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Abstract— Building heating, ventilation, and air conditioning 
(HVAC) systems are considered to be the main target for energy 
reduction due to their significant contribution to commercial 
buildings’ energy consumption. Knowing a building’s occupancy 
plays a crucial role in implementing demand-response HVAC. 
In this paper we propose a new solution based on the iBeacon 
technology. This solution is different from the previous ones 
because it leverages on the Bluetooth Low Energy standard, 
which provides lower power consumption. Moreover, the iBeacon 
protocol can be used both on iOs systems and Android ones, 
making this new approach portable. Differently from our 
previous work based on iOS devices, in this paper we focus on an 
Android based solution with the aim of increasing the accuracy 
of the location and the energy efficiency of the entire system. We 
increased the accuracy by 10% and the energy efficiency by 15%. 

Keywords—smart buildings, indoor location, iBeacon, energy 
efficiency 

I.  INTRODUCTION 
Smart buildings, places where sensors and actuators make 

the location more intelligent, are becoming more and more 
relevant and they are the natural evolution of today’s 
constructions. The goal of this new trend is to use the 
information collected to adapt some building parameters to 
achieve better energy efficiency, without reducing the user 
comfort perception. Heating, ventilation and air conditioning 
(HVAC) systems represent almost half of the energy 
consumption of a commercial building and lighting is another 
important component. In the US it is estimated that buildings 
are the major consumers of energy, accounting for a 40% of 
the total energy consumption [16].  Within this context, it is 
possible to increase the energy efficiency and the level of 
comfort of a building by exploiting information on who is in a 
specific room in order to tailor the behavior of the building 
could be easily tailored to the position of the occupants inside 
the building. In this way, it is possible to avoid energy wastes 
using the HVAC system only when needed. Another possible 
use case that benefits of the occupancy information is the 
efficient management of the lighting system; within a smart 
building that is aware of the user position, it is possible to turn 
on and off the lights according to the actual needs, increasing 
the building efficiency. 

Many different works have tackled the problem of deriving 
the building occupancy status: as it will be presented in 
Section 2, generally the different approaches use different 
types of sensors and algorithms. However, despite numerous 
research works have been conducted to find a cheap, simple, 

power-efficient and reliable solution to this issue, the problem 
is still open and an optimal solution, satisfying	
   all three	
  
constraints, has still to be found.	
  
With this work, we  propose the Apple iBeacon technology [1] 
as a possible solution to detect the number of users in a room, 
and how it can be used to gather information about their 
movements (thus identifying and tracking them) inside the 
building even if it has not been developed to solve the 
occupancy detection problem but to enable the design of indoor 
proximity systems. In a previous work [17], we made a similar 
study using Apple mobile devices (iPhone and iPad). 
Differently, here we want to port and improve the same 
methodology on Android devices, since they represent a huge 
part of the smartphones market. As it will shown in the next 
section, the porting of such technology on Android devices is 
challenging due to some restrictions of the underlying 
operating system. Moreover, with respect to the previous work, 
we increased the accuracy of the classification algorithm we 
use for the occupancy information from 80% to 90%. 

This paper is structured as follows: Section II introduces 
the state of the art showing the different techniques defined for 
the occupancy detection. In Section III we provide an overview 
of the iBeacon technology while Section IV introduces the 
proposed architectural solution for Android-based devices. 
Section V, VI and VII focus on the critical aspects of the 
proposed system, and solutions are proposed and validated. 
Section VIII shows the limitations of the current approach and 
proposes possible solutions to be investigated as future work.. 

II. STATE OF THE ART 
Previous studies [10] have developed different algorithms in 
order to estimate the position of a user through a set of 
information acquired using different types and combinations of 
ambient sensors. The state of the art methods exploited many 
different technologies to estimate occupancy, like, for instance, 
infrared, RIFD, ultrasound-pulses, GSM and Wi-Fi. However, 
there is still a lack of low cost but accurate solutions. In one of 
the first works addressing the occupancy detection problem 
[18] a solution based on infrared sensors has been proposed: 
with this solution users must wear an active badge that 
broadcasts a unique identifier, while, on the building side, a 
quite huge number of infrared sensors must be placed all 
around the target building making the system expensive. 
Despite the high installation cost, the accuracy of this solution 
in crowded rooms is low due to the high number of collisions.  
Vice versa, FastSlam [19] and Landmarc [20] advocate the use 
of RFID, requiring the placement of antennas in the space to be 



 

monitored. Furthermore, a tag has to be assigned to each 
building occupant, which must be carried so that they can be 
correctly identified when they are close to an antenna. In this 
case, the main drawback is due to the high number of antennas 
since the coverage area of the RFID signal is quite limited (6 
meters), making the installation cost of this solution quite high.  
Other works propose the use of ultrasound pulses [21] or rely 
on the GSM network [22] to retrieve the occupancy data of a 
building. Unfortunately, both these approaches are quite 
inaccurate. On the contrary, very good results in terms of 
accuracy have been obtained by the use Wi-Fi networks  
[23,24,25,26,27], reaching an accuracy of 99.84% without 
requiring any training phase (unsupervised learning). The big 
drawback of these methods is the power consumption of the 
mobile devices (smartphones) used as collectors of the Wi-Fi 
signals. Also Bluetooth has been proposed as a possible 
solution [28,29] since it allows low power communications 
with respect to Wi-Fi in case of low data rate (usually small 
bursts) [30]. Unfortunately, the reached accuracy with the 
standard Bluetooth protocol is worse than the accuracy 
obtained by exploiting Wi-Fi networks. 

Differently from the cited works, as we will show in the 
next sections, with this paper we want to exploit the use of the 
iBeacon technology on Android devices in order to evaluate its 
effectiveness for the occupancy detection problem. 
 

III. IBEACON TECHNOLOGY 
iBeacon technology [1] is based over the Bluetooth Low 

Energy (BLE) [31], a new standard introduced by the 4th 
version of the protocol, designed to provide significantly lower 
power consumption with the same efficiency as previous 
versions. More in detail, iBeacon is a particular implementation 
of the GATT [2] protocol, which allows both the advertisement 
of a particular service and the connection between two devices 
that can exchange data. Differently from the complete GATT 
implementation, iBeacon only implements the first feature. 
Even if iBeacon is a partial implementation of GATT, it fits 
perfectly with our needs since our main goal is to know if a 
person (associated with a device) is inside a particular room; in 
fact, within this context, we need to uniquely identify the signal 
that a room is transmitting (i.e., the advertising signal).  

 
Figure 1. iBeacon Packet Structure 

 

The iBeacon protocol has two main components: a 
transmitter and a receiver. The transmitter broadcasts packets 
that uniquely identify it creating an iBeacon region, a set of 
beacons identified by the same proximity Universally Unique 
Identifier, UUID. The receiver periodically scans signals in the 
air in order to detect particular iBeacon packets. Inside an 
iBeacon packet (Figure 1) we can identify 5 different fields: the 
iBeacon prefix (9 bytes) is a constant field to identify the 
iBeacon protocol, the proximity UUID (16 bytes) that 
identifies beacons belonging to a certain organization, major 
value (2 bytes) that characterizes a group of related beacons, 

minor value (2 bytes) that is used to distinguish beacons with 
the same UUID and the TX power (2 bytes) that indicates the 
signal’s strength measured at 1 meter from the device.  

The iBeacon protocol allows the implementation of two 
main functionalities: region monitoring and ranging. The 
monitoring notifies a listener application every time we 
enter/exit a specific iBeacon region. We can define more than 
one region to be monitored and this functionality can work in 
background. The ranging provides an approximation of the 
distance from the iBeacon transmitter using the information of 
the TX Power field. As the strength of the signal decreases 
predictably as we get further, knowing the RSSI (received 
signal strength indicator) at 1 meter, and the current RSSI, it is 
possible to calculate the difference. The iBeacon protocol has 
been developed with the aim of detecting the proximity to a 
particular object. An example of its use described by Apple is 
the possibility of creating a smart museum: as soon as you 
approach to a painting, the smartphone will show you the most 
interesting information and some interactive experience related 
to it. For our purpose, we try to exploit the proximity 
information provided by iBeacon in order to infer the 
occupancy of a particular room.  

IV. THE PROPOSED OCCUPANCY DETECTION SYSTEM 
The philosophy behind this system is quite straightforward: 

we envision the users with their smartphones (or smart things 
in general) within a smart building that is instrumented with 
low cost Bluetooth 4.0 antennas (Wi-Fi access points can easily 
integrate this feature; moreover, each computer inside the 
building can be used as an antenna). When a user enter a room 
that is iBeacon enabled (i.e., it has an antenna), the room 
advertise itself to the user; consequently, the user smart-device 
detects the advertisement and sends this information to the 
Building Management System (BMS) [32]. 

 
Figure 2. Main aspects of the proposed solution 

 

To implement such functionalities, we have created an 
architecture composed of three main components: the (1) 
beacon transmitters, devices within the rooms sending 
uniquely identified iBeacon packets to a (2) client mobile 
application installed on the occupants smartphones; this app is 
able to detect beacons produced by the building and sends this 
information to a (3) building remote server (the BMS) through 
an HTTP request or a Bluetooth connection. On this server, 
some classification algorithms are in charge of extrapolating 
the occupancy data from the detected packet information.  
Figure 2 shows the aforementioned architecture that highlights 
two aspects: the need for an accurate signal analysis and the 
need for an energy efficient communication between the 
devices and the remote server. For both aspects we evaluate 
different techniques that will be shown in the next sections. 



 

 

 
Figure 3. Application behavior 

 

A. Beacon Transmitter Implementation 
The transmitter is implemented on a Raspberry PI board 

(version b) [4] that runs the Raspbian Operating System. In 
order to provide the BLE functionalities to the board, we used a 
Bluetooth 4.0 USB dongle (Inateck BTA-CSR4B5) [5]. The 
software stack to generate iBeacon packets is provided the 
bluez [6] kernel module and its related tools. In order to make 
the transmitter work properly it is necessary to calibrate the TX 
power field. This can be done by putting the device one meter 
away from the transmitter and through Radius Networks  
iBeacon Locate [7] app, changing the TX power field until the 
detected distance by the device is about one meter. 

B. Server Implementation 
The server has to collect all information sent by the user 

smart and to insert them in a database the association between 
the device and the room where it is located. These information 
are then used by a classification algorithm (Section VI) in order 
to get the occupancy information.   We realized our prototype 
server with another Raspberry Pi; since the server has to be 
able to receive HTTP requests, we implemented a RESTFul 
interface using Flask micro-framework [3]. In order to handle a 
large number of concurrent requests we have chosen the 
Standalone WSGI Container Tornado, which, thanks to his 
non-blocking approach, suits very well our needs.  

C. Smartphones app 
The smartphone app retrieves the iBeacon packets from the 

antennas and sends them to the building server. As said in the 
introduction, differently from our previous work [17] where we 
used iOS based devices, in this work we faced the challenges 
of implementing the system using Android. Testing the 
possibility to implement such occupancy detection technique 
on Android devices is important since they represent the 85% 
of the today market [33]. Unfortunately, since there has been 
little support from Google to the iBeacon technology, we had 
to face some implementation problems. In fact, Android does 
not provide any software stack for iBeacon. For this reason, we 
used an open source library by Radius Networks [8]. As said, 
the application has to detect the presence of beacons in the air 
continuously; to implement such functionality, we created a 
background service: Figure 3 shows the behavior of the 
application. 

The Boot Handler listens to the boot complete event raised by 
the Android OS at the end of the boot phase and launches the 
Background Service. This service will take care of turning on 
the Bluetooth and creating the Monitoring Service. This last 
service implements the iBeacon Monitoring Feature (Section 
III) and detects if the device is entered in a new iBeacon 
Region. Accordingly to the iBeacon protocol, the app has to be 
aware about the region code that has to be monitored: as a 
consequence, the app and the transmitter has to be configured 
on the same Region UUID. After this configuration phase (to 
be done once at the system setup), the app is notified whenever 
a new iBeacon packet is detected. However, the monitoring 
service does not provide the information of the received beacon 
packet (UUID, major, minor, TX power); to obtain such 
information, it is necessary to execute the Ranging Service as 
soon as the device entered in a region. This service identifies 
the beacon received and provides the approximate distance 
from the beacon transmitter. This information is processed and 
sent to the server.  

V. SIGNAL ANALYSIS 
Similar to other high frequency signals that are transmitted 

through air, Bluetooth is affected by humidity, presence of 
other signals and many other environmental factors [9]. 
Therefore, different tests have been performed to evaluate the 
fluctuation of the signal received. Tests consisted in positioning 
the device at a given distance D from the transmitter, after a 
suitable calibration, and registering the detected signals. Figure 
5 shows the recorded values detected with D = 2 mt with a 
Samsung S3 mini. It can be observed that there is a large 
variability of the estimated distance between the transmitter 
and the Android based receiver.  

 
Figure 4. Signals collected with 2 seconds scan period 

 
This lack of accuracy is caused also by a limit of the Android 
operating system since its BLE APIs allows only a single 
signal strength measurement per scan1, differently from iOS 
where it is possible to get many measurements for each 
broadcast advertisement by the transmitter. To understand this 
concept, let us consider an example: having a scan period of 
two seconds and an iBeacon generator that transmits thirty 
times per second, an Android device that scans for ten seconds 
gets only five samples (despite the rate of the transmitter the 
device will get one sample per scan and so ten divided by two 
samples). On the contrary, an iOS device receives three 
hundred samples because inside each scan it can collect more 

___________________________________________ 
 
1. The scan period is the time used to collect samples for estimating the distance 

 



 

than one sample. As a consequence, the iOS distance 
measurements result to be more accurate, since it is allowed to 
work on a higher number of recorded data. Another important 
problem we faced during the implementation of our prototype 
system is that the adapter sometimes looses some samples due 
to bugs in the software stack. In order to cope with the 
aforementioned problems, we increased the scan period to 
collect more sample obtaining more accurate distance 
estimations (Figure 6). 
 

 
Figure 6. Signal Evaluation with 5 seconds scan period 

 
Unfortunately, increasing the scan period, the estimation phase 
takes a longer time, causing the application to be less reactive 
to distance changes by the user. In order to obtain a low 
latency but good distance estimation at the same time, we 
implemented a custom distance estimation algorithm. With the 
proposed algorithm2, we can solve the problem of beacons’ 
losses since we remove the beacon information only after the 
second consecutive loss, otherwise its value is maintained. 
Moreover, we solve also the problem of the fluctuation of the 
signal since we consider that if at a certain time T the device is 
in a position P, at time T+1 the position will be P+∆P, and ∆P 
depends on the speed and on the time interval. With these 
assumptions, the older position has a role in determining which 
will be the current one that can be estimated as follows: 

 
where pi is the result of the computation of the value related 

to a single beacon, pi-1 the value of the signal history and vi the 
new measurement. So the older position will influence the 
current one with a given probability, the next one with a lower 
probability and so on. Increasing the coefficient makes the 
signal more stable and less affected by peaks but on the other 
hand it becomes less responsive to movements. To determine 
the best trade-off for this coefficient some dynamic tests have 
been performed by moving the device from one transmitter to 
another at a speed of 1 - 1.5 m/s and registering the 
responsiveness to the fluctuation of the signal. After some 
parameters tuning we found that 0.65 is a good trade off 
between stability and responsiveness as shown in Figure 7 and 
Figure 8.  

VI. ALGORITHMS FOR INDOOR OCCUPANCY  
Given the information provided by the transmitter after the 
signal analysis, it is necessary to determine the position of the 
user. However, it is not easy to model the radio propagation in 
indoor places because of the different factors that can affect the 
signal [9]. Previous studies [10] have developed different 
algorithms to estimate the position of a user through a set of 
information; they can be classified in 3 main categories: 
Triangulation, Proximity and Scene Analysis. Triangulation has 
been discarded because it requires very stable and accurate 
input data [10] and due to the signal fluctuation we decided to 
not use this technique. In our previous work [17] we used the 
Proximity Technique; this technique uses the strongest signal 
received from a grid of transmitters, each of which associated 
with a particular location, in order to determine the position of 
the user. The results of our first work were encouraging (we 
reached an accuracy of the 84%) but in this paper we try to 
increase also the classification accuracy. 

 

 
Figure 5. Signal static evaluation (Coeff = 0.65) 

 

 
Figure 8. Signal dynamic evaluation (Coeff = 0.65) 

 

For this reason, we propose the adoption of the Scene 
Analysis technique [10]: it is a pattern recognition method that 
uses the characteristics of the location to make a classification. 
More in detail, the approach compares the observed 
characteristics to pre-stored characteristics for each pattern to 
determine a match. In our implementation, the relevant feature 
considered is the detected distance from the different iBeacon 
transmitters inside the room. First, a data collection phase is 
needed, requiring an operator that walks around the building 
collecting samples (beacon identifiers and their detected 
distances). These samples are then associated with the specific 
room and sent to the server that stores them in the database. 

___________________________________________ 
 
2. The code of the presented system is open source and can be downloaded from 
http://xxxxxxx-omitted-for-blind-review 



 

After this phase the server creates a supervised machine-
learning model based on all the samples. When a user enters 
the building the application will send to the server the list of all 
the beacons detected at a certain instant and their respective 
distances. The server using the pre-computed model can 
estimate the user’s location. Our implementation used Support 
Vector Machines (SVM) [13] with the Radial Basis Function 
kernel, as suggested by [12]. To test the accuracy of this 
solution we have created a testing application and we asked a 
user to move within a house and to indicate its actual location.  

 
Figure 9. Experimental results 

 

Part of the collected data was then used to build the 
aforementioned SVM model (training set), while another part 
was used to test its behaviors (testing set). As result we have 
obtained an accuracy of about the 94% (Figure 9), increasing 
the accuracy of about 10% from previous work. From the 
confusion matrix (Figure 9.c) the number of false positive, 
detection of the user inside the room while he was outside is 
slightly higher than the number of false negative, detection of 
the user outside the room while he was inside, is about the 
same. This result is good since it is better to have false positive 
than a false negative because false negatives are a problem in 
terms of user comfort and safety. 

 

VII. MOBILE DEVICE ENERGY CONSUMPTION AND 
COMMUNICATION INFRASTRUCTURE 

In Section IV, we anticipated that we envisioned two 
different ways to send the beacons received by the smartphones 
to the building server: a first one based on Wi-Fi and a second 
one based on Bluetooth. In our previous work with iOS 
devices, we discovered that an architecture based on the Wi-Fi 
protocol is very expensive from the energy consumption point 
of view [17]. As known, having energy efficient applications is 
crucial on mobile devices since the battery is a very limited 
resource [34]. For this reason, we focused our attention also on 
the measurement of the energy consumption caused by our app 
on the Android device. In this work, we performed the 
measurements with the Wi-Fi communication channel (the 
same used on iOS) and also with an alternative channel based 
on Bluetooth. In this last case, a Bluetooth connection is 
established between the smart device and the beacon 
transmitter when a beacon is received. To develop this second 
solution we have created a Bluetooth server in the iBeacon 
transmitter (that is thought to be not-battery based) that 
retransmits the information received to the central server using 
HTTP requests. Implementing this new Bluetooth based 
solution, we discovered that both implementations have pros 
and cons: the Wi-Fi is more reliable and stable but forces to 

keep on the wireless adapter that has a high power 
consumption. On the other hand, the Bluetooth one is more 
energy, but it’s less stable than the Wi-Fi solution due to bugs 
in the BLE Android API.  

In order to understand the energy consumption of our 
system, we measured the energy consumption of our app using 
the VeryNiceBlindApp application [34] we have developed. 
This application is basically is background service that logs the 
battery status is a very energy efficient way in order influence 
the least possible the battery behavior and it is able to model 
the energy profile of a device. Figure 10 shows the average of 
10 measurements performed on a Samsung Galaxy  S3 Mini 
with Android 4.1. 

 
Figure 10. Consumption with http communication 

 
As expected, the Wi-Fi solution is more expensive in terms 

of energy consumption compared to the second one. Using the 
Bluetooth based architecture we obtained an energy saving of 
the 15%. As a drawback, in order to support the Bluetooth 
architecture, a more complicated antenna board is required. As 
last consideration, with our app installed, the battery lifetime of 
the mobile device is around 10 hours. 

VIII. LIMITATIONS 
With this work we further investigated the possibility of 

using iBeacon as underlying technology for the occupancy 
detection in a building. Some issues are still opened and are left 
for future investigations. As described in Section V, we 
underline that the strength of the signal received from an 
iBeacon antenna, considering the same transmitter and the 
same distance, changes significantly between different devices. 
Figure 11 shows an example of two smartphones, a Nexus 5 
and S3 mini, positioned at the same distance.  

A possible solution to this problem might be to collect 
experimental information on the power strength received by 
different devices and using them to tune the information that is 
provided to the server during the setup phase.  Another 
problem that is still open is the overall energy efficiency of the 
smartphone app. By switching to the Bluetooth solution we 
increase the energy efficiency by  15% but the total duration of 
the battery is still limited to 10 hours. A possible solution to 
this problem, since a relevant part of the power consumption 
comes from the communication modules, is to use the 
accelerometer to detect if the user is moving to enable the 
iBeacon sensing and transmitting (if the user  has not changed 
position, it means that there is no useful information about the 
occupancy). 



 

 
Figure 11. Differences in the received signal strengths 

IX. CONCLUDING REMARKS AND FUTURE DEVELOPMENTS 
With this work we aimed at evaluating the possibility of using 
iBeacon on Android devices as a suitable technology for the 
occupancy detection in a smart building. The paper has shown 
the major challenges in using such technology on the proposed 
architecture: a big effort has been put in the signal 
stabilization, on the classification algorithms and on the 
energy efficiency on the mobile device used to sense the 
environment. On the classification algorithms side, we have 
increased the accuracy from 84% to 94%.  On the application 
energy efficiency, proposing an alternative communication 
pattern via Bluetooth, we obtained a 15% improvement. We 
believe this is a good starting point for further developments 
on the different components of the proposed solution. In 
particular, signal accuracy is variable, but this would require a 
modification to the Android kernel to provide more samples 
and achieve the same level of accuracy of the iOS devices. 
Google announced the release of Android L OS by the end of 
September, that promises to correct some of the bugs related 
to Bluetooth present in Android 4.4 and permits to generate 
beacon packets from the device [14]. With this new support 
more solutions become possible, with an improvement of the 
information provided by the devices. The source code of the 
described system can be found online at: http://xxxxxxx-
omitted-for-blind-review. 
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