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SUMMARY 15 

 In this paper, daily ET0 estimates at two semiarid locations, Zaragoza and 16 

Córdoba, were obtained with the Penman-Monteith equation using either fixed (70 s 17 

m-1) or variable rc values. Variable rc values were computed with two models, Katerji 18 

and Perrier, and Todorovic. Daily ET0 estimates were computed from 24-hour 19 

meteorological averages or from the sum of hourly estimates. Daily ET0 measured 20 

values were obtained with a weighing lysimeter (Zaragoza) and an eddy covariance 21 

system (Córdoba). There was a good agreement at both locations between 22 

estimated and measured ET0 values using a fixed rc value and 24-hour 23 

meteorological averages. Estimates obtained from the sum of hourly estimates were 24 

somewhat worse. When 24-hour meteorological averages were used, the Katerji and 25 

Perrier model for variable rc slightly improved ET0 estimates at both locations. But 26 

that improvement does not support the effort to locally calibrate that model. When 27 

daily ET0 estimates were obtained from the sum of hourly estimates, the Todorovic 28 

model improved the estimation at Zaragoza and, at a lesser degree, at Córdoba. 29 

Under the semiarid conditions of the two studied locations, the use of the Todorovic 30 

model is recommended to get hourly ET0 estimates from which daily estimates can 31 

be obtained. If 24-hour meteorological averages are used, a fixed rc value as 32 

proposed by Allen et al. (1998) should be enough for accurate ET0 estimates. 33 

 34 



 3

1. INTRODUCTION 35 

 Evapotranspiration is a component of the hydrological cycle whose accurate 36 

computation is needed for an adequate management of water resources. In 37 

particular, a high level of accuracy in crop evapotranspiration estimation can result in 38 

saving economic and water resources for both planning and management of irrigated 39 

areas. 40 

 In 1977, the Food and Agriculture Organization of the United Nations (FAO) 41 

proposed a methodology for computing crop evapotranspiration, based in the use of 42 

reference evapotranspiration (ET0) and crop coefficients (Kc) (Doorenbos and Pruitt, 43 

1977), methodology that remains valid at the present day. In 1998, FAO published a 44 

new manual for computing crop water requirements (Allen et al., 1998), that 45 

redefined the concept of reference evapotranspiration and adopted the Penman-46 

Monteith equation for its estimation, in substitution of the Penman equation 47 

recommended by Doorenbos and Pruitt (1977). This equation had been previously 48 

endorsed by the international scientific community as a consequence of the good 49 

results obtained in comparison with other equations in different regions of the world 50 

(Allen et al., 1989; Jensen et al., 1990; Smith et al., 1991, Allen et al., 1994a, b). 51 

 Later studies also showed lesser differences between estimated and 52 

measured ET0 with the Penman-Monteith equation than with others (Choisnel et al., 53 

1992; Hussein, 1999; Ventura et al., 1999; Berengena et al., 2001). Notwithstanding, 54 

many of these studies suggest an underestimation of the measured ET0 in semi-arid 55 

and windy areas with high atmospheric evaporative demand, and overestimation with 56 
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low demand. That underestimation varied between 2 % and 18 % (Rana et al., 1994; 57 

Steduto et al., 1996; Pereira et al., 1999; Todorovic, 1999; Ventura et al., 1999). 58 

 Bulk canopy resistance (rc) is a primary factor in the evapotranspiration 59 

process (Monteith, 1965). This resistance is not only a physiological parameter, it 60 

also has an aerodinamic component. Hence, it depends on multiple factors such as 61 

meteorological variables, plant water potential, and position of leaves in the plant 62 

(Perrier, 1975; Alves et al., 1998; Pereira et al., 1999; Alves and Pereira, 2000). 63 

 Smith et al. (1991) and Allen et al. (1994a, b) proposed a constant value for 64 

bulk canopy resistance of 70 s m-1 to calculate grass reference evapotranspiration 65 

with the Penman-Monteith equation. This assumption was adopted by FAO (Allen et 66 

al., 1998) in order to obtain a standard equation that can be applied worldwide. 67 

Nevertheless, Rana et al. (1994), Steduto et al. (1996) and Ventura et al. (1999), 68 

among others, consider this fixed value of rc as a possible cause of the previously 69 

mentioned underestimation of the Penman-Monteith equation. 70 

 An approach to estimate bulk canopy resistance is through relationships 71 

obtained between rc, computed by inverting the Penman-Monteith equation, and 72 

climatic variables, using the multiplicative model of Jarvis (1976). However, this 73 

approach has been questioned because of the same variables considered in the 74 

Jarvis model are already considered when computing rc by inverting the Penman-75 

Monteith equation. Also, this procedure only includes the physiological component of 76 

the rc, but not consider the aerodynamic component (Alves and Pereira, 2000). 77 

 Katerji and Perrier (1983) proposed other approach through a linear model in 78 

which rc depends on climate variables and aerodinamic resistance. This model has 79 
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been tested with good results, and several authors have recommended it for practical 80 

purposes (Rana et al., 1994; Pereira et al., 1999; Alves and Pereira, 2000; Rana and 81 

Katerji, 2000). However, this model requires calibration to find its parameters and 82 

was developed for a limited range of Bowen ratio values. Recently, Todorovic (1999) 83 

developed a model, where rc is also a function of climatic variables and aerodynamic 84 

resistance, but that does not requires calibration and can be applied regardless of 85 

Bowen ratio values. Application of this model to the computation of ET0 with the 86 

Penman-Monteith equation showed a better adjustment to measured ET0 than with a 87 

fixed rc value (Todorovic, 1999). 88 

 In this paper, the Penman-Monteith equation with fixed (70 s m-1, Allen et al., 89 

1998) and variable rc values was used to estimate daily values of ET0 at the Ebro and 90 

Guadalquivir valleys, in Spain. About 42 % of the Spanish irrigated surface is located 91 

in these two valleys. Daily ET0 estimates were obtained by directly applying the 92 

Penman-Monteith equation with 24-hour average meteorological variables or by 93 

applying that equation to hourly average meteorological variables and summing up 94 

the hourly estimates. Variable rc values were obtained by applying the models of 95 

Katerji and Perrier (1983) and Todorovic (1999). Estimates were compared against 96 

measured ET0 using a weighing lysimeter (Ebro River Valley) or an eddy covariance 97 

system (Guadalquivir River Valley). The main objective was to evaluate whether the 98 

use of variable rather than fixed rc values would improve the ET0 estimates obtained 99 

by applying the Penman-Monteith equation under the semiarid conditions of the Ebro 100 

and Guadalquivir River Valleys, where evaporative demand is high particularly during 101 

summer. 102 
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2. MATERIALS AND METHODS 103 

2.1. Site description 104 

 This study was conducted in two locations representative of the central areas 105 

of the Ebro and Guadalquivir River Valleys, Zaragoza and Córdoba, respectively 106 

(Figure 1). 107 

2.1.1. Ebro River valley 108 

 In this case, the study was conducted on an experimental farm located at 109 

Zaragoza, on the terraces of Gállego River, about 8 km north from its mouth to the 110 

Ebro River. Elevation is 225 m above sea level, latitude is 41° 43’ N, and longitude is 111 

0° 49’ W (of Greenwich). Average annual precipitation is about 330 mm, mostly 112 

recorded in spring and fall although some stormy rainfalls are relatively frequent 113 

during summer. Average annual temperature is about 15 °C. The zone is within the 114 

windiest areas of Spain. 115 

 Measurements were taken over a 1.2 ha (120 m x 100 m) plot, which was 116 

uniformly covered with grass (Festuca arundinacea Moench.). Soils of the plot are 117 

described as Typic Xerofluvent. The plot was regularly irrigated and clipped all year 118 

round to maintain it as near as possible to the reference standard. The measurement 119 

period was March to October 1999 and March to September 2000. 120 

 A weighing lysimeter, 1.7 m depth and 6.3 m2 effective surface area, was 121 

located in the center of the plot. A load cell connected to a Campbell Scientific 122 

datalogger (CR500) recorded lysimeter mass losses every 0.5 s from which hourly 123 

ET0 rates were derived. Daily measured ET0 values were obtained summing up the 124 

hourly ones. The combined resolution of both load cell and datalogger allowed the 125 
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detection of mass losses of about 0.3 kg (0.05 mm water depth). Only days without 126 

incidences (irrigation, rainfall, lysimeter drainage and grass clipping), when measured 127 

grass height was between 0.10 and 0.15 m, were used for analyses. 128 

 An automatic weather station (CR10 Campbell Scientific) was located close to 129 

the lysimeter. The datalogger recorded hourly averages of air temperature and 130 

relative humidity, net radiation, soil heat flux, and wind speed direction. Table 1 lists 131 

the models and manufacturers of the sensors used as well as the measurement 132 

heights. 133 

2.1.2. Guadalquivir River valley 134 

 In this case, the study was conducted on an experimental farm located on the 135 

terraces of the Guadalquivir River, near Córdoba. Elevation is 70 m above sea level, 136 

latitude is 37° 51’ N, and longitude is 4° 51’ W (of Greenwich). Average annual 137 

precipitation is about 600 mm, recorded during winter, spring and fall, with almost null 138 

rainfall recordings during summer. Average annual temperature is about 17 °C. 139 

Advective conditions during summer are more frequent than in Zaragoza. The area is 140 

significantly less windy than the middle Ebro River valley. 141 

 Measurements were taken over a 1.3 ha (115 m x 115 m) plot, which was 142 

uniformly covered with grass (Festuca arundinacea Moench.). Soils of the plot are 143 

also described as Typic Xerofluvent. This plot was also regularly irrigated and clipped 144 

all year round. The measurement period was July to October 1997 and July to 145 

August 1998. Only days where measured grass height was between 0.10 and 0.15 m 146 

were used for analyses. 147 
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 A Campbell Scientific eddy covariance system was located in the center of the 148 

plot to measure ET0. Sensors included a krypton hygrometer (model KH20), a single-149 

axis sonic anemometer (model CA27), as well as two fine wire thermocouples 150 

(models 127 and TCBR-3), attached to the two previously mentioned sensors. 151 

Measurements of fluctuations of water vapor density, vertical wind speed and air 152 

temperature were recorded every 0.1 s and averaged every 10 minutes. These 153 

readings were used to obtain hourly measured latent heat flux values as described 154 

by Villalobos (1997). These values were transformed to hourly ET0 rates by dividing 155 

by latent heat of vaporization derived from air temperature readings following Allen et 156 

al. (1998). Daily measured ET0 rates were obtained by summing up the hourly ones. 157 

Likewise, an automatic weather station (CR10 Campbell Scientific) was located close 158 

to the eddy covariance system. Measured meteorological variables, as well as 159 

sensor models, manufacturers and measurement heights were the same as for the 160 

Ebro River valley case (Table 1). 161 

2.2. ET0 computations 162 

2.2.1. Penman-Monteith equation 163 

 The well-known Penman-Monteith equation is based on the Penman (1948) 164 

equation, a combination method of the energy balance and mass transfer to compute 165 

the evaporation from an open water surface. Monteith (1965) introduced the effect of 166 

the architecture and the stomatal regulation of the canopy on the water vapor 167 

diffusion from a cropped surface. These effects were modeled through the bulk 168 

canopy (rc) and the aerodynamic resistance (ra). Bulk canopy resistance represents 169 

the resistance to water vapor flux from evaporating surfaces (plant stomata and soil), 170 
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and aerodynamic resistance represents the resistance to air flux over vegetative 171 

surfaces. An important assumption of this model is that the whole canopy can be 172 

considered as a “big leaf” from which heat and vapor escape. This “big leaf” is 173 

located at d+z0m height, where d is the zero-plane displacement height and z0m is the 174 

roughness length for momentum. Thus, the Penman-Monteith equation can be 175 

written as (Allen et al., 1998): 176 

 
( ) ( )

( )ac

aaspan
0 r/r1

r/eecGR
ET

++

−+−
=

γ∆
ρ∆

λ  (1) 177 

where ET0 is reference evapotranspiration, λ is latent heat of vaporization, Rn is net 178 

radiation, G is soil heat flux, ∆ is the slope of the saturation vapor pressure versus 179 

temperature relationship, ρa is the mean air density at constant pressure, cp is the 180 

specific heat of the air, es is saturation vapor pressure, ea is actual vapor pressure 181 

and γ is the psychrometric constant. In this paper, measured rather than estimated Rn 182 

and G values were used to avoid the effect of any uncertainties in the estimation of 183 

these two variables on the comparison of the use of fixed versus variable rc values. 184 

Units and computations of all elements (but Rn and G) of equation (1) (λ, ∆, ρa, cp, es, 185 

ea and ra) followed Allen et al. (1998). Also, rc was considered constant and equal to 186 

70 s m-1 and grass height was set to 0.12 m (Allen et al., 1998). Equation (1) was 187 

applied to obtain daily ET0 estimates using 24-hour average meteorological variables 188 

(ET24F). Additionally, equation (1) was applied to obtain hourly ET0 estimates using 189 

hourly average meteorological variables and then those estimates were summed up 190 

to get daily values (ETsumF). These computations were done for all days selected as 191 

explained in sections 2.1.1 and 2.1.2. 192 

 193 
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2.2.2. Katerji and Perrier model 194 

 Katerji and Perrier (1983) proposed a model in which canopy resistance 195 

depends on climatological variables. The model is based on an approach by Perrier 196 

(1975) and has similar hypotheses than Monteith (1965). Thus, it is assumed that the 197 

vapor diffusion from the crop is influenced by the architecture of the canopy and the 198 

stomatal regulation of the leaves. However, the energy conservation boundary 199 

condition is applied to the top of the canopy. In other words, the “big leaf” is placed at 200 

the crop height, so that aerodynamic resistance is computed from the top of the 201 

canopy to the reference height (Alves and Pereira, 2000): 202 

 
( )[ ] ( ) ( )[ ]

zm
2

chm0m
aKP uk

dh/dzlnz/dzln
r

−−−
=  (2) 203 

where zm is wind measurement height, zh is air temperature measurement height, 204 

and hc is the mean crop height. The term hc - d substitutes to zoh (roughness length 205 

for heat transfer) that was used to compute ra following Allen et al. (1998). Again, hc 206 

was set to 0.12 m. 207 

 Perrier et al. (1980) showed experimentally a relationship between 208 

aerodynamic resistance, bulk canopy resistance and a critical resistance (r*), which 209 

represents the canopy resistance for equilibrium evaporation and it depends on 210 

climate factors as follows (Pereira et al., 1999): 211 
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 Hence, Katerji and Perrier (1983) derived the following linear model for bulk 213 

canopy resistance, that they applied successfully to grass and alfalfa: 214 
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where c0 and c1 are parameters that must be determined experimentally by 216 

regression and may vary among locations. Another constraint of this model is that it 217 

should only be applied within some limited range of Bowen ratio values. Thus, Alves 218 

and Pereira (2000) indicate that equation (4) is only valid for periods where the 219 

Bowen ratio varies between –0.3 and 0.3. This model has also been applied to wheat 220 

(Perrier et al. 1980), tomato (Katerji et al., 1988) and rice (Peterschmitt and Perrier, 221 

1991). Alves et al. (1999) and Alves and Pereira (2000) presented a detailed 222 

discussion about the physical meaning of the regression parameters of equation (4). 223 

 In order to apply Katerji and Perrier (1983) model, the data set available in 224 

each location was divided in two groups: a) a calibration data set; b) a validation data 225 

set. Available days were ordered by dates and one of three days were selected for 226 

calibration, while the other two days were selected for validation. For the calibration 227 

data set, daily and hourly values of rc were obtained by solving the Penman-Monteith 228 

equation (1) using daily and hourly measured ET0 values, respectively, and the 229 

corresponding meteorological variables. Equations (2) and (3) were used to get 230 

aerodynamic and critical resistance values (daily and hourly), respectively. Then, a 231 

simple linear regression between rc/raKP and r*/raKP was fit to obtain daily and hourly 232 

values of parameters c0 and c1 for both locations, Zaragoza and Córdoba. In the case 233 

of hourly values, only those periods for which the Bowen ratio was between –0.5 and 234 

0.5 were used for the linear regression analyses. Most of the diurnal hourly periods 235 

fell within this Bowen ratio value range. Later, the calibrated c0 and c1 parameters 236 

and equations (1) to (4) were applied to the validation data set to obtain daily 237 
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estimates of ET0 either by directly applying those equations to 24-hour averages of 238 

the recorded meteorological variables (ET24KP) or by applying them to hourly 239 

averages and then summing up hourly ET0 estimates (ETsumKP). In the case of hourly 240 

averages, a fixed value of rc (200 s m-1) was considered for night time hours. 241 

2.2.3. Todorovic model 242 

 A deep discussion on the theory and assumptions of the Todorovic model can 243 

be found in Todorovic (1999). Here, only the equations used to get rc values are 244 

presented. Todorovic (1999) defines a climatological resistance (ri) as follows: 245 

 ( )GR
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r
n
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−
=

γ
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 (5) 246 

 Then, Todorovic (1999) uses ri and ra, defined following Allen et al. (1998), to 247 

set this 2nd degree equation: 248 
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 Equation (6) has only one positive solution. Equations (6) to (9) were applied 254 

only to the validation data set to obtain daily and hourly estimates of rc using the 255 
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corresponding 24-hour and hourly averages of meteorological variables. Like in the 256 

case of Katerji and Perrier model, a fixed value of rc (200 s m-1) was considered for 257 

night time hours. Then, these variable rc values were used, assuming a grass height 258 

of 0.12 m, to obtain daily ET0 estimates either by directly applying equation (1) to 24-259 

hour averages of the recorded meteorological variables (ET24T) or by applying them 260 

to hourly averages and then summing up hourly ET0 estimates (ETsumT). 261 

2.3. Statistical analyses 262 

 Comparisons between measured and estimated daily ET0 values were carried 263 

out by simple linear regression (y = b0 + b1 x) where measured values were used as 264 

the dependent variable y and the estimated ones were used as the independent 265 

variable x. Additionally, the following statistics were computed as described by 266 

Willmott (1982): root mean square error (RMSE), systematic mean square error 267 

(MSEs) and index of agreement (IA). 268 
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where yi is the ith observed ET0 value, xi is the ith estimated ET0 value, iŷ  is the ith 272 

predicted ET0 value through the simple linear regression and x  is the mean of the 273 

estimated values. 274 
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3. RESULTS AND DISCUSSION 275 

 Table 2 lists some statistics of the air temperature and wind speed recordings 276 

during the measurement period at both locations, Zaragoza and Córdoba. These 277 

values are presented only for description purposes, as a direct comparison between 278 

them is not possible due to the different measurement periods. The most important 279 

feature of Table 2 is that no days showed an average daily wind speed above 4.0 m 280 

s-1 at Córdoba, while this event occurred for 9 % of the days at Zaragoza. As stated 281 

in section 2.1.1, Zaragoza is located within one of the windiest areas of Spain. 282 

3.1. Estimation with fixed rc value 283 

 Figure 2 shows the results of the simple linear regression and error analysis of 284 

the comparison between measured and estimated (using fixed rc value) daily ET0 285 

values for the whole measurement period at the two locations. All coefficients of 286 

determination were high, above 0.94, as well as all indices of agreement, above 0.97. 287 

These results suggest that the agreement between measured and estimated daily 288 

ET0 was quite good whether 24-hour averages of metorological variables or sums of 289 

hourly estimates were used. Also, these results indicate that scatter of the data was 290 

relatively small (Figure 2). ETsumF estimates were lower than ET24F estimates at both 291 

locations. This has been also observed elsewhere (Allen et al., 1994). According to 292 

regression and error analysis statistics, differences between ET24F and ETsumF 293 

estimates were higher at Zaragoza. At this location, there was a tendency for 294 

Penman-Monteith to overestimate measured ET0 at low evaporative demand values 295 

and to underestimate it at high evaporative demand values (Figure 2), particularly for 296 

the ETsumF case. For the ET24F case, this underestimation at high evaporative 297 
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demand values was negligible. At Córdoba, the opposite was observed although 298 

agreement between measured and estimated ET0 values was higher according to 299 

results shown in Figure 2. This behavior of the Penman-Monteith equation, 300 

overestimation for low ET0 values and underestimation for high ET0 values, has been 301 

reported at other Mediterranean locations (Steduto et al., 1996). One reason for the 302 

different behavior seen at Córdoba might be the uncertainties of any measurement 303 

system. It has been reported that eddy covariance systems may underestimate this 304 

variable in some instances depending on the horizontal sensor separation and 305 

measurement height among other factors (Foken and Wichura, 1996). In this work, 306 

the method proposed by Villalobos (1997) to correct this problem was applied and 307 

the energy balance closure for each day was evaluated. Only those days for which 308 

the energy balance closure was less than 10 % of the latent heat flux (LE) were used 309 

for further analyses. 310 

 Another reason for the differences between the two locations was the different 311 

wind conditions. Zaragoza typically has higher wind speeds than Córdoba (Table 2). 312 

The agreement between lysimeter and Penman-Monteith ET0 values has been 313 

shown to decrease as wind speed increases (Lecina and Martínez-Cob, 2000). 314 

Under high evaporative demand conditions (mostly sunny days during summer), the 315 

ET0 rates are expected to further increase under windy conditions. In these 316 

situations, the Penman-Monteith equation with fixed rc value seemed unable to 317 

adequately represent the water vapor flux from crops to the atmosphere and leads to 318 

underestimation of ET0 (Rana et al., 1994; Steduto et al., 1996; Pereira et al., 1999; 319 

Todorovic, 1999; Ventura et al., 1999). 320 
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 Under these high evaporative demand and windy conditions, the 321 

underestimation of hourly estimates is added when those estimates are summed up 322 

to get daily values and so these are underestimated. When 24-hour averages of 323 

meteorological variables are used several errors may cancel each other leading to 324 

better daily ET0 estimates. For instance, Allen et al. (1994) pointed out that daily 325 

vapor pressure deficit may be overestimated when estimated from maximum and 326 

minimum air temperature and relative humidity values instead of averaging hourly 327 

vapor pressure deficits. But this error may be cancelled by the underestimation that 328 

could be expected from using average daily wind speed instead of average daytime 329 

wind speed in the ET0 computations. 330 

3.2. Calibration of the Katerji and Perrier model 331 

 Table 3 shows the parameters c0 and c1, equation (4), determined by 332 

regression fit for the calibration period at both locations, Zaragoza and Córdoba. 333 

Coefficients of determination were moderate to moderately high. Better R2 values 334 

were obtained when using hourly rc estimates. For this later case, R2 was slightly 335 

lower than that reported by Alves and Pereira (2000) but the measurement period 336 

was larger in the present work so weather changes from day to day and within each 337 

day were higher. Estimates of daily rc obtained by inverting the Penman-Monteith 338 

equation showed great variations from day to day likely due to day to day errors and 339 

biases in the lysimeter and weather measurements (Todorovic, 1999). Thus, for the 340 

calibration period, 27.0 and 13.8 % of the daily rc estimates were less than 70 s m-1 at 341 

Zaragoza and Córdoba, respectively, while 43.2 and 55.2 % of those estimates were 342 

higher than 100 s m-1. Hourly rc estimates were limited to periods for which Bowen 343 
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ratio was less than 5.0  and so less variation was observed as indicated by the 344 

higher R2 listed on Table 3. 345 

 Alves and Pereira (2000) indicated that c0 and c1 are functions of the Bowen 346 

ratio. However, a previous knowledge of the energy partitioning would be required to 347 

use those functions to estimate rc for the direct use of the Penman-Monteith 348 

equation. If regression fits are used instead to estimate c0 and c1, as in this paper, 349 

the need for a previous calibration of the Katerji and Perrier model still remains as an 350 

important limitation for its widespread use. 351 

3.3. Estimation with variable rc values 352 

 Figure 3 shows the results of the simple linear regression and error analysis of 353 

the comparison between measured and estimated daily ET0 values for the validation 354 

data set at Zaragoza, for each of the rc models studied (fixed value, Katerji and 355 

Perrier, and Todorovic), using either 24 hour averages of meteorological variables or 356 

summing up hourly estimates. Figure 4 shows the same type of results for the case 357 

of Córdoba. Results indicate that there were not great differences whether a fixed or 358 

a variable rc value was used. All coefficients of determination and indices of 359 

agreement were higher than 0.91 and 0.97, respectively. The RMSE values were 360 

less than 0.55 mm day-1 and most of them varied between 0.34 and 0.46 mm day-1. 361 

Perhaps, the most important differences were noticed in some instances for the 362 

MSEs statistics. Nevertheless, some improvement was obtained at each location by 363 

using variable rc. 364 

 Using a fixed rc value, the results seen for the validation period were quite 365 

similar to those seen for the whole measurement period at both locations (Figures 3 366 
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and 4). Again, best estimates were obtained when using 24-hour average 367 

meteorological variables. When using variable rc values (Katerji and Perrier model), 368 

there was an improvement on the ET0 estimation at both locations when 24-hour 369 

average meteorological values were used. However, daily ET0 estimates obtained by 370 

summing up hourly estimates were worse at both locations when using the Katerji 371 

and Perrier model than when using a fixed rc value (Figures 3 and 4). According to 372 

results from Table 3, perhaps an improvement on the estimation of hourly values 373 

could have been expected, but this was not the case. As stated previously, rc values 374 

showed important variations within each day and from day to day. Also, the weather 375 

conditions and Bowen ratios on the validation period were certainly different than 376 

those for the calibration period. Bowen ratios at some hourly periods may have been 377 

out of the calibration range used (-0.5, 0.5). It has been stated that the effect of rc 378 

errors on ET0 estimation is relatively small (Todorovic, 1999). All of these 379 

circumstances, and the possible effect of 24-hour averaging cancelling hourly errors 380 

discussed on section 3.1, therefore caused that the benefits of applying the Katerji 381 

and Perrier model were only noticed for the ET24KP case. 382 

 Alves and Pereira (2000) indicated that the parameters of equation (4) can be 383 

expressed as functions of the Bowen and the )/( γ∆∆ +  ratios. Then, the direct 384 

application of the Penman-Monteith equation with variable rc using the Katerji and 385 

Perrier model would require a previous knowledge of the energy partitioning. Of 386 

course, this is difficult and, for practical purposes, it would more feasible to obtain 387 

those parameters by regression fit. But, under this situation, the application of that 388 

model must rely on a previous local calibration to find adequate parameters for 389 

equation (4). The improvement on ET0 estimation seen in this work has been modest 390 
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and then the need for that calibration has not likely enough support to the use of 391 

variable rc values estimated from the Katerji and Perrier model, from a practical point 392 

of view. 393 

 Regarding to the Todorovic model, there was an improvement for the ETsumT 394 

case estimates at Zaragoza. Now, these estimates were quite similar to those 395 

obtained in the cases ET24F and ET24KP. But, at Córdoba, such improvement was 396 

lower and the results for the ETsumT were similar to those for the ET24F. For the ET24T 397 

case, the application of the Todorovic model also worsened ET0 estimates 398 

particularly at Zaragoza. Improvements seen at Zaragoza for the ETsumT case were 399 

similar to those reported by Todorovic (1999). However, this author also reported 400 

some improvement when 24 hour average meteorological values were used. 401 

 Todorovic model is based on the extra sensible heat energy provided by 402 

advection. Under windy conditions, the advection effects increase at least at a 403 

regional scale. This would explain why the improvement of ET0 estimation (ETsumT 404 

case) was higher at Zaragoza. 405 

 It is unclear the reasons for the different results seen with the two tested 406 

variable rc models depending on the time scale considered. Figure 5 shows the 407 

average hourly (8:00 to 18:00 Greenwich Meridian Time) rc values estimated for the 408 

validation period for both models at the two locations. These rc values were relatively 409 

similar at Zaragoza regardless of the model although, in general, values for the 410 

Todorovic model were lower. At Córdoba, differences between the two variable rc 411 

sets were higher and again the lower values were those of Todorovic model. Of 412 

course, the coefficients of variation of those average values were quite high 413 

indicating the important variations on rc estimates from day to day. It can be argued 414 
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that hourly estimation of ET0 and later summing up of these estimates to get daily 415 

values should be preferable in order to better take account of weather effects on the 416 

evapotranspiration process and to avoid errors occurring by 24 hour averaging of 417 

meteorological variables. If so, the use of Todorovic model, which seems to better 418 

describe the effect of weather on the time variability of rc (without the need for a 419 

previous local calibration), would lead to a decrease of the biases of the Penman-420 

Monteith equation when applied for hourly time scales. 421 

4. CONCLUSIONS 422 

 The results presented in this paper suggest that daily ET0 estimates can be 423 

obtained accurately enough with the Penman-Monteith, using 24 hour meteorological 424 

averages, and assuming a fixed rc value of 70 s m-1 as suggested by Allen et al. 425 

(1998), under the semiarid conditions of both the Ebro and Guadalquivir River 426 

Valleys. However, if hourly ET0 estimates are required either for their direct use or for 427 

summing up to get daily estimates, the use of Todorovic model should be considered 428 

to get variable rc values at least under semiarid and windy conditions such those of 429 

the Ebro River valley. Under semiarid conditions such those of the Guadalquivir River 430 

valley the use of Todorovic model would not be as necessary but it will probably not 431 

decrease the accuracy of the estimates. 432 

 The use of the Katerji and Perrier model to compute variable rc values should 433 

not be adopted for practical purposes due to the minimal improvement of daily ET0 434 

estimates when 24 hour meteorological averages were used and the lack of 435 

improvement when sums of hourly estimates were obtained. Such improvement does 436 

not support the effort to locally calibrate this model. 437 
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 In summary, under the semiarid conditions of this study, it is recommended 438 

the use of a fixed rc value, as proposed by Allen et al. (1998), if daily ET0 estimates 439 

are going to be computed from 24-hour meteorological averages. But the use of the 440 

Todorovic model for variable rc is recommended if daily ET0 estimates are going to be 441 

computed by summing up hourly estimates. 442 
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Table 1. Recorded meteorological variables, measurement sensor height and sensor 

model used at the weather stations of Zaragoza and Córdoba. 

Meteorological variable 
Measurement 

height (m) 
Sensor model (manufacturer) 

Air temperature and 

relative humidity 
1.50 HMP35D (Vaisala) 

Net radiation 1.50 
Q-7 (Radiation and Energy Balance 

Systems, REBS) 

Wind speed 2.00 
Switching anemometer A100R (Vector 

Instruments) 

Wind direction 2.00 
Wind vane W200P (Vector 

Instruments) 

0.08 (soil heat flux 

plates) 
Two HFT1 soil heat flux plates (REBS) 

Soil heat flux 
0.02-0.06 (soil 

temperature1) 

TCAV averaging soil temperature 

probe (Campbell Scientific) 

1 Used to correct soil heat flux data following ASCE (1996). 
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Table 2. Meteorological conditions (maximum and minimum air temperature and wind 

speed) during the measurement period at Zaragoza and Córdoba. 

Zaragoza Córdoba 
Meteorological variable 

Average Maximum Minimum Average Maximum Minimum

Maximum temperature (ºC) 26.6 38.2 12.1 33.3 38.6 24.4 

Minimum temperature (ºC) 11.3 20.1 -2.6 18.2 22.7 9.2 

Average wind speed 

(m s-1)  
2.1 7.6 0.4 1.7 3.6 0.7 

Days with daily wind speed 

above 4.0 m s-1 (%) 
9.0 0.0 
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Table 3. Parameters of the Katerji and Perrier model, equation (4), obtained by 

regression fit at Zaragoza and Córdoba for the calibration period: a) using 24 hour 

rc estimates; b) using hourly rc estimates. N, sample size; R2, coefficient of 

determination; c0, intercept of the regression; c1, regression slope. 

Location rc estimates N 
R2 

(0/1) 

c0 

(dimensionless) 

c1 

(dimensionless)

24hour 37 0.414 0.759(1) 0.175(1) 
Zaragoza 

hourly 356 0.725 0.395(1) 0.385(1) 

24hour 29 0.557 0.042(2) 0.330(1) 
Córdoba 

hourly 301 0.780 0.377(1) 0.340(1) 

(1) Significantly different than 0 (α = 0.95). 

(2) Not significantly different than 0 (α = 0.95). 

 



Figure 1. Location of the study areas. 
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Figure 2. Simple linear regression (y = b0 + b1 x) and error analysis statistics of the 

comparison between measured (dependent variable y) and estimated 

(independent variable x) daily ET0 values at two locations, Zaragoza and Córdoba, 

for the whole measurement period. Estimates were obtained using the Penman-

Monteith equation with fixed rc value (70 s m-1) either using 24-hour averages of 

meteorological variables (ET24F) or summing up hourly estimates (ETsumF). R2, 

coefficient of determination (0/1); b0, intercept of the regression (mm day-1); b1, 

regression slope (dimensionless); RMSE, root mean square error (mm day-1); 

MSEs, systematic mean square error (%); IA, index of agreement (0/1); N, sample 

size. (a) b0 significantly different than 0; (b) b0 not significantly different than 0; (c) b1 

significantly different than 1; (d) b1 not significantly different than 1 (α = 0.95). 
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Figure 3. Simple linear regression (y = b0 + b1 x) and error analysis statistics of the 

comparison between measured (dependent variable y) and estimated 

(independent variable x) daily ET0 values at Zaragoza for the validation data set. 

Estimates were obtained using the Penman-Monteith equation with: a) fixed rc 

value, either using 24-hour average meteorological variables (ET24F) or summing 

up hourly estimates (ETsumF); b) variable rc values (Katerji and Perrier model), 

either using 24-hour average meteorological variables (ET24KP) or summing up 

hourly estimates (ETsumKP); and c) variable rc values (Todorovic model), either 

using 24-hour average meteorological variables (ET24T) or summing up hourly 

estimates (ETsumT). R2, coefficient of determination; b0, intercept of the regression; 

b1, regression slope; RMSE, root mean square error; MSEs, systematic mean 

square error; IA, index of agreement; N, sample size; (a) b0 significantly different 

than 0; (b) b0 not significantly different than 0; (c) b1 significantly different than 1; (d) 

b1 not significantly different than 1 (α = 0.95). 
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Figure 4. Simple linear regression (y = b0 + b1 x) and error analysis statistics of the 

comparison between measured (dependent variable y) and estimated 

(independent variable x) daily ET0 values at Córdoba for the validation data set. 

Estimates were obtained using the Penman-Monteith equation with: a) fixed rc 

value, either using 24-hour average meteorological variables (ET24F) or summing 

up hourly estimates (ETsumF); b) variable rc values (Katerji and Perrier model), 

either using 24-hour average meteorological variables (ET24KP) or summing up 

hourly estimates (ETsumKP); and c) variable rc values (Todorovic model), either 

using 24-hour average meteorological variables (ET24T) or summing up hourly 

estimates (ETsumT). R2, coefficient of determination; b0, intercept of the regression; 

b1, regression slope; RMSE, root mean square error; MSEs, systematic mean 

square error; IA, index of agreement; N, sample size; (a) b0 significantly different 

than 0; (b) b0 not significantly different than 0; (c) b1 significantly different than 1; (d) 

b1 not significantly different than 1 (α = 0.95). 



0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

ET0 ESTIMATED, mm day-1

E
T 0

 M
E

A
S

U
R

E
D

, m
m

 d
ay

-1

Measured 1:1 line Regression

ETsumF

R2 = 0.953
b0 = 0.426 (a)

b1 = 0.929 (c)

RMSE = 0.342
MSEs = 12.2
IA = 0.987
N = 58

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

ET0 ESTIMATED, mm day-1

E
T 0

 M
E

A
S

U
R

E
D

, m
m

 d
ay

-1

Measured 1:1 line Regression

ET24F

R2 = 0.941
b0 = 0.110 (b)

b1 = 0.954 (d)

RMSE = 0.394
MSEs = 16.2
IA = 0.982
N = 58

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

ET0 ESTIMATED, mm day-1

E
T 0

 M
E

A
S

U
R

E
D

, m
m

 d
ay

-1

Measured 1:1 line Regression

ETsumKP

R2 = 0.948
b0 = 0.144 (b)

b1 = 1.026 (d)

RMSE = 0.438
MSEs = 40.4
IA = 0.977
N = 58

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

ET0 ESTIMATED, mm day-1

E
T 0

 M
E

A
S

U
R

E
D

, m
m

 d
ay

-1

Measured 1:1 line Regression

ET24KP

R2 = 0.946
b0 = -0.003 (b)

b1 = 1.003 (d)

RMSE = 0.342
MSEs = 0.2
IA = 0.986
N = 58

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

ET0 ESTIMATED, mm day-1

E
T 0

 M
E

A
S

U
R

E
D

, m
m

 d
ay

-1

Measured 1:1 line Regression

ETsumT

R2 = 0.945
b0 = 0.413 (a)

b1 = 0.919 (c)

RMSE = 0.371
MSEs = 12.4
IA = 0.985
N = 58

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

ET0 ESTIMATED, mm day-1

E
T 0

 M
E

A
S

U
R

E
D

, m
m

 d
ay

-1

Measured 1:1 line Regression

ET24T

R2 = 0.930
b0 = 0.410 (a)

b1 = 0.945 (d)

RMSE = 0.417
MSEs = 12.1
IA = 0.980
N = 58

 



Figure 5. Average hourly bulk canopy resistance estimated at Zaragoza and Córdoba 

using the Katerji and Perrier (rcKP) and the Todorovic (rcT) models for the validation 

period. 
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