linear wave 
propagation in a hadron gas.

In this work we will investigate the effects of a magnetic field on wave propagation in a quark 
gluon plasma. We shall focus on the stability and causality of these waves. A natural question 
is “how does the magnetic field affect stability and causality of density waves ?”. We will try to 
answer this question in a, as much as possible, model independent way.

Our conclusions should apply to the deconfined cold quark matter in compact stars and to 
the cold (or slightly warm) quark gluon plasma formed in heavy ion collisions at intermediate 
energies, to be performed at FAIR [8] or NICA [9].

In what follows we will carry out a wave analysis which is very frequently used in hydrody-
namcis [10]. We will be able to see if the presence of a magnetic field modifies the conclusions 
reached in [5].

2. Hydrodynamics in an external magnetic field

We shall consider the non-relativistic Euler equation [11] with an external magnetic field �B . 
The three fermions species (three quarks) have negative or positive charges and due to the ex-
ternal magnetic field they may assume different trajectories [12,13]. As a consequence we must 
apply the multifluid approach [12,13], which consists in writing one Euler equation for each 
quark f = u, d, s:

ρm f

[
∂ �vf

∂t
+ ( �vf · �∇) �vf

]
= −�∇p + ρc f

(
�vf × �B

)
(1)

where ρm f and ρc f are the mass and charge density of the quarks of flavor f respectively. We 
employ natural units (h̄ = c = 1) and the metric used is gμν = diag(+, −, −, −).

When we employ the multifluid approach, we are effectively using the approximation of weak 
interactions between the fluid constituents. In principle in an ideal QGP the interaction between 
the quark and gluon constituents is weak. In the presence of a strong magnetic field the interac-
tion is even weaker, since the coupling constant decreases with increasing B field [14]. We will 
work with three equations of state. In the first two of them there is no interaction between the 
constituents. They are compatible with the multifluid approach. In the third one (called “mean 
field QCD”) we have interactions, but the coupling constant is not large. What justifies the mean 
field approximation is the high density of sources. So we assume that in all our calculations we 
are in the weak coupling regime and hence we can borrow all the techniques and approximations 
(including the multifluid approach) from the plasmas known in electrodynamics.

In what follows we will consider quark matter with three quark flavors: up (u), down (d) and 
strange (s). As it is usually studied in [15], such quark matter may exist in compact stars. The 
charges are: Qu = 2 Qe/3, Qd = − Qe/3 and Qs = − Qe/3, where Qe = 0.08542 is the abso-
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lute value of the electron charge in natural units [15,16]. The masses are [17]: mu = 2.2 MeV, 
md = 4.7 MeV and ms = 96 MeV.

In the above equation the pressure is a global feature of the fluid. The velocity, masses and 
charges are specified for each fermion species. The equation of state contains all fermions of 
the fluid under the external magnetic field �B. The magnetic field effects are included both in the 
Euler equation and in the equation of state. We consider an uniform magnetic field of intensity 
B in the z-direction described by �B = Bẑ.

The continuity equation for the baryon density ρBf reads [11]:

∂ρBf

∂t
+ ∇ · (ρBf �vf ) = 0 (2)

In general, the relationship between the mass density (ρm) and the particle density (ρ) is given by 
ρm = mρ, where m is the particle mass. We have then ρm f = mf ρf in (1). Besides, the quark 
number density can be rewritten in terms of the respective baryon density as ρmf = 3mf ρBf , 
since ρBf = ρf /3. The charge density in (1) of each quark is given by ρcu = 2Qe ρBu, ρcd =
−Qe ρBd and ρcs = −Qe ρBs . In short we have ρcf = 3 Qf ρBf for each quark f .

3. Non-relativistic equation of state

The equation of state of the quark gluon plasma can be written as:

p = cs
2ε (3)

where p, ε and cs are the pressure, energy density and speed of sound respectively. In the pres-
ence of an external magnetic field, we may have two different pressures, one parallel (p‖) and 
another perpendicular (p⊥) to the B field direction. Consequently we will also have a parallel 
(cs‖) and a perpendicular (cs⊥) speed of sound. They are given by [18]:

(cs‖)2 = ∂p‖
∂ε

and (cs⊥)2 = ∂p⊥
∂ε

(4)

and so p‖ ≈ (cs‖)2 ε and also p⊥ ≈ (cs⊥)2 ε. In the non-relativistic limit we have [5]: ε ∼= ρm, 
where ρm is the volumetric mass density, which can be rewritten as ρm = 3mf ρBf . Considering 
the pressure anisotropy we have:

�∇p ≈ 3mf

(
(cs⊥)2 ∂ρBf

∂x
, (cs⊥)2 ∂ρBf

∂y
, (cs‖)2 ∂ρBf

∂z
ẑ

)
(5)

Inserting (5) into (1), we have for the f -quark:

3mf ρBf

[
∂ �vf

∂t
+ (�vf · �∇)�vf

]
=

−3mf

(
(cs⊥)2 ∂ρBf

∂x
, (cs⊥)2 ∂ρBf

∂y
, (cs‖)2 ∂ρBf

∂z

)
+ 3Qf ρBf

(
�vf × �B

)
(6)

Linear waves are studied with the dispersion relation obtained through the linearization for-
malism [5,6]. In this formalism the Euler equation (6) and the continuity equation (2) are rewrit-
ten in terms of the perturbed dimensionless variables for the densities, ρ̂B f , and also for the 
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velocities, �̂vf , defined from the equilibrium configuration (density ρ0 and sound speed cs ). The 
perturbations are described by the corresponding small deviations denoted by δ:

ρ̂B f (�x, t) = ρBf (�x, t)

ρ0
= 1 + δρBf (�x, t) (7)

and

�̂vf (�x, t) = �vf (�x, t)

cs

= δ�vf (�x, t) (8)

and only O(δ) terms are considered. Inserting (7) and (8) into (6) and into (2), and linearizing 
both equations, we find:

3mf ρ0
∂

∂t
δ �̃vf + 3mf ρ0

(
(cs⊥)2 ∂

∂x
δρBf , (cs⊥)2 ∂

∂y
δρBf , (cs‖)2 ∂

∂z
δρBf

)

−3Qf ρ0

(
δ �̃vf × �B

)
= 0 (9)

and

∂

∂t
δρBf + �∇ · δ �̃vf = 0 (10)

where we have defined δ �̃vf =
(
cs⊥ δvf x

, cs⊥ δvf y
, cs‖ δvf z

)
.

To study causality and stability, we follow the procedure adopted in [5,6,10,19–21], where the 
perturbations are described by plane waves:

δ� =D ei�k·�x−iωt , δVx = Vx ei�k·�x−iωt , δVy = Vy ei�k·�x−iωt and δVz = Vz ei�k·�x−iωt

(11)

with �k · �x = kx x + ky y + kz z. The small amplitudes for the dimensionless variables are given 
by D, Vx , Vy and Vz. In general, the frequency ω is decomposed as in [6,19–21]: ω = ωR + iωI

with ωR ∈ R and ωI ∈R. Causality is ensured when the following conditions for ωR and ωI are 
satisfied [22]:

lim
|�k|→∞

∣∣∣∣∣ωR

|�k|

∣∣∣∣∣ < 1 (12)

and

lim
|�k|→∞

∣∣∣∣∣ωI

|�k|

∣∣∣∣∣ < ∞ (13)

The condition (12) is equivalent to stating that the phase velocity | �vp| is smaller than unity (the 
speed of light in natural units), i.e. | �vp| < 1, where

�vp = ωR

|�k| k̂ = ωR

|�k|2
�k (14)

does not become greater as the wave number increases [19–21]. As a consistency check we 
evaluate the group velocity, (vg), which is given by [20–22]:
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�vg =
(

∂ωR

∂kx

,
∂ωR

∂ky

,
∂ωR

∂kz

)
(15)

and must satisfy | �vg| < ∞ as the wave number increases. Stability is guaranteed when ωI < 0 , 

since ei�k·�x−iωt = eωI t ei�k·�x−iωRt and eωI t must be a decreasing function of time.
Inserting (11) into the equations (9) and (10), we are able to rewrite the resulting equations in 

the following matrix form:

A(ω, �k) ×

⎛
⎜⎜⎝

δρBf

δvf x

δvf y

δvf z

⎞
⎟⎟⎠ = 0 (16)

where A(ω, �k) is the matrix given by:

A(ω, �k) =⎛
⎜⎜⎝

i 3mf ρ0 (cs⊥)2 kx −i 3mf ρ0 ω (cs⊥) −3Qf ρ0 B (cs⊥) 0
i 3mf ρ0 (cs⊥)2 ky 3Qf ρ0 B (cs⊥) −i 3mf ρ0 ω (cs⊥) 0
i 3mf ρ0 (cs⊥)2 kz 0 0 −i 3mf ρ0 ω (cs‖)

−i ω i (cs⊥) kx i (cs⊥) ky i (cs‖) kz

⎞
⎟⎟⎠

(17)

The dispersion relation is found by solving the equation det A(ω, �k) = 0. It may be written as:

ω4 −
[
(cs⊥)2 kx

2 + (cs⊥)2 ky
2 + (cs‖)2 kz

2 +
(

B2 Qf
2

m2
f

)]
ω2

+
(

B2 Qf
2

m2
f

)
(cs‖)2 kz

2 = 0 (18)

which implies that

ω2± = (cs⊥)2 kx
2

2
+ (cs⊥)2 ky

2

2
+ (cs‖)2 kz

2

2
+

(
B2 Qf

2

2m2
f

)

±
√√√√1

4

[
(cs⊥)2 kx

2 + (cs⊥)2 ky
2 + (cs‖)2 kz

2 +
(

B2 Qf
2

m2
f

)]2

−
(

B2 Qf
2

m2
f

)
(cs‖)2 kz

2

(19)

The four solutions of (18) are then ω(�k) = ±√
ω2±. In this case we notice that ω(�k) ∈ R and 

ωI = 0 ensures stability. The phase velocity is calculated from (14):

�vp = ω

|�k| k̂ = ±
{

(cs⊥)2 kx
2

2|�k|2 + (cs⊥)2 ky
2

2|�k|2 + (cs‖)2 kz
2

2|�k|2 +
(

B2 Qf
2

2m2
f |�k|2

)

±
√√√√[

(cs⊥)2 kx
2

2|�k|2 + (cs⊥)2 ky
2

2|�k|2 + (cs‖)2 kz
2

2|�k|2 +
(

B2 Qf
2

2m2
f |�k|2

)]2

−
(

B2 Qf
2

m2
f

)
(cs‖)2 kz

2

|�k|4
}1/2

k̂

(20)



D.A. Fogaça et al. / Nuclear Physics A 973 (2018) 48–59 53
With the above expression we can take the limit (12):

lim
|�k|→∞

∣∣∣∣∣ ω

|�k|

∣∣∣∣∣ ∼= lim
|�k|→∞

√
(cs⊥)2 + [(cs‖)2 − (cs⊥)2] k2

z

|�k|2

=
√

(cs⊥)2 + [(cs‖)2 − (cs⊥)2] cos2(θ) (21)

where θ is the angle between the direction of the magnetic field and the direction of the wave 
propagation. We can see that the above limit takes values between cs‖ and cs⊥. Causality is 
always satisfied.

The components of the group velocity (15) are given by:

∂ω

∂kx

= ± 1

2ω

{
(cs⊥)2 kx

±

[
(cs⊥)2|�k|2 −

[
(cs⊥)2 − (cs‖)2

]
kz

2 +
(

B2 Qf
2

m2
f

)]
(cs⊥)2 kx

2

√√√√[
(cs⊥)2 |�k|2

2 −
[
(cs⊥)2 − (cs‖)2

]
kz

2

2 +
(

B2 Qf
2

2m2
f

)]
−

(
B2 Qf

2

m2
f

)
(cs‖)2 kz

2

}
(22)

∂ω

∂ky

= ± 1

2ω

{
(cs⊥)2 ky

±

[
(cs⊥)2|�k|2 −

[
(cs⊥)2 − (cs‖)2

]
kz

2 +
(

B2 Qf
2

m2
f

)]
(cs⊥)2 ky

2

√√√√[
(cs⊥)2 |�k|2

2 −
[
(cs⊥)2 − (cs‖)2

]
kz

2

2 +
(

B2 Qf
2

2m2
f

)]
−

(
B2 Qf

2

m2
f

)
(cs‖)2 kz

2

}
(23)

and

∂ω

∂kz

= ± 1

2ω

{
(cs‖)2 kz

±

[
(cs⊥)2|�k|2 −

[
(cs⊥)2 − (cs‖)2

]
kz

2 +
(

B2 Qf
2

m2
f

)]
(cs‖)2 kz −

(
2B2 Qf

2

m2
f

)
(cs‖)2 kz

2

√√√√[
(cs⊥)2 |�k|2

2 −
[
(cs⊥)2 − (cs‖)2

]
kz

2

2 +
(

B2 Qf
2

2m2
f

)]
−

(
B2 Qf

2

m2
f

)
(cs‖)2 kz

2

}

(24)

where we verify that | �vg| < ∞ as the wave number increases. From the results given by (21) and 
from the limit lim|�k|→∞ | �vg| < ∞ we conclude that causality is satisfied. Two particular cases 
have special interest:
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(i) No B field (cs‖ = cs⊥ = cs ): ω(�k) = ±(cs)|�k| and | �vp| = cs

(ii) Very strong B field (B2 → ∞): ω(�k) ∼= ±
(

B Qf

mf

)
and | �vp| =

(
B Qf

mf |�k|

)

In order to have an idea of the numbers involved, we remember that the relevant strong 
magnetic fields are of the order of (or smaller than) 1019 G. These values correspond to 
BQe � m2

π � 0.02 GeV2, with mπ � 140 MeV, 1 GeV2 = 1.44 × 1019 G [23] and to a phase 
velocity of

| �vp| = vp � B Qe

mf |�k| � m2
π

mf |�k| (25)

and hence | �vp| < 1 when |�k| > 1000 MeV, for example.
The above results for the non-relativistic equation of state are model independent and allow 

for quantitative estimates of some quantities, as long as we stay far from the very high velocity 
regime.

4. The MIT bag model equation of state

The thermodynamical properties of the hot QGP can be calculated from first principles in 
lattice QCD. On the other hand, the equation of state of the cold quark gluon plasma is not yet 
known with the same level of precision and we need to use models. For simplicity we often use 
the equation of state derived from the MIT bag model, which describes a gas of noninteracting 
quarks and gluons and takes into account non-perturbative effects through the bag constant B. 
This constant is interpreted as the energy needed to create a bubble (or bag) in the QCD physical 
vacuum. In our case the quarks move under the action of an external magnetic field.

The energy density (εMIT ), the parallel pressure (pf ‖MIT
) and the perpendicular pressure 

(pf ⊥MIT
), are given respectively by [24]:

εMIT = B + B2

8π
+

d,s∑
f =u

|Qf |B
2π2

n
f
max∑

n=0

3(2 − δn0)

k
f
z,F∫

0

dkz

√
m2

f + k2
z + 2n|Qf |B (26)

p‖MIT = −B − B2

8π
+

d,s∑
f =u

|Qf |B
2π2

n
f
max∑

n=0

3(2 − δn0)

k
f
z,F∫

0

dkz

kz
2√

m2
f + k2

z + 2n|Qf |B
(27)

p⊥MIT = −B + B2

8π
+

d,s∑
f =u

|Qf |2B2

2π2

n
f
max∑

n=0

3(2 − δn0)n

k
f
z,F∫

0

dkz√
m2

f + k2
z + 2n|Qf |B

(28)

The baryon density (ρB ) is written as:

ρB =
d,s∑

f =u

|Qf |B
2π2

n
f
max∑

n=0

(2 − δn0) k
f
z,F (n) with n ≤ n

f
max = int

[
μf

2 − m2
f

2|Qf |B

]
(29)

where the Fermi momentum is given by:
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k
f
z,F (n) =

√
μf

2 − m2
f − 2n|Qf |B, (30)

where μf is the chemical potential of the quark f and int[a] denotes the integer part of a. The 
parallel and perpendicular speed of sound in this case are given by (4): (cs‖)2 = ∂p‖MIT /εMIT

and (cs⊥)2 = ∂p⊥MIT /εMIT .
In order to appreciate more easily the effect of the magnetic field, we will consider the partic-

ular case of a very strong field, i.e., we consider |Qf |B > μf
2 such that nf

max = 0 in (29). We 
choose a common chemical potential μ which satisfies |Qf |B > μ2 > m2

f for all quark flavors 

and defines the following Fermi momentum: kf
z,F (n) → kF = μ. The baryon density (29) is then 

given by:

ρB =
d,s∑

f =u

|Qf |B
2π2 μ (31)

In this limit the energy density and the pressures are given by (26), (27) and (28):

εMIT = B + B2

8π
+

d,s∑
f =u

3|Qf |B
2π2

[
− m2

f

4
ln

(
m2

f

)
+ m2

f

2
ln

(
2 kF

)
+ k2

F

2

)]
(32)

p‖MIT = −B − B2

8π
+

d,s∑
f =u

3|Qf |B
2π2

[
m2

f

4
ln

(
m2

f

)
− m2

f

2
ln

(
2 kF

)
+ k2

F

2

)]
(33)

p⊥MIT = −B + B2

8π
(34)

Using the above expressions, the pressure gradient is given by:

�∇p =
(

∂

∂x
p⊥ ,

∂

∂y
p⊥ ,

∂

∂z
p‖

)

=
(

0 , 0 , −3|Qf |B m2
f

4π2 ρBf

∂ρBf

∂z
+ 6π2

|Qf |B ρBf

∂ρBf

∂z

)
(35)

Repeating the same calculations of the last sections, the matrix A(ω, �k) in this case is:

A(ω, �k) =

⎛
⎜⎜⎝

0 −i 3mf ρ0 ω (cs⊥) −3Qf ρ0 B (cs⊥) 0
0 3Qf ρ0 B (cs⊥) −i 3mf ρ0 ω (cs⊥) 0

i �s kz 0 0 −i 3mf ρ0 ω (cs‖)
−i ω i (cs⊥) kx i (cs⊥) ky i (cs‖) kz

⎞
⎟⎟⎠

(36)

where

�s ≡
(

6π2 ρ0
2

|Qf |B − 3|Qf |B m2
f

4π2

)
(37)

and the dispersion relation is:

ω4 −
[
(Vs)

2 kz
2 +

(
B2 Qf

2

m2

)]
ω2 +

(
B2 Qf

2

m2

)
(Vs)

2 kz
2 = 0 (38)
f f
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with the parameter Vs identified as:

(Vs)
2 ≡ 2π2 ρ0

|Qf |B mf

− |Qf |B mf

4π2 ρ0
(39)

Considering (31) as the background density, we can rewrite (39) as:

(Vs)
2 = Q̃μ

|Qf |mf

− |Qf |mf

2 Q̃μ
(40)

where Q̃ ≡ ∑d,s
j=u |Qf |. We clearly notice in (40) that (Vs)

2 > 0 because Q̃ > |Qf | and μ > mf . 
Inserting the above expression into (38) we can solve it, finding ω and then the phase and group 
velocities. The resulting expressions coincide with equations (19) to (24), once we set in these 
latter cs⊥ = 0 and cs‖ → Vs . The dispersion relation (38) has only real roots (ωI = 0) and always 
satisfies the stability condition (13). In particular, the new version of eq. (21) is:

lim
|�k|→∞

∣∣∣∣∣ ω

|�k|

∣∣∣∣∣ = lim
|�k|→∞

| �vp| ∼= lim
|�k|→∞

√
(Vs)2 kz

2

|�k|2 = Vs cos(θ) (41)

where θ is, as before, the angle between the vector �k and the z direction. Since Vs is always 
larger than one, causality is guaranteed only for certain directions of propagation. Perturbations 
propagating along the direction of the magnetic field (for which θ = 0 and kz = |�k|), will have 
| �vp| > 1. This is unphysical and is an indication of the inadequacy of the formalism for these 
extreme conditions.

5. Improved MIT bag model

In this section we shall use the equation of state which we call mQCD and which was derived 
in [15,25]. With mQCD we improve the MIT bag model including explicitly the gluonic degrees 
of freedom and also new non-perturbative effects. We assume that the quarks and gluons in the 
cold QGP are deconfined but can interact, forming the QGP. This means that the coupling is 
nonzero and also that there are remaining non-perturbative interactions and gluon condensates. 
We split the gluon field into two components Gaμ = Aaμ + αaμ, where Aaμ (“soft” gluons) and 
αaμ (“hard”gluons) are the components of the field associated with low and high momentum 
modes respectively. The expectation values of AaμAa

μ and AaμAa
μAbνAb

ν are non-vanishing in a 
non-trivial vacuum and from them we obtain an effective gluon mass (mG) and also a contribu-
tion (BQCD) to the energy and to the pressure of the system similar to the one of the MIT bag 
model. Since the number of quarks is very large and their coupling to the gluons is not small, 
the high momentum levels of the gluon field will have large occupation numbers and hence the 
αaμ component of the field can be approximated by a classical field. This is the same mean field 
approximation very often applied to models of nuclear matter, such as the Walecka model [5,26,
27].

The energy density (ε), the parallel pressure (pf ‖) and the perpendicular pressure (pf ⊥), are 
given respectively by [15]:

ε = 27gh
2

2 (ρB)2 +BQCD + B2
16mG 8π
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+
d,s∑

f =u

|Qf |B
2π2

n
f
max∑

n=0

3(2 − δn0)

k
f
z,F∫

0

dkz

√
m2

f + k2
z + 2n|Qf |B (42)

p‖ = 27gh
2

16mG
2 (ρB)2 −BQCD − B2

8π

+
d,s∑

f =u

|Qf |B
2π2

n
f
max∑

n=0

3(2 − δn0)

k
f
z,F∫

0

dkz

kz
2√

m2
f + k2

z + 2n|Qf |B
(43)

p⊥ = 27gh
2

16mG
2 (ρB)2 −BQCD + B2

8π

+
d,s∑

f =u

|Qf |2B2

2π2

n
f
max∑

n=0

3(2 − δn0)n

k
f
z,F∫

0

dkz√
m2

f + k2
z + 2n|Qf |B

(44)

The baryon density (ρB ) is given by (29) [15].
As in [15,28] we define ξ ≡ gh/mG. Choosing ξ = 0 we recover the MIT EOS (26), (27)

and (28). For a given magnetic field intensity, we choose the values for the chemical potentials 
νf which determine the density ρB . We also choose the other parameters: ξ and BQCD . The 
background density (upon which small perturbation occur) is given by ρ0, and it is usually given 
as multiples of the ordinary nuclear matter density ρN = 0.17 f m−3 [15].

Performing the same calculations shown in the previous sections, we obtain the following 
matrix:

A(ω, �k) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i

(
27 gh

2 ρ0
2

8 mG
2

)
kx −i 3mf ρ0 ω (cs⊥) −3Qf ρ0 B (cs⊥) 0

i

(
27 gh

2 ρ0
2

8 mG
2

)
ky 3Qf ρ0 B (cs⊥) −i 3mf ρ0 ω (cs⊥) 0

i

(
27 gh

2 ρ0
2

8 mG
2

)
kz 0 0 −i 3mf ρ0 ω (cs‖)

−i ω i (cs⊥) kx i (cs⊥) ky i (cs‖) kz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(45)

which yields the following dispersion relation:

ω4 −
[
(c̃s)

2( kx
2 + ky

2 + kz
2) +

(
B2 Qf

2

m2
f

)]
ω2 +

(
B2 Qf

2

m2
f

)
(c̃s)

2 kz
2 = 0 (46)

where we identify the “effective sound speed” c̃s ,

(c̃s)
2 ≡ 9gh

2 ρ0

8mf mG
2 (47)

which depends on the features of the EOS. We can solve eq. (46) obtaining ω and the phase and 
group velocities, which become identical with equations (19) to (24) when we set cs⊥ = cs‖ = c̃s

in the latter. We can then conclude that stability and causality are satisfied in the present case.
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Let us look at the following particular cases:

(i) No B field (B = 0): ω(�k) = ±(c̃s)|�k| and | �vp| = c̃s

In this case we recover the results found in [5].
(ii) Very strong B field (|Qf |B > μ2 > m2

f ): The dispersion relation is:

ω4 −
[
(c̃s)

2|�k|2 + (Vs)
2 kz

2 +
(

B2 Qf
2

m2
f

)]
ω2 +

(
B2 Qf

2

m2
f

)
(Vs)

2 kz
2

+
(

B2 Qf
2

m2
f

)
(c̃s)

2 kz
2 = 0 (48)

where (Vs)
2 is given by (40). The condition (21) is written as:

lim
|�k|→∞

∣∣∣∣∣ ω

|�k|

∣∣∣∣∣ = lim
|�k|→∞

| �vp| ∼= lim
|�k|→∞

√
(c̃s)2 + (Vs)2kz

2

|�k|2
∼=

√
(c̃s)2 + (Vs)2 cos2(θ) (49)

The same discussion made below Eq. (41) applies here. Causality may be satisfied for appropriate 
choices of gh/mG and θ .

6. Conclusions

We have studied the effects of a constant magnetic field on the propagation of waves in 
non-relativistic cold and ideal quark matter. Using the equations of non-relativistic ideal hy-
drodynamics in an external magnetic field, we have derived the dispersion relation for density 
and velocity perturbations. The magnetic field was included both in the equation of state and in 
the equations of motion, where the term of the Lorentz force was considered. We have used three 
equations of state: a generic non-relativistic one, the MIT bag model EOS and the mQCD EOS. 
The anisotropy effects caused by the B field were also manifest in the parallel and perpendicular 
sound speeds. We proved that the introduction of the magnetic field does not lead to instabilities 
in the velocity and density waves. In the case of the non-relativistic EOS the propagation of these 
waves was found to respect causality. As for the MIT and mQCD equations of state, we found 
situations where the phase velocity might be larger than one. In particular, this might happen for 
waves moving along the direction of the (very strong) magnetic field. In spite of its limitations, 
our study could determine the situations in where we are “safe” and where we might expect 
problems with instabilities and causality.
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