

Occupancy Detection via iBeacon
on Android Devices for Smart Building Management

Omitted for blind review

Abstract— Building heating, ventilation, and air conditioning
(HVAC) systems are considered to be the main target for energy
reduction due to their significant contribution to commercial
buildings’ energy consumption. Knowing a building’s occupancy
plays a crucial role in implementing demand-response HVAC.
In this paper we propose a new solution based on the iBeacon
technology. This solution is different from the previous ones
because it leverages on the Bluetooth Low Energy standard,
which provides lower power consumption. Moreover, the iBeacon
protocol can be used both on iOs systems and Android ones,
making this new approach portable. Differently from our
previous work based on iOS devices, in this paper we focus on an
Android based solution with the aim of increasing the accuracy
of the location and the energy efficiency of the entire system. We
increased the accuracy by 10% and the energy efficiency by 15%.

Keywords—smart buildings, indoor location, iBeacon, energy
efficiency

I. INTRODUCTION
Smart buildings, places where sensors and actuators make

the location more intelligent, are becoming more and more
relevant and they are the natural evolution of today’s
constructions. The goal of this new trend is to use the
information collected to adapt some building parameters to
achieve better energy efficiency, without reducing the user
comfort perception. Heating, ventilation and air conditioning
(HVAC) systems represent almost half of the energy
consumption of a commercial building and lighting is another
important component. In the US it is estimated that buildings
are the major consumers of energy, accounting for a 40% of
the total energy consumption [16]. Within this context, it is
possible to increase the energy efficiency and the level of
comfort of a building by exploiting information on who is in a
specific room in order to tailor the behavior of the building
could be easily tailored to the position of the occupants inside
the building. In this way, it is possible to avoid energy wastes
using the HVAC system only when needed. Another possible
use case that benefits of the occupancy information is the
efficient management of the lighting system; within a smart
building that is aware of the user position, it is possible to turn
on and off the lights according to the actual needs, increasing
the building efficiency.

Many different works have tackled the problem of deriving
the building occupancy status: as it will be presented in
Section 2, generally the different approaches use different
types of sensors and algorithms. However, despite numerous
research works have been conducted to find a cheap, simple,

power-efficient and reliable solution to this issue, the problem
is still open and an optimal solution, satisfying	
 all three	

constraints, has still to be found.	

With this work, we propose the Apple iBeacon technology [1]
as a possible solution to detect the number of users in a room,
and how it can be used to gather information about their
movements (thus identifying and tracking them) inside the
building even if it has not been developed to solve the
occupancy detection problem but to enable the design of indoor
proximity systems. In a previous work [17], we made a similar
study using Apple mobile devices (iPhone and iPad).
Differently, here we want to port and improve the same
methodology on Android devices, since they represent a huge
part of the smartphones market. As it will shown in the next
section, the porting of such technology on Android devices is
challenging due to some restrictions of the underlying
operating system. Moreover, with respect to the previous work,
we increased the accuracy of the classification algorithm we
use for the occupancy information from 80% to 90%.

This paper is structured as follows: Section II introduces
the state of the art showing the different techniques defined for
the occupancy detection. In Section III we provide an overview
of the iBeacon technology while Section IV introduces the
proposed architectural solution for Android-based devices.
Section V, VI and VII focus on the critical aspects of the
proposed system, and solutions are proposed and validated.
Section VIII shows the limitations of the current approach and
proposes possible solutions to be investigated as future work..

II. STATE OF THE ART
Previous studies [10] have developed different algorithms in
order to estimate the position of a user through a set of
information acquired using different types and combinations of
ambient sensors. The state of the art methods exploited many
different technologies to estimate occupancy, like, for instance,
infrared, RIFD, ultrasound-pulses, GSM and Wi-Fi. However,
there is still a lack of low cost but accurate solutions. In one of
the first works addressing the occupancy detection problem
[18] a solution based on infrared sensors has been proposed:
with this solution users must wear an active badge that
broadcasts a unique identifier, while, on the building side, a
quite huge number of infrared sensors must be placed all
around the target building making the system expensive.
Despite the high installation cost, the accuracy of this solution
in crowded rooms is low due to the high number of collisions.
Vice versa, FastSlam [19] and Landmarc [20] advocate the use
of RFID, requiring the placement of antennas in the space to be

monitored. Furthermore, a tag has to be assigned to each
building occupant, which must be carried so that they can be
correctly identified when they are close to an antenna. In this
case, the main drawback is due to the high number of antennas
since the coverage area of the RFID signal is quite limited (6
meters), making the installation cost of this solution quite high.
Other works propose the use of ultrasound pulses [21] or rely
on the GSM network [22] to retrieve the occupancy data of a
building. Unfortunately, both these approaches are quite
inaccurate. On the contrary, very good results in terms of
accuracy have been obtained by the use Wi-Fi networks
[23,24,25,26,27], reaching an accuracy of 99.84% without
requiring any training phase (unsupervised learning). The big
drawback of these methods is the power consumption of the
mobile devices (smartphones) used as collectors of the Wi-Fi
signals. Also Bluetooth has been proposed as a possible
solution [28,29] since it allows low power communications
with respect to Wi-Fi in case of low data rate (usually small
bursts) [30]. Unfortunately, the reached accuracy with the
standard Bluetooth protocol is worse than the accuracy
obtained by exploiting Wi-Fi networks.

Differently from the cited works, as we will show in the
next sections, with this paper we want to exploit the use of the
iBeacon technology on Android devices in order to evaluate its
effectiveness for the occupancy detection problem.

III. IBEACON TECHNOLOGY
iBeacon technology [1] is based over the Bluetooth Low

Energy (BLE) [31], a new standard introduced by the 4th
version of the protocol, designed to provide significantly lower
power consumption with the same efficiency as previous
versions. More in detail, iBeacon is a particular implementation
of the GATT [2] protocol, which allows both the advertisement
of a particular service and the connection between two devices
that can exchange data. Differently from the complete GATT
implementation, iBeacon only implements the first feature.
Even if iBeacon is a partial implementation of GATT, it fits
perfectly with our needs since our main goal is to know if a
person (associated with a device) is inside a particular room; in
fact, within this context, we need to uniquely identify the signal
that a room is transmitting (i.e., the advertising signal).

Figure 1. iBeacon Packet Structure

The iBeacon protocol has two main components: a
transmitter and a receiver. The transmitter broadcasts packets
that uniquely identify it creating an iBeacon region, a set of
beacons identified by the same proximity Universally Unique
Identifier, UUID. The receiver periodically scans signals in the
air in order to detect particular iBeacon packets. Inside an
iBeacon packet (Figure 1) we can identify 5 different fields: the
iBeacon prefix (9 bytes) is a constant field to identify the
iBeacon protocol, the proximity UUID (16 bytes) that
identifies beacons belonging to a certain organization, major
value (2 bytes) that characterizes a group of related beacons,

minor value (2 bytes) that is used to distinguish beacons with
the same UUID and the TX power (2 bytes) that indicates the
signal’s strength measured at 1 meter from the device.

The iBeacon protocol allows the implementation of two
main functionalities: region monitoring and ranging. The
monitoring notifies a listener application every time we
enter/exit a specific iBeacon region. We can define more than
one region to be monitored and this functionality can work in
background. The ranging provides an approximation of the
distance from the iBeacon transmitter using the information of
the TX Power field. As the strength of the signal decreases
predictably as we get further, knowing the RSSI (received
signal strength indicator) at 1 meter, and the current RSSI, it is
possible to calculate the difference. The iBeacon protocol has
been developed with the aim of detecting the proximity to a
particular object. An example of its use described by Apple is
the possibility of creating a smart museum: as soon as you
approach to a painting, the smartphone will show you the most
interesting information and some interactive experience related
to it. For our purpose, we try to exploit the proximity
information provided by iBeacon in order to infer the
occupancy of a particular room.

IV. THE PROPOSED OCCUPANCY DETECTION SYSTEM
The philosophy behind this system is quite straightforward:

we envision the users with their smartphones (or smart things
in general) within a smart building that is instrumented with
low cost Bluetooth 4.0 antennas (Wi-Fi access points can easily
integrate this feature; moreover, each computer inside the
building can be used as an antenna). When a user enter a room
that is iBeacon enabled (i.e., it has an antenna), the room
advertise itself to the user; consequently, the user smart-device
detects the advertisement and sends this information to the
Building Management System (BMS) [32].

Figure 2. Main aspects of the proposed solution

To implement such functionalities, we have created an
architecture composed of three main components: the (1)
beacon transmitters, devices within the rooms sending
uniquely identified iBeacon packets to a (2) client mobile
application installed on the occupants smartphones; this app is
able to detect beacons produced by the building and sends this
information to a (3) building remote server (the BMS) through
an HTTP request or a Bluetooth connection. On this server,
some classification algorithms are in charge of extrapolating
the occupancy data from the detected packet information.
Figure 2 shows the aforementioned architecture that highlights
two aspects: the need for an accurate signal analysis and the
need for an energy efficient communication between the
devices and the remote server. For both aspects we evaluate
different techniques that will be shown in the next sections.

Figure 3. Application behavior

A. Beacon Transmitter Implementation
The transmitter is implemented on a Raspberry PI board

(version b) [4] that runs the Raspbian Operating System. In
order to provide the BLE functionalities to the board, we used a
Bluetooth 4.0 USB dongle (Inateck BTA-CSR4B5) [5]. The
software stack to generate iBeacon packets is provided the
bluez [6] kernel module and its related tools. In order to make
the transmitter work properly it is necessary to calibrate the TX
power field. This can be done by putting the device one meter
away from the transmitter and through Radius Networks
iBeacon Locate [7] app, changing the TX power field until the
detected distance by the device is about one meter.

B. Server Implementation
The server has to collect all information sent by the user

smart and to insert them in a database the association between
the device and the room where it is located. These information
are then used by a classification algorithm (Section VI) in order
to get the occupancy information. We realized our prototype
server with another Raspberry Pi; since the server has to be
able to receive HTTP requests, we implemented a RESTFul
interface using Flask micro-framework [3]. In order to handle a
large number of concurrent requests we have chosen the
Standalone WSGI Container Tornado, which, thanks to his
non-blocking approach, suits very well our needs.

C. Smartphones app
The smartphone app retrieves the iBeacon packets from the

antennas and sends them to the building server. As said in the
introduction, differently from our previous work [17] where we
used iOS based devices, in this work we faced the challenges
of implementing the system using Android. Testing the
possibility to implement such occupancy detection technique
on Android devices is important since they represent the 85%
of the today market [33]. Unfortunately, since there has been
little support from Google to the iBeacon technology, we had
to face some implementation problems. In fact, Android does
not provide any software stack for iBeacon. For this reason, we
used an open source library by Radius Networks [8]. As said,
the application has to detect the presence of beacons in the air
continuously; to implement such functionality, we created a
background service: Figure 3 shows the behavior of the
application.

The Boot Handler listens to the boot complete event raised by
the Android OS at the end of the boot phase and launches the
Background Service. This service will take care of turning on
the Bluetooth and creating the Monitoring Service. This last
service implements the iBeacon Monitoring Feature (Section
III) and detects if the device is entered in a new iBeacon
Region. Accordingly to the iBeacon protocol, the app has to be
aware about the region code that has to be monitored: as a
consequence, the app and the transmitter has to be configured
on the same Region UUID. After this configuration phase (to
be done once at the system setup), the app is notified whenever
a new iBeacon packet is detected. However, the monitoring
service does not provide the information of the received beacon
packet (UUID, major, minor, TX power); to obtain such
information, it is necessary to execute the Ranging Service as
soon as the device entered in a region. This service identifies
the beacon received and provides the approximate distance
from the beacon transmitter. This information is processed and
sent to the server.

V. SIGNAL ANALYSIS
Similar to other high frequency signals that are transmitted

through air, Bluetooth is affected by humidity, presence of
other signals and many other environmental factors [9].
Therefore, different tests have been performed to evaluate the
fluctuation of the signal received. Tests consisted in positioning
the device at a given distance D from the transmitter, after a
suitable calibration, and registering the detected signals. Figure
5 shows the recorded values detected with D = 2 mt with a
Samsung S3 mini. It can be observed that there is a large
variability of the estimated distance between the transmitter
and the Android based receiver.

Figure 4. Signals collected with 2 seconds scan period

This lack of accuracy is caused also by a limit of the Android
operating system since its BLE APIs allows only a single
signal strength measurement per scan1, differently from iOS
where it is possible to get many measurements for each
broadcast advertisement by the transmitter. To understand this
concept, let us consider an example: having a scan period of
two seconds and an iBeacon generator that transmits thirty
times per second, an Android device that scans for ten seconds
gets only five samples (despite the rate of the transmitter the
device will get one sample per scan and so ten divided by two
samples). On the contrary, an iOS device receives three
hundred samples because inside each scan it can collect more

1. The scan period is the time used to collect samples for estimating the distance

than one sample. As a consequence, the iOS distance
measurements result to be more accurate, since it is allowed to
work on a higher number of recorded data. Another important
problem we faced during the implementation of our prototype
system is that the adapter sometimes looses some samples due
to bugs in the software stack. In order to cope with the
aforementioned problems, we increased the scan period to
collect more sample obtaining more accurate distance
estimations (Figure 6).

Figure 6. Signal Evaluation with 5 seconds scan period

Unfortunately, increasing the scan period, the estimation phase
takes a longer time, causing the application to be less reactive
to distance changes by the user. In order to obtain a low
latency but good distance estimation at the same time, we
implemented a custom distance estimation algorithm. With the
proposed algorithm2, we can solve the problem of beacons’
losses since we remove the beacon information only after the
second consecutive loss, otherwise its value is maintained.
Moreover, we solve also the problem of the fluctuation of the
signal since we consider that if at a certain time T the device is
in a position P, at time T+1 the position will be P+∆P, and ∆P
depends on the speed and on the time interval. With these
assumptions, the older position has a role in determining which
will be the current one that can be estimated as follows:

where pi is the result of the computation of the value related

to a single beacon, pi-1 the value of the signal history and vi the
new measurement. So the older position will influence the
current one with a given probability, the next one with a lower
probability and so on. Increasing the coefficient makes the
signal more stable and less affected by peaks but on the other
hand it becomes less responsive to movements. To determine
the best trade-off for this coefficient some dynamic tests have
been performed by moving the device from one transmitter to
another at a speed of 1 - 1.5 m/s and registering the
responsiveness to the fluctuation of the signal. After some
parameters tuning we found that 0.65 is a good trade off
between stability and responsiveness as shown in Figure 7 and
Figure 8.

VI. ALGORITHMS FOR INDOOR OCCUPANCY
Given the information provided by the transmitter after the
signal analysis, it is necessary to determine the position of the
user. However, it is not easy to model the radio propagation in
indoor places because of the different factors that can affect the
signal [9]. Previous studies [10] have developed different
algorithms to estimate the position of a user through a set of
information; they can be classified in 3 main categories:
Triangulation, Proximity and Scene Analysis. Triangulation has
been discarded because it requires very stable and accurate
input data [10] and due to the signal fluctuation we decided to
not use this technique. In our previous work [17] we used the
Proximity Technique; this technique uses the strongest signal
received from a grid of transmitters, each of which associated
with a particular location, in order to determine the position of
the user. The results of our first work were encouraging (we
reached an accuracy of the 84%) but in this paper we try to
increase also the classification accuracy.

Figure 5. Signal static evaluation (Coeff = 0.65)

Figure 8. Signal dynamic evaluation (Coeff = 0.65)

For this reason, we propose the adoption of the Scene
Analysis technique [10]: it is a pattern recognition method that
uses the characteristics of the location to make a classification.
More in detail, the approach compares the observed
characteristics to pre-stored characteristics for each pattern to
determine a match. In our implementation, the relevant feature
considered is the detected distance from the different iBeacon
transmitters inside the room. First, a data collection phase is
needed, requiring an operator that walks around the building
collecting samples (beacon identifiers and their detected
distances). These samples are then associated with the specific
room and sent to the server that stores them in the database.

2. The code of the presented system is open source and can be downloaded from
http://xxxxxxx-omitted-for-blind-review

After this phase the server creates a supervised machine-
learning model based on all the samples. When a user enters
the building the application will send to the server the list of all
the beacons detected at a certain instant and their respective
distances. The server using the pre-computed model can
estimate the user’s location. Our implementation used Support
Vector Machines (SVM) [13] with the Radial Basis Function
kernel, as suggested by [12]. To test the accuracy of this
solution we have created a testing application and we asked a
user to move within a house and to indicate its actual location.

Figure 9. Experimental results

Part of the collected data was then used to build the
aforementioned SVM model (training set), while another part
was used to test its behaviors (testing set). As result we have
obtained an accuracy of about the 94% (Figure 9), increasing
the accuracy of about 10% from previous work. From the
confusion matrix (Figure 9.c) the number of false positive,
detection of the user inside the room while he was outside is
slightly higher than the number of false negative, detection of
the user outside the room while he was inside, is about the
same. This result is good since it is better to have false positive
than a false negative because false negatives are a problem in
terms of user comfort and safety.

VII. MOBILE DEVICE ENERGY CONSUMPTION AND
COMMUNICATION INFRASTRUCTURE

In Section IV, we anticipated that we envisioned two
different ways to send the beacons received by the smartphones
to the building server: a first one based on Wi-Fi and a second
one based on Bluetooth. In our previous work with iOS
devices, we discovered that an architecture based on the Wi-Fi
protocol is very expensive from the energy consumption point
of view [17]. As known, having energy efficient applications is
crucial on mobile devices since the battery is a very limited
resource [34]. For this reason, we focused our attention also on
the measurement of the energy consumption caused by our app
on the Android device. In this work, we performed the
measurements with the Wi-Fi communication channel (the
same used on iOS) and also with an alternative channel based
on Bluetooth. In this last case, a Bluetooth connection is
established between the smart device and the beacon
transmitter when a beacon is received. To develop this second
solution we have created a Bluetooth server in the iBeacon
transmitter (that is thought to be not-battery based) that
retransmits the information received to the central server using
HTTP requests. Implementing this new Bluetooth based
solution, we discovered that both implementations have pros
and cons: the Wi-Fi is more reliable and stable but forces to

keep on the wireless adapter that has a high power
consumption. On the other hand, the Bluetooth one is more
energy, but it’s less stable than the Wi-Fi solution due to bugs
in the BLE Android API.

In order to understand the energy consumption of our
system, we measured the energy consumption of our app using
the VeryNiceBlindApp application [34] we have developed.
This application is basically is background service that logs the
battery status is a very energy efficient way in order influence
the least possible the battery behavior and it is able to model
the energy profile of a device. Figure 10 shows the average of
10 measurements performed on a Samsung Galaxy S3 Mini
with Android 4.1.

Figure 10. Consumption with http communication

As expected, the Wi-Fi solution is more expensive in terms

of energy consumption compared to the second one. Using the
Bluetooth based architecture we obtained an energy saving of
the 15%. As a drawback, in order to support the Bluetooth
architecture, a more complicated antenna board is required. As
last consideration, with our app installed, the battery lifetime of
the mobile device is around 10 hours.

VIII. LIMITATIONS
With this work we further investigated the possibility of

using iBeacon as underlying technology for the occupancy
detection in a building. Some issues are still opened and are left
for future investigations. As described in Section V, we
underline that the strength of the signal received from an
iBeacon antenna, considering the same transmitter and the
same distance, changes significantly between different devices.
Figure 11 shows an example of two smartphones, a Nexus 5
and S3 mini, positioned at the same distance.

A possible solution to this problem might be to collect
experimental information on the power strength received by
different devices and using them to tune the information that is
provided to the server during the setup phase. Another
problem that is still open is the overall energy efficiency of the
smartphone app. By switching to the Bluetooth solution we
increase the energy efficiency by 15% but the total duration of
the battery is still limited to 10 hours. A possible solution to
this problem, since a relevant part of the power consumption
comes from the communication modules, is to use the
accelerometer to detect if the user is moving to enable the
iBeacon sensing and transmitting (if the user has not changed
position, it means that there is no useful information about the
occupancy).

Figure 11. Differences in the received signal strengths

IX. CONCLUDING REMARKS AND FUTURE DEVELOPMENTS
With this work we aimed at evaluating the possibility of using
iBeacon on Android devices as a suitable technology for the
occupancy detection in a smart building. The paper has shown
the major challenges in using such technology on the proposed
architecture: a big effort has been put in the signal
stabilization, on the classification algorithms and on the
energy efficiency on the mobile device used to sense the
environment. On the classification algorithms side, we have
increased the accuracy from 84% to 94%. On the application
energy efficiency, proposing an alternative communication
pattern via Bluetooth, we obtained a 15% improvement. We
believe this is a good starting point for further developments
on the different components of the proposed solution. In
particular, signal accuracy is variable, but this would require a
modification to the Android kernel to provide more samples
and achieve the same level of accuracy of the iOS devices.
Google announced the release of Android L OS by the end of
September, that promises to correct some of the bugs related
to Bluetooth present in Android 4.4 and permits to generate
beacon packets from the device [14]. With this new support
more solutions become possible, with an improvement of the
information provided by the devices. The source code of the
described system can be found online at: http://xxxxxxx-
omitted-for-blind-review.

REFERENCES
[1] Apple: iBeacon for developers: https://developer.apple.com/ibeacon/
[2] Bluetooth GATT Specification:

https://developer.bluetooth.org/gatt/Pages/default.aspx
[3] Ronacher, A.: Flask web development, one drop at a time
[4] Raspberry PI - www.raspberrypi.org
[5] Inateck: Bta csr4b5 bluetooth usb 4.0 adapter -

http://www.inateck.com/inateck-bta-csr4b5-usb-bluetooth-4-0-adapter/
[6] Bluez, official linux bluetooth protocol stack - www.bluez.org
[7] Radius Networks: iBeacon locate application -

http://developer.radiusnetworks.com/2013/11/13/ibeacon-monitoring-in-
the-background-and-foreground.html

[8] Radius Networks: Welcome developers -
http://developer.radiusnetworks.com

[9] Enterprises, L.: Make your wi-fi hi-fi: The "truth" about wireless signal
interference

[10] Liu, H.L.H.D.P.B.J.: Survey of wireless indoor positioning techniques
and systems. Technical report, IEEE (2007)

[11] Scikit-learn developers: scikit learn
[12] Bolliger, P.: Redpin adaptive, zero configuration in- door localization

through user collaboration. Tech- nical report, Institute for Pervasive
Computing ETH Zurich, Switzerland (2008)

[13] Laura Auria, R.A.M.: Support vector machines (svm) as a technique for
solvency analysis. Technical report, Deutsche Bundesbank, Hannover;
German Institute for Economic Research, Berlin. (2007)

[14] Networks, R.: Making an iBeacon with android l
[15] Foundation, T.A.S.: ab - apache http server bench- marking tool
[16] Buildings energy data book. Technical report, US Department of En-

ergy, August 2012.
[17] OMITTED FOR BLIND REVIEW
[18] WANT, Roy, et al. The active badge location system. ACM

Transactions on Information Systems (TOIS), 1992, 10.1: 91-102.
[19] HAHNEL, Dirk, et al. Mapping and localization with RFID technology.

In: Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE
International Conference on. IEEE, 2004. p. 1015-1020.

[20] NI, Lionel M., et al. LANDMARC: indoor location sensing using active
RFID. Wireless networks, 2004, 10.6: 701-710.

[21] WARD, Andy; JONES, Alan; HOPPER, Andy. A new location
technique for the active office. Personal Communications, IEEE, 1997,
4.5: 42-47.

[22] OTSASON, Veljo, et al. Accurate GSM indoor localization. In:
UbiComp 2005: Ubiquitous Computing. Springer Berlin Heidelberg,
2005. p. 141-158.

[23] JIANG, Yifei, et al. Ariel: Automatic wi-fi based room fingerprinting for
indoor localization. In: Proceedings of the 2012 ACM Conference on
Ubiquitous Computing. ACM, 2012. p. 441-450.

[24] BOLLIGER, Philipp. Redpin-adaptive, zero-configuration indoor
localization through user collaboration. In: Proceedings of the first ACM
international workshop on Mobile entity localization and tracking in
GPS-less environments. ACM, 2008. p. 55-60.

[25] MELFI, Ryan, et al. Measuring building occupancy using existing
network infrastructure. In: Green Computing Conference and
Workshops (IGCC), 2011 International. IEEE, 2011. p. 1-8.

[26] BALAJI, Bharathan, et al. Sentinel: occupancy based HVAC actuation
using existing WiFi infrastructure within commercial buildings. In:
Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2013. p. 17.

[27] NGUYEN, Nam Tuan; ZHENG, Rong; HAN, Zhu. UMLI: An
unsupervised mobile locations extraction approach with incomplete data.
In: Wireless Communications and Networking Conference (WCNC),
2013 IEEE. IEEE, 2013. p. 2119-2124.

[28] PEI, Ling, et al. Inquiry-based bluetooth indoor positioning via rssi
probability distributions. In: Advances in Satellite and Space
Communications (SPACOMM), 2010 Second International Conference
on. IEEE, 2010. p. 151-156.

[29] ANASTASI, Giuseppe, et al. Experimenting an indoor bluetooth-based
positioning service. In: Distributed Computing Systems Workshops,
2003. Proceedings. 23rd International Conference on. IEEE, 2003.

[30] Jin-Shyan Lee; Yu-Wei Su; Chung-Chou Shen, "A Comparative Study
of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi," Industrial
Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the
IEEE , vol., no., pp.46,51, 5-8 Nov. 2007

[31] Bluetooth Smart - bluetooth.com/Pages/Bluetooth-Smart.aspx
[32] OMITTED FOR BLIND REVIEW
[33] Android market share -

http://thenextweb.com/google/2014/07/31/android-reached-record-85-
smartphone-market-share-q2-2014-report/

[34] OMITTED FOR BLIND REVIEW

