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0. The ancient and honorable role of philosophy as a servant to the learning, 
development and use of scientific knowledge, though sadly underdeveloped 
since Grassmann, has been re-emerging from within the particular science 
of mathematics due to the latter's internal need; making this relationship 
more explicit (as well as further investigating the reasons for the decline) 
will, it is hoped, help to germinate the seeds of a brighter future for philo-
sophy as well as help to guide the much wider learning of mathematics and 
hence of all the sciences. 

1. The unity of interacting opposites "space vs. quantity", with the accom-
panying "general vs. particular" and the resulting division of variable quan-
tity into the interacting opposites "extensive vs. intensive", is susceptible, 
with the aid of categories, functors, and natural transformations, of a 
formulation which is on the one hand precise enough to admit proved 
theorems and considerable technical development and yet is on the other 
hand general enough to admit incorporation of almost any specialized 
hypothesis. Readers armed with the mathematical definitions of basic 
category theory should be able to translate the discussion in this section 
into symbols and diagrams for calculations. 

2. The role of space as an arena for quantitative "becoming" underlies the 
qualitative transformation of a spatial category into a homotopy category, 
on which extensive and intensive quantities reappear as homology and 
cohomology. 

3. The understanding of an object in a spatial category can be approached 
through definite Moore-Postnikov levels; each of these levels constitutes a 
mathematically precise "unity and identity of opposites", and their en-
semble bears features strongly reminiscent of Hegel's Science of Logic. 
This resemblance suggests many mathematical and philosophical problems 
which now seem susceptible of exact solution. 



Categories of Space and of Quantity 15 

0. Renewed Progress in Philosophy Made Both Necessary and Possible by the 
Advance of Mathematics 

In his Lyceum, Aristotle used philosophy to lend clarity, directedness, and 
unity to the investigation and study of particular sciences. The programs of 
Bacon and Leibniz and the important effort of Hegel continued this trend. One 
of the clearest applications of this outlook to mathematics is to be found in 
the neglected 1844 introduction by Grassmann to his theory of extensive quan-
tities. Optimistic affirmations and applications of it are also to be found in 
Maxwell's 1871 program for the classification of physical quantities and in 
Heaviside's 1887 struggle for the proper role of theory in the practice of long-
distance telephone-line construction. In the latter, Heaviside formulates what 
has also been my own attitude for the past thirty years: the fact that our know-
ledge will of course never be complete, and hence no general theory will be 
final, is no excuse for not using now the most general theory which science 
can support, and indeed for accuracy we must do so. 

To students whose quest drives them in the above direction, the official 
bourgeois philosophy of the 20th century presents a near vacuum. This 
vacuum is the result of the Jamesian trend clearly analyzed by Lenin in 1908, 
but "popularized" by Carus, Mauthner, Dewey, Mussolini, Goebbels, etc. in 
order to create the current standard of truth in journalism and history; this trend 
led many philosophers to preoccupation with the flavors of the permutations 
of the thesis that no knowledge is actually possible. Naturally this 20th 
century vacuum has in particular tried to suck what it can of the soul of 
mathematics: a science student naively enrolling in a course styled 
"Foundations of Mathematics" is more likely to receive sermons about 
unknowability, based on some elementary abstract considerations about 
subjective infinity, than to receive the needed philosophical guide to a 
systematic understanding of the concrete richness of pure and applied 
mathematics as it has been and will be developed. 

By contrast, mathematics in this century has not been at a standstill. As a 
result mathematicians at their work benches have been forced to fashion philo-
sophical tools (along with those proofs of theorems which are allegedly their 
sole product), and to act as their own "Aristotles" and "Hegels" as they strug-
gle with the dialectics of 'general' and 'particular' within their field. This is 
done in almost complete ignorance of dialectical materialism and often with 
understandable disdain for philosophy in general. It was struggle with a prob-
lem involving spheres and the relation between passage to the limit and the 
leap from quantity to quality which led Eilenberg and Mac Lane in the early 
1940's to formulate the general mathematical theory of categories, functors, 
and natural transformations. Similarly, study of concrete problems in algebraic 
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topology, functional analysis, complex analysis, and algebraic geometry in the 
1950's led Kan and Grothendieck to formulate and use important further advan-
ces such as adjoint functors and abelian categories. And the past thirty years 
have not been devoid of progress: from the first international meeting on cate-
gory theory in La Jolla, California in 1965 to the most recent one in Como, 
Italy in 1990, toposes, enriched categories, 2-categories, monads, 
parameterized categories (sometimes called "indexed"), synthetic differential 
geometry, simplicial homotopy, etc. have been refined and developed by over 
two hundred researchers with strong ties to nearly every area of mathematics. 
In particular all the now-traditional areas of subjective logic have been 
incorporated with improvement into this emerging system of objective logic. 

It is my belief that in the next decade and in the next century the technical 
advances forged by category theorists will be of value to dialectical philo-
sophy, lending precise form with disputable mathematical models to ancient 
philosophical distinctions such as general vs. particular, objective vs. subjec-
tive, being vs. becoming, space vs. quantity, equality vs. difference, quantita-
tive vs. qualitative etc. In turn the explicit attention by mathematicians to 
such philosophical questions is necessary to achieve the goal of making math-
ematics (and hence other sciences) more widely learnable and useable. Of 
course this will require that philosophers learn mathematics and that mathema-
ticians learn philosophy. I can recall, for example, how my failure to learn the 
philosophical meanings of "form, substance, concept, organization" led to 
misinterpretation by readers of my 1964 paper on the category of sets and of 
my 1968 paper on adjointness in foundations; a more profound study of 
Hegel's Wissenschaft der Logik and of Grassmann's Ausdehnungslehre may 
suggest simplifications and qualitative improvements in the circle of ideas 
sketched below. 

1. Distributive and Linear Categories; The Functoriality of Extensive and 
Intensive Quantities 

A great many mathematical categories have both finite products and finite co-
products. (A product of an empty family is also known as a terminal object, 
and an empty coproduct as a coterminal or initial object). However, there are 
two special classes of categories defined by the validity of two special 
(mutually exclusive) relationships between product and coproduct. One of 
these may be called distributive categories, for these are defined by the 
requirement that the usual distributive law of arithmetic and algebra should 
hold for multiplication (=product) and addition (=coproduct) of objects, in the 
precise sense that the natural map from the appropriate sum of products to a 
product of sums should be an isomorphism; this includes as a special case that 
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the product of any object by zero (=initial object) is zero. The other class of 
linear categories is defined by the requirement that products and coproducts 
coincide; more precisely, a coterminal object is also terminal in a linear 
category, which permits the definition of a natural map (="identity matrix") 
from the coproduct of any two objects to their product, and moreover this 
natural map is required to be an isomorphism. As pointed out by Mac Lane in 
1950, in any linear category there is a unique commutative and associative 
addition operation on the maps with given domain and given codomain, and 
the composition operation distributes over this addition; thus linear categories 
are the general contexts in which the basic formalism of linear algebra can be 
interpreted. 

All toposes are distributive. General categories of discrete sets, of conti-
nuous sets, of differentiable, measurable, or combinatorial spaces tend to be 
distributive, as do categories of non-linear dynamical systems. Given a particu-
lar space, there are categories of sheaves on it, of covering spaces of it, etc. 
which provide an expanded or restricted view of what happens in that particular 
space and are also distributive. Since both general ("gros") and particular 
("petit") spatial categories are distributive categories, a useful philosophical 
determination would be the identification of "categories of space" with 
distributive categories. Since distributive categories such as that of the 
permutation representations of a group can often be seen to be isomorphic 
with spatial categories such as that of the covering spaces of a particular space 
having that group as fundamental group, the inverse identification has merit; it 
also permits to use geometrical methods to analyze categories of concepts or 
categories of recursive sets. For many purposes it is useful to "normalize" 
distributive categories by replacing them with the toposes they generate, 
permitting application of the higher-order internal logic of topos theory to the 
given distributive category; on the other hand many distributive categories are 
"smaller" than toposes and in particular have manageable Burnside rigs. Here 
by "rig" we mean a structure like a commutative ring except that it need not 
have negatives, and the name of Burnside was suggested by Dress to denote the 
process of abstraction (exploited recently by Schanuel) which Cantor learned 
from Steiner: the isomorphism classes of objects from a given distributive 
category form a rig when multiplied and added using product and coproduct; the 
algebra of this Burnside rig partly reflects the properties of the category and 
also partly measures the spaces in it in a way which (as suggested by 
Mayberry) gives deeper significance to the statement attributed to Pythagoras: 
"Each thing is number". Still in need of further clarification is the contrast 
within the class of distributive categories between the "gros" (general category 
of spaces of a certain kind) and the "petit" (category of variable sets over a 
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particular space); this distinction (a qualitative one, not one of size) has been 
illuminated by Grothendieck and Dubuc and, I hope, by my 1986 Bogota paper 
[14]; these show the importance of the ways in which an object in a "gros" 
category can give rise to a "petit" category, and the additional "structure sheaf 
in the "petit" category which reflects its origin in the "gros" environment. 

The category of real "vector spaces", the category of abelian groups, the 
category of topological vector spaces and the category of bornological vector 
spaces are all linear categories. So are the category of projective modules over 
any particular rig and the category of vector bundles over any particular space. 
In the last example, the vector bundles (=objects) themselves are kinds of 
variable quantities over the space, and the maps between these are particular 
variable quantities over the space. Thus "categories of quantity" will be tenta-
tively identified with linear categories. Abelian AB5 categories are special 
linear categories having further "exactness" properties; again "normalization" 
may be useful, even within functional analysis. For abelian categories and 
many others, the Mac Lane addition of maps is actually an abelian group, that 
is, each map has a negative. However, for some other linear categories addition 
is actually idempotent (and hence could not have negatives in this algebraic 
sense); this occurs in logic (in the narrow sense) where the quantities are 
variable truth values (reflecting "relations"), and in geometry when quantities 
are (variable) dimensions and the multiplication is not idempotent. 

What is a space and how can quantities vary over a space? We have sug-
gested above that, formally, a space is either a "petit" distributive category or 
an object in a "gros" distributive category. But as spaces actually arise and are 
used in mathematical science, they have two main general conceptual features: 
first they serve as an arena for "becoming" (there are spaces of states as well as 
spaces of locations) and secondly they serve as domains for variable quantity. 
These two aspects of space need to be expressed in as general a mathematical 
form as possible: in section 2,1 will return to "becoming" and one of its roles 
in mathematics, but in this section 1 concentrate on the relation between space 
and variable quantity. 

Broadly speaking there are two kinds of variable quantity, the extensive and 
the intensive. Again speaking broadly, the extensive quantities are "quantity of 
space" and the intensive quantities are "ratios" between extensive ones. For 
example, mass and volume are extensive (measures), while density is intensive 
(function). Although Maxwell managed to get extensive quantities accepted 
within the particular science of thermodynamics, and although Grassmann 
demonstrated their importance in geometry, there is still a reluctance to give 
them status equal to that of functions and differential forms; in particular the 
use of the absurd terminology "generalized function" for such distributions as 
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the derivative of the Dirac measure has created a lot of confusion, for as 
Courant in effect observed, they are not intensive quantities, generalized or 
not. "Generalized measure" would have been a better description of 
distributions; to show that a distribution "is a function" involves finding a 
density for it relative to a "fixed" reference measure, but only in special non-
invariant circumstances do the latter exist. 

Broadly, a "type of extensive quantity" is a covariant coproduct-preserving 
functor from a distributive category to a linear category. The last condition 
reflects the idea that if a space is a sum of two smaller spaces, then a distribu-
tion of the given type on it should be determined by an arbitrary pair of distri-
butions, one on each of the smaller spaces, while by the defining property of a 
linear category, "pairs" are equally well expressed in terms of coproducts in the 
codomain of our functor. The covariant functoriality has itself non-trivial con-
sequences: the value of the functor at the terminal space may be considered to 
consist of constant quantities of the given type, and the value of the functor at 
a given space to consist of the extensive quantities of the given type which are 
variable over that space; since any given space has a unique map to the termi-
nal space, the functor induces a map in the linear category which assigns to 
each variable extensive quantity its total, which is a constant. For example, 
the quantity of smoke now in my room varies over the room, but in particular 
has a total. On the other hand a map from the terminal space to a given space 
is a point of that space; thus the functor assigns to such a point a linear map 
which to any constant weight of the given type assigns the Dirac measure of 
that weight which is supported on that point. For a more particular example of 
the covariant functoriality in which neither domain nor codomain of the 
inducing map reduces to the terminal space, consider the following definition 
of the term sojourn: the extensive quantity-type is time(-difference) and there 
are two spaces, one representing a time interval of, for example, July and the 
other for example, the continent of Europe. On the first space there is a 
particular extensive quantity of this type known as duration. A particular 
journey might be a map (in an appropriate distributive category) from the first 
space to the second, hence via the functor the journey acts on the duration to 
produce on the continent a variable extensive quantity known as the sojourn 
(in each given part of the continent) of my journey. As another example, if I 
project my room onto the floor, the quantity of smoke is transformed into the 
quantity of smoke over the floor. 

A further determination is suggested by the idea "space of quantity" which 
lies at the base of (not only cartesian coordinatizing but also) calculus of varia-
tions and functional analysis: the variable quantities (extensive or intensive) of 
a given type over a given space should themselves form a space (often infinite-
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dimensional) which contains its own processes of "becoming" (continuous, 
differentiable, etc.) and is itself the domain of further variable quantities. This 
idea can be realized as follows: over a given distributive category of spaces, 
consider the linear category of all spaces equipped with given additions and all 
maps which preserve these; the forgetting functor from the latter to the former 
expresses in a general way that these quantity-types "are" spaces. But then in 
particular an extensive quantity-type from the distributive category to this 
linear category can be subjected to the further requirement that it be enriched 
(or strong) in the sense of enriched category theory, i.e. roughly that as a 
functor it be concordant with "becoming" (parameterization). 

By contrast an intensive quantity-type is a contravariant functor, taking co-
products to products, from a distributive category, but now a functor whose 
values have a multiplicative structure as well as an additive structure. 
Frequently the values of an intensive type are construed to be rigs, such as the 
ring of continuous or smooth functions or the lattice of propositional 
functions on the various spaces in the distributive category, with the 
funcloriality given by substitution; however, since we also need to consider 
vector- and tensor-valued "functions", it is more adequate to consider that a 
typical value of an intensive quantity-type is itself a linear category, with 
composition in the latter being the multiplicative structure and with each 
spatial map inducing via the type a linear functor (in the opposite direction) 
between the two "petit" categories of intensive quantities on the domain and 
codomain spaces of the map. From the latter point of view the rigs are just 
endomap objects of certain preferred objects in these intensive categories, and 
in some examples (such as the analytic, though not the differentiable, study of 
projective space), knowledge of the rigs may not suffice to determine the 
intensive categories. 

To exemplify the contravariant functoriality, the terminal map from a 
given space induces the "inclusion" of constant quantities of the given type as 
special "variable" intensive quantities on the space, while a given point of the 
space induces the evaluation at that point of any intensive quantity (caution: in 
general an intensive quantity may not be determined by the ensemble of its 
values at points); a particular journey of a month through a continent induces 
a transformation of any intensive quantity on the continent (such as the fre-
quency with which a given language can be heard) into an intensive quantity 
varying over the month. 

Again by specializing to the linear objects in the given distributive cate-
gory as possible map-objects for the intensive categories assigned to each 
space, the important "space of quantity" idea, as well as a further enrichment 
requirement on the types, can also be realized for intensive quantities. 
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Moreover, if the distributive category is actually "cartesian-closed" (so has a 
"space of maps" between any two spaces, satisfying the objective relations 
which were used since the first days of the calculus of variations and which in 
this century were subjectively codified as "lambda-calculus") then the further 
important idea of the possible representability of components of an intensive 
quantity-type comes into play. Namely, the represented intensive quantity-type 
is defined to have as objects always the linear spaces in the distributive cate-
gory itself, but each given space is defined to have as the map-objects of the 
corresponding intensive category the space of all maps from the given space to 
the spaces of linear maps between given linear spaces, the latter being the 
"representors"; an intensive quantity type is called representable if it is equiva-
lent to a full part of this represented one. For example, the usual ring of 
smooth functions is representable when the constant scalare form a smooth 
space, and the lattice of propositional functions is representable when truth-
values form a space (as they do in a topos). 

It should be pointed out that there is a second doctrine of exten-
sive/intensive quantities which agrees with the above when only "compact" 
spaces are considered, but which in general permits only "proper" spatial maps 
to induce (co-and contra-variantly) maps of quantities. Since they admit 
"totals", the extensive quantities which I described above should perhaps be 
thought of as being restricted to have "compact support", while the intensive 
quantities are "unrestricted" and thus might be representable, both of these 
features being compatible with my requirement of functoriality on arbitrary 
spatial maps in the distributive category. By contrast, the second "proper" 
doctrine is useful when considering "unrestricted" extensive quantities (such as 
area on the whole plane) but must correspondingly impose "compact support" 
restrictions on the intensive quantities, making the latter non-representable. 
These remarks presuppose the relation between extensive and intensive 
quantities, to which I will now turn. 

The common spatial base of extensive and intensive quantities also 
supports the relation between the two, which is that the intensives act on the 
extensives. For example, a particular density function acts on a particular 
volume distribution to produce a resulting mass distribution. Thus it should 
be possible to "multiply" a given extensive quantity on a certain space by an 
intensive quantity (of appropriate type) on the same space to produce another 
extensive quantity on the same space. The definite integral of the intensive 
quantity "with respect to" the first extensive quantity is defined to be the total 
of this second resulting extensive quantity. This action (or "multiplication") of 
the contravariant on the covariant satisfies bilinearity and also satisfies, with 
respect to the multiplicative structure within the intensive quantities and along 
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any inducing spatial map, an extremely important strong homogeneity condi-
tion which so far has carried different names in different fields: in algebraic 
topology this homogeneity is called the "projection formula", in group 
representation theory it lies at the base of "Frobenius reciprocity", in quantum 
mechanics it is called "covariance" or the "canonical commutation relation", 
while in subjective logic it is often submerged into a side condition on 
variables for the validity of the rule of inference for existential quantification 
when applied to a conjunction. 

It is in terms of such "action" ( or "multiplication") of intensive quantities 
on extensive quantities that the role of the former as "ratios" of the latter must 
be understood. As in the study of rational functions and in the definition of 
derivative, algebra recognizes that multiplication is fundamental whereas 
"ratio" is an inverse process; while the simple prescription "you can't divide 
by zero" may suffice for constant quantities, its ramifications for variable 
quantities are fraught with particularity, as reflected in even the purely 
algebraic "localization" constructions. For example, a given mass or charge 
distribution may not admit a density, with respect to volume, and not only the 
existence but also the uniqueness of such ratios may require serious study in 
particular situations, even though the multiplication which they invert is 
"everywhere" well-defined; the famous Radon-Nikodym theorem gives condi-
tions for this in a specific context. 

How can systems of extensive and intensive quantities, with action of the 
latter on the former, be realized on various distributive categories which math-
ematically arise? As mentioned above, the intensive quantities are often repre-
sentable (indeed more often than commonly noticed, for example differential 
forms can be represented via the "fractional exponentiation" which exists in 
certain gros toposes). An important class of extensive quantities can be identi-
fied with the (smooth linear) functionals (with codomain a fixed linear space 
such as that of constant scalars) on the given intensive quantities, i.e. a dis-
tribution may sometimes be determined by the ensemble of all definite 
integrals (with respect to it) of all appropriate intensive quantities. This identi-
fication, supported in a particular context by the classical Riesz representation 
theorem (and in the homotopical context of section 2 below, by the universal 
coefficient theorem), contributed to the flourishing of functional analysis, but 
perhaps also distracted attention from the fact that extensive quantities are at 
least as basic as the intensive ones. At any rate, the fundamental projection 
formula/canonical commutation relation is automatic for those extensive 
quantities which can be identified as functionals on the intensive ones; here the 
action is defined in terms of the integral of the multiplication of intensive 
quantities. 
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This automatic validity of the fundamental formula holds also for a certain 
"opposite" situation in which a concept of intensive quantity can be defined to 
consist of transformations on given extensive concepts. More precisely, recall 
that I suggested above a general definition of extensive quantity type on a 
given distributive category as an enriched additive covariant functor from the 
given distributive category to the linear spaces in it. Given two such functors, 
we can consider natural transformations from one to the other, which thus can 
tautologously "multiply" extensive quantities of the first type to yield exten-
sive quantities of the second type. Such natural transformations, however, are 
constant intensive quantities (i.e. "varying" only over the terminal space) since 
they operate over the whole distributive category. But the idea of natural trans-
formation also includes all variable intensive quantities over some given space 
(and between two extensive functors), if we only make the following modifi-
cation. An extremely useful construction, first emphasized by Grothendieck 
around 1960 (although it occurs already in Eilenberg and Mac Lane's original 
paper), associates a new category to any given object in a given category by 
considering as new objects all the maps with codomain the given object, and 
as new maps all the commutative triangles between these; this construction, a 
special case of the ill-named "comma category", has manifold applications 
revolving around the idea that both a part (with "multiplicity") of the given 
space as well as a family of spaces ("the fibers") smoothly parameterized by 
the given space are themselves objects in a new category; borrowing from 
Grothendieck, we may for short call this category the "gros" category of the 
given space (the "gros" category of the terminal space reducing to the given 
distributive category). Often a distributive category is in fact locally distribu-
tive, in the sense that for each space in it the associated "gros" category is 
again distributive. (The "petit" category of a space is usually a certain full 
subcategory of its "gros" category). A map between two spaces obviously 
induces by composition a coproduct preserving functor from the "gros" 
category of the first to the "gros" category of the second; in particular, the 
"gros" category of a space thus has a forgetting functor to the original distri-
butive category of spaces. Composing this forgetting functor with two given 
extensive types, an intensive quantity varying over the given space may then 
be defined to be any natural transformation between the resulting composite 
functors. Thus according to this point of view, in the intensive category 
associated to a space, not only are the maps identified with intensive quantities 
varying over the space, but the objects are (or arise from) the types of 
extensive quantity which the whole category of spaces supports. 

The most fundamental measure of a thing is the thing itself. If we replace 
"thing" by "object" (for example object in a category of spaces), then "itself 
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may be usefully identified with the Pythagoras-Steiner-Burnside abstraction 
process discussed earlier: that is, isomorphic objects are identified, but all 
other maps are temporarily neglected. This obviously depends on what 
category the object is in, and the maps still play an important role in 
constructing and comparing new categories upon which the same abstraction 
process can be performed, notably the "gros" or "comma" categories of given 
spaces (as discussed above) and various "petit", "proper", "covering", 
"subobject" etc. subcategories of these. Moreover, in any locally distributive 
category there is for each map a "pullback" functor between the associated pair 
of "gros" categories, right adjoint to the obvious composition/forgetting 
functor previously mentioned. Thus, given a class of objects closed under 
coproduct (for example the class of finite, or discrete, or compact objects, or of 
the objects of fixed dimension, or intersections of these classes, etc) one can 
define a corresponding extensive quantity-type by assigning to each space (the 
abstraction of) the part of the "gros" category of that space which consists of 
those maps whose domains are in the class; this is obviously covariantly 
functorial via the composition/forgetting procedure. Given two such classes of 
objects, an intensive quantity from the one to the other, varying over a given 
space, can be defined to be (the abstraction of) any object of the "gros" 
category of the space which is proper in the sense that pulling back by it takes 
extensives of the one class into extensives of the other. Both the contravariant 
functoriality of these intensives as well as (tautologously) their action on such 
extensives is given by pullback, and the projection formula/CCR results from 
simple general lemmas about composition and pullback valid in any category. 
This concrete doctrine of quantity is explicitly or implicitly used in many 
branches of geometry, and I suspect that its direct use in many applications 
would be easier than translating everything into numbers (I recall a restaurant 
in New York in which customers, cooks, waiters, and the cashier may speak 
different languages, yet rapid operation is achieved without any written orders 
nor bills by simply stacking used dishes according to shape). One of the 
unsolved problems of the foundations of mathematics is to explain how and 
where the usual smooth distributions and functions of analysis can be obtained 
in this concrete mode. 

As already the Grassmann brothers understood, the basic subject-matter of 
narrow-sense logic is quantities which are additively idempotent. The intensive 
aspect of this has been much studied, and is (at least fundamentally) concrete 
in the above sense, corresponding to parts without multiplicity (i.e. to sub-
objects); indeed one of the two basic axioms of topos theory is that subobjects 
are representable by (indicator maps to) the truth-value space. On the other 
hand the great variety of useful extensive logic has been little studied (at least 
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as logic). In practice logic is not really a starting-point but rather the study of 
supports and roots of non-idempotent quantity: for example, the inhabited part 
of the world is the part where population exists, yet population (unlike the 
indicator of the part) is a non-idempotent quantity; distributions have supports 
and a pair of functions determines the ("root-") space of their agreement as well 
as the ("open") subspace of their disagreement. While the Dedekind definition 
of a real intensive quantity as an ensemble of answers to yes-no questions has 
many uses, we should not let pragmatism blind us to the fact that a procedure 
for coming to know the quantity is by no means identical with the 
objectively operating quantity itself. The (still to be studied) extensive logic 
should be the codomain of an adequate general theory of the supports of 
extensive quantities, a theory accounting for certain rules of inference as 
reflections of the commutation relations for variable quantities; such relation-
ships are studied in the branch of algebraic geometry known as intersection 
theory, but raising certain aspects of the latter to the level of philosophy 
should help to make them more approachable and also to suggest in what way 
they might be applied to other distributive categories. 

It may be that, to accord more accurately with historical philosophical 
terminology, all the above occurrences of the word "quantity" should be 
replaced by "number", with the former being reserved for use in conjunction 
with the "affine" categories whose study has recently been revived by 
Schanuel, Carboni, Faro, Thiébaud and others; Grassmann seems to insist that 
numbers are differences of quantities (as for example work is a difference of 
energies, and duration a difference of instants), and further understanding of 
affine categories may reveal them as an objective basis of the link between 
distributive and linear categories. There are moreover "non-commutative affine 
objects" known as "symmetric spaces" which include not only Lie groups, but 
also spheres, but whose intrinsic categorical property and role has been little 
explored. 

2. Homotopy Negates yet Retains Spatiality 

The role of space as arena of "becoming" has as one consequence a quite 
specific form of the transformation of quantitative into qualitative; the seem-
ingly endless elaboration of varied cohomology theories is not merely some 
expression of mathematicians' fanatical fascination for fashion, but flows from 
the necessity of that transformation. 

One of the main features which distinguish the general "gros" spatial cate-
gories from the particular "petit" ones is the presence of spaces which can act 
as internal parameterizers of "becoming". Formally, the essential properties of 



26 F. William Lawvere 

such a parameterizer space are that it is connected and strictly bipointed. 
Connectedness means that the space is not the coproduct of smaller spaces; 
when the category has a subcategory of "discrete" spaces, the inclusion functor 
having a left adjoint "components" functor, then connectedness of a space 
means that its space of components is terminal. Strict bipointedness means 
that (at least) two points (maps from the terminal space) of the space can be 
distinguished, where "distinguished" is taken in the strong sense that the two 
points are disjoint as subobjects, or in other words their "equalizer" is initial. 
(These definitions are often usefully extended from objects to "cylinders", i.e. 
to maps (with not-necessarily-terminal codomains) with a pair of common 
"sections" (generalizing "points")). 

In order to maintain the rather heroic avoidance, which this paper has so far 
managed, of the traditional use of symbols to multiply the availability of 
pronouns, I will refer to the points of such a strictly bipointed connected space 
as "instants", without implying that that space is "one-dimensional" nor any 
further analysis of time. Note that, depending on the nature of the ambient 
"gros" distributive category, connectedness need not imply that the object is 
infinite; for the planning of activities and of calculations in the continuous 
material world, finite combinatorial models of the latter are necessary, and 
such models may in themselves constitute an appropriate category, the 
category of "simplicial sets" being a widely-used example. 

Now a specific process of "becoming" in a certain space will be 
(accompanied by) a specific map to that space from a connected strictly bi-
pointed space, whereby in particular the point to which one distinguished 
instant is mapped "becomes" the point to which the other distinguished instant 
is mapped. In particular, one map between two given spaces can "become" a 
second such map, as is explained by the usual definition of "homotopy" 
between the two maps, or equivalently (in the Hurewicz spirit), using if 
necessary the technique of embedding in presheaf categories to construe any 
distributive category as (part of) a cartesian-closed one, by applying directly 
the above account of "becoming" to points in the appropriate map-space. 
Obviously a very important application (of such internalization to a spatial 
category of the notion of "becoming") is the detailed study of dynamical 
processes themselves, bringing to bear the rich mathematical content which 
the category may have. However, in this section I will concentrate on the 
qualitative structure which remains after all such connected processes of 
"becoming" are imagined completed, that is, after any two maps which can 
possibly become one another are regarded as identical. 

The traditional description of quantity as that which can be increased and 
decreased leads one to define a space as "quantitative" if it admits an action of a 
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connected strictly bipointed object, wherein one of the two distinguished ins-
tants acts as the identity on the space, whereas the other acts as a constant; 
thus the whole space can be "decreased to a point". This is a much stronger re-
quirement than connectedness of the space and is usually called contractibility. 
This use of "quantitative" is not unrelated to the use of "quantity" in section 1, 
since representing objects for intensive quantities are often contractible. 

With a "gros" spatial category it is usually possible to associate a new ca-
tegory called its homotopy category, in which homotopic maps become equal 
and contractible spaces all become isomorphic to the terminal space; in general 
two spaces which become isomorphic in the homotopy category are said to 
have the same homotopy type. For this association to exist the composition 
of homotopy-classes of maps must be well-defined, which in turn rests on an 
appropriate compatibility between connectedness and categorical product; in 
particular the product of two connected spaces should be connected. The latter 
is almost never true for "petit" distributive categories. In case the category is 
cartesian closed and has a components functor, the appropriate compatibility is 
assured if the components functor preserves products. To any such case 
Hurewicz's definition of the homotopy category, as the one whose map-spaces 
are the component spaces of the original map-spaces, can immediately be 
generalized, and indeed also extended to any category enriched in the given 
spatial category, such as pointed spaces, spaces with given dynamical actions, 
etc. yielding corresponding new qualitative categories which are enriched in the 
homotopy category. Using the product-preservation of the components functor 
and the fact that composition in a cartesian-closed category can be internally 
construed as itself a map whose domain is a product (of two map-spaces), it is 
easy to see that Hurewicz's definition supports a unique reasonable definition 
of composition of the maps in the homotopy category. 

Now the main point which I wish to make is that essentially the whole 
account of space vs. quantity and extensive vs. intensive quantity given in 
section 1 reproduces itself at the qualitative level of the homotopy category. 
The latter is itself again a distributive category, cartesian closed if the original 
spatial category was. Indeed more precisely, the homotopy-type functor 
connecting the two actually preserves products, coproducts, and the map-space 
construction. On the other hand the homotopy category is not locally distribu-
tive: the passage to the parametric homotopy category of the "gros" category 
of a given parameter space seems to involve a further qualitative leap, not as 
passive as the corresponding passage in the quantitative context. 

Although obtained by nullifying "quantitative" spaces, the homotopy cate-
gory still admits extensive measurements of its objects, the most basic ones 
being the number of holes of given dimensions. The extensive quantity-types 
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here are usually called homology theories. Dually, the intensive quantity-types 
are cohomology theories, enjoying the features of contravariance, multiplica-
tivity ("cup" product), and action as "ratios" of homology quantities. By a 
celebrated theorem, cohomology is often representable on the homotopy 
category, by objects known for their discoverers as Eilenberg-Mac Lane 
spaces. There is a strong tendency for basic homology and cohomology 
quantities to be (approximated by) linear functionals on each other. A new 
feature (probably distinguishing homotopy categories from the other 
distributive categories which do contain "becoming"-parameterizers and 
"quantitative" objects, although an axiomatic definition is unclear to me) is 
the appearance of homotopy groups, extensive quantity-types finer than 
homology and (co-) representable (by spheres). Note that the definition of 
"point" when applied in a homotopy category in fact means "component". 

3. "Unity and Identity of Opposites" as a Specific Mathematical Structure; 
Philosophical Dimension 

Not only should considerations of the above sort provide a useful guide to the 
learning and application of mathematics, but also the investigation of a given 
spatial category can be partly guided by philosophical principles. One of these 
is described, in conjunction with a particular application, in my paper 
"Display of graphics and their applications, as exemplified by 2-categories and 
the Hegelian Taco'". 

Namely, within the system of subcategories of the category to be investi-
gated, one can find a structure of ascending richness which closely parallels 
that of Hegel's Science of Logic, with each object to be investigated having its 
reflection and coreflection into each of the ascending levels. Here a level is 
formally defined as a functor from the given category (to a "smaller" one) 
which has both left and right adjoint sections; these sections are then the full 
inclusions of two subcategories which in themselves are "identical" (to the 
smaller category) but which as subcategories are "opposite" in the perfectly 
precise sense given by the adjointness, and the two composite idempotent 
functors resulting on the given category provide (via the adjunction maps) the 
particular reflection and coreflection in this level of any given space. In com-
binatorial topology such a level is exemplified by all spaces of dimension less 
than n, with the idempotent functors being called n-skeleton and n-coskeleton; 
in other cases the "dimensions" naming the levels may have a structure more 
(or less) rich than that of just natural numbers. Dimension "minus infinity" 
has the initial object and the terminal object as its two inclusion functors (in 
themselves, both are identical with the terminal category, but in the spatial 
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category they are opposite); it seems to me that there is good reason to 
identify the initial and terminal objects with Hegel's "non-being" and (pure) 
"being" respectively. While the relation of one level's being lower than 
another (and hence of one "dimension's" being less than or equal to another) 
can be defined in an obvious categorical way, the special nature of the levels 
subjects them to the further relation of being "qualitatively lower": namely, 
one level is qualitatively lower than another level if both its left and right 
adjoint inclusions are subsumed under the single right adjoint inclusion of the 
higher level. In many examples there is an Aufhebung or "jump": for a given 
level there is a smallest level qualitatively higher than it. 

The Aufhebung of dimension "minus infinity" is in many cases "di-
mension 0", the left adjoint inclusion providing the discrete spaces of "non-
becoming", the opposite codiscrete spaces forming an identical category-in-
itself which is however now included as the chaotic "pure becoming" in which 
any point can become any other point in a unique trivial way. Both initial and 
terminal objects are codiscrete. This level zero (in itself) is often very similar 
to the category of abstract sets, although (for example in Galois theory) it may 
not be exactly the same; as I tried to explain in my 1989 Cambridge lectures, 
the double nature of its inclusion into mathematics may help to resolve 
problems of distinguishability vs. indistinguishability which have plagued 
interpretation of Cantor's description of the abstraction process, (and hence 
obscured his definition of cardinals). This discrete/codiscrete level is often 
special in the further respect that its left (discrete) inclusion functor has a 
further left adjoint, the "components" functor for the whole category (which, 
as discussed above, should further preserve finite products). 

The Aufhebung of dimension zero strongly deserves to be called dimension 
one: its equivalent characterization, as the smallest level such that any space 
has the same components as the skeleton (at that level) of the space, has the 
clear philosophical meaning that if a point (or figure) can become another one, 
then it can do so along some 1-dimensional process of "becoming". Here 
dimensionality of a space (such as a parameterizer) is defined negatively in 
terms of skeleta (rather than "positively" in terms of coskeleta which are 
typically infinite dimensional). 

For the levels qualitatively higher than zero, the right adjoint inclusion 
also preserves co-products, a very special situation even for topos theory. In a 
topos having a "becoming"-parameterizer, the truth-value object itself is con-
tractible (as pointed out by Grothendieck), permitting "true" to become "false" 
in a way overlooked by classical logic; hence the 1-skeleton of the truth-value 
space presents itself as a canonical (though perhaps not adequate) parameterizer 
of "becoming" or "interval". These suggest only a few of the many open prob-
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lems, involving calculation of the many examples, which need to be elabo-
rated in order to clarify the usefulness of these particular concrete interpre-
tations of the dialectical method of investigation. We very much need the 
assistance of interested philosophers and mathematicians. 
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