INTERACTING WITH PERSONAL FABRICATION DEVICES

STEFANIE MUELLER

Plattner o
Institut % N
IT Systems Engineering | Universitat Potsdam ° Q’am

Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften

- Dr. rer. nat -

Human-Computer Interaction Group
Hasso Plattner Institute
University of Potsdam

September 2016



This work is licensed under a Creative Commons License:
Attribution 4.0 International

To view a copy of this license visit
http://creativecommons.org/licenses /by /4.0/

Stefanie Mueller:
Interacting with Personal Fabrication Devices
September 2016

ADVISOR:
Prof. Dr. Patrick Baudisch

Published online at the

Institutional Repository of the University of Potsdam:

URN urn:nbn:de:kobv:517-opus4-100908

http:/ /nbn-resolving.de /urn:nbn:de:kobv:517-opus4-100908



‘Get used to operating outside your comfort zone. This is how you
will truly learn, and grow. Don’t shy away from challenges just
because they seem too difficult. Acknowledge that fear is a very

legitimate sensation and then take the plunge!’
David Salesin






ABSTRACT

Personal fabrication tools, such as 3D printers, are on the way of en-
abling a future in which non-technical users will be able to create
custom objects. However, while the hardware is there, the current
interaction model behind existing design tools is not suitable for non-
technical users. Today, 3D printers are operated by fabricating the
object in one go, which tends to take overnight due to the slow 3D
printing technology. Consequently, the current interaction model re-
quires users to think carefully before printing as every mistake may
imply another overnight print. Planning every step ahead, however,
is not feasible for non-technical users as they lack the experience to
reason about the consequences of their design decisions.

In this dissertation, we propose changing the interaction model around
personal fabrication tools to better serve this user group. We draw

inspiration from personal computing and argue that the evolution

of personal fabrication may resemble the evolution of personal com-
puting: Computing started with machines that executed a program

in one go before returning the result to the user. By decreasing the

interaction unit to single requests, turn-taking systems such as the

command line evolved, which provided users with feedback after ev-
ery input. Finally, with the introduction of direct-manipulation inter-
faces, users continuously interacted with a program receiving feed-
back about every action in real-time. In this dissertation, we explore

whether these interaction concepts can be applied to personal fabrica-
tion as well.

We start with fabricating an object in one go and investigate how to
tighten the feedback-cycle on an object-level: We contribute a method
called low-fidelity fabrication, which saves up to 9o% fabrication time
by creating objects as fast low-fidelity previews, which are sufficient
to evaluate key design aspects. Depending on what is currently being
tested, we propose different conversions that enable users to focus on
different parts: faBrickator allows for a modular design in the early
stages of prototyping; when users move on WirePrint allows quickly
testing an object’s shape, while Platener allows testing an object’s tech-
nical function. We present an interactive editor for each technique and
explain the underlying conversion algorithms.

By interacting on smaller units, such as a single element of an ob-
ject, we explore what it means to transition from systems that fab-
ricate objects in one go to turn-taking systems. We start with a 2D
system called constructable: Users draw with a laser pointer onto the



workpiece inside a laser cutter. The drawing is captured with an over-
head camera. As soon as the the user finishes drawing an element,
such as a line, the constructable system beautifies the path and cuts
it-resulting in physical output after every editing step. We extend
constructable towards 3D editing by developing a novel laser-cutting
technique for 3D objects called LaserOrigami that works by heating up
the workpiece with the defocused laser until the material becomes
compliant and bends down under gravity. While constructable and
LaserOrigami allow for fast physical feedback, the interaction is still
best described as turn-taking since it consists of two discrete steps:
users first create an input and afterwards the system provides physi-
cal output.

By decreasing the interaction unit even further to a single feature, we
can achieve real-time physical feedback: Input by the user and out-
put by the fabrication device are so tightly coupled that no visible
lag exists. This allows us to explore what it means to transition from
turn-taking interfaces, which only allow exploring one option at a
time, to direct manipulation interfaces with real-time physical feed-
back, which allow users to explore the entire space of options contin-
uously with a single interaction. We present a system called FormFab,
which allows for such direct control. FormFab is based on the same
principle as LaserOrigami: It uses a workpiece that when warmed up
becomes compliant and can be reshaped. However, FormFab achieves
the reshaping not based on gravity, but through a pneumatic system
that users can control interactively. As users interact, they see the
shape change in real-time.

We conclude this dissertation by extrapolating the current evolution
into a future in which large numbers of people use the new technol-
ogy to create objects. We see two additional challenges on the horizon:
sustainability and intellectual property. We investigate sustainability
by demonstrating how to print less and instead patch physical ob-
jects. We explore questions around intellectual property with a sys-
tem called Scotty that transfers objects without creating duplicates,
thereby preserving the designer’s copyright.
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ZUSAMMENFASSUNG

Personal Fabrication Gerite, wie zum Beispiel 3D Drucker, sind dabei
eine Zukunft zu ermoglichen in der selbst Benutzer ohne technisches
Fachwissen eigene Objekte erstellen konnen. Obwohl die Hardware
nun verfiigbar ist, gibt es derzeit kein geeignetes Interaktionsmodel
tiir Benutzer ohne Fachwissen. Heutzutage werden Objekte mit dem
3D Drucker in einem Stiick hergestellt. Da der 3D Druck noch ein sehr
langsames Verfahren ist und hdufig so lange dauert, dass das Objekt
tiber Nacht hergestellt werden muss, miissen Benutzer sorgfiltig alles
tiberpriifen bevor sie den Druckauftrag abschicken, da jeder Fehler
einen weiteren Tag Wartezeit bedeuten kann. Benutzer ohne techni-
schen Hintergrund haben jedoch nicht das notwendige Fachwissen
um alle Faktoren vorhersagen zu kénnen.

In dieser Dissertation schlagen wir vor das Interaktionsmodel von
Personal Fabrication Gerdten zu dndern, um diese Benutzer besser
zu unterstiitzen. Wir argumentieren, dass die Entwicklung von Per-
sonal Fabrication Gerédten der Entwicklung von Personal Computern
gleicht. Die ersten Computer arbeiteten ein Programm vollstindig
ab, bevor sie ein Ergebnis an den Benutzer zuriickgaben. Durch die
Verkleinerung der Interaktionseinheit von ganzen Programmen zu
einzelnen Anfragen wurden turn-taking Systeme wie die Komman-
dozeile moglich. Mit der Einfithrung von direkter Manipulation kon-
nten Benutzer schliefSlich kontinuierlich mit dem Program arbeiten:
sie erhielten Feedback tiiber jede einzelne Interaktion in Echtzeit. Wir
untersuchen in dieser Arbeit ob die gleichen Interaktionskonzepte
auf Personal Fabrication Gerédte angewendet werden konnen.

Wir beginnen diese Arbeit damit zu untersuchen wie man die Feed-
backzeit bei der Interaktion mit ganzen Objekten verkiirzen kann. Wir
prasentieren eine Methode mit dem Namen Low-fidelity Fabrication,
die bis zu 90% Druckzeit spart. Low-fidelity fabrication ist schnell,
weil es 3D Modelle als grobe Vorschauobjekte druckt, die aber aus-
reichen um die Aspekte zu testen, die gerade wichtig sind. Abhéngig
vom aktuellen Testfokus schlagen wir vor verschiedene Konvertierun-
gen vorzunehmen: Unser System faBrickator ist besonders fiir die er-
sten Testldufe geeignet, wenn ein modulares Design wichtig ist. Unser
System WirePrint ist besonders niitzlich im ndchsten Schritt, wenn
die Form des Objektes erhalten bleiben soll. Am Ende erlaubt unser
System Platener ein Objekt so zu konvertieren, dass die technische
Funktion des Objektes bewahrt wird. Wir erkldren das Design unserer
interaktiven Editoren und die zugrunde liegenden Konvertierungsal-
gorithmen.
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Durch die Verkleinerung der Interaktionseinheit auf ein einzelnes EI-
ement, wie zum Beispiel einer Linie, untersuchen wir wie man Ob-
jekt-basierte Fabrikationssysteme in turn-taking Systeme umwandeln
kann. Wir zeigen unser 2D System constructable, das auf einem Laser-
Cutter basiert. Benutzer von constructable verwenden einen Laser-
pointer um auf das Werksttick im Laser-Cutter zu zeichnen. Die Zeich-
nung wird mit einer Kamera aufgenommen, korrigiert, und anschliefs-
end direkt mit dem Laser-Cutter ausgeschnitten. Wir erweitern con-
structable zu 3D mit unserer neuen Laser-Cutter Technologie Laser-
Origami. LaserOrigami erzeugt 3D Objekte, indem es mit dem de-
fokussierten Laser das Werkstiick erhitzt bis es verformbar wird, die
Schwerkraft biegt das Werkstiick anschliefsend in seine 3D Form. Ob-
wohl constructable und LaserOrigami physisches Feedback schnell
erzeugen, ist die Interaktion dennoch am besten als turn-taking zu
beschreiben: Benutzer editieren zuerst und sehen danach das Ergeb-
nis.

Indem wir die Interaktionseinheit noch einmal verkleinern, nun auf
ein einziges Feature, konnen wir Echtzeitfabrikation erreichen: Be-
nutzereingabe und physisches Feedback sind so eng miteinander ver-
bunden, dass es keine sichtbare Verzogerung mehr gibt. Damit kon-
nen wir untersuchen, was es bedeutet von turn-taking Systemen zu
direkter Manipulation iiberzugehen. Wir zeigen ein System mit dem
Namen FormFab, das solch eine direkte interaktive Kontrolle ermog-
licht. FormFab basiert auf dem gleichen Prinzip wie LaserOrigami:
Ein Werkstiick wird erhitzt bis es verformbar wird. Allerdings ver-
wendet FormFab nicht die Schwerkraft zum verformen, sondern ein
pneumatisches System, das Benutzer interaktiv steuern konnen. Wenn
Benutzer den Luftdruck dndern, sehen sie wie sich die Grofle der
Form in Echtzeit d&ndert. Dies erlaubt ihnen die beste Entscheidung
zu treffen wihrend sie verschiedene Optionen evaluieren.

Im letzten Kapitel dieser Dissertation extrapolieren wir die aktuelle
Entwicklung in eine Zukunft in der eine grofie Anzahl von Personen
eigene Objekte herstellen werden. Dabei entstehen zwei neue Heraus-
forderungen: Nachhaltigkeit und das Bewahren von intellektuellem
Eigentum. Wir untersuchen Nachhaltigkeit mit einem System, das es
erlaubt weniger zu Drucken und stattdessen Objekte anzupassen. Wir
untersuchen Fragen zur Bewahrung von geistigem Eigentum mit un-
serem System Scotty, das Objekte transferiert ohne dabei Duplikate
herzustellen und damit das Copyright des Designers erhalt.
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INTRODUCTION

Personal fabrication tools, such as 3D printers, are on the way of en-
abling a future in which non-technical users will be able to create cus-
tom objects. With the recent drop in price for 3D printing hardware,
these tools are about to enter the mass market (Figure 1): While in
2007, the average consumer 3D printer was priced at $14,000, today’s
hardware costs only $500 on average [103]. Given the decreasing price,
it is not surprising that the number of sold consumer 3D printers has
doubled every year [104].

price of consumer sold consumer 3D printers

3D printers in $ (under $5,000)
16,000 -] 320,000 | 278,000
14,000 280,000 —
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Figure 1: (a) With dropping prices for consumer 3D printers [103], (b) the
number of sold devices has doubled every year [104].

While the hardware is now affordable and the number of people who
own a 3D printer is increasing, only few create new 3D models. Most
users download models from a platform, such as Thingiverse [85], and
after downloading fabricate them on their 3D printers. At most, users
adjust a few parameters of the model, such as changing its color or
browsing between predetermined shape options [70].

We believe that personal fabrication has the potential for more: In-
stead of only consuming existing content, we envision a future in
which 3D printers will allow non-technical users to create objects that
only trained experts can create today. While there are many open chal-
lenges for human-computer interaction, such as abstracting away the
necessary domain knowledge and machine knowledge, we focus on
improving the interaction model underlying current personal fabrica-
tion devices.

1.1 INTERACTION MODEL WITH 3D PRINTERS TODAY

Figure 2 illustrates the current interaction model. Users sit at a com-
puter and use a digital 3D editor to create a digital 3D model. Only
at the end of the design process, users send the file to the 3D printer,



which creates the object in one go. Since 3D printing is slow, this
tends to take hours of printing time for small objects or even requires
overnight printing.

Figure 2: Current interaction model: (1) Users first create a digital model,
iterate, and (2) only at the end produce a physical version.

Consequently, the current interaction model requires users to think
carefully before printing as every mistake may imply another over-
night print. This is not feasible for non-technical users as they lack
the experience to reason about the consequences of their decisions.

1.2 DRAWING A PARALLEL TO PERSONAL COMPUTING

Looking back in history, this interaction model with the delayed feed-
back was also common with early computers [20]. In the early 60s,
computers were so slow that the average program had to be executed
overnight. Feedback was delayed until the next morning and if a pro-
gram failed, users had to repeat the entire process, potentially wait-
ing another night. Similar to 3D printers today, early computers were
limited to expert users because when programs were executed in one
go overnight, users had to know what they were doing in order to
succeed.

1.3 TOWARDS TURN-TAKING AND DIRECT MANIPULATION

However, today we are at a point at which even non-technical users
can use personal computers. Beside many technical developments,
two advances in the interaction model enabled this (Figure 3): (1) the
move from executing in one go to turn-taking, and (2) the move from
turn-taking to direct manipulation [34].

(1) Turn-taking interaction model: By decreasing the interaction unit
to single requests, turn-taking systems such as the command line
evolved, which provided users with feedback after every input. This
enabled the trial and error process non-technical users tend to em-
ploy: quickly iterating through potential solutions and building each



step onto the results of previous ones [27]. As a side effect, this new
exploratory interaction model also allowed for more unconventional
solutions as the potential cost of a step not working out was reduced.
However, while the turn-taking interaction model provided a great
step forward to making the technology available for non-technical
users, the feedback-cycle was still limited in that it consisted of two
discrete steps: users first had to create an input and only afterwards
received feedback.

A feedback cycle time

direct manipulation
no visible lag

turn-taking
minutes to seconds

batch-processing
hours or overnight

Figure 3: With advances in the interaction model that tightened the
feedback-cycle, we are today at a point at which even non-technical users
can use a computer.”

(2) Direct manipulation interaction model: With the invention of di-
rect manipulation [76] that further decreased the interaction unit to a
single feature, users finally received real-time feedback: Input by the
user and output by the system are so tightly coupled that no visible
lag exists. This tightened feedback cycle has many benefits, among
others that 'novices can learn basic functionality quickly” and "retain
operational concepts’ [75].

As described above, the current interaction model of 3D printers
requires objects to be fabricated in one go. Thus, from a human-
computer interaction standpoint, we are today at the point at which
we were with personal computers in the 1960s: Only few users are
able to use the technology and even for experts it is a cumbersome
process due to the delayed feedback.

1 Image credit: "IBM card punch station” by waelder is licensed under CC 3.0



1.4 BRINGING DIRECT MANIPULATION TO FABRICATION

Recently, Willis et al. [101] argued that by repeating the evolution
of the interaction model from personal computing, we will see the
same benefits for personal fabrication. With a concept called Interac-
tive Fabrication [101], they proposed that by bringing direct manipula-
tion principles to personal fabrication tools, non-technical users will
be able to create physical objects as easily as they manipulate digital
data with today’s personal computers.

Interactive fabrication systems have four main characteristics:
(1) the physical environment is the workspace, not a digital editor;
(2) users work hands-on on the physical workpiece through physical
tools as known from traditional crafting; (3) each physical action re-
sults in immediate physical change, which can also be reversed; (4) in
contrast to traditional crafting, users receive support from a computer
system that helps to achieve precision.

While a few prototype systems, such as Shaper [101] and CopyCAD
[31] have been built, no systematic exploration of how to achieve in-
teractive fabrication systems with real-time physical feedback exists.

1.5 CONTRIBUTION

In this dissertation, we contribute a systematic exploration of how to
implement an interactive fabrication system. In particular, we look
at how by decreasing the interaction unit from entire objects, to sin-
gle elements, to features, we can achieve real-time physical feedback,
thereby enabling continuous interactive fabrication based on the prin-
ciples of direct manipulation.

(1) Object-level: We start with fabricating an object in one go and in-
vestigate how to tighten the feedback-cycle on an object-level: We con-
tribute a method called low-fidelity fabrication (Figure 4), which saves
up to 90% fabrication time by creating objects as fast low-fidelity pre-
views, which are sufficient to evaluate key design aspects. The con-
cept draws inspiration from low-fidelity rendering, a method from
the early days of computing that was used to give users a fast pre-
view when processing was slow [25].

traditional | (3 ENS]
et Gl >

3D model high-fidelity
fabricated
low-fidelity | .; Sl T
fabrication Eq‘? ) g E[/;"t;]
3D model low-fab low-fab high-fidelity

fabricated

Figure 4: Low-fidelity fabrication saves up to 9o% printing time.



Depending on what is currently being tested, we propose different
conversions that enable users to focus on different parts (Figure 5):
faBrickator allows for a modular design in the early stages of pro-
totyping; when users move on WirePrint allows quickly testing an
object’s shape, while Platener allows testing an object’s technical func-
tion. We present an interactive editor for each technique and explain
the underlying conversion algorithms.

Figure 5: Low-fidelity techniques: (a) faBrickator for modularity,
(b) WirePrint for shape, (c) Platener for functionality.

(2) Element-level: By interacting on smaller units, such as a single
element of an object, we explore what it means to transition from sys-
tems that fabricate objects in one go to turn-taking systems. We start
with a 2D system called constructable (Figure 6a): Users draw with a
laser pointer onto the workpiece inside a laser cutter. The drawing
is captured with a camera and as soon as the the user finishes draw-
ing an element, such as a line, the constructable system beautifies the
path and cuts it-resulting in physical output after every editing step.

Figure 6: Turn-taking interfaces: (a) 2D editing system constructable,
(b) extended for 3D editing with LaserOrigami.



We extend constructable towards 3D editing by developing a novel
laser-cutting technique for 3D objects called LaserOrigami that works
by heating up the workpiece with the defocused laser until the ma-
terial becomes compliant and bends down under gravity (Figure 6b).
While constructable and LaserOrigami allow for fast physical feed-
back, the interaction is still best described as turn-taking since it con-
sists of two discrete steps: users first create an input and afterwards
the system provides physical output.

(3) Feature-level: By decreasing the interaction unit even further to
a single feature, we can achieve real-time physical feedback: Input by
the user and output by the fabrication device are so tightly coupled
that no visible lag exists. This allows us to explore the transition from
turn-taking interfaces to direct manipulation. We present a system
called FormFab, which allows for such direct control (Figure 7).

Figure 7: Direct manipulation interface FormFab: (a) Users first select an
area, then (b) interactively control the amount of pressure and vacuum,
thereby seeing the workpiece change in real-time.

FormFab is based on the same principle as LaserOrigami: It uses a
workpiece that when warmed up becomes compliant and can be re-
shaped. However, FormFab achieves changing the shape not based
on gravity, but through a pneumatic system that users can control
interactively. As users interact, they see the scale of the shape change
in real-time, allowing them to make key design decisions along the
way.



Future outlook: We conclude this dissertation by extrapolation the
current evolution into a future in which large numbers of people
use the new technology to create objects. We see two additional chal-
lenges on the horizon: sustainability and intellectual property. We
investigate sustainability by demonstrating how to print less and in-
stead patch objects. We explore questions around intellectual prop-
erty with a system that transfers objects without creating duplicates,
thereby preserving the designer’s copyright.

1.6 STRUCTURE

We begin this thesis by reviewing the related research that helps non-
technical users design for fabrication devices (Chapter 2). Afterwards,
we dedicate one chapter to each of the three steps for tightening the
feedback cycle: faster feedback on an object-level (Chapter 3), element-
level (Chapter 4), and feature-level (Chapter 5). We conclude this dis-
sertation with a discussion of the benefits and limitations of direct
manipulation interfaces and provide our view on the future of fabri-
cation devices and the resulting challenges (Chapter 6).






RELATED WORK

Research that helps non-technical users design for fabrication devices
can be classified into three areas:

(1) Domain knowledge: First, users need to solve the mechanical
and structural challenges in their design, especially when designing
functional objects. Researchers developed systems that support non-
technical users by embodying the relevant domain knowledge, such
as optimizing lift and drag forces when designing kites.

(2) Machine knowledge: Second, users need to work with the fabrica-
tion equipment. Experts optimize the fabrication process with many
different goals in mind, such as optimizing fabrication time and struc-
tural strength, while taking machine constraints, such as the build vol-
ume, into account. Consequently, researchers have developed tools
that help non-technical users overcome these hurdles by providing
the necessary machine knowledge.

(3) Interaction model: Third, as outlined in the introduction, today’s
interaction model is not suitable for non-technical users. Early re-
search on changing the interaction model proposed to make it more
intuitive by using spatial gestures as known from the physical task
and spatial output through augmented reality. More recently, research-
ers proposed to not only display the final output, but to fabricate
physical output along the user’s design process.

2.1 DOMAIN KNOWLEDGE

Existing design tools, such as Autodesk Inventor [5] and SolidWorks
[79] require years of engineering training to gain the necessary exper-
tise as they provide fine control over every parameter in the design.
HCI and computer graphics researchers have looked at how to create
design tools that abstract away the necessary domain knowledge by
letting users specify the shape and motion of the desired object, the
system then simulates the mechanical behavior and either critiques
the user’s design or automatically adjusts the user’s design to make
it comply with respect to forces.

2.1.1  Creating matching shapes

In its simplest form, parts have to fit with respect to other parts. En-
closed [97], for example, computes precise enclosures for electronic



prototypes. Users only specify the components of their circuit, the
system then automatically generates a matching enclosure from laser-
cutable parts. Similarly, Igarashi et al. [40] provide a tool for cover
design with compliant materials: users only specify where the open-
ing should be, the software then constructs the matching geometry.
Finally, when creating an object from several parts, the shape of the
parts affects if they can be assembled. To create a working assem-
bly, Lau et al. [45] automatically decompose 3D models into 2D parts
while ensuring the result can be put together.

In addition, when designing objects with moving parts, such as the
doors of a shelf [43], software needs to ensure that the parts do not col-
lide with each-other and that they fulfill their functional relationships,
for instance, ensuring that the doors cover the shelve. In addition, the
joints attached to the moving parts need to fit the parts: since they
have a minimum diameter, they cannot be positioned on weak ge-
ometries as the forces that act on them would otherwise break them.
Software can automatically find the optimal placement of joints [7]
and can generate joints that hold a part in a desired position [17].

2.1.2 Kinematics

Several tools help users design objects that can move. Users simply
specify the desired motion of the 3D model, the system then fills in
the mechanism that implements this motion. To specify the motion,
users can either keyframe different poses of the model [110], sketch
the motion path [26], or use data from a motion capture system [21].

Since mechanisms made from gears take up large amounts of space,
Thomaszewski et al. [86] and Megaro et al. [56] propose to create
the mechanism entirely from linkages. This allows designing mech-
anisms that form part of the shape of a object rather than a hidden
internal structure. LinkEdit [8] provides a tool that facilitates the link-
age editing process: users can make edits to the shape of selected
parts while the system preserves the functional aspects.

2.1.3 Statics

The systems shown so far tackled shape and motion, they did not han-
dle forces as part of the optimization. However, even simple objects
only work when forces are being taken into account. For instance, a
simple aspect of statics is balance: Unlike objects in the digital world,
physical objects need to be balanced to not tip over. With Make it
Stand [63] researchers propose software that helps balance objects by
either hollowing the inside of the object to redistribute the weight,
by using materials of different weights, or by slightly changing the
object’s geometry. This approach can also be extended to floating ob-
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jects that should swim upright [93] and spin-able objects that should
spin around a specific axis [9].

The problem of balance is amplified when objects are subject to ex-
ternal influences, such as a chair on which people sit. SketchChair [65]
solves this problem by using a virtual character that represents the
user’s body proportions and weight. The software then displays if a
chair falls over when the user sits on it or if it performs well.

Similarly, researchers have created systems that allow users to test
if an object is going to break. Stava et al.’s software [81], for example,
analyzes the weak points in a model and automatically strengthens
the part by thickening the weak geometry. Other work has looked at
how to minimize the required printing material while still maintain-
ing durability either by printing wireframe structures instead of the
honeycomb infill [95] or by calculating an optimal interior tessellation

[50].
2.1.4 Dynamics

While statics is sufficient for objects that are not in motion, researchers
have also proposed tools for designing dynamic objects. For instance,
extending Coros et al.’s work on kinematic characters [26], Bharaj et
al. [11] provide a tool for designing characters that are not walking
on the spot but can move around freely. Megaro et al. [57] add to this
work by allowing characters to also take turns without falling over.

With Pteronyms [88], Umetani et al. provide a design tool for flying
objects. Depending on the orientation of the glider, it will be subject
to drag forces that make the glider resist the airflow and lift forces
that move the glider upward. All forces do not only depend on the
shape of the glider, but also on its velocity and orientation at a cer-
tain moment in time, thus they are constantly changing as the glider
moves through the air. This creates a large parameter space that is
unfeasible for the user to tackle manually. To abstract away the do-
main knowledge, Umetani et al. provide a design tool that enables
users to define the shape of a glider, which after every editing step
gets optimized by the system for optimal flight performance. While
Umetani et al.’s tool was limited to flat symmetrical two-dimensional
gliders, OmniAD [53] extends the concept towards three-dimensional
kites.

Other researchers support users in handling oscillation: For instance,
when designing metallophones, the shape of the individual plates di-
rectly influences the acoustic frequency spectrum. Umetani et al. [89]
developed a tool that while users design the shape of a plate, the
tool provides real-time feedback about its sound. Bharaj et al. [12]
take the inverse approach: they let users first specify a desired input
shape and a desired sound, then slightly change the shape so as to
produce the desired sound.
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The systems mentioned above are domain-specific, i.e. they tackle one
physical property, such as making an object fly, stand, or sound as
desired. A few recent research projects explore more high-level algo-
rithms that can automatically generate solutions for specific domains.
One example of such work is Design by Example [72], a method that
can automatically generate fabricatable assemblies from a database
of arbitrary parts and a collection of design examples that use these
parts. Similarly, FabForms [77] provides a generic approach for brows-
ing only valid physical designs from a collection.

Defining such constraints already during the 3D modeling phase
requires appropriate user interfaces for the designer. MetaMorphe [87]
takes a first step with an interface based on the web-programming
metaphor: html is used for the shape of the object, css for its appear-
ance, and javascript for defining its function. However, more work is
required as current design tools typically allow creating a single ob-
ject rather than an abstract meta-design that can be customized by
the user.

2.2 MACHINE KNOWLEDGE

Expert users, such as mechanical engineers, optimize the fabrication
process with many different goals in mind, such as optimizing the
fabrication time and structural strength, while taking machine con-
straints, such as the build volume, into account. Researchers have
proposed software tools for automating the process to make it acces-
sible to non-technical users.

2.2.1 Material

When fabricating an object, one parameter that influences the object’s
performance is the material being used. For instance, a chair fabri-
cated from metal will be sturdy even if it consists of thin geometries.
In contrast, a chair fabricated from soft wood will need thicker legs
in order to not break. Mesh2Fab [107] solves this problem by adapting
a model’s geometry based on the available material by either thicken-
ing parts or correcting the contact angles between them.

2.2.2  Machine hardware

Beside working with the available material, machine specific con-
straints play an important role. For instance, the build volume of a
fabrication device is limited, thus large objects have to be split into
smaller parts. Chopper [51] is a tool that helps users with this task by
splitting models in a way that makes them fit the build chamber while
ensuring they are easy to assemble and the seams are unobtrusive.
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2.2.3 Fabrication process

Zooming out from a specific device, the next layer of optimization is
the fabrication process itself. For instance, in layer-based 3D printing
that works by glueing one layer onto the next one, the object is more
likely to break along the interface between two layers. Umetani et al.
[90] provide a tool that given a set of forces from a specific direction
calculates the optimal print direction.

Similarly, researchers have proposed algorithms that minimize the
printing time: Wang et al. [94], for instance, save 30-40% printing time
by slicing the 3D model with different layer heights; thinner layers are
only used in high-detail regions.

Both faster printing speeds and material savings can also be ac-
complished when minimizing the required support material. While
traditional support encloses the bottom of the object in a dense struc-
ture, researchers have proposed to use thin hierarchical structures
that connect to the surface of the object with just a few points [71]. In
addition, Zhang et al. [109] show how to layout the support in a way
that least interferes with the dominant visual features on the model
as removing the support often leaves visible artifacts.

2.2.4 Generating process-specific models

With current modeling tools, models intended for fabrication tend to
be created and edited at a fairly low and machine-specific level. Mod-
els for additive fabrication, for example, are often described as a large
collection of triangles (.stl format). Similarly, models for subtractive
fabrication are often described as lines in the 2D plane (.svg format).

Designing on such a low-level representation often comes with ad-
ditional challenges for the user: Laser cutters, for example, require
models that consist of individual plates, as well as instructions for
how to assemble these. Designing for this class of devices thus re-
quires users to not only think in 3D, but also to imagine how to break
down the 3D object they have in mind into 2D workpieces, which is
challenging.

Researchers have proposed tools to circumvent this challenge: Flat-
FitFab [55], for example, constrains 3D modeling to only 2D plates
that can be arranged in 3D space, allowing users to design a specific
subset of laser-cutable models. Other approaches let users design any
3D shape and afterwards convert them into a 2D representation, for
instance, by using intersecting planes (Fabrication-aware Design [73]),
stacks of slices (Autodesk 123 Make [6]), and foldable strips (Chen et al.
[23]). None of these approaches, however, uses a high-level functional
specification as the input, they are all solely based on geometry.
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2.2.5 Geometric vs. functional specifications

Several researchers have proposed expressing models by instead de-
scribing the desired properties of the object, not solely its geometry.
This allows software to generate low-level descriptions for different
machines and processes that achieve these properties.

For example, researchers proposed function-driven material specifi-
cations [13]. The key idea is to describe an object’s properties on a
functional level, which is later realized by computing a working com-
bination of available printing materials.

For instance, Bickel et al. [13] show how to replicate deformation
behavior of existing objects using the limited set of materials avail-
able on a 3D printer. As an example, they use a shoe sole: After mea-
suring the deformation behavior of the existing sole, their algorithm
automatically computes a material composition (i.e. a stack of layers
from different base materials) that matches this behavior. Similarly, in
Deformable Characters [78] users only specify an input shape and a set
of target poses, the system then automatically computes the internal
material composition and the location of actuation points.

While the solutions introduced above work for specific instances,
Spec2Fab [22] provides a generalized framework for such a translation
pipeline. Spec2Fab works for a wide variety of different high-level
functions, such as mechanical and optical properties, making it easy
for users to convert a model for different fabrication devices.

Finally, with OpenFab [92], Vidimce et al. provide an optimized ren-
dering pipeline that integrates the printing material into shaders (so
called fablets) that can be assigned to different object geometries.

One of the key benefits of function-driven specifications is that it
makes object descriptions reusable. The more traditional low-level
descriptions are geometry specific, thus cannot be transferred across
different objects and not even across different 3D printers as, for in-
stance, the 3D printing resolution is subject to changes and thus vox-
els with no assigned material exist.

2.2.6  Functional specifications for electronics

Savage et al. extend the concept of converting high-level specifications
to electronics. Since it is not yet possible to print electronic circuits
including sensors and actuators, Savage et al. developed a set of tech-
niques for converting such models into fabricatable representations
with the same functionality. For instance, in Lamello [67] users drag
high-level functional components, such as sliders and dials, from a
library into their design. On export, these components are enhanced
with a set of tines that create different sounds when being struck,
which is easily detectable with a single clip-on-microphone.
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While Lamello used an acoustic approach, Sauron [66] uses optical
tracking: Users mark the high-level functional components such as
the control elements on a game controller in the 3D model. The sys-
tem then automatically extends the inner geometry of the compo-
nents to be within the view cone of a camera attached to the con-
troller, making them easily detectable with computer vision. A Series
of Tubes [68] extends this concept to IR sensing and pneumatics by
automatically carving internal pipes into the object geometry. Finally,
Midas [69] uses conductive tape and a vinyl cutter to generate touch
layouts for user defined applications.

In summary, high-level functional representations will ensure that an
object looks and performs the same independent of the specific hard-
ware it was created with. This is especially important since fabrication
is done locally and a variety of fabrication devices exists.

2.3 INTERACTION MODEL

Beside tools that facilitate the design and fabrication of physical ob-
jects, the underlying interaction model plays a major role. In the cur-
rent interaction model, users use mouse and keyboard to create a
digital design and receive visual feedback on a digital 2D display,
only at the end of the design process they send the model to the 3D
printer to fabricate the physical version.

2.3.1 Spatial input and augmented reality output

In a first step towards improving the interaction, researchers pro-
posed to let users perform the actions they would do when mani-
pulating a physical workpiece (a concept called Spatial Modeling [100]):
For instance, in Virtual Pottery [24] users shape a virtual piece of clay
by moving their hands as if they were physically shaping clay. Simi-
larly, Dress-up [99] allows users to sketch dresses directly around the
body of a physical mannequin.

Instead of using gestures, ToolDevice [3] provides users with phys-
ical props: a knife prop cuts objects and a hammer joins them. Simi-
larly, SPATA [96] is a set of tools that can transfer measurements from
the physical world to the digital and back.

Extending this approach, researchers made output 3D as well, es-
sentially resulting in augmented reality systems. In Situated Modeling
[44], for instance, users sketch the design of new furniture in their
apartment in order to visually evaluate it in place. MixFab [98] fol-
lows the same approach, but does not require a head mounted dis-
play. Instead, MixFab uses a beam splitter and a display mounted at
a 45° angle to overlay physical and virtual content.
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Visual feedback is beneficial for all physical design tasks. However,
it is not sufficient when, for instance, validating the haptics and er-
gonomics of an object or when validating whether the scale of an
object is appropriate for its intended use case. In these cases, only
the actual physical object allows users to judge whether it fulfills the
requirements. Thus, researchers have proposed to create physical out-
put along the user’s design process for every part the user wants to
test.

2.3.2  Physical output with interactive fabrication

Producing physical feedback along the user’s design process has been
referred to as Interactive Fabrication [101]. ModelCraft [80] is a pre-form
of an interactive fabrication system: It allows users to edit a 3D model
by first inspecting a folded paper version of the object, determining
what requires a change, and then drawing the resulting change re-
quests directly onto the paper model using an Anoto pen. By means
of the pen, the ModelCraft system tracks the change requests, updates
the 3D model, and 2D prints a new paper model with folding instruc-
tions, which users assemble by hand. While every turn takes way
longer than what one would consider an interactive rate and required
more manual effort than an automated fabrication system should re-
quire, ModelCraft was one of the first systems that allowed users to
critique the physical object directly.

Another early prototype, Shaper [101], in contrast, explored how
to provide physical feedback in an automated way, albeit at the ex-
pense of not offering on-object input. By touching a touch screen,
users instructed the system where to extrude a drop of foam onto a
2D build-plate several feet below the screen.

CopyCAD [31] was one of the first systems that combined on-object
interaction with automated fabrication, here a computer-controlled
milling machine. CopyCAD users sketched onto the physical work-
piece with a pen, a camera captured these annotations, and then op-
erated the mill accordingly. The system also allowed capturing the
shape of other objects using a camera, which helped users remix de-
signs.

2.3.3 Hand-held fabrication based on virtual models

Other interactive fabrication systems were systems that explored how
to allow users to replicate an existing digital model using hand-held
tools with built-in force feedback. These systems allowed users to
change the texture of objects; the overall shape, in contrast, was de-
termined prior to the interaction in a separate 3D editor.

The first of these systems was Haptic Intelligentsia [46], a force-
feedback device with an attached hot glue gun that only extrudes
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material when the user is on the correct path. Since users can deter-
mine where to start on the path and in which direction to extrude,
the texture of every object comes out differently. Similarly, Position-
Correcting Router [64] only routes when the user is on the path, En-
chanted Scissors [106] only cuts when the user cuts along the path that
was previously marked with conductive ink, and Augmented Airbrush
[74] only sprays when the user holds it into the correct location.

More recent extensions to this line of work allow users to not only
modify the texture of the object, but also parts of the shape. FreeD
[111], for instance, is a hand-held milling tool that stops its spin-
dle when users are close to hurting the pre-defined model. However,
users can locally override the haptic constraint and change the path.
Hybrid Carving [112] is an extension of this work: when users override
the guidance of the system by removing material past the suggested
point, the underlying 3D model changes on the fly and adjusts to the
next valid shape. This allows users to be guided in the process while
being free to change different design aspects [113].

In contrast to this line of work, our goal is to allow users to design
objects in the physical workspace without the need to predefine a
digital model or to go back to a digital editor.
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OBJECT-LEVEL: LOW-FIDELITY FABRICATION

As pointed out in the introduction, today’s 3D printers are so slow
that fabricating slightly larger objects requires overnight printing. The
head mounted display body in Figure 8, for instance, took 14:30 hours
printing time on our 3D printer (Dimension SST 1200es). When design-
ing a new object, which typically requires going through a series of
iterations, this slows down the feedback cycle to one iteration per day.

\ 14:30 hours

Figure 8: Fabricating this head-mounted display body requires overnight
printing, slowing down the feedback cycle to only one iteration per day.

Different approaches try to reduce printing time by either massively
parallelizing the printing process using multiple heads [35] or by as-
sembling objects layer-wise from prefabricated voxels of equal size
[37]. However, as printing resolution increases fabrication gets slower
since more voxels or layers need to be fabricated.

To provide faster feedback, we take a different approach inspired
by early computer graphics: When computing was slow, researchers
proposed a method for rendering content with different levels of de-
tail to give users a fast preview [25]. The key idea was to render only
the important parts of a scene as slow high-fidelity and to render
everything else in fast low-fidelity [15]. This approach scales well as
users tend to focus on only one part at a time.

Similarly, in fabrication users typically focus on one aspect of the
design at a time. For instance, users might want to get the overall
look and feel right, then move on to verify that each part of the object
functions properly.
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By applying the principle of different levels of detail to fabrication,
we can fabricate the parts that are currently not being tested as fast
low-fidelity, and reduce high-quality printing to only the parts that
need detailed evaluation. This allows us to get a testable version
faster, thereby tightening the feedback-cycle during design iteration.
We call the concept of printing intermediate versions as low-fidelity
prototypes low-fidelity fabrication, or short low-fab (Figure 9).
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Figure 9: Low-fidelity fabrication prints intermediate versions as fast
low-fidelity previews.

Figure 10 shows a conversion with one of our low-fidelity fabrication
techniques called faBrickator. By printing only the lens mounts and
assembling the rest from building blocks, we can get a first testable
version within roughly one hour instead of printing overnight.

Figure 10: A low-fidelity fabricated version of the head mounted display
body allows for a first test within one hour instead of the next day.

The main benefit of our approach is that it changes the fabrication
process from overnight printing to something that can be carried out
multiple times a day. This allows users to perform several design
iterations in a day that would otherwise have stretched out over the
course of a week.
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Beside faBrickator, which focuses on modular designs in the early
stages of prototyping, we developed two additional low-fidelity fabri-
cation techniques to complement the space of possible design aspects:
WirePrint preserves the object’s shape thereby allowing users to test,
for instance, the ergonomics of a design. Platener is a low-fidelity tech-
nique that preserves an object’s technical function by converting an
object into plates of the same size and thickness. In the following
sections, we provide an example walkthrough for each of our low-
fidelity techniques and explain the details behind the algorithms.

3.1 FABRICKATOR: LOW-FAB FOR MODULARITY

faBrickator is a low-fidelity fabrication technique that saves 3D print-
ing time by automatically substituting sub-volumes with standard
building blocks, such as Lego bricks. Users simply mark up specific
regions as high-resolution to indicate that these should later be 3D
printed. faBrickator then 3D prints the parts and generates instruc-
tions that show users how to create everything else from Lego bricks.

3.1.1  Converting a 3D model with faBrickator

In the following example session, we revisit the example of the head-
mounted display body to illustrate how faBrickator achieves its time
savings. The user starts by modeling the body of the head-mounted
display in a 3D editor, here Blender (Figure 11). To make the head
mounted display body work, the user first has to get the optical prop-
erties of the display right. Thus, the exact shape and position of the
lens mounts is crucial to prevent the image from being blurry. The
user decides to use faBrickator to 3D print the lens mounts while
fabricating the rest of the design in Lego.
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Figure 11: The user starts by creating a model of a head-mounted display
body in the 3D editor Blender.
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#1 Loading and legofication: When the user exits the edit mode in
Blender, the 3D model is automatically loaded into faBrickator, ini-
tiated by the Blender plug-in we provide. In faBrickator (Figure 12a),
the user hits the legofy-button, which causes faBrickator to display a
naive legofication of the model, i.e., one that consists only of Lego’s
smallest building blocks: the 1x1 plate. The user now hits the layout-
button (Figure 12b), which groups the 1x1 plates into larger plates
and bricks so as to minimize the overall number of bricks. faBricka-
tor also assures a stable design in this step by iterating over the brick
layout until all components are connected.

Figure 12: (a) The model is loaded into faBrickator. (b) When the user hits
the layout-button, the model is converted into bricks and plates.

#2 Marking the high-res areas of the model: Figure 13 demonstrates how
the user defines the regions that need to be 3D printed. (a) The user
brushes the region around the lens mounts with the high-res brush.
(b) This tells faBrickator to execute this area in full detail. The system
responds by changing the preview accordingly. By default, faBricka-
tor merges the marked area into a single 3D-printed block. The user
repeats the process for the other lens opening.
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Figure 13: (a) Using the high-res brush the user defines the region that (b)
will be 3D printed in full detail.

#3 Printing and assembling: To print, the user exports the model. This
creates a 3D printable .st/ file for each of the two lens mounts. The
user then sends the files to the printer using the 3D printer software
(in our case CatalystEX). As soon as the 3D model has been sent to
the printer, the user starts assembling the Lego part of the model. As
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shown in Figure 14a, faBrickator provides animated assembly instruc-
tions that show how to assemble bottom-up, layer-by-layer. This helps
to minimize the time needed for assembly. 67 minutes after the lens
mounts were sent to the printer, the 3D printer is done fabricating.
Each brick bears a unique ID embossed into one of its sides (Fig-
ure 14b). This helps the user to quickly place them into the partially
assembled Lego model.

Figure 14: (a) Assembly instructions highlight the next brick in blue.
(b) Each 3D printed part has a unique ID.

Figure 15 shows the assembled body of the head-mounted display
with the accurately fitted lenses, which took 25 minutes to assemble.
The overall fabrication time was thus still bound by the 3D printer, so
that the 67 min is the final time for the entire fabrication. In this case,
a speed-up of a factor of 12.99.

Figure 15: The final faBrickated model.

3.1.2  Switching from low-res to high-res parts later on
faBrickator allows users to change their mind later on: it allows replac-

ing additional Lego bricks with 3D printed parts. Figure 16 illustrates
this, continuing our walkthrough: The optics of the head-mounted
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display work great, but after wearing the device for a while, the user
notices that it does not sit comfortably on nose and forehead. The
user goes back into faBrickator to create more ergonomic forehead
and nose pieces. As shown in Figure 16, the user marks the forehead
and nose regions as high-res, then exports and 3D prints them.
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Figure 16: (a) Marking the forehead and (b,c) nosepieces as high-resolution.

Figure 17 shows how the user removes the corresponding Lego bricks
from the head-mounted display body and replaces them with the
printed parts. This iteration took 3:55 hours including assembly.

Figure 17: (a) Replacing bricks with the 3D printed parts for the head.
(b) The assembled model.

3.1.3 Faster iteration through localized changes

While faBrickator already speeds up the fabrication of the initial pro-
totype, it saves even more time when subsequently iterating over seg-
ments since users only have to reprint the parts that actually changed
rather than reprinting the entire model. Back in the 3D editor Blender,
the user extends the nosepiece so as to perfectly fit the user’s nose.
After the user exits the edit mode in Blender, faBrickator aligns the cur-
rent version of the 3D model with the previously printed one to min-
imize the number of bricks that need to be re-fabricated. Figure 18a
shows how faBrickator highlights all bricks that changed compared
to the last version. (b) The user now rebuilds the nose piece and (c)
after printing exchanges it with the one that didn’t fit perfectly.
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Figure 18: (a,b) faBrickator highlights what changed between two model
versions. (c) The user then reprints only the part that changed.

3.1.4 Evaluating the speed-up

Beside the head-mounted display body, we faBrickated two addi-
tional example objects that we downloaded from Thingiverse. faBrick-
ator fabricates the three objects 3.11 times, 2.75 times, and 1.45 times
faster (average: 2.44 times) than traditional 3D printing while requir-
ing only 14 minutes of manual assembly on average. How much faB-
rickator speeds up the feedback cycle depends on how much volume
can be substituted with bricks.

Figure 19 shows the first model: a soap bar dispenser that dispenses
small flakes of soap when the sled is moved back and forth. It con-
sists of two pieces: the body that holds the soap and that the user
moves with his dominant hand in the sled, and the mount for the
razor blades and the sled. Producing this object with traditional 3D
printing takes 6:30h compared to only 2:05h printing and 5 minutes
assembly when using faBrickator (casing: o:51h printing and 3 min-
utes assembly, razor blade: 1:14h printing and 2 minutes assembly).
This is an improvement of a factor 3.11 for 3D printing time.

3D printed it. ==

6:30 hours

faBrickated
2:05 hours

Figure 19: (a) This soap dispenser only takes (b) 2:05h printing time and
5 min of assembly time compared to the 6:30h with traditional 3D printing.
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Figure 20 shows the second model: a penny ballista that allows eject-
ing a penny with a rubber band. The ballista consists of a mount
for the penny and the ballista body with a sled. Using 3D printing,
this model takes 3:03h compared to 2:06h printing and 11 minutes
assembly when using faBrickator (penny mount: o:59h printing, bal-
lista body: 1:07h printing and 11 minutes for assembly). This is an
improvement of a factor 1.45 for 3D printing time.
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Figure 20: (a) This penny ballista only takes (b) 2:06h printing time and
11 min of assembly time compared to 3:03h with traditional 3D printing.

The third model is the already presented head-mounted display body
with the lens mounts and the head and nose parts. When using faB-
rickator, it took 5:17 hours for 3D printing and only 25 minutes for
assembly (lens mounts: 0:33h and o0:34h, forehead piece top: 1:26h,
forehead pieces bottom: o:41h and o:44h, nose bridge: o:25h, nose:
0:54h). This is an improvement of a factor 2.75 for 3D printing time,
which for the completely 3D printed model is 14:30h. While these
examples give first insights into potential time-savings when using
faBrickator, it potentially provides an even greater speed-up when
creating very large objects.

3.1.5 Algorithms for automatic faBrickator conversion

faBrickator is built in CoffeeScript using the constructive solid geometry
library for its geometry operations. We also provide a Blender plugin
written in Python for easier file exchange between Blender and faBrick-
ator.

#1 File exchange between Blender and faBrickator

Our Blender plugin automatically exports the 3D model as an .st/ file
into a predefined folder as soon as the user exits the edit mode. faB-
rickator automatically detects if a new .stl file appears in the folder
and imports it accordingly. The Blender plugin runs in a separate
thread to prevent interference with Blender’s editing functionality.
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#2 Legofying: converting the 3D model into Lego

Figure 21 shows how faBrickator converts the 3D model into Lego’s
smallest building blocks: the 1x1 Lego plates. faBrickator first deter-
mines the bounding box of the model and extends it to the full mul-
titude of a 1x1 Lego plate (8x8x3.2mm). Afterwards, faBrickator fills
the bounding box with Lego plates in those positions that are either
inside the model or share a portion of the volume with it. The remain-
ing locations are left empty.
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Figure 21: Legofying: (a) model, (b) bounding box, (c) extended bounding
box, (d) legofied model.

#3 Layouting Lego bricks

faBrickator’s layout algorithm is inspired by existing layout algorithms
for generating working brick layouts. Researchers proposed differ-
ent algorithms, such as using a cost function for simulated anneal-
ing [33], evolutionary algorithms [62], beam search [102], and cellular
automata [91]. faBrickator builds upon the algorithm proposed by
Testuz et al. [83] but extends it with 3D printed bricks, which have
irregular shapes and therefore additional constraints that need to be
taken into account. faBrickator’s layout algorithm optimizes for two
things: it minimizes the number of bricks used for assembly while
maximizing stability. The algorithm works as following: (1) it merges
the 1x1 plates into larger Lego bricks, (2) it creates a connectivity
graph representing the brick layout, (3) it identifies weak points in
the graph (unstable connections), and (4) tries to relayout the bricks
at these positions to erase the weak points.

#4 Converting Lego bricks into 3D printable bricks

When users select a Lego brick with the high-res brush, it is converted
into a 3D printable brick. In order to generate the 3D printable brick,
we use a Boolean intersection of the Lego brick with the original 3D
model geometry (see Figure 22).
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Figure 22: The 3D printable brick is a result of a Boolean intersection of the
model and the Lego brick.

#5 Merging and splitting Lego bricks

When users select several bricks using the merge brush, they are
merged into a single compound 3D printable brick. In our initial ap-
proach, we used the Boolean union operation to merge the bricks,
which turned out to be computationally too expensive. The reason
is that the side faces of the two Lego bricks that should be merged
are always co-planar, which is the most expensive case for a union
operation. Instead faBrickator uses a tagging approach for merging.
As can be seen in Figure 23a, faBrickator tags each side of a Lego
brick according to its orientation in space (e.g., side-y, side+y). In or-
der to merge two bricks, our algorithm simply identifies the matching
neighbor sides by their tag and removes the sides since they would
be inside the compound brick (Figure 23b). If later on users apply the
split brush, we just enable the sides again.

Figure 23: Merging: (a) The sides of each brick are tagged according to
their orientation. (b) We use this to identify, which sides need to be
removed for merging.

#6 Detecting the completeness of knobs and tubes

In order to ensure a stable brick layout, faBrickator needs to detect
working knobs on a 3D printable brick. Only complete knobs can
be used to make a connection with another brick. A knob is only
complete if all of the knob’s faces were inside the model before the
intersection with the model (see Figure 24). If a part of the knob lays
outside the model, it is cut off during the intersection and the knob
is no longer functional. A regular Boolean intersect determines inside
and outside faces in the process of calculating the intersection. How-
ever, as the result the intersect operation only returns a geometrical
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volume from which it is difficult to tell if the knob is complete or
not. faBrickator therefore has its own intersect operation that stores
the meta-information about inside and outside faces in tags. Before
the intersection, all the faces of a knob are tagged with the knob-tag
(Figure 24a). During the intersect, faBrickator tags which faces are in-
side/outside of the model (Figure 24b). Afterwards, our algorithm
checks if there is any face with the knob-tag that also has the outside-
tag. If there is none the knob is complete. We use the same mechanism
for the tubes on the bottom side of the bricks.

knob + outside

knob
+ inside

model
knob

Figure 24: Detecting the completeness of knobs: (a) During intersection, we
(b) tag if a part of the knob lies outside the model.

#7 Calculating changes between design iterations

When users iterate over a model, faBrickator displays which part of
the model changed. For this, we first align the new 3D model with the
old 3D model because faBrickator allows users to rotate the 3D model
in Blender and to move it around freely. In order to align the two
models, faBrickator calculates a transformation matrix based on the
distance of specific model features to a reference point (we use the
point of origin). The triangles of a model are not suited as model fea-
tures because even small changes of the model result in a completely
different tessellation during the export from a 3D modeling program,
such as Blender.

In order to create a representation of the model that is compara-
ble, we merge the triangles into larger sides based on their orienta-
tion. First we merge neighbor triangles that have the same normal
into larger convex polygons. In a second step, we merge all convex
polygons with the same normal into a side. We use these sides for
comparison (i.e. their outline) and after finding a match, calculate the
transformation matrix and align the models. Now that the models are
aligned, we legofy the new model. Afterwards, we determine which
parts changed by calculating the differences based on the 1x1 Lego
plates. If a plate was added or removed, the part changed. For bricks
that were marked as high-res 3D printed bricks in the old model, we
use a volume comparison to determine changes. For bricks that did
not change, we copy the brick layout of the old model to minimize
the number of bricks that need to be reassembled.
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3.1.6  Conclusion

On average faBrickator is 2.44 times faster than traditional 3D print-
ing, thereby providing fast feedback and allowing users to iterate
multiple times a day. faBrickator achieves this by (1) printing in low-
detail where possible, i.e., using Lego bricks, (2) limiting reprinting
to those regions that have actually changed, and (3) minimizing the
effort for manual assembly by using different sized Lego bricks. We
demonstrated that faBrickator is especially useful in the early stages
of design as its modular approach allows reprinting only the parts
that changed and not the entire model. However, since faBrickator is
based on building blocks that have a fixed coarse resolution, it is not
suitable when testing an object’s shape, for instance, to confirm the
ergonomics. For this, our low-fidelity fabrication technique WirePrint
is best suited.

3.2 WIREPRINT: LOW-FAB OF SHATE

WirePrint is a low-fidelity fabrication technique in which surfaces
have been replaced with a wireframe mesh. Since wireframe previews
are to scale and represent the overall shape of the object, they allow
users to quickly verify shape aspects of their design, such as the er-
gonomic fit (Figure 25).

120 min

Figure 25: (a) With traditional printing this bottle takes 120 min.
(b) WirePrint only takes 14 min while preserving the shape.
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3.2.1 Benefits of vector-printing over layer-printing

WirePrint saves up to 90% printing time by using a novel 3D printing
approach: While traditionally 3D printers print layer-wise, WirePrint
extrudes filament directly into 3D space.

We derived the benefits of extruding in 3D space through a set of
experiments. Our initial hypothesis was that layer-wise 3D printing
can be sped up substantially by leaving out the solid surfaces since
this significantly reduces the amount of extruded material. To vali-
date this hypothesis, we implemented layer-wise wireframe printing
as follows: (1) print only the edges of a model, and (2) minimize the
use of support material as this adds to the printing volume (support
material is required for all overhangs larger than 45°). We wrote a
piece of software that converts a 3D model into a wireframe mesh
and adds additional 45° edges as support structures where needed.
For instance, a cube processed with our software has support edges
for the horizontal edges at the top (see Figure 26b). We compared the
converted wireframe cube (edges have 10% infill) with a solid cube
(solid with 10% infill). Both had a size of 28mm.

Surprisingly, the printed wireframe model with substantially re-
duced volume only provided a 2x speed up compared to the regular
model with faces and more infill material. We found that the main
reason for this is that the path for the print head remains almost the
same in both conditions: Since the material is printed layer-wise, the
print head still has to traverse the entire cube outline as it moves from
corner to corner, bottom—up.

Figure 26: Printing times: (a) layer-wise 3D printing with 10% infill,
(b) layer-wise 3D printing of a wireframe (reduced volume, 10% infill).

Based on this insight, our second hypothesis was that to substantially
reduce the printing time, we need to optimize the printhead path
itself. To validate the hypothesis, we printed another cube of the same
size for which we extruded filament not layer-by-layer, but directly in
3D-space, thereby creating the edges of the wireframe model directly
one stroke at a time. Figure 27 shows the result: by optimizing the
printhead path we saved more than 9o% of the printing time.
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Figure 27: Printing times: (a) layer-wise 3D printing with 10% infill,
(b) WirePrint extruding edges in 3D space.

Using the insight from our basic experiment, we implemented a soft-
ware for converting 3D models into WirePrint meshes that are ex-
truded in 3D space. Since our conversion software only changes the
underlying printhead instructions, it does not require changing the
hardware of the 3D printer. This makes our approach applicable to
many 3D printers already in use today. Figure 28, for instance, shows
objects being printed on two consumer 3D printers: the PrintrBot and
the Kossel mini.

Figure 28: WirePrint works on (a) traditional cartesian-based printers, but
is fastest on (b) 3D printers based on the delta design.

3.2.2  Converting a 3D model with WirePrint

After converting and printing the bottle shown in Figure 25, the user
notices that the bottle does not yet rest comfortably in the hand. The
user thus decides to change the model and reprint it. Figure 29 illus-
trates the typical workflow for converting a model with WirePrint.
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Figure 29: WirePrint workflow: (a) adjusting the model in a 3D editor,
(b) converting it in the WirePrint software, (c) reprinting and testing.

The user adjusts the thickness of the bottle in a 3D modeling program,
converts the model in the WirePrint software, and reprints it to test its
fit again. The user may repeat the process until the bottle fits well. At
this point, the user moves on to the details of the design, until finally
3D printing the bottle in full detail (1:59 hours). WirePrint allows this
design process, including its iterations, to be completed within only
a couple of hours.

The WirePrint printing technique

WirePrint converts a 3D object into a wireframe representation by
(1) slicing the 3D model along its vertical axis into horizontal slices
and (2) extracting the contours. It then (3) fills the space between
slices with a zigzag pattern.

As illustrated by Figure 30, WirePrint fabricates objects by alternat-
ing between printing a contour and creating one layer of the zigzag
pattern on top of the contour. While printing, WirePrint creates its
layers by moving the print head up and down repeatedly.

Figure 30: WirePrint’s layers consist of an alternation between contour and

zigzag.
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If a slice contains multiple disconnected contours, such as the tele-
phone receiver shown in Figure 31, WirePrint prints all contours lo-
cated on the same slice first (i.e. the contour of the left ear cap, then
the contour of the right ear cap), before moving up to the next slice.

Figure 31: Multiple contours are printed one at a time: (a) first the left ear
cap is printed, then (b) the right ear cap.

Figure 32 illustrates why WirePrint uses this particular contour-plus-
zigzag approach. The main challenge in printing wireframes is that
the print head has to respect already printed material in order to
prevent collisions. Each bit of printed material results in additional
volume becoming inaccessible.

N |

// collision

unreachable

Figure 32: Preventing collisions: (a) the print head can neither print next to
already printed material, (b) nor descend steeper than the threshold angle.

Figure 32 also shows the consequences that result from volume be-
coming inaccessible: (a) two vertical edges, for example, need to be
spaced at least one print head diameter apart. (b) While it is always
possible to print upwards, we cannot print downwards steeper than
the slant of the print head itself, as steeper edges can cause the slanted
tip of the print head to collide with what is just being printed. In the
case of our 3D printer (a Kossel Mini), for example, this threshold
angle is 32°.

These constraints still allow for several different approaches to con-
vert a 3D model into a printable wireframe. Figure 33¢c shows another
approach that leaves out the contour and uses a different pattern.
While this approach respects the constraints stated above, it leads to
less sturdier results.
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Figure 33: (a) Solid sphere. (b,c) Different wireframe patterns.

3.2.3 Extending Wireprint to different levels of fidelity

Several extensions allow WirePrint to handle additional scenarios,
such as printing with multiple levels of detail and creating solid sur-
faces in a post-processing step.

#1 Additional detail by mixing in layer-wise printing

WirePrint also allows users to use different levels of detail in a sin-
gle print. For instance, in the case of the bunny head shown in Fig-
ure 34, the user wants to preview the details of the face, such as the
eyes and the nose, in the context of the face. Those detailed parts are
printed with slow layer-wise printing, while the rest is printed as a
fast WirePrint. This hybrid mix of both techniques allows for quick
iteration while ensuring enough detail in those regions where it is
required.
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Figure 34: Mixing in layer-wise printing for the nose and the eyes.

To mark a region for layer-wise printing, the user simply uses the
fill brush in the WirePrint software and brushes the sections of the
zigzag pattern that should be printed in additional detail.
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As shown in Figure 35, WirePrint prints hybrid models slice-by-slice.
(a) It starts each slice by printing the contour, which is shared between
the traditionally printed part and the wireframe printed part. It then
prints the wireframe zigzag, while it is still able to place the slanted
starting point. It finally prints the layer-wise printing part.
(b) Afterwards, WirePrint continues with the procedure on the next
slice.
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Figure 35: Order of printing edges for hybrid printing when wireframe and
traditional printing are mixed.

#2 Objects with filled surfaces

Some 3D models, including the bottle mentioned in the previous sec-
tion, require closed surfaces. To close the surface, we dip the wire-
frame print into glue (see Figure 36). An added advantage of this
approach is that it strengthens the model.

A

Figure 36: Filling surfaces, here the walls of the bottle, by dipping the
wireframe into glue (e.g. Mod Podge).

3.2.4 The mechanical aspects behind WirePrint

In this section, we show which types of 3D printers are particularly
suitable for WirePrint. In addition, we explain how changes to the
hardware lead to an additional speed up and increase the stabil-
ity of WirePrint objects. These hardware changes are optional and
WirePrint also works without any modifications but at reduced speed.

#1 Delta printer

All of the shown wireframe models were printed on a Kossel mini 3D
printer (Figure 37), i.e., a printer that moves the print head using six
vertically actuated arms (a so-called delta design).
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Figure 37: We use a Kossel mini delta printer. For additional speed we
improved the fan cooling system.

WirePrint is particularly fast on the delta design, because delta print-
ers allow the print head to move up and down quickly. 3D printers fol-
lowing the more traditional cartesian design tend to be slower along
the vertical axis since layer-wise printing does not require high speeds
in this direction. However, since the axis speed in the z-direction is
simply a design decision of the manufacturers, WirePrint can be made
equally fast on cartesian printers with the proper hardware design, i.e.
by changing both the movement/turn ratio and the stepper motor
speed in the z-direction.

#2 Optimizing the filament for fast wireframe printing

Since WirePrint requires frequent transitions between compliant and
solid, we found materials that have a quick transition time to work
best. From the two currently most common 3D printing materials
PLA and ABS, the latter one works best. The reason is that ABS has
a smaller temperature range, in which it changes its viscosity from
compliant to solid (230-250°C) than PLA (180-250°C).

#3 Extrusion thickness

A larger opening in the extrusion nozzle leads to thicker and thus
sturdier edges and thus to sturdier objects. On the flipside, thicker
edges require more time to cool down, which slows down the print-
ing process. For our purposes, we found a o.7mm extrusion nozzle to
lead to the best results, i.e. sturdy and fast to print.

#4 Cooling

We attached two air jets that are controlled by a solenoid valve to our
print head (Figure 37). WirePrint controls the airflow by opening and
closing the valve using g-code (command My2). The additional cool-
ing causes the filament to solidify faster after extrusion, which allows
WirePrint to move on even faster. In cases where WirePrint needs
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the filament to stick to another part of the model, it turns the cool-
ing off. When no additional cooling can be added to the 3D printer,
WirePrint can either make use of the weaker built-in fan or can add
an additional pause to wait for material to solidify.

#5 Support structures

One interesting aspect of our technique is that WirePrint requires less
support material than regular layer-wise 3D printing because it can
print overhangs of up to 9o°. An example of a small go° overhang can
be seen in Figure 28a at the bottom part of the model (the maximum
length we tested was 6.5cm length). WirePrint can print these over-
hangs because the string of extruded material is put under tension
until it is completely sturdy. Yet other geometry, such as a human
figure extending the arms downwards, can only be printed with sup-
port. As in the layer-wise approach, the need of support will reduce
the overall print speed. However, one can think of using WirePrint to
print support structures again saving time compared to the currently
existing approach.

3.2.5 Algorithms for automatic WirePrint conversion

To help readers replicate our results, we use the following two sec-
tions to explain the details of our software implementation. WirePrint
is written in CoffeeScript and uses the constructive solid geometry library
for its geometry operations.

The WirePrint system

Our system WirePrint loads 3D models in .st/ format and generates
custom g-code (i.e., the instruction language used by 3D printers). The
user can then export the g-code and load it into the standard 3D
printing software for printing (we use Repetier Host). The custom g-
code moves the print head along the desired path and controls how
much material is extruded at which points.

#1 Slicing the model

After loading the 3D model, WirePrint slices the model into a set
of slices. The locations of the slices is determined by (1) important
features on the model geometry, and (2) the minimum and maximum
height of the zigzag between two subsequent slices (we use a 0.7ymm
extrusion nozzle, which leads to 1.4mm minimal height, and our print
head is 6mm high which leads to 6mm maximum height). To generate
a slice, WirePrint cuts the 3D model against a horizontal slice (width
and length of the object’s bounding box) at a specific height using a
Boolean intersect operation.
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#2 Extracting the contour of a slice

From each slice, WirePrint extracts the top contour by converting it to
a high-resolution bitmap and then applying OpenCV'’s findContour()
algorithm. If there are multiple contours on one slice, OpenCV'’s find-
Contour() algorithm also returns their relationship to each other, i.e.
whether they are located next to each other or contained in each other.
We use this information to determine the printing order.

#3 Generating the zigzag pattern

When generating the zigzag pattern, WirePrint maximizes the object’s
physical stability by aligning all vertical lines across slices. Simply
using the points from the slice below does not work, because subse-
quent slices might: (1) have a different contour length, which can lead
to insufficient space between two subsequent points (print head col-
lision), and (2) slices might have different heights, which can lead to
invalid printing angles. We therefore use a mixed approach: First we
calculate the optimal even spacing of points for each contour. Then
we calculate the minimum distance from a point on the bottom slice
to the top slice. We then use the average of both, which leads to good
stability and a comparably homogeneous spacing. In the case that
two vertical lines are still too close to each other, we ignore one of
them.

#4 Compensating for mechanical aspects

After generating the wireframe according to the model geometry,
WirePrint applies all geometrical modifications that are required due
to the mechanical properties of filament and print head, such as re-
moving the last diagonal edge of the zigzag from the list of edges to
avoid print head collision.

#5 Exporting g-code

In the last step, WirePrint converts the geometry information into g-
code. For this, it traverses the list of edges (all contours and zigzag
patterns) to export them in the right order for printing. It uses the
start and end point coordinates of each edge to generate the move-
ment commands for the print head and the length of the edge to
determine how much extrusion is required. For instance, G1 X10 Y
10 Z10 E5 means: move to those coordinates and extrude 5 units of fil-
ament on the way. Our g-code exporter also generates the commands
for turning the fan on and off to properly cool the wireframe edges.
The g-code exporter writes these g-code commands into a .gcode file
that the user can then execute on the 3D printer.
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#6 Detecting geometry splits in the geometry

In cases where a slice has a single contour and its subsequent slice
has two (and vice versa), we print them on top of each other without
the intermediate zigzag pattern. We use this particular approach to
ensure that the zigzag of each new slice has filament printed under-
neath it.

#7 Combining with layer-wise printing

For mixing in layer-wise 3D printing, WirePrint generates additional
slices between two subsequent wireframe slices. The number of ad-
ditional slices depends on the printing resolution. For instance, if
two wireframe slices are 3.5mm apart and the extrusion nozzle is
o.7mm, WirePrint will generate 3.5mm/o.7mm = 5 additional layers.
After generating the slices and extracting their contours, WirePrint
analyzes which part has been selected for layer-wise printing. It then
cuts the contours at the start and end point of the selected part. The
remaining part is filled with the zigzag pattern.

3.2.6  Optimizing printing speed during solidification

To create accurate and sturdy wireframes, WirePrint needs to take
into account the edge deformation that appears when filament is not
yet solidified (see Figure 38).

warm I
cool J
e intended result 0 bending problem
Figure 38: Deformation problem when edges are not yet solidified.

We identified three approaches to improve the print quality:

(1) reducing the overall speed with which the print head moves, al-
lowing the filament to solidify as its being printed.

(2) moving the print head quickly, but pausing at the end of each ver-
tical edge to let the edge solidify.

(3) printing full speed, but anticipating the deformation by extending
the vertical movement of the print head.

Through experimentation (Figure 39), we discovered that the fastest
way to print is to add a delay at the end of each floating edge, i.e., to
move with maximum extrusion speed of the printer (3omm/s) com-
bined with a 1s pause at the end of each vertical line. Although a
pause at the end of each vertical edge initially seemed unattractive,
it leads to the most accurate results because the edges solidify under
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tension. Anticipating the deformation during printing was attractive
at first, but the extra traveling time of the print head quickly under-
mined the benefit of a faster printing speed, and in general the results
where less appealing.

S = speed
P = pause

printing
time (min)

Figure 39: Print head speed/pause trade-off. Sphere radius = 3.9cm.

3.2.7 Conclusion

With WirePrint we made four contributions: First, we proposed 3D
printing wireframe representations of 3D models as an approach to
faster iteration when evaluating the shape of an object. Second, to
maximize the speed-up, we printed edges directly into 3D space, i.e.,
we instructed the 3D printer to extrude filament not layer-by-layer,
but along actual strokes in 3D-space. This approach allowed us to
provide feedback to the user 9go% faster compared to traditional layer-
wise 3D printing (factors range from 2.5-10 depending on the model
geometry). Third, we provide a software to automatically convert 3D
models into WirePrints: Figure 40 shows example objects converted
with our algorithm. Forth, to make our approach applicable to a wide
range of users, we demonstrated how to create wireframe previews
with existing 3D printers, users only need to install the WirePrint soft-
ware. This is in contrast to special purpose devices, such as Material
[54] that uses a custom two-component material that immediately sets
after extrusion, and the 3Doodler [1], which is a handheld 3D pen that
has to be operated manually. Given that for a WirePrint object only
a fraction of material is extruded, our approach is also substantially
cheaper, making it even more affordable for users to iterate.
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Figure 40: A selection of objects we have 3D printed using WirePrint.

On the flip-side, WirePrint is limited to model geometries that take
the print head constraints into account. In addition, WirePrint is es-
pecially designed to speed up fused deposition modeling (FDM) 3D
printing (e.g., PrintrBot, Kossel mini, MakerBot). It does not speed up
3D printers that print layers as raster images (e.g., Polyjet, ZCorp) and
only small speed-ups might be achieved on selective laser sintering
or stereo lithography hardware.

Since the original development of WirePrint in 2014 as described in
this thesis, several follow up works have extended our algorithm for
new use cases. For instance, in On-the-Fly Print [61] Peng et al. extend
WirePrint towards 5-axis 3D printing and use it to print incremental
changes directly on the physical object. In addition, a paper by Wu et
al. [105] builds onto our work and extends the algorithm to not only
use triangle patterns but also other mesh types, such as quad meshes.

While WirePrint is useful for quickly testing shape, it is less suitable
for the later stages of design when users want to test the actual phys-
ical strength of their design that is required to perform mechanical
functions. To address this problem, we developed a third low-fidelity
fabrication method called Platener.

3.3 PLATENER: LOW-FAB OF FUNCTION

Platener is a low-fidelity fabrication method designed specifically to
evaluate the functional aspects of an object. Platener achieves fast
feedback by extracting straight and curved plates from the 3D model
and substituting them with laser cut parts of the same size and thick-
ness. Only the regions that are of relevance to the current design
iteration are executed as full-detail 3D prints. Platener connects the
parts it has created by automatically inserting joints. It also engraves
instructions to help fast assembly. Platener allows users to customize
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substitution results by specifying fidelity-speed trade-offs, choosing
whether or not to convert curved surfaces to plates bent using heat,
and specifying the conversion of individual plates and joints interac-
tively (see Figure 41).

870min

290min

Figure 41: Platener substitutes parts of a 3D model with straight and
curved plates that can be fabricated on a fast laser cutter.

Platener is designed to best preserve the fidelity of functional objects,
which typically contain a large percentage of straight and rectilinear
elements that can be fabricated on a laser cutter. Other approaches
that convert 3D models into laser cuttable parts, are not suitable for
this goal: Approaches that stack 2D plates (e.g. 123D Make [6], Crdbrd
[36]), ensure that the volume of a 3D object is well approximated, but
they are a less accurate surface representation. A different approach
uses intersecting planar pieces: The resulting objects require less ma-
terial and consist of fewer parts (McCrae et al. [55] and Schwartzburg
et al. [73], but intersecting planar pieces do not preserve the over-
all function of the object. Finally, researchers have suggested to fold
2D sheets into 3D objects (e.g. Mitani et al. [58], Curved Folding [42]).
However, while foldable sheets result in an accurate surface represen-
tation, they have no infill and are thus not sturdy enough to perform
mechanical functions. Platener’s approach of using laser cut parts of
the same size and thickness bypasses this problem, thereby preserv-
ing the stability and functionality of objects.

3.3.1 Converting a model with Platener

For this walkthrough, we revisit the head mounted display body
shown in the faBrickator section. While faBrickator allowed to test
the position and shape of individual parts due to its high modularity,
the resulting assembly was not sturdy enough to be worn on the head
for a longer test period as the individual bricks tend to loosen up and
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subsequently fall apart. With Platener, we gain the ability to actually
produce a functionally working version.

With its fastest conversion, Platener allows producing the head-
mounted display body in 20 min (15 min cutting plus 5 min man-
ual assembly), which is 44 times faster than the 3D print (14:30h).
Platener returns the 3D model in the form of one or more 3D print-
able .stl files and laser cuttable .svg files, which can be sent directly to
the 3D printer and laser cutter. Figure 42 illustrates this at the exam-
ple of the hybrid head-mounted display body from Figure 41.

Figure 42: Exported 3D printable and laser-cut parts as .st/ and .svg files.

#1 Adapting the conversion to the current design phase

To best suit the needs of the current design phase, Platener allows
users to convert 3D models under different settings. For an early test,
for example, users may convert their models with speed in mind; in
later phases they may gradually shift the emphasis to fidelity. As
an example, Figure 41 shows four different versions of the head-
mounted display. They were generated from the same 3D model, but
with different fidelity-speed settings. Platener allows users to specify
these trade-off settings using a global slider.

Speed-fidelity: Setting this slider all the way to fidelity produces an
object that is all 3D printed, which trivially preserves fidelity, but
at the expense of having no speed-up. Moving the slider towards
speed causes Platener to initially replace very large regions with in-
dividual laser-cut plates (Figure 43a); then more and more regions
get replaced, resulting in increasingly higher speed-ups (Figure 43b).
Platener performs this in interactive speed, i.e., as the user is drag-
ging the slider, Platener continuously updates the model. This allows
users to see the changes right away and thus to quickly find the con-
version that best suits their needs.
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Fidelity Speed

Figure 43: Platener’s user interface provides users with a global slider to
define the fidelity-speed trade-off.

Curved surfaces: Platener also provides options for handling curved
plates. When the curved plate option is deactivated, Platener approxi-
mates curved plates using individual plates connected by finger joints
(Figure 43b). Activating the curved plate option causes Platener to
convert cylindrically curved regions in the 3D model to one plate
that can be laser-cut and bent. Curved plates come in two styles: The
tirst option bend acrylic fabricates a flattened version of the respective
surface using the laser cutter that can then be bent using a heat gun.
As illustrated by Figure 44, users (a) cut the pieces, (b) heat them
up using a heat gun or strip heater [82], (c) pre-shape them along
the dashed instruction lines Platener provided, and (d) press them
into the corresponding positions in the model, which gives them the
desired shape.
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Figure 44: Bending: (a) cut plate, (b) heat it using a heat gun, (c) press it
into position to give it the right shape.

The second curved plate option uses a wooden living hinge. As illus-
trated by Figure 45, for this to work, Platener cuts a dense pattern
of living hinges into the plate. This results in a plate that is flexible
along the intended dimension .In this case, users only have to
(a) cut the curved plate and then (b) mount it using the provided
finger joints.

|

Figure 45: Creating a curved plate from wood. (a) Cut the object on the
laser cutter, (b) mount it into position.

Finally, as shown in Figure 46, Platener helps users assemble parts by
embedding matching pairs of labels.

Figure 46: Platener 3D prints/engraves instructions.

#2 Specifying the focus of the current design iteration

On top of these global settings, different design iterations tend to
put the focus on different parts. Platener allows users to define such
a focus by assigning a specific fabrication technique using brushes.
For the head mounted display, the global threshold defines that the
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forehead piece should be 3D printed. Within this context, the user can
now choose the focus of the current design iteration:

Case 1: The current design iteration is about some other part, such as
the optical path. The forehead piece thus does not matter. In this case,
the user can use the do not print brush on the forehead piece and the
device will be fabricated without this part (Figure 47).

Figure 47: The design iteration does not require the head piece. The user
thus uses the do not print brush.

Case 2: The current design iteration is about the ergonomics of the
forehead piece, thus the contact area of the forehead piece matters.
The user has a heat gun and decides to use the curve acrylic brush on
the forehead piece (Figure 48).

Figure 48: Overwriting the default with the curve acrylic brush to obtain a
curved version for ergonomic testing.

Case 3: In this round of design, not just the ergonomics, but also the
industrial design of the forehead piece is in focus. The user thus over-
rides the setting of the forehead piece in the last iteration by using
the 3D print brush, resulting in the hybrid object shown in Figure 41.

Case 4: In yet another round of design, the mechanics and the stability
of the object are in focus. Per default, Platener has chosen to represent
the four vertical edges of the casing as finger joints. These are easy
to assemble, but brittle and thus not a good approximation for the
stability of a 3D print. The user handles this by customizing these
edges/connectors, similar to how one customizes plates. As shown
in Figure 49a, the user uses the bend acrylic brush and brushes across
the connectors. This causes Platener to merge the four wall segments
into a single long strip (Figure 49b). The assembled result is shown
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in Figure 49c: a version of the head mounted display that is sturdier
than any of the converted versions we showed earlier as its main body
consists of only three pieces.

Figure 49: Using the bend acrylic brush, the user defines the casing as being
made from one piece, which makes it sturdier.

3.3.2 Algorithms for automatic Platener conversion

This section describes Plateners core data structure and the imple-
mentation of the processing pipeline.

#1 Mesh segmentation

The mesh segmentation algorithm takes a 3D printable manifold mesh
as input and outputs laser-cuttable plates and 3D printable parts.
Platener then generates the plate graph of the 3D model according
to the adjacency relationship of these segments. The segmentation al-
gorithm first extracts all flat planes from the 3D mesh, then identifies
plates by iteratively grouping plane pairs that are parallel, have an
opposite normal, and are within distance d. The variable d represents
the thickness of the plate and users manually configure it accord-
ing to the laser cutting material. Each plate consists of two planes.
The size and shape of the plate are determined by projecting both
planes into 2D and intersecting them. We repeat the algorithm with
all planes that remain after intersection until no more planes can be
converted to plates. After extracting all plates, the algorithm labels
the remaining parts of the 3D mesh as to 3D print.

#2 Plate graph generation

After the mesh segmentation, Platener constructs a plate graph that
records the fabrication method for each segment and joints between
them. As illustrated by Figure 50, each node in the plate graph repre-
sents one part of the 3D model and each edge represents a connector
between two plates. Each node has one of the three states: 3D print,
laser-cut, or ignore. Each edge, i.e., connector, has one of the five states:
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no connector, bending connector, finger joint, interlocking joint, bending con-
nector, or glue connector.

Initially, Platener labels all nodes as 3D print and all edges as no con-
nector. As users move the fidelity-speed slider towards speed, Platener
gradually labels the largest laser-cuttable segments as laser-cut and
their adjacent edges as finger joints. Similarly, as users manually spec-
ify a fabrication method for each part, Platener interactively updates
the corresponding labels in the graph.

Figure 50: The plate graph represents the 3D model as a graph of nodes
(plates) with edges (connectors).

#3 Mesh processing
At the end of the process pipeline, Platener processes the mesh seg-
ments according to the plate graph.

Unfolding curved parts: When the curved plate option is activated, Platener
gradually unfolds the curved segment onto a 2D plane. Plate- ner also
adds the bending lines or the living hinge pattern perpendicular to
the unfolding direction. If the 3D segment cannot be unfolded with-
out overlapping itself [28], Platener converts it to 3D printing as a fall
back method.

Joint generation: According to the labels on the edges, Platener places
joints between segments or merges segments into one piece. When
the edge is labeled as no connector, e.g., both nodes are 3D printed,
or bending connector, e.g., users applied the bend acrylic brush on the
joints, Platener merges them into a single 3D mesh or plate. When us-
ing finger joints, Platener extends the boundaries of the segments and
generates finger joints on the overlapping volume. The interlocking
joint label is used when there is a cross-section between two segments.
In such cases, Platener creates a slit on the laser-cut piece, allowing
another plate to slide into and interlock with. Finally, in case the over-
lapping volume is too small, Platener switches to the glue connector,
i.e., creates flat surfaces on both segments that afford gluing.
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3.3.3 Evaluating the speed up

We evaluated the effectiveness of Platener by analyzing the speed-up
after conversion for a range of different models. Given that Platener
was designed to evaluate the functional aspects of an object, such as
the stability of a casing and the performance of a mechanical tool, we
focused on 3D models that their creators described in such terms.

3D meshes from Thingiverse

In order to obtain an objective sample, we downloaded 3D models
from the online 3D model repository Thingiverse. At the day of the
download, Thingiverse contained more than a hundred thousand 3D
models in total. We collected the 3D models by searching the website
using the sites built-in search box and downloaded the top 200 results.
In order to obtain an objective sample, we did not perform any further
selection or removal of mislabeled objects at this stage, so our sample
represents the noise level currently contained in these sites. Also note
that many 3D models on Thingiverse consist of multiple 3D meshes.
We processed them separately without merging them into one single
3D model. The 10 search terms we used were: box, camera, controller,
gadget, gear, household, mechanical, phone, speaker, and tool. We obtained
an overall number of 2,250 3D meshes.

Measurements

We evaluated the effectiveness of Platener based on two measure-
ments: (1) fabrication time before and after conversion, and (2) num-
ber of pieces as a metric indicating the manual assembly effort.

Results

Figure 51 shows the time savings achieved by Platener: 39.9% of the
3D models achieve a speed up of more than 10x, which is faster than
any of the systems in the related work. Another 13.4% achieve a speed
up of 3-10x. 22.8% of models result in no speed up.
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Figure 51: Fabrication time speed up.
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Platener processed all 3D models and generated 3D printable .st/ files
and laser-cuttable .svg files. We estimated the 3D printing time with
the slic3r g-code simulator, the laser-cut time by the length of the path
contained in the .svg files, and we approximated the assembly time
via the simple formula of number of pieces multiplied by 15 seconds.
Converted objects consisted on average of 12 pieces, which resulted
in approximately 3 minutes of assembly time.

Figure 52 shows some example objects that resulted in high speed
ups (>10x). These objects consist mainly of flat pieces and contain few
parts that cannot be laser cut.

Figure 52: Some of the models that Platener fabricated 10x+ faster:
(a) camera body, (b) hardware divider, (c) Raspberry Pi casing.

In contrast, Figure 53 shows two examples for which Platener was
unable to produce any time savings. As expected, these objects are
characterized by spherical curvature shapes that lie outside of what
Platener was designed to handle. For these objects the WirePrint low-
fidelity fabrication technique is a better option.

Figure 53: We would not use Platener for these objects (no time-savings):
(a) cone shaped mini heater part, (b) Kindle Fire comfort grip.

3.3.4 Comparison with faBrickator and WirePrint

Compared to faBrickator, Platener generally better preserves a mod-
els geometry while also preserving its function. We illustrate this at
the example of the three objects used in faBrickator, i.e., the penny
ballista (Figure 54a), the soap dispenser (Figure 54b), and the head
mounted display body (Figure 54c).
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Figure 54: Left side shows conversion with faBrickator, right side Platener:
(a) penny ballista, (b) soap dispenser, (c) head mounted display body.

Platener objects are generally sturdier as they are made from fewer
pieces than when using building blocks (penny ballista: 17 plates vs
99 Lego, soap dispenser: 21 plates vs 53 Lego, head mounted display
body: 9 plates vs 160 Lego). The curved surface, despite requiring
more manual effort, results in particularly sturdy results.

3.3.5 Conclusion

Our results show that Platener achieves faster fabrication time for
many objects with functional aspects, making it a useful tool for sub-
stantially speeding up the prototyping workflow and providing faster
feedback. While Platener is intended to be a low-fidelity fabrication
technique, some objects produced by Platener are of sufficient fidelity
that users may choose to use the Platener conversion to fabricate also
the final output. On the flipside, Platener is subject to the following
limitations: The thickness of the extracted plates is limited to the ca-
pabilities of the laser cutter (e.g., 10 mm maximum plate thickness
on our ULS PLS6.150D laser cutter). While Platener speeds up design
iteration of functional objects, it is less suitable for objects that are
solely defined by their shape, such the objects shown in Figure 53.
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3.4 CONCLUSION FOR LOW-FIDELITY FABRICATION

Low-fidelity fabrication tightens the feedback-cycle from the hours
range to the minutes range, allowing users to evaluate the current
version of their prototype faster. By providing faster feedback, users
achieve more design iterations in the same amount of time, which
ultimately leads to a working solution earlier.

We showed how different conversion techniques allow users to fo-
cus on different key aspects of an object, such as first testing the posi-
tion of parts using the modular approach of faBrickator, then moving
on to test the shape of objects with WirePrint, and finally testing the
technical function of objects with Platener.

On the flipside, low-fidelity fabrication trades in detail for speed.
While suitable for iteration, the converted objects do require a full
3D print eventually at the end. Some low-fidelity fabrication tech-
niques also require a modest amount of manual effort since users
need to assemble the parts that make up the final object.

For future work, we plan to evaluate data on how users use our
tools for their prototyping process. For this, we have already de-
ployed faBrickator as a webservice (www.brickify.it) and log data about
which models users convert and how much time they save. We are
currently in the process of deploying a similar platform for the Plate-
ner low-fidelity fabrication technique. WirePrint is also publicly ac-
cessible as part of the Cura Slicer implemented by the Ultimaker 3D
printing community based on our research paper.
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ELEMENT-LEVEL: TURN-TAKING SYSTEMS

While low-fidelity fabrication allows users to create, test, and redo
objects quickly, redoing an object in its entirety is not necessarily the
most effective approach. Arguably, feedback is most beneficial when
making key design decisions along the way. Turn-taking interfaces
offer this affordance by providing fast request and response trans-
actions: users first create an input and receive an answer from the
system within seconds. This tightened feedback loop allows users to
iterate towards a final solution through trial-and-error by building
subsequent steps onto the results of previous ones.

To transition from the low-fidelity fabrication systems that fabricate
an object in one go to turn-taking system with a request and response
interaction, we decrease the interaction unit to a single element of an
object, such as one line.

To illustrate turn-taking for personal fabrication, we start with a
2D system called constructable and then extend this system towards
3D editing with our novel laser-cutting technique LaserOrigami.

4.1 CONSTRUCTABLE: 2D INTERACTIVE LASER CUTTING

constructable is a turn-taking system based on a laser cutter that pro-
duces precise physical output after every editing step. As illustrated
by Figure 55, all interaction in constructable takes place on the work-
piece inside the laser cutter, mediated through low-power hand-held
laser pointers, which we call proxy lasers or simply tools. In the ex-
ample in Figure 55b, the user uses the finger joint tool to add finger
joints between two pieces by crossing the two involved edges.

Proxy lasers are too weak to affect the workpiece. To make the
interaction ‘real’, constructable tracks proxy laser interactions using
a camera mounted above, reconstructs the tool’s path, transforms it
using a constraint set defined by the current tool, and implements the
effect using its high-powered cutting laser (Figure 55¢). Since all key
elements were constructed in the context of constraints, constructable
allows creating fully functional devices, such as the simple motorized
vehicle shown in Figure 55d.
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Figure 55: (a,b) Constructable users first draw an element, (c) the laser then
cuts it, providing physical feedback. (d) The final object.

4.1.1  Proxy lasers for direct control and precision

Figure 56 provides a closer look at the proxy lasers. Each proxy laser
features three barrel buttons (Figure 56b). While held depressed, the
middle button activates the beam, allowing the system and the user
to see where the tool is pointed [59]. The visual feedback allows users
to determine a starting point with precision before starting to cut. It
thereby implements the tracking state of its three-state model [16].

Figure 56: (a) constructable tools. (b) Each laser offers three buttons.
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The other two buttons trigger the tool’s two modes of operation. The
cut button allows cutting a tool-specific shape, such as a circle for the
circle tool. The sketch line button creates the same shape, but etches
it as a shallow dashed line into the surface of the material. Sketch
lines have no direct impact on the mechanics of the workpiece, but
instead serve as alignment aids that magnetically attract subsequent
cuts (alignment lines [14]).

All tools explain themselves exclusively through the cut or sketch
line they produce and there is no further visual feedback, i.e., no
screen or projector.

4.1.2  Creating, selecting, and copying with proxy lasers

constructable achieves precision by means of sketch lines and by im-
plementing constraints into every proxy laser. Constraints differ be-
tween tools.

Creating: Polyline, circle, and freehand are constructable’s tools for creat-
ing objects from scratch. These tools are only moderately constrained.
The circle tool, for example, always produces a perfect circle, but di-
ameter and location remain freehand. The freehand tool is not subject
to any constraints. Most of constructable’s tools connect to or extend
an existing object and this spatial relationship adds constraints. Users
establish these constraints by selecting one or more existing objects.
The finger joint tool, for example, snaps to existing lines.

Selecting: As illustrated by Figure 57, users select (a) a surface by click-
ing into it, (b) an edge by crossing it (Crossy [2]), and (c) a point by
drawing a pigtail close to it (Scriboli [38]). We designed this selection
mechanism so as to extend seamlessly to multiple objects. Users se-
lect (d) multiple surfaces by drawing a path across, (e) multiple edges
by crossing multiple edges, and (f) multiple points as a sequence of
multiple pigtails.
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Figure 57: constructable allows users to select (a) objects by pointing,
(b) lines by crossing, and (c) points with pigtails. (d-f) Selecting multiple
objects, lines, and points.

57



Pasting: A range of tools, such as the copy tool, result in the creation of
new objects. The size and shape of a new object is determined implic-
itly, e.g., by the object being copied and does not require or allow for
user input. However, to allow users to optimize material usage, we
let users show constructable where to create the new object. As illus-
trated by Figure 58, users point constructable to available material by
drawing a directional cropmark (Papiercraft [49]). The orientation of
the cropmark specifies the orientation of the pasted object, allowing
users to optimize for material use.
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Figure 58: Users paste an object by drawing a directional cropmark.

4.1.3  Walkthrough: constructing a device

In the following, we illustrate constructable’s tools at the example of
the simple motorized vehicle shown earlier. Figure 59 shows the final
outcome and the pieces required to produce it.

Figure 59: (a-d) The motorized vehicle in different states of assembly.

We start by creating the housing (Figure 60): (a) We use the polyline
tool to sketch the rectangular base. (b) Using the sketch line button on
the scale tool we create a sketch line rectangle around the base—this
sets the height of the walls. (c) By crossing the north edge of the
base with the extrude tool, we create the first wall segment. (d) For
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efficiency, we create the remaining three walls using a single long
stroke that extrudes the base east, south, and west. There is no limit
on concatenating, so we could have also extruded all four walls in
a single stroke. (e,f) To allow us to assemble the housing later, we
add finger joints. We connect the walls by crossing pairs of respective
edges using the finger joint tool. (g) Finally, we assemble the box by
connecting the finger joints.
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Figure 60: Interactively constructing the housing of the motorized vehicle.

Figure 61 shows how we add gearbox and wheels. (a) To make sure
that we end up with straight axles we draw five sketch lines using
the polyline tool. (b) We create the first axle hole using the circle tool,
the location of which snaps to the intersection of the two sketch lines
located close by. (c) We draw all remaining axle holes using a single
stroke concatenating multiple pigtails.
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Figure 61: Continuing the previous example, we add axles, a two-stage
gearbox, and wheels.

(d) We create the first pair of gears by selecting two axle holes with
the gear tool, by defining the transmission ratio through marking the
point where we want the two gears to meet, and by showing con-
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structable where to create the gears using a cropmark. We create the
second set of gears accordingly. (f) To create a wheel, we first create
an axle hole using the circle tool. We then create a wheel around this
axle hole using the scale tool. (g) We create a second wheel by copying
the first one using the copy tool. We are now done creating our parts.
We remove them from the machine and assemble them, resulting in
(h) the final vehicle. The device is functional because every mechani-
cal connection was created using tools with appropriate constraints.

Decorative functionality

constructable also allows integrating form-giving and decorative func-
tionality. Figure 62 shows how we create a booklet that has round
corners and a flexible bend in the middle. We start by (a) drawing the
cover with the polyline tool, then (b) smoothing the corners with the
round tool, and (c) making the wood flexible using the bend tool.
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Figure 62: Creating a wooden booklet sleeve.

Figure 63 illustrates how we apply a picture to the housing of our
motorized vehicle. (a) We place the housing back into the machine
and position the picture on top of it. We wave the rub-on tool across
the areas of the picture we want to transfer. (b) We take the picture
out, and as we close the lid, constructable engraves those areas.

Figure 63: Adding a decorative logo using the rub-on tool.
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Similarly, the trace tool cuts the contours of a physical object into the
workpiece. Figure 64 shows how we use this to create a holder for
two paint jars by (a) selecting physical objects inside the cutter using
the trace tool. (b) After removing the physical objects constructable
cuts, resulting in (c) the final jar holder.
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Figure 64: Creating a holder for two paint jars.

Finally, we can use the freehand tool to create unconstrained freehand
lines and cuts (Figure 65), such as the heart drawing on the other side
of the vehicle’s housing.

Figure 65: Sketching using the freehand tool.

Trial-and-error support using “undo” tools

Finally, constructable offers basic support for trial-and-error by pro-
viding an approximation of “undo” tools. Since physical cuts cannot
be undone, constructable’s “undo” tools instead refabricate the object
— they create a copy that does not have the cut. Users apply the tool
by crossing the cuts they want removed; they then paste the newly

restored object (Figure 66).

paste

TR udion SN, SR SO,
(535855 0202020 S T /0% %0 2 N %% %%
oeseleX oo 0 S ST ¢ %020 to TR 6% % %%
KRR XK (KT KRR
020202 KK B RS
XX 5 N0e%% P92 4 K

a

Figure 66: Undoing a cut by re-uniting the pieces using the union tool.
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While the primary purpose of the tool is to repair and undo, the
way it achieves this is by uniting two objects and copying the result.
Since this functionality is useful beyond undo, we ended up giving
the tool the name union tool. In practice, any tool that unites two
objects can be used as an undo tool. Figure 67 shows the butterfly
joint tool, which connects two objects using a butterfly connector. This
tool produces a butterfly-shaped hole across the cut and lets users
paste a matching butterfly-shaped connector. Users repair the cut on
assembly by placing the connector into the hole—it sits tight enough
to create a lasting connection. While the union tool obviously creates
the stronger connection, a butterfly joint consumes less material.
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Figure 67: Undoing a cut by joining the pieces using the butterfly tool.

4.1.4 Ergonomics: the drafting table form factor

While we initially perceived it mostly as a design hurdle, the laser
cutter’s glass cover turned out to become one of the key elements
creating the affordance of our system. (Figure 68a). By allowing users
to rest their body weight on the glass, users get even closer to the
workpiece without worrying about interfering with it. Furthermore,
we found ourselves resting proxy lasers on the glass while drawing
(Figure 68b), which adds substantial stability, making the interaction
more precise. To invite this interpretation and posture, we positioned
the proxy laser tools as shown in Figure 68c. This allows users to
reach tools without lifting their arm, but instead pivoting around
their elbows similar to the Lagoon in Alias Sketchbook [30]. We found
all of the above to invite the interpretation of constructable as a draft-
ing table, the “drawing” on which is the actual physical object itself.
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Figure 68: (a) The glass cover supports users’ weight, allowing them to get
close to the workpiece. (b) Resting proxy lasers on the glass surface allows
for precise interaction. (c) Pivoting the elbow to switch the tool.

4.1.5 Constructable’s processing pipeline

constructable has two main components: the first covers the data pro-
cessing and is written in C++, the second covers the laser cutter in-
structions and is written in Java. constructable uses the following li-
braries to achieve its functionality: (1) OpenCV for computer vision,
(2) PaleoSketch for shape recognition, (3) OpenOffice for creating the
laser cutter document, (4) OSC for the communication between its
components, and (5) QT for its graphical user interface, which is only
used for debugging purposes and to adjust the tracking settings.

Figure 69 shows how constructable processes proxy laser input in
order to generate cutting laser output.
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Figure 69: Data processing flow in constructable.
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#1 Constructable’s tracking pipeline:
constructable observes the workpiece using a camera (MS Lifecam,
844x448px, 30 fps) mounted above the laser cutter. Since the cam-
era image needs to be aligned with the cutting bed of the laser cutter,
constructable calculates a perspective transformation. We do this by
first manually indicating where the four corners of the laser cutter are
located in the captured image by clicking on them. Once the transfor-
mation matrix is calculated, we apply it to each frame before further
processing it.

constructable extracts the red dot produced by the laser-pointer
using color tracking (Figure 70a). constructable first converts the im-
age into the HSV color space. It then provides the user with a user
interface to filter for the bright red laser dot using sliders to set mini-
mum and maximum values for the hue, saturation, and value channels.
When the user is done, constructable writes the current settings into
a log file, which is automatically loaded when constructable is started
the next time.

constructable only starts tracking the red laser dot, when the cut
or sketch line button on the laser pointer is pressed (Figure 70b). To
extract the red laser dot from the image, we first threshold the HSV
image using the minimum and maximum values for each channel,
which results in a binary image. Afterwards, we run the connected
component algorithm and identify the largest component as the laser
dot. We now fit an ellipse around the laser dot and use the center of
the ellipse as the tracking coordinate. While the user keeps the cut or
sketch line button pressed, we repeat the process on every frame and
write the coordinates into a list.

Figure 7o: constructable processes input by: (a) thresholding the camera
image to extract the laser dot, (b) tracking the laser dot over time, (c)
performing shape recognition on the list of points, and (d) applying tool
specific operations, such as calculating intersections.
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When the user releases the cut or sketch line button, constructable
smoothes the path using the Kalman Filter. It then performs shape
recognition on the path using the PaleoSketch shape recognizer [60]
(Figure 70c). Since the sketch recognizer is only available in Java, con-
structable sends the path data via OSC to PaleoSketch and PaleoSketch
returns the shape after processing is done. Since all constructable in-
put is based on lines (i.e. a pigtail is also a set of short lines), we only
activate the LineTest and the PolylineTest in PaleoSketch and deactivate
all other possible shapes, which increases recognition accuracy.

After the drawn path is converted into a geometrical primitive, con-
structable applies tool specific geometric operations (Figure 7o0d). For
instance, when the user crosses an edge with the round tool, we cal-
culate the intersections of the drawn line with the existing geometry.
If two connected lines are crossed, the user crossed a corner. We then
calculate the corresponding bezier-curve points at the correct loca-
tions. Another example is the extrude tool. If the user extrudes an
edge, we take the endpoint of the path, calculate the shortest distance
from the endpoint to the edge, and then use this information to con-
struct the new line parallel to the existing line.

At this point, constructable records the interaction history, which it
uses to support undo and selective repairs using the union tool.

#2 Output to the laser cutter

constructable now outputs the shape to the laser cutter, currently a
Universal PLS6.150D. Using the OpenDraw API, constructable draws
the shape into an OpenDraw document that has exactly the size of the
cutting table. For this, constructable first initializes a connection to the
OpenDraw program, it then loads the OpenDraw document, and after-
wards calls the different shape factories for creating and drawing the
shapes. According to the available tools, constructable currently sup-
ports circles (for the circle tool), beziers (for the round tool), point lists
for any polygonal shape (for, e.g., the polyline or trace tool) and images
(for the rub-on tool). Before the shapes are placed into the OpenDraw
document, constructable transforms their position from the camera
space (844x448px) to the document space (8ox45cm) using a constant
scale factor.

After constructable placed all shapes into the OpenDraw document,
it sends the document to the laser cutter using the regular printer
interface. As required by our laser cutter, constructable encodes the
necessary meta-information into the color of the respective line, i.e.,
cutting-depth(mm), laser power (percentage), and speed (percentage). A
red line, for example, causes the laser to cut, while green is used
to create a shallow, low-power sketch line. constructable sends all
communication using OSC, which makes it easy to adapt the system
to other hardware components, such as a different laser cutter model.
When the document is successfully sent to the laser cutter, we use a
mouse robot to automatically press the start button in the laser-cutter
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software (Figure 71). While this is the only working approach to con-
trol the laser cutting process via code, it also has the drawback that
the laser cutter user interface always needs to be the active window
and that the window needs to be full-screen as the mouse click posi-
tion is in absolute coordinates.
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Figure 71: constructable uses a mouse robot to start the cutting process.

#3 Proxy lasers

In order to retrieve the constraint set represented by the current tool,
constructable determines which tool is in use using mechanical swit-
ches, one of which is installed in each tool holder (similar to pen
“recognition” in SmartBoards). This allows us to implement all proxy
lasers using a single type of off-the-shelf laser pointer. The switches in
the toolbox are connected to an Arduino Uno, which runs a program
to determine which switch was activated and if the tool was taken out
or put back in. The current state of the toolbox is then communicated
to the main constructable application.

The buttons on all proxy lasers trigger an infrared signal, which
constructable monitors using an infrared receiver placed next to the
camera. By default, the commands sent by the laser pointers are
mapped to the left and right arrow key, as they are normally used
in presentations to forward to the next slide or to go one slide back.
constructable, in contrast, maps these key commands to the cut and
sketch line mode using QT’s key APL



The cut and sketch line buttons are spring-loaded in order to elimi-
nate mode errors. Users operate them without letting go of the track-
ing button. For optimized ergonomics during prolonged use, con-
structable offers a dual-footswitch pedal, which is fulfilling the same
purpose as the cut and sketch line barrel buttons. When the footswitch
is pressed, a program written in PureData notices the change and
sends the current state to the main constructable application.

#4 Remixing: using physical objects as a reference

constructable captures objects using the same camera that tracks the
laser dot. A bar of fluorescent light mounted inside the cutter sup-
ports this by providing homogeneous, reflection-free illumination of
the workpiece (Figure 72). We mounted the bar of light inside the
laser cutter by attaching magnets to its backside. We also guided the
cable in a way that it would not interfere with the laser beam that
exits the laser module at the top left corner of the laser cutter.

Figure 72: (a) To minimize reflections on the glass surface, we (b) mounted
a bar of fluorescent light into the laser cutter.

To detect if the user inserted an object for remixing, we track if the
lid of the laser cutter was opened or closed. The laser cutter already
provides a mechanism for detecting the lid state for safety reasons, i.e.
it stops cutting as soon as the lid is not completely closed. However,
without a library to access this built-in feature we were not able to
integrate it into constructable.

Instead, we placed an infrared rangefinder sensor (Figure 73) be-
hind the lid that informs the system when the lid is open. When the
lid opens, the distance to the range finder gets smaller — when the lid
closes again it gets larger. We connected the range finder to the same
Arduino Uno that is used by the toolbox.
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Figure 73: (a) We use this infrared range finder to (b) detect if the lid of the
laser cutter is open or closed.

In the following section, we describe how we use OpenCV for copying
object contours. After the user inserted objects, closed the lid, and
used the trace tool to indicate that the user wants to copy the objects,
we start the processing pipeline. First, we subtract the background:
we use the current frame as the input and a frame when no object
was in the laser cutter as the background. We then extract all contours
using the connected components algorithm and remove contours that
have an area smaller than a certain threshold as noise. When the user
opens the lid and removes some objects, we repeat the process, but at
the end check if any contour disappeared. The disappeared contours
are the removed objects and these contours are laser cut as soon as
the user closes the lid again. The remaining contours are on hold as
we do not want the laser cutter to cut in places where objects are still
present.

4.1.6  Conclusion

We showed how constructable tightens the feedback-cycle by pro-
viding physical feedback after every editing step-thereby enabling
a turn-taking interaction style: Users draw an element of their design
onto the workpiece inside the laser cutter, the system then responds
by cutting the desired shape. However, since constructable is based
on a fast 2D laser cutter instead of a slow 3D printer, it is limited to
two-dimensional parts, which users have to assemble at the end. This
makes the design process difficult as users have to mentally map a
2D part layout to a 3D object to imagine the shape and function of
their final design. To tackle this problem, we developed a new laser
cutting technique that creates 3D objects with a laser cutter via cut-
ting and folding a single piece of acrylic, thereby allowing users to
see the 3D shape as a direct result of their input to the system.
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4.2 LASERORIGAMI: 3D INTERACTIVE LASER-CUTTING

The key idea behind LaserOrigami is that it achieves three-dimension-
ality by bending the workpiece rather than by placing joints, thereby
eliminating the need for manual assembly. Figure 74 shows an exam-
ple object created using LaserOrigami — a mobile phone screen cam
holder. This example was fabricated using five bends, one of the basic
design elements of LaserOrigami.

Figure 74: LaserOrigami fabricates 3D structure by bending rather than
using joints, thereby eliminating the need for manual assembly.

4.2.1 Bending with a defocused laser
Traditionally, users manually bend the workpiece using heat guns

(emit a stream of hot air) or strip heaters (consist of a line of heating el-
ements). LaserOrigami’s approach in contrast automates the process.
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LaserOrigami is inspired by research that shows how to automati-
cally deform metal using a laser [32]. When heating up metal, the
material locally expands and contracts, which the sheet metal evades
by bending. Researchers showed how to build concave [10] and con-
vex shapes [48], and how to reshape existing 3D objects [47]. However,
while this work relied on internal tension, LaserOrigami uses compli-
ance; this allows it to work with acrylic and is an order of magnitude
faster — fast enough to allow for a turn-taking.

Figure 75 shows how LaserOrigami implements cutting and bend-
ing. When cutting, the laser is normally focused on the workpiece,
which causes the material to turn so hot that it evaporates (Figure 75a).
To bend, LaserOrigami moves the workpiece away from the laser,
which defocuses it (Figure 75b). This distributes the laser’s heat over
a larger region. LaserOrigami distributes the laser’s heat further by
repeatedly running the laser back and forth over the region to be bent.
As a result, the workpiece heats up to the point where it turns com-
pliant; it then bends under the influence of gravity. The result is a
precise 9o° bend. LaserOrigami modifies focus by moving the cutting
table up and down; the cutter we used (ULS PLS6.150D) allows doing
this under computer control. This allows it to implement cutting and
bending in a single integrated process.
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Figure 75: (a) LaserOrigami cuts the workpiece by focusing the laser on the
workpiece, (b) it bends by defocusing the laser.

In order to allow parts of the workpiece to drop, we prop up the
workpiece inside of the cutter (for our laser cutter, this is possible af-
ter removing the honeycomb grid). We created a simple configurable
support grid for this purpose (Figure 76).
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Figure 76: (a) This support grid (b) creates empty space below the
workpiece that parts can fold and drop into.
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4.2.2  The design elements of LaserOrigami

Figure 77 shows LaserOrigami’s three design elements: (1) the bend,
(2) the suspender, and (3) the stretch.
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Figure 77: Design elements: (a) bend, (b) suspender, (c) stretch.

#1 Bends
We already demonstrated bends in Figure 74. Bends also allow fabri-
cating decorative elements, such as those shown in Figure 78.

Figure 78: With bending, we can create this decorative city outline.

This bend element only allows bending up to 9o°, which limits our
designs to 2.5D. We can bend past the vertical axis by holding the
workpiece slanted against the desired bend direction (Figure 79).

Figure 79: By slanting this workpiece 20° against the direction of
gravitational force, we achieve a bending angle of 110°.
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A more flexible solution is to bend successively (Figure 8o). The pur-
pose of the outer patch is to serve as a lever—once it has done its job
we will typically cut it off. The lever approach thus obviously comes
at the expense of material.

Figure 80: Successive bending allows the inner patch to bend beyond 9o°.

A servomotor, finally, allows for any angle by rotating the workpiece
repeatedly (Figure 81). A small tab that is part of the workpiece locks
into the servomotor. When done, LaserOrigami cuts off the tab, caus-
ing the assembled workpiece to drop.

attach to motor  flip over heatup  flip over cut off
heat up bend let cool bend let cool

Figure 81: Fabricating a card holder using a servomotor.
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#2 Suspenders
Suspenders allow suspending material in a controlled way. They are
designed to unfold when heated up with the laser (Figure 82).
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Figure 82: Suspenders: (a) the raw path that is cut. (b) When the laser heats
up the suspender, it unfolds until it (c) reaches its final straight shape.

The length of the suspenders defines how deeply the patch will be
suspended (Figure 83). The use of three or more suspenders of iden-
tical length creates a horizontal patch. While we will most commonly
create horizontal patches using suspenders of equal lengths, suspen-
ders of unequal lengths allow us to create ramps.

9
Figure 83: (a) The same patch suspended with a set of short and (b) long
suspenders.

Suspending recursively allows us to create 2.5D landscapes from ele-
vation lines (Figure 84). If an upper level gets suspended, it moves all
lower levels with it. To keep the next suspension in the plane of the
laser cutter, we suspend the inner ring first, working outwards.

Figure 84: Suspending recursively to create a multi-level terrain.

Creating a suspender creates a hole in the workpiece—one of the
limitations of our approach. However, the approach offers freedom
in “routing” the suspenders, which allows us to place them so as to
minimize interference with the remaining workpiece (Figure 85).
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Figure 85: (a) This design does not work because suspenders break the
workpiece apart. (b, c) Rerouting the suspenders to minimize interference.

#3 Stretching

Suspenders are our general mechanism for suspending a patch of
material. However, in some cases, the material for the suspenders is
required, such as for the paint holder shown in Figure 86. In this case,
we can suspend by stretching. To suspend a patch by stretching, we
heat up its outline until it gets compliant and stretches due to the
weight of the suspended patch. If a patch is too light, we can add
weights to it before suspending (Figure 86a).
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Figure 86: Suspending a patch using stretching creates a container that can
hold a liquid.

Stretching causes the walls of the suspended patch to get thinner,
which limits the maximum suspension depth. How deep a patch can
be suspended by stretching depends on the material thickness as well
as the width of the stretched region.
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4.2.3 Interactive laser-cutting with LaserOrigami

We integrated LaserOrigami into the constructable interactive laser-
cutting system (Figure 87). To extend the constructable tool set with
the LaserOrigami design elements we turned each of the design ele-
ments into a separate laser tool, such as the bend, the suspend, and the
stretch tool. To set parameters for these tools, such as the size of the
bending angle or the length of the suspenders, we added a numpad
that allows users to enter a single global parameter that is passed to
the current tool.

Figure 87: The LaserOrigami extension for constructable.

Figure 88 illustrates how to bend interactively by drawing a stroke
across a part of the workpiece using the bend tool. A bend can only
occur between two cuts, which allows LaserOrigami to compute the
bend at the intersection of the user’s draw path and the existing cuts
in the workpiece. Users can create multiple bends efficiently by cross-
ing using a single long stroke (Figure 88b).

e Bend Q | M%/

Figure 88: (a) Bending the workpiece by drawing a bend path across.
(b) Users can bend multiple parts at once by crossing them all at once.
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Interactive LaserOrigami also allows controlling the servomotor by
entering the desired angle into the numpad (Figure 89). (a) The user
first attaches the workpiece to the motor, (b) then enters the bend
angle into numpad and draws the bend path with the bend tool to
achieve the result shown in (c).

Attach to motor  Enter Angle Bend

Figure 89: The servomotor allows creating precise bending angles
interactively.

Figure 9o demonstrates how to interactively construct a plant holder
using the suspend tool by (a) drawing the base plate using the poly-
line tool as sketchline, (b) creating the top-level surface using con-
structable’s scale tool with depth as a numpad parameter, and (c)
suspending the base plate using the suspend tool.

Enter Length Suspend

Figure go: Creating a plant holder interactively.

4.2.4 Implementation

The LaserOrigami tools encode all the “instructions” that the laser
cutter requires in order to fabricate the respective shape, i.e., the lines
that cut and the lines that implement the back-and-forth motion of
the defocused laser for bending (Figure 91)
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1.5mm acrylic

20 copies —®

bend —eo o—cut

power: 30% power: 100%
speed: 40% speed: 9.4%
z-axis: S0mm| z-axis: 1.5mm

Figure g91: These lines encode a 10cm bend for 1.5mm acrylic.

#1 Switching between cutting and bending

Moving the table up and down, is encoded in the line colors. As an
example, Figure 91 shows the lines that implement a simple bend.
In the configuration dialog of our cutter, we configured red lines to
mean cutting, i.e., whenever the laser encounters a red line the table
will move the workpiece into focus. In contrast, we configured green
lines so as to move the table down, causing the laser to go into defo-
cused mode and heating up the material for bending. The property
we manipulate here is called z-axis for our ULS PLS6.150D laser cut-
ter. It is normally used to move materials of different thicknesses into
focus; with LaserOrigami we instead use it to defocus.

#2 Execution order

To make sure all features are executed in proper order, the tools define
the stacking order of all lines before sending the drawing document
to the laser cutter. Disabling the Vector Optimizer feature in our laser
cutter makes sure that line order is maintained during cutting. Also,
since this cutter model always executes all lines of one color before
moving on to the next color, we use a new line color for each group
of cuts or bends.

#3 Power and speed settings

We use the laser cutter’s configuration file to encapsulate the power
and speed settings for cutting and bending. For our PLS6.150D laser
cutter with a 2.0” lens and 1.5mm thick acrylic, for example, we de-
focus the laser by 50 mm and use 40% speed and 30% power and
we move the laser 40 times across each bend and 6 times across each
inflection point of each suspender.

#4 Heating path

To maximize the time the laser is actually running and minimize the
time elements cool off, we create pairs of bend lines of opposite ori-
entation. For the same reason, we perform multiple bend lines on a
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single suspender before heating up the other suspenders in the same
group. To compensate for heat loss along edges, we make bend lines
protrude past object outlines.

#5 Inflection points

To make sure all elements unfold properly, we continue to heat all
inflection points past the moment when an object is starting to bend.
In the case of suspenders, the inflection point in the center moves not
only vertically, but also horizontally while dropping (see Figure 82).
We compensate for this horizontal movement by creating additional
bend lines located across the different horizontal positions of the
dropping inflection point.

#6 Calibrating laser and cutting bed

The PLS6.150D laser points down at an angle, which introduces a
horizontal offset during defocusing. We compensate for the offset by
shifting bend lines accordingly.

#7 Keeping the workpiece stable

Cutting the entire outline of the workpiece causes it to wiggle, which
renders subsequent steps imprecise. To keep the workpiece stable,
we keep it attached to the main sheet until all bending is done (Fig-
ure 92).
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Figure g92: (a) Wiggling. (b) To keep the workpiece stable, we keep it
attached to the main sheet until all bending is done. (c) The result.

#8 Preventing the workpiece from getting stuck

During bending, the diagonal of the bent piece has to pass the open-
ing. As shown in Figure 93a, this can cause the bent piece to get stuck
in the adjacent material, especially if the bent patch is small and thus
light or if it has an irregular outline. We address this by first cutting
out an extended outline, which creates additional space around the
workpiece as illustrated by Figure 93b.
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Figure 93: (a) During bending, the part that bends can get stuck in the
surrounding material. (b) We address this by first removing some material
around the cut.

4.2.5 Conclusion

While constructable and LaserOrigami allow for physical feedback
after every editing step, the interaction is still best described as turn-
taking, i.e. users first create an input, and afterwards the system
provides physical output, thereby causing a visible lag. For instance,
while drawing the outline of the wooden booklet, constructable users
first have to complete the entire rectangle before seeing the outline
being cut. However, to decide on the best shape for the wooden book-
let, it would be beneficial if users would see the workpiece change in
real-time so that no visible lag between user input and system output
exists. In the next chapter, we explore how to overcome this limitation
with a system that allows for such direct control. In addition, this sys-
tem will expand the range of shapes that users can fabricate by going
beyond objects that are created through cutting and folding a sheet.
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FEATURE-LEVEL: DIRECT MANIPULATION

By decreasing the interaction unit even further to a single feature, we
can achieve continuous physical feedback, i.e. with one interaction
users can explore the entire space of shapes, potentially leading to
a better result in less time. This is in contrast to the turn-taking sys-
tems shown in the previous chapter that consist of two discrete steps,
i.e., users first create an input, and then the system responds with
physical output, which only allows to explore one option per turn.

5.1 FORMFAB: CONTINUOUS FEEDBACK

Similar to LaserOrigami, FormFab is a system that reshapes the work-
piece to provide physical feedback (Figuregs): A heat gun attached to
a robotic arm warms up a thermoplastic sheet until it becomes compli-
ant; users then interactively control a pneumatic system that applies
either pressure or vacuum thereby pushing the material outwards or
pulling it inwards. As users interact, they see the workpiece change
continuously and in real-time.

robot with
/—heatlng element
T ,--«' ]

r

motion
capture
system
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finger tracking

work plece

pneumatic
system

Figure 94: FormFab allows users to interactively control a pneumatic
system, thereby changing the shape of the workpiece in real-time.
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5.1.1  User Interaction

FormFab’s user interaction consists of two steps. In the first step (Fig-
ure 95), users use their index finger to draw an outline of the area
they want to reshape onto the workpiece. When the user removes the
hand from the workpiece, the path is beautified by our software. The
robotic arm then starts warming up the area using a heat gun.

Figure 95: (a) The user draws an outline, which is then (b) heated up by a
robotic arm that carries a heat gun.

After the material has reached its compliance point, the robotic arm
moves out of the way and the user starts the second step (Figure 96):
By performing a pinch gesture above the workpiece, the user acti-
vates the pneumatic system. If the user’s hand moves away from the
workpiece while holding the pinch gesture, the pneumatic system in-
creases the air pressure and the user sees the compliant area inflate
continuously and in real-time. If the user’s hand moves back towards
the workpiece, the pneumatic system reduces the pressure and the
user sees the compliant area deflate. Figure 96 shows one continuous
interaction, i.e., the same part is first pulled out and then pushed in.

While step 1 of the user interaction, i.e., drawing the outline, still
follows the turn-taking interaction model, step 2, i.e., defining the
extrusion amount provides continuous physical feedback: input by
the user and output by the fabrication device are coupled tightly and
without lag allowing for continuous, real-time interaction.
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Figure 96: (a) Pulling causes the system to inflate the part by increasing air
pressure, (b) pushing deflates the part by reducing air pressure.

5.1.2  Walkthrough: Making the sculpture of a teddy head

Figure 97 shows a teddy head sculpture we created with FormFab.
FormFab is particularly suitable for making round shapes with smooth
surfaces, which are hard to make with additive or subtractive fabrica-
tion due to limited resolution of the tools.

Figure 97: The sculpture of a teddy bear’s head made with FormFab.

We start by defining the shape of the head, as shown in Figure 98. We
tirst draw a circle onto the flat workpiece. After the robot has heated
up the area, we use a pinch gesture to extrude the head.
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Figure 98: Head: (a) draw outline, (b) extrude.

Using the same interaction steps, we add the ears to the head of the
teddy (Figure 99).

Figure 99: Adding the ears on the right and left side.

We now add the snout (Figure 100). To explore the best size, we re-
peatedly scale the snout by moving our hand to different distances
from the workpiece. After defining the final shape of the snout, we
add a tip on top of it.
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Figure 100: Adding the snout.

In the last step, we create the eyes (Figure 101). This time, we move
our hand towards the workpiece, thereby applying vacuum that ex-
trudes the eyes inwards.

Figure 101: Extruding the eyes inward with vacuum.

Figure 97 shows the final teddy head, which consists of the seven
steps illustrated above (head, ears, snout, snout tip, eyes). Making
the teddy head took 9 minutes including the time for heating and the
time the material required to become rigid again after each interac-
tion. The thicker the sheet, the more time the user has for reshaping
as it retains the heat longer (the sheet we started with was 4 mm
thick). For instance, when reshaping the basic head we made changes
for more than 15 seconds, and later on when creating the right ear,
we explored different sizes for around 30 seconds.

At every step in the modeling process, we were able to find the
best shape by continuously browsing the space of different options in
real-time.
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5.1.3 Hardware components

Figure 94 shows the hardware setup of our system that enabled the
above walkthrough. It consists of two main parts: (1) the user inter-
action tracking with a motion capture system, and (2) the formative
fabrication unit (robotic arm, heat gun, and pneumatic control sys-
tem).

#1 Tracking the user interaction

To track the user interaction, FormFab users wear a motion capture
marker and a pressure sensor on their index finger (Figure 102a). The
marker is detected by a motion capture system (Optitrack) and used
to determine where the user is interacting on the workpiece. The pres-
sure sensor is used to determine the beginning and end of the interac-
tion. We can do this because in both interactions users apply pressure
to the index finger either by touching the workpiece (Figure 102b) or
by pressing the index finger to the thumb in the pinch gesture (Fig-
ure 1020).

micro-controller

infrared LED

resistive
pressure sensor

Figure 102: (a) Tracking unit. We detect start/end of both interactions (b)
the drawing and (c) the pinch gesture with a pressure sensor at the
fingertip.

Instead of using a passive retro-reflective marker, we use an active
infrared LED marker that is turned on whenever the user applies
pressure to the finger as described above (an Arduino Nano connected
to the pressure sensor processes the pressure values, then activates
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the LED). We are using an active marker because detecting passive
markers requires the motion capture cameras to emit infrared light.
The light causes reflections on our transparent and reflecting work-
piece, which makes it difficult to detect the marker. By using the
active marker, we were able to use the cameras with their infrared
emission set to "off’.

#2 Robotic arm

We use a 6-axis robotic arm (ABB IRB 120) to move the heat gun that
warms up the workpiece. The six degrees of freedom allow the robotic
arm to reach around the workpiece from all sides. In contrast to pre-
vious systems that achieve higher degrees of freedom by rotating the
workpiece, the robotic arm allows us to keep the workpiece station-
ary, thereby preserving the user’s spatial frame of reference during
modeling. By mounting the robotic arm to the ceiling, we were able
to maximize the reachable area while also allowing the user to freely
move around the workpiece.

#3 Heat gun

We heat the workpiece using heat guns that blow air onto the work-
piece (Figure 103). We chose air for heating as it best distributes on
surfaces of arbitrary geometry. A rigid array of radiator elements, in
contrast, would lead to uneven heating as some points are located
closer to the workpiece surface than others. Other contactless meth-
ods, such as an infrared-light array were not powerful enough to heat
the thermoplastic sheet.

-

large heat-gun : small heat-gun

Figure 103: The larger heat gun allows heating coarse base shapes. We use
the small heat gut for finer details. The temperature sensor notifies
FormFab when the material reaches its compliance point.
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We use two heat guns of different sizes. We use the larger heat gun
(3.5cm, 600°C, 2000W) for the first steps in the modeling process
when the coarse base shape is created. We use the smaller heat gun
(0.7cm, 500°C, 1000W) for the later steps in the modeling process
when the user creates details. Both heat guns have a different work-
ing range; we determined the values experimentally and use them to
optimize the heat transfer while preventing to overheat the material.

Since the heat transfer is influenced by several factors that are hard
to predict, we added a temperature sensor (Melexis MLX90620) to
the robotic arm to determine the temperature of the workpiece (Fig-
ure 103). The sensor is wired to an Arduino Nano that informs the
FormFab main application about the current temperature values.

The temperature sensor is passive and measures the infrared ra-
diation emitted by the material when it warms up. Active sensors,
such as an infrared laser thermometer, that first emit light and then
measure its reflection did not work: Since the workpiece is reflective,
the signal reflection depends on the entering angle of the light beam,
therefore the measured signal is no indication of the material temper-
ature.

#4 Pneumatic control system

Figure 104 shows the pneumatic control system. FormFab uses a com-
pressor (Universal II Profi-Airbrush) that compresses air up to 5 bar.
Connected to the compressor is a regulation unit (Festo) that defines
how much of this pressure is forwarded to the pressure/vacuum sys-
tem and onto the workpiece. We use 0.1 bar o.5 bar, depending on the
size of the compliant area.

~—— valves

regulation unit

Figure 104: The pneumatic system.
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To set the pressure value, the regulation unit expects a control volt-
age from o-10 V. FormFab sets the voltage using an Arduino Uno con-
nected to a digital potentiometer that regulates a 24V external power
supply.

The pressurized air is then guided through different valves, de-
pending on whether pressure or vacuum should be applied to the
workpiece. If pressure is applied, the pressurized air is directly for-
warded to the air chamber to reshape the workpiece. If vacuum is to
be applied, the pressurized air instead goes through a vacuum gener-
ator, which creates negative pressure in the air chamber, pulling the
compliant workpiece inwards.

To switch between the two states, the pneumatic system has to
change its valve configuration, which we again control through the
Arduino Uno.

After the user finished the interaction, our system keeps the air
chamber under pressure until the workpiece has cooled down and
has become rigid again. Lowering the pressure earlier would cause
the workpiece to sag.

After the workpiece has cooled down, our system opens a valve to
neutralize the air chamber, i.e., it releases any excess pressure. This is
necessary because if the air chamber was still pressurized at the begin-
ning of the next heating step, the workpiece would start to deform as
soon as it becomes compliant, i.e., even without the user interacting.

5.1.4 FormFab’s processing pipeline

The software pipeline consists of the following processing steps: (1)
tracking the outline the user is drawing, (2) calculating the heating
path, (3) generating movement commands for the robotic arm, (4)
monitoring the temperature to achieve compliance and to avoid over-
heating, and (5) applying air pressure via the pneumatic system ac-
cording to user input.

#1 Tracking the user interaction

The active infrared LED marker on the user’s fingertip is detected by
OptiTrack’s motion capture software Motive. Since the infrared LED
can cause reflections on the transparent and reflecting workpiece, we
filter reflections that do not fit the LED’s size and circularity.

Motive streams the position data of the marker to the FormFab
main application, which implements a client based on the NatNet
SDK from OptiTrack. After receiving the motion data, FormFab ap-
plies additional filtering in case the previous step did not eliminate
all reflections: For instance, in case two markers should be detected
instead of just one, the system only considers the one located closer
to the previously detected position.
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As soon as the user finishes drawing, the marker position is processed
using OpenCV'’s shape detection algorithms, including the fitEllipse()
method, which FormFab uses to fit a circle to the users drawing.

#2 Calculating the heating path

Based on the user’s drawing, our software generates a heating path
with the goal to heat up the area equally at all locations. Since cal-
culating the heating path for an even heat distribution is difficult for
arbitrary shapes, we limit FormFab’s modeling geometries to circular
shapes.

Depending on the size of the circular area, we either only heat up
the outline or apply a spiral path that moves from the outline towards
the center of the circle. We determine which one to use based on the
heat gun radius, the distance to the workpiece, and the amount of
airflow.

Those factors also influence how much we shift the heating path in-
wards to avoid heating areas outside the drawn area. Similarly, when
creating a spiral path, we use these factors to adjust the distance
between two lines: if the lines are too close, the area will overheat,
if lines are too far apart, the area will not heat up sufficiently (Fig-
ure 105).

Ohs

Figure 105: Calculating the heat path to achieve an even heat distribution
for this circular shape.

#3 Robot movement

We installed the open-abb-driver as a server on our robotic arm. This
allows us to send real-time commands via a TCP/IP connection. It
also allows us to receive information about the robotic arm’s current
state.

The server processes commands in the robotic programming lan-
guage RAPID that tells the robotic arm how to position the joints and
how fast to transition between different positions. We generate these
commands using the Grasshopper plugin Robots.IO.

The Robots.IO plugin takes a robot model (in our case ABB IRB 120)
and a motion path (our heating path) as input. It then calculates an
optimal configuration for the robotic arm to move along the motion
path (Figure 106).

90



Figure 106: (a) Here our software calculates a working path for the robotic
arm, while (b) keeping the tool always aligned with the workpiece.

Robots.IO also generates warnings in case a target position is located
outside the working range of the robotic arm (e.g., because it exceeds
a joint limit), which typically happens when the shape becomes too
large and the robotic arm has to operate at the boundaries of its work-
ing volume.

Robots.IO generates a different type of warning in situations where
the robotic arm would collide with the workpiece. To allow Robots.IO
to detect this case, the system has to provide it with a digital represen-
tation of the workpiece. Instead of 3D scanning the workpiece after
every change, which would delay the next interaction step, FormFab
approximates the 3D model by simulating each modification applied
to the workpiece.

For this, FormFab uses the Grasshopper plug-in Kangaroo Physics,
which is a physical simulation environment. First, our system uses
the heat path and heat gun radius to define the virtual compliant
area. It then adjusts the virtual air pressure until the compliant area
expands far enough so as to overlap with the next steps drawn outline.
We can do this because users always draw the next outline before the
robotic arm moves again.

Our system also uses the resulting digital representation of the
workpiece to orient the heat gun so as to always point at the work-
piece at a perpendicular angle, allowing the system to heat the work-
piece evenly.

#4 Heat control loop

Robots.IO exports the RAPID code for the entire heating path into a
.txt file. Uploading this code at once to the robotic arm would execute
the path, but would not allow querying information about the robotic
arm during that time. However, FormFab needs information about
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the robotic arm’s current position, for instance, when it evaluates the
current temperature data from the heat sensor as it otherwise does
not know to where on the workpiece the measurement belongs. Our
software thus splits the RAPID code into single motion commands
and sends them one-by-one to the server.

Once the heat-sensor has determined that the material has reached
its compliance point, FormFab stops the heating process and moves
the robotic arm to its default position, i.e., out of the way of the user.

#5 Pneumatic control

Before turning on the pneumatic system, our software detects the
direction of user input. When the user first performs a pinch gesture,
our system sets the position of the user’s hand as the origin from
which to measure. For every 3 mm of hand movement, our system
increases or decreases the control voltage of the pneumatic regulation
unit by one step, slightly increasing or decreasing the pressure inside
the workpiece.

The exact pressure depends on the size of the compliant area. Push-
ing out smaller areas requires substantially higher pressure than push-
ing out larger areas. The reason for this is that the force available to
push out a compliant area is the amount of pressure times the size of
the area. FormFab compensates for this by applying a factor depend-
ing on the radius of the compliant area.

FormFab keeps track of the number of increments and decrements
sent to the pneumatic regulation unit. This allows it to switch the
valve from vacuum to pressure and back at the right moment and to
neutralize the air chamber to zero bar, when needed.

5.1.5 Conclusion

By decreasing the interaction unit to a single feature, such as the ex-
trusion amount of a circular area, we were able to demonstrate how
to move from turn-taking interfaces that allow exploring one option
at a time to direct manipulation interfaces that allow browsing the en-
tire space of options with a single interaction. Our system has several
limitations, such as that it cannot create sharp features and users only
have a limited amount of time to reshape the workpiece before it cools
down and gets stiff again. However, future work can reduce or even
eliminate these limitations: For instance, a shape display mounted
onto the robotic arm can serve as a dynamic stencil thereby produc-
ing a variety of shapes. In addition, by preheating the air inside the
chamber close to the compliance point of the material, we can keep
the workpiece warm, thereby speeding up the time it takes to make
an area on the workpiece compliant while also extending the time
users have to reshape the workpiece.
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DISCUSSION AND CONCLUSIONS

In this thesis, we argued that by repeating the evolution of the inter-
action model from personal computing, we will see the same benefits
for personal fabrication.

A\ feedback cycle time

Figure 107: Following the evolution of personal computing, we developed
systems that (a) fabricate objects quickly in one go, (b) provide physical
feedback after every editing step, and (c) allow users to change the shape
of an object in real-time.

Figure 107 illustrates how we explored interfaces for personal fabrica-
tion that follow the evolution of personal computing. (a) We started
with fabricating objects in one go and investigated how to tighten
the feedback-cycle on an object-level. We showed how our method
low-fidelity fabrication saves up to 9o% printing time while allow-
ing users to focus on different key aspects, such as modularity (faB-
rickator), shape (WirePrint), and function (Platener). (b) Next, we de-
creased the interaction unit to a single element of an object to explore
what it means to transition from systems that fabricate in one go
to turn-taking systems for personal fabrication. We showed two sys-
tems, constructable and LaserOrigami, that demonstrated how users
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can interactively create objects while receiving physical feedback after
every editing step. (c) Finally, by decreasing the interaction unit even
further to a single feature, we showed how to achieve real-time phys-
ical feedback, thereby moving from turn-taking interfaces towards
direct manipulation. We demonstrated how our system FormFab al-
lows users to create input to the system while immediately receiving
physical feedback.

6.1 LIMITATIONS OF DIRECT MANIPULATION INTERFACES

While direct manipulation systems for personal fabrication extend
the range of problems novice users can tackle, they are subject to
the same limitations as those for personal computing: While they are
useful for some design problems, they are less so for others. As Nor-
man et al. [39] point out, direct manipulation interfaces are limited to
operations that can be done on ’visible objects” and have "difficulties
handling variables” and ’distinguishing an individual element from a
representation of a set or class of elements’. Thus, design problems
that require more abstract thinking for which users have to sit down
with a piece of paper first and make a detailed plan ahead, are better
handled with traditional digital 3D editing. In addition, our systems
are inherently scale 1:1 and do not offer a way of inspecting a detail in
magnification, which limits users to projects that fit a particular scale.
The same way that saw and wood chisel cannot replace a detailed
design process, our systems cannot replace a complex 3D editing tool
for trained engineers.

6.2 TECHNICAL ADVANCEMENTS IN PERSONAL FABRICATION

For our research, we focused on the most common technologies avail-
able today: For 3D printing, we used printers that work by extrud-
ing plastic through a hot extruder nozzle and position it voxel-by-
voxel on a build plate (so called Fused-Deposition Modeling), such as
the PrintrBot, Kossel Mini, and MakerBot. For laser cutting, we used
COz2 laser cutters, which are the technology becoming available for
low-cost right now (e.g. Glowforge laser cutter).

Since improving fabrication technology itself is a topic that falls
into the realm of mechanical engineers and less into human-computer
interaction, we looked at how we can use technology today to explore
interaction paradigms that will become possible in the future when
fabrication actually gets faster. In the last years, we are rapidly ad-
vancing towards such a future: The recently introduced 3D printer
Carbon3D [19], for instance, speeds up fabrication by up to 200x.

In addition, while there is little data today that could prove a Moore’s
law for 3D printers, 3D systems executive Merrill Lynch stated in his
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2014 keynote that 3D printing speed for their products on average
has doubled every 24 months over the last ten years [52].

If such a trend should materialize, it is not far fetched to assume
that fabrication technology will be able to provide feedback even
for large high-resolution objects within seconds or event in real-time,
thereby enabling a future in which digital displays will be be replaced
with physical displays that transform virtual reality into actual phys-
ical reality.

63 FUTURE OUTLOOK: UPCOMING CHALLENGES

We conclude this dissertation by extrapolating the current evolution
into a future in which large numbers of people use the new technol-
ogy to create objects. We see two additional challenges on the horizon:
sustainability and intellectual property. We demonstrate one proto-
type each to show how novel interactive systems can help tackle the
challenge.

6.3.1 Sustainability: Patching Physical Objects

The current process with personal fabrication tools is that once an
object has been fabricated with a 3D printer, it cannot be changed
anymore. Any change requires printing a new version from scratch,
an unnecessary and wasteful process.

With Patching Physical Objects we propose a more sustainable ap-
proach: instead of re-printing the entire object from scratch, we sug-
gest patching the existing object. We built a system on top of a 3D
printer that accomplishes this (Figure 108).

changed

Figure 108: (a) computing which part changes, (b) patching the part with
mill and print head, (c) the patched object.
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To patch a physical object, users mount the existing object into the
3D printer, then load both the original and the modified 3D model
into our software, which in turn calculates the correct patch. After
identifying which parts to remove and what to add, our system lo-
cates the existing object in the printer using the system’s built-in 3D
scanner. After calibrating the orientation, a mill first removes the out-
dated geometry, then a print head prints the new geometry in place.
Since only a fraction of the entire object is refabricated, our approach
reduces material consumption and plastic waste (for our example ob-
jects by 82% and 93% respectively).

While our project tackles the sustainability problem on a per-object
level, we believe that one of the biggest sustainability problems in the
future will be the fabrication hardware itself: 3D printers appear to
be continuously undergoing a series of large technological advances,
which could motivate users to replace their devices frequently, as the
next device offers better printing resolution, more printable materials,
and faster printing times. Our concern is again inspired by personal
computing, which demonstrated that quick advances in hardware,
especially in the early days, continuously caused millions of users to
replace their hardware every couple of years [108]-resulting in major
environmental impact. For future work, we thus plan to focus on the
fabrication devices themselves and will examine if a more modular
approach will reduce the amount of waste.

6.3.2 Intellectual property: Scotty

Once an object is available as a digital 3D model, users can fabricate
it on their 3D printers for only the cost of the material, bypassing
the cost that normally pays for the designer’s work. A recent survey
found that 80% of top 3D designers don’t share their design for fear of
theft [4]. Thus, ensuring intellectual property might be the enabler to
close the content gap that is currently delaying the further adaption
of personal fabrication devices.

While several solutions have been proposed to ensure that an object
is only fabricated once when it is originally downloaded from a 3D
model database (secured streaming [41]), there is no solution for en-
suring copyright in cases where the object is already fabricated, but
needs to be transferred to a remote location.

Consider the case of reselling a used object via an online auction
side, such as ebay. Today, with electronic payment, the seller can re-
ceive the money from the buyer instantly, but the buyer still has to
wait days or weeks for the object to arrive via snail mail. In the future,
the seller might simply insert the object into a personal fabrication de-
vice and transmit it to the buyer’s device. Faster fabrication will allow
this process to be completed within minutes, maybe even seconds.
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With Scotty (Figure 109), we have developed an appliance that al-
lows users to send objects to distant locations while maintaining copy-
right. For the object transfer to not interfere with intellectual property,
i.e. to keep the object unique and to not produce illegal copies in the
process, the object needs to disappear at the sender location and reap-
pear at the receiver location. Scotty achieves this by (1) destroying the
original during scanning by shaving off one layer at a time with the
built-in milling machine. Each layer is captured with the built-in cam-
era. (2) During transmission, Scotty prevents men-in-the-middle from
fabricating a copy of the object by encrypting the object using the re-
ceiver’s public key. (3) Finally, during re-fabrication, Scotty prevents
the receiver from making multiple copies by maintaining an eternal
log of objects already fabricated.

==

Figure 109: The seller (front) has placed an object into his Scotty unit and is
now sending it to the buyer (back).

6.4 CONCLUSION

In this chapter, we extrapolated the current evolution into a future in
which large numbers of people use fabrication technology to create
objects. However, the transition to bringing this technology to non-
technical users will take time to complete: If we look back and con-
sider personal computing as a reference, it already took more than
a decade between the first demonstration of a personal computer by
Doug Engelbart in 1968 [29] and the first commercial system for ex-
pert users that implemented the concepts (Xerox Star 1980 [18]). The
transition to non-technical users, however, took another four decades
to complete as the first system that truly addressed non-technical
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users without any prior knowledge were the mobile touch devices
in the late 2000s, such as the iPhone [84].

The success of personal computing could certainly not be predicted
until decades after its inception, but we hope that by looking back at
its history and drawing a parallel to its success story, we were able to
make a strong case for the future of personal fabrication.
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