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Abstract EASEA is a framework designed to help non-

expert programmers to optimize their problems by evolu-

tionary computation. It allows to generate code targeted for

standard CPU architectures, GPGPU-equipped machines as

well as distributed memory clusters. In this paper, EASEA

is presented by its underlying algorithms and by some

example problems. Achievable speedups are also shown

onto different NVIDIA GPGPUs cards for different opti-

mization algorithm families.

Keywords Evolutionary computation � Evolution

strategy � Genetic algorithm � Genetic programming �
Memetic algorithm � CUDA � GPGPUs

1 Introduction

Artificial evolution algorithms raise great interest in their

ability to find solutions that are not necessarily optimal,

but adequate for complex problems. The power of these

algorithms depends on various factors, including the

available computing power. Increasing it is interesting, as it

would allow to explore the usually huge search spaces

more widely and deeply, for better results.

Recently, GPGPUs (general-purpose graphical process-

ing units) appeared on the processor market. These com-

puting units are former 3D rendering processors, now able

to handle generic computation. They are massively paral-

lel, containing hundreds of cores and optimized memory

for texture processing.

Owing to their instrinsic parallelism, loop structure and

predictability, evolutionary algorithms are good candidates

to be ported onto such an architecture. Indeed, lots of

works take this direction. However, the user has to be both

expert in evolutionary algorithms and GPGPU program-

ming to enjoy these benefits.

EASEA (EAsy Specification of Evolutionary Algo-

rithm) is a software platform dedicated to the implemen-

tation of evolutionary algorithms, that can now port

different types of evolutionary algorithms on GPGPUs and

clusters of (potentially heterogeneous) machines using an

island model. Typically, EASEA can be used to imple-

ment: Genetic Algorithm and Evolution Strategy, Memetic

and Genetic Programming algorithms.

In this paper, some implementations of standard evolu-

tionary algorithms on GPGPUs are presented, as well as

how the EASEA platform allows to specify and run those

evolutionary algorithms on one or several GPGPU cards

without worrying about GPGPU architectural specificities.

These approaches were tested and presented in different

papers (Krüger et al. 2010; Maitre et al. 2009a, b, 2010a).

The current paper summarizes these works and for the first

time presents the complete scheme.

Novelties include the algorithm that is used to distribute

the population over the hundreds of cores of GPGPUs,

evaluations on new GPGPU cards comparisons with older

cards and a short presentation of the island model
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implemented into EASEA. This software is available on

SourceForge or on the dedicated EASEA platform

website.1

The paper starts with the presentation of CUDA con-

cepts that will be used throughout the paper. Then, the

underlying principles that are presented have been used to

port evolutionary algorithms on GPGPU cards. Aftewards,

we present how EASEA allows the end user to specify and

execute any of those evolutionary algorithms on one or

several machines, using GPGPUs or not. Finally, a set of

problems is presented that contains artificial and real-world

problems.

2 Some hardware considerations

CUDA (Compute Unified Device Architecture) was the

first framework created by NVIDIA to perform generic

computations onto NVIDIA Graphic Processing Units.

Hence, CUDA can be considered as a low-level frame-

work, which guarantees satisfactory performance, due to a

medium level of abstraction, which is why it was chosen

over other solutions to implement EASEA. The main

drawback of this approach is probably the lack of porta-

bility between graphic card brands, imposed by the use of

this proprietary framework.

To start with, here are some useful notions about NVI-

DIA GPGPUs and CUDA, which will be used later in the

paper. A GPGPU is a processor containing a large number

of cores (typically several hundreds). These computing

units are grouped into Single Instruction Multiple Data

(SIMD) core bundles, which execute the same instruction

at the same time, applied to different data. In CUDA, these

units are called Multi-Processors (MP).

The number of cores of an MP depends on the GPGPU

version, but an MP still performs a single instruction the

same number of times. On older cards (before Fermi

architecture), an MP embeds eight cores, each of which

performs the same instructions four times in different

threads, before it receives the next one. Recent Fermi cards

actually have 32 cores that execute each instruction only

once. In both cases, an instruction is executed by 32 dif-

ferent threads, on possibly different data and such a group

of threads, which are executed at the same time, is called a

warp.

The GPGPU processor accesses its own memory, called

global memory. This memory space can be accessed by the

host processor by the means of the host memory, due to

direct memory access (DMA) transfers. In addition, each

MP embeds a few kilobytes of memory (16 or 48 KB,

depending on the card), that are only accessible by the MP

cores. This extremely fast memory is called shared mem-

ory, and replaces what should be a cache to access the

global memory.

Without cache, a memory access is very slow (in the

order of several hundreds of cycles) and due to its limited

size, shared memory cannot always compensate for the

lack of cache. A second mechanism complementing the

shared memory is a hardware thread scheduling mecha-

nism. It is comparable to the Intel HyperThreading mech-

anism that can be found on Pentium IV or Core i7, but at a

much higher level. These units switch frozen warps, for

example on memory reads, with other warps, which are

ready for execution. Scheduling units can choose among a

set of w warps (w = 24 or 32), which can come from four

different blocks of threads per MP. The blocks are groups

of threads that are alloted to one MP, e.g. the minimal pool

of threads to schedule. The size of this scheduling pool can

explain why GPGPUs are not efficient with only a few

threads, as shown in (Maitre et al. 2009a, b).

The structure of the cores and the availability of hard-

ware scheduling units give GPGPUs a SPMD (Single

Program Multiple Data)/SIMD structure, as a warp among

w runs in parallel on each multi-processor. Indeed, the

threads in a warp must necessarily execute the same

instruction, because they are executed by the cores of the

same MP at the same time. However, each warp can exe-

cute a different instruction without causing any divergence

among the cores, because only one warp is executed at a

time. In addition, the MPs can execute different instruc-

tions on their respective cores at the same time.

Therefore, the complex architecture of GPGPUs means

that they are not purely SIMD. It is possible to execute

different codes at the same time (with restrictions) once the

architecture is well understood.

One last detail worth to be noted is the availability of

two units that compute trigonometric function approxima-

tions per MP. These units are inherited from the original

use of GPGPUs, which is 3D rendering. They allow fast

approximation of heavy computation functions, such as

sine, cosine, etc, and are called special function unit, or

SFU.

3 Implementation of evolutionary algorithms

on GPGPUs

There are many different evolutionary algorithms. In Collet

and Schoenauer (2003), De Jong (2008), the authors pro-

pose a unified view of these variants by highlighting the

common principles shared by each approach. Differences

are sometimes formal, as between evolution strategies (ES)

and genetic algorithms (GA), but sometimes deeper, as

between GAs and genetic programming (GP). Therefore, it1 http://www.lsiit.u-strasbg.fr/easea
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was decided to use a common structure for the ES and the

GA, but to implement a different algorithm for GP.

In both cases, it was chosen to parallelize the evaluation

step only, because this phase is considered to be the most

time consuming in the whole algorithm. It means that the

parallel and sequential versions of an algorithm can be

completely identical by keeping the rest of the algorithm

identical.

This idea holds for algorithms that use complex and

costly evaluation function. It does not fit in the case of

algorithms with a light weight evaluation function, where

the evaluation time is shorter than the transfer time of an

individual onto the GPGPU memory. However, the need to

parallelize this kind of algorithm is also to question.

An counter example could be multi-objective algo-

rithms. Indeed, determining the individuals ranking is an

expensive function O(nm2), where n is the population size,

m the number of objectives for the main multi-objective

algorithms (Zitzler et al. 2002; Deb et al. 2002). Parallel-

ization of the evaluation function remains attractive,

especially if the ranking phase is also executed on GPGPU

(Wong 2009) or if one is using an algorithm of lower

complexity (Sharma and Collet 2010a). Both ideas can also

be combined (Sharma and Collet 2010b).

3.1 Evolution strategies and genetic algorithms

Evolutionary algorithms are greedy in computing power, by

nature, as they attempt to find good solutions by evaluating

hundreds of individuals over hundreds of generations.

However, computing power is mainly consumed by the

evaluation function, as the evolutionary part of the algorithm

is usually relatively lightweight and executed only once

every generation, whereas the evaluation function is run for

each individual evaluation, for every generation.

EASEA allows to use GPGPUs for ES and GA, due to

the algorithm presented in this section.

3.1.1 Related works

Various attempts at porting evolutionary algorithms onto

GPGPU have been made. All these implementations were

done early in the maturity cycle of these cards (Li et al.

2007; Fok et al. 2007; Yu et al. 2005). Indeed, these

implementations use 3D programming paradigms, by the

means of an evolutionary algorithm coded into a shader.

These solutions were also trying to port a full algorithm

onto the card, which generates a complex code, written

using graphical programming languages. These constraints

result in disappointing performances, although it has to

be noted that the tests were performed on old cards.

Their systems still possess the advantage of being

portable between different types of cards (from different

manufacturers), relying on standard 3D programming

(shader programming language). To port the algorithms

using these paradigms, the evolutionary algorithms are

modified to satisfy programming constraints. The com-

parison between these algorithms and more standard ones

becomes thus difficult. The last point is that these imple-

mentations are not publicly available and are understood

only by 3D programming specialists.

3.1.2 EASEA implementation

For the EASEA platform, it was decided to use GPUs for

population evaluations only. This choice is based on three

main considerations:

1. porting the evaluation step only results in a simpler

and more comparable code than porting the whole

algorithm,

2. the evolutionary engine is considered to be very fast to

execute, compared to population evaluation,

3. keeping the evolutionary engine on the host machine

allows to access individuals in the GPU in a read-only

manner: the new population needs to be transferred to

the GPU at each generation, but only fitness values

need to be copied back.

The population needs to be distributed into blocks, in order

to be assigned to multi-processors on the card. This step is

important, as it ensures a good load balancing on each

GPGPU multi-processor and an efficient scheduling.

However, this distribution needs to be compatible with

hardware constraints, that is, every block should not use

more registers than are available on an MP. The algorithm

implemented in EASEA assigns to a block the maximum

number of threads allowed per MP, considering both

register and scheduling limitations. This ensures that the

size of the thread pool to be scheduled is maximal.

The method used to distribute the population for eval-

uation over every core in every MP is described in Algo-

rithm 1.

Ideally, the number of blocks should be greater than or

equal to M (number of MPs). Then, the minimum number
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of threads per block is w (the minimum number of SIMD

threads), or the thread limit (e, s) that is given by the maximum

scheduling capacity (s) or the number of tasks that an MP can

execute (e). The last limit is related to the task complexity

(number of registers used by a thread and the number of

available registers per MP). As the number of threads that are

really executed is a multiple of w, the first multiple of w which

is greater than this minimum is taken.

When a population of children is ready to be evaluated,

it is copied in the GPGPU card memory. All the individuals

are evaluated with the same call to the GPU evaluation

function and results (fitnesses) are sent back to the host

CPU, which contains the original individuals and manages

the populations.

In the host memory, an EA population is mainly a sparse

collection of objects representing individuals. An individ-

ual is composed of a genome and other fields, such as a

fitness value and an ‘‘already evaluated’’ boolean variable.

To evaluate an individual, only the genome is needed. This

implementation groups the individuals in a contiguous

buffer, which allows to transfer everything needed for

evaluation in one single DMA transfer, instead of one

transfer per individual. This allows to reduce overhead.

3.1.3 Evaluation step

The evaluation phase of the population on the GPGPU uses

one thread per individual. This guarantees the independence

of the evaluation and provides a number of tasks equal to the

number of children produced per generation. Furthermore,

in the general case, the exact same function is applied to

every individual, which matches the SIMD model well.

The implementation presented here uses only the

GPGPU global memory. This is justified because in the

general case, it is not possible to guarantee that all the data

necessary to evaluate an individual would fit in the small

shared memory (even less all data needed to evaluate a

block of individuals). Furthermore, using the shared

memory accelerates execution only if the data reuse are

important, otherwise the gain provided by the access speed

would be wasted by the time spent in transferring the data

to the shared memory, as it cannot be directly accessed

from the host CPU. A two-step copy is necessary to

transfer data from CPU memory to the global GPGPU

memory and only then can it be copied to the shared

memory. In special cases, this mechanism can be profit-

able, but as EASEA is designed to do generic evolutionary

algorithms, shared memory is left unused.

3.2 Genetic programming

The evaluation of an individual in genetic programming is

different. Indeed, where in GAs or ESs, the same

evaluation function is used on different data, in GP, dif-

ferent evaluation functions (individuals) are evaluated on

the same data (the learning set). If the same mechanism as

the one described above was used, many divergences

between SIMD cores would be observed, as the nodes of

two different individuals are very likely to be different.

However, there is a solution to use GPGPUs: it is possible

to evaluate one single individual in SIMD parallelism on

the different values of the training set.

3.2.1 Related works

Several attempts have already been made to port GP

algorithms onto GPGPU cards.

To our knowledge, the first work of this kind was pub-

lished in 2007 by Chitty (2007). This implementation

evaluates a population of GP-compiled individuals. This

method is implemented using the cg (C for Graphics)

programming language. The author compares the perfor-

mance of his algorithm onto an NVIDIA 6400GO card

versus an Intel 1.7 GHz processor. On a first linear

regression problem with 400 training cases, the imple-

mentation gets a speedup of 109 and on a second problem,

the 11-way multiplexer with about 100,000 cases of fitness,

a speedup of 309 .

Harding and Banzhaf published a first implementation

of interpreted GP in 2007 (Harding and Banzhaf 2007).

The authors use the GPGPU card to evaluate a single

individual on every core. Using .Net and MS Accelerator,

they apply their algorithm to a sextic regression problem.

They evaluate randomly created trees on different numbers

of learning cases. The obtained speedup for this test ranges

between 0.04 and more than 7,0009 . To achieve this high

speedup, a large tree and a high number of fitness cases are

needed (10k fitness cases and 65k nodes per individual).

This method requires a large number of training cases to

observe an interesting speedup and the very complex

implementation makes it difficult to reproduce.

Another implementation of interpreted GP is done by

Langdon and Banzhaf (2008). The authors use RapidMind

to do a complete implementation of a GP population

evaluation. Here, the population is dispatched on the cores

and the interpretor computes all the operators contained in

the function set for every node, picking up the interesting

result, and discarding the others: if the function set consists

of four operators (?, –, 9 , /), all individuals will execute

the four operators. If individual #1 needs to execute a ?, it

will pick up the result of the ? operator and discard the

other results. This is equivalent to assuming the worst

divergence case for each node and to using the GPGPU

card as a fully SIMD processor (which it is not). For a

function set of five operators, the authors evaluate the loss

to be a factor 3, which is close to 5. By applying this
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algorithm to a real problem, they get a speedup of

129 with a 8800GTX card versus a 2.2 GHz AMD

processor.

Robilliard et al. (2008, 2009) present an implementation

using the CUDA environment. This latest implementation

tends to take into consideration the internal SPMD struc-

ture of NVIDIA cards, by conducting the evaluation of

several individuals over several fitness cases at the same

time. The authors apply their approach to the 11-way

multiplexer and the sextic regression with a learning set of

2,500 points. They obtain a speedup of 809 for the pop-

ulation evaluation step. These experiments are performed

on an NVIDIA 8800GTX compared with one core of an

Intel 2.6 GHz CPU. Using CUDA, the authors manage to

use an NVIDIA GPGPU card efficiently, but some hard-

ware tools are left unused, in particular the MP scheduling

capability.

3.2.2 EASEA implementation of GP

As with the implementation of Robilliard et al., the one

presented here uses individuals represented in a flat RPN

(Reverse Polish Notation). This avoids pointers and tree-

shaped individuals, allowing them to be transferred onto

the GPU card using a single copy. The lack of pointer

makes the representation more compact and access to the

operators/operands more straigthforward on the GPGPU

side.

The EASEA implementation uses an interpreter that

allows the evaluation of several individuals over several

training cases at the same time on the same MP. This

interpreter is described in more details in the next section.

There are different ways to handle a flat representation

in the other parts of the algorithm. The simplest is to use

trees as in Koza’s tree GP (Koza 1992) and to flatten the

trees before transferring them on the GPGPU. This solution

is used by Robilliard et al. (2008) which proves its feasi-

bility. This first method was chosen here for its simplicity

and its resemblance to standard genetic programming

algorithms.

However, there are other methods that would save

the flattening phase. In Langdon and Banzhaf (2008),

Robilliard et al. (2009), the authors directly use an RPN

representation in the evolutionary algorithm. Other models

of genetic programming algorithms use a flat representation

directly, such as PushGP, FIFTH and Linear GP (Spector

and Robinson 2002; Holladay et al. 2007; Brameier and

Banzhaf 2007).

3.2.3 Evaluation step

In genetic programming, the fitness of an individual is

generally a sum of errors obtained when comparing the

values produced by the individual with a training set. The

executions of individuals on these training cases are inde-

pendent tasks. Only the sum of errors for all training cases

requires a synchronization.

The implementation presented here is inspired from

Robilliard’s paper (Robilliard et al. 2008), with a differ-

ence, allowing to benefit from the hardware scheduling

capability to overlap memory latencies.

If one wants to maximise the use of the hardware

schedulers using the CUDA card in its full SIMD model, it

is necessary to load k/4 tasks per MP (because an MP can

load 4 different blocks as explained in 2), each task being

the evaluation of the same individual on a different fitness

case. Depending on the type of card used, k can be 768 or

1,024 on the current model. This is related to the number of

warps that can be scheduled (768 tasks = 24 Warps and

1,024 tasks = 32 Warps). Considering the MP as a

completly SIMD processor, it would be necessary to have

192 (768/4) or 256 (1,024/4) learning cases to maximize

SIMD parallelism using the hardware scheduling.

But the NVIDIA documentation (NVIDIA 2008) asserts

that a divergence in the execution path will result in a loss

of performance only if this divergence occurs within one

warp. Taking this into consideration allows to evaluate

different individuals into one MP if the different individ-

uals reside into different warps. Knowing that, it is possible

to maximize scheduling capability with only 32 fitness

cases by loading k/(32 9 4) individuals per MP, because

32 is the warp size. 32 is the minimal number of threads

that need to execute the same instruction at the same

moment, without causing any divergence.

Owing to the shared memory size limit, stacks are stored

into global memory. Nevertheless, the implementation

exhibits great speedups, using this high latency memory

instead of the shared memory. For example, on a GT200

hardware, such as a GTX295 card, it is possible to schedule

between 24 warps (k = 768). Without any register con-

straints, four blocks can be used on the same MP at the

same time.

With a single warp per block implementation and 32

fitness cases, only 128 threads can be scheduled, but with a

multi-individual implementation as is implemented in

EASEA, using 6 individuals per block, the hardware

scheduler is completely busy (6 Inds 9 32 fitcases 9 4

blocks = 768 tasks).

Small discussion on the number of test cases: the pre-

sented approach allows to maximize scheduling ability

with as few as 32 fitness cases, which none of the previ-

ously presented approaches could do. This is very impor-

tant for GP, where many real-world problems do not come

with many test cases (problems with less than 100 test

cases are common when each value comes from an

expensive experiment). Moreover, if 100 values are
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available, they are not all useable for the learning set

knowing that such problems with a small number of test

cases are prone to overfitting (GP will learn to match the

learning set rather than find a function that generalizes

well). Good practice involves dividing the test cases into at

least a learning set and a test set (to check for overfitting)

and even better, a third evaluation set, to evaluate the

obtained individuals on test cases that have not been

involved in finding the solution, as described in Gagné et al

(2006). Other methods are available, but if this three-set

methodology is used, the 100 test cases shrink into only 33

learning cases.

Then, below 32 test cases, one could argue that the

problem could be solved with other heuristics using more

assumptions than a generic stochastic method like genetic

programming.

3.3 Memetic algorithms

Memetic algorithms are also referred to as hybrid algo-

rithms. They couple a global search algorithm (e.g. an

evolutionary algorithm) with a local search algorithm that

rapidly optimizes created children in a possibly determin-

istic way.

Memetic algorithms can be implemented using two

different approaches that change the goal of the local

optimization: lamarckism(Ong and Keane 2004) and

baldwinism(Ackley and Littman 1992).

Lamarckism is an idea named after the French biologist

Jean-Baptiste Lamarck. Also known as soft inheritance or

heritability of acquired characteristics, it stipulates that an

organism can pass on characteristics that it acquired during

its lifetime to its offsprings.

In a lamarckian EA (which is a memetic algorithm),

after a child is created from genetic operators on its

parents, it is improved with a local search. The improved

child will replace the initial child, hence passing on

its improved characteristics/genome to the next genera-

tion.

The Baldwin effect refers to a theory presented in a

book entitled A New Factor in Evolution written by James

Mark Baldwin. According to that theory, one should

evaluate an individual on its potential, and not only on its

genome, allowing for the development of intelligence, for

instance.

In a Baldwinian EA, an individual will, therefore, not be

evaluated according to its genes, but rather according to its

potential. This potential can be computed using the local

optimization function. The fitness of the individual will be

the fitness value found by the local search algorithm, but

the genome of the individual will not be modified (this also

allows to fight against premature convergence of the pop-

ulation towards similar individuals).

3.3.1 Related works

In 2008, Wong et al. use a memetic algorithm on a stan-

dard graphics card in Wong and Wong (2006). The authors

get a speedup of more than 49.

Munawar et al. (2009) present an implementation of a

memetic algorithm using CUDA. The authors use this

implementation to solve the MAXSat problem. They obtain

a speedup of 259 on this specific implementation. But

none of these implementations is designed to be generic.

3.3.2 Implementation of a generic memetic algorithm

in EASEA

The implementation of the memetic algorithm on GPGPU

is based on the standard algorithm with parallel evaluation

on GPGPU presented in Sect. 1. The standard algorithm

has been altered in a way as to include a local optimization

function as well as the few necessary parameters, such as

the number of search iteration the local optimization

function will have to perform.

For the population to be locally optimized on GPGPU, it

first needs to be transferred from CPU to GPGPU memory.

3.3.3 Evaluation step

Then, to be able to perform the local optimization without

needing to change the genome of the original individuals,

the population is uploaded onto the card twice. The local

search algorithm works on the second buffer, by optimizing

an individual copied from the original population. At the

end of the local search on the GPU, the results are brought

back to the CPU memory space. For a baldwinian EA, only

the fitness values are copied back, as for a standard EA. In

the case of a lamarckian EA, the optimized children pop-

ulation also needs to be transferred back to the CPU

memory space to create the next generation.

3.4 Island model

The island model is a well known way to parallelize evo-

lutionary algorithms (Alba and Tomassini 2002). It allows

to obtain very interesting speedup (sometimes supra-lin-

ear), while being simple to implement. For instance, on a

cluster of computers, every node maintains a subpopula-

tion, which can be seen as an island. A migration mecha-

nism is added and allows to periodically export some

individuals to other nodes.

The island model thus allows to parallelize an evolu-

tionary algorithm on a distributed memory machine.

Exchanges between nodes are limited to the migration of

individuals during the execution and do not put too much

pressure on the communication network.
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Because EASEA can automatically parallelize an evo-

lutionary algorithm in an efficient way on GPGPU cards,

adding the possibility to run an island model allows to

exploit a set of machines containing GPU cards, such as a

cluster of GPGPUs.

As described below, the implementation was designed to

be totally asynchronous, which allows to use different

algorithms on different machines, and yet have them

exchange individuals, if they share the same genome. In

fact, it is also possible to interconnect different platforms

as EASEA can produce code for machines with or without

one or several GPGPU cards.

As long as the different machines are using the same

representation for the individuals, it is possible to create a

cluster of heterogeneous machines, and even link several

clusters together for more computing power.

In our University, a classroom with 20 machines each

hosting a 1 Teraflop nVidia GTX275 pre-Fermi card is reg-

ularly used (during nights and week-ends) as a 5,000 cores 20

Teraflops cluster of machines, to which some machines of the

laboratory with Fermi-technology Tesla cards and GTX480

cards are added for even more power, yielding all in all around

30 Teraflops, for around 8,000 cores.

Then, EASEA has been run on a 500,000 cores Petaflop

machine with no observed scaling problems.

3.4.1 Implementation

EASEA implements the island model in a very flexible

manner, as it uses UDP-based asynchronous communica-

tion, which allows a loose coupling between nodes. At the

beginning of every generation, a node sends some indi-

viduals to other nodes depending on a probability set by the

user (for a 24 h run, good results have been obtained by

sending a round of individuals roughly every 5 s, i.e. with a

probability of 0.01 per generation if it takes 5 s to run 100

generations).

Sent individuals are duplicated from the population.

They are selected using usual EA selectors such as: the best

individual, an individual selected using an n-ary tourna-

ment, a fitness proportionate selection (roulette-wheel), etc.

It is possible to send several individuals to one or more

nodes selected at random in a list of IP addresses given to

the host in a file.

It is possible to not include all the machines in the IP

list, meaning that several island models can be imple-

mented within the same run.

Typically, a good setup consists in having the cluster of

20 machines find good individuals, with an algorithm set

towards exploration and a migration scheme that does not

always send the best individual of the population to pre-

serve diversity. These 20 machines also include in their IP

list the IP numbers of three other machines that host

respectively one 480GTX card, two 480GTX cards and two

Tesla C2050 cards that also periodically receive individu-

als from the cluster.

However, these three machines only have the two other

fast machines in their IP list plus another slow one to save

the best individuals, and their migration scheme always

includes the best individual of their population for maximal

exploitation of potentially good solutions that are sent to

them by the cluster. Periodically, when their population has

converged, one machine sends to the others an individual

with a fitness equal to -1, which causes all three machines

to restart with random individuals. The 20 machines of the

cluster are not included in their IP list, otherwise their

populations would be ‘‘polluted’’ by extremely good indi-

viduals found by the three exploitation machines, which

would favour premature convergence.

A fourth machine with no GPU is included in the IP list

of the three fast machines. This very slow machine also

runs a genetic algorithm with however no hope of finding

any good results. It does not restart when it receives an

individual of fitness -1 (that it simply discards). Its pur-

pose is only to collect the best individuals that it receives

from the three fast exploitation machines. This machine

has no IP list to send individuals to, so it keeps its good

individuals for itself.

The distant Petaflop machine has the IP number of this

slow local machine in its list of IPs, so whenever some time

is alloted to the algorithm on the Petaflop machine, the best

individuals automatically get sent to our laboratory.

All this is possible because communication takes place

in non-connected UDP mode, with no synchronizations

whatsoever. It is, therefore, also possible to lose messages,

but this is a stochastic algorithm after all, so message losses

can be considered as being part of the algorithm (and could

be seen as a scheme to prevent premature convergence).

4 EASEA

The EASEA platform was initially designed to assist users

in the creation of evolutionary algorithms (Collet et al.

2000). It is designed to produce an evolutionary algorithm

from a problem description. This description is written in a

C-like language that contains code for the genetic operators

(crossover, mutation, initialization and evaluation) and the

genome structure. From these functions, written into an .ez

file, EASEA generates a complete evolutionary algorithm

with potential parallelization of evaluation over GPGPUs,

or over a cluster of heterogeneous machines, due to the

embedded island model discussed above.

The generated complete evolutionary algorithm is user-

readable. It can be used as-is, or could be used as a primer,

to be manually extended by an expert programmer.
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4.1 Genome

The first important point in the specification of an evolu-

tionary algorithm is the definition of the genome structure.

EASEA dedicates a specific section to this task. The user

defines the elements present in its genome as basic C types

and EASEA objects, which are defined from these same

basic C types. EASEA also handles 1D arrays in genome

definition and the use of pointers is possible as well. An

example of EA genome using pointer and user defined

class is given in code snippet 1 below. Implicitly, the

individual has a boolean validity field and a real fitness

field.

The underlying EASEA library also defines a type used

by genetic programming manipulation functions, the

GPNode. A tree GP individual will be composed of such

basic elements. An example of basic GP genome definition

is given in code snippet 1.

EASEA automatically generates functions for manipu-

lating individuals based on their structure. These functions

are a deep copy of an individual, a deep equality test of two

individuals, creation, deep deletion, serialization and des-

erialization. The ‘‘deep’’ copy, equality and deletion

operators are intended to manipulate recursive structures,

such as trees (for GP) or linked lists. Copy and deletion are

applied to all elements of the tree. For algorithms using

GPGPUs, a transfer function of an individual is also gen-

erated. Yet, pointers are not supported in this particular

case, except for genetic programming, where the individual

is flattened as explained in Sect. 3.2.2.

Finally, a display function of an individual is also cre-

ated automatically, but can be overridden by the user.

4.2 Initialization

Once the structure of the genome is defined, it becomes

possible to provide the initialization function. This function

is obviously called to fill the initial population. It is auto-

matically called for each individual.

As one can see in code snippet 2, the method

‘‘GenomeClass::Initialiser’’ uses the predefined Genome

keyword, which is used as an instance of the genome of the

individual to be initialised. EASEA defines a set of utility

macros, random(n,m) being one of them. The EASEA code

generator replaces this macro by a call to a MersenneTwister

random generator (Matsumoto and Nishimura 1998).

For genetic programming, the EASEA library imple-

ments the conventional construction methods inspired from

Koza’s (1992), as can be seen in code snippet 2.

John Koza defines two types of construction methods.

The first is called ‘‘Grow,’’ that selects the operator of a

node out of a function set. These functions can have an

arity of zero (terminal node) or non-zero (internal node). It

recursively builds the tree until its penultimate level. When

the maximum depth (max) is reached, the method selects

the operator from the terminal function set only. Thus, the

tree does not exceed the maximum depth but does not

necessarily reach it. The root tree cannot be a terminal node

(minimal depth cannot be 1).

A second defined method is called ‘‘Full.’’ It ensures

that the trees are complete, meaning that all the leaves

reach the maximum depth (max). This is ensured by

choosing the operators of a node in the function set until

the maximum depth is reached, in which case the node is

chosen among the terminals.

The method ‘‘Ramped Half and Half’’ builds half of the

population using the Grow method, and the other half using

the Full method. In each case, the maximum tree depth is
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increased from the minimum (INIT_TREE_DEPTH_MIN)

to the maximum size (INIT_TREE_DEPTH_MAX).

Using this method, the initial population contains indi-

viduals with various shapes and sizes.

4.3 Crossover and mutation

As for the initialization, EASEA provides three predefined

keywords: parent1, parent2 and child, that refer to

the two parents and the children to be created. By default,

child is a copy of parent1.

The mutation function expects the user to apply

mutations to the child’s genome that can be accessed

through the Genome predefined keyword. For statistic

reasons, the number of applied mutations should be

returned.

The crossover and mutation genetic operators are exe-

cuted on the host CPU, so no GPGPU limitations apply

here.

Examples of a crossover and mutation functions are

given in code snippets 3 and 3.

4.4 Evaluation method

The evaluation function is defined in EASEA as in code

snippet 4. This function takes an implicit argument, which

is again the Genome. The evaluation function must return

a real value, the individual fitness.

The evaluation function can contain the code of the

function, or can call other user-defined functions, as shown

in the snippet. No restrictions apply to the function if it is

designed to be executed on a CPU. However, if the eval-

uation function is intended to be run on a GPGPU card, the

code of this function must comply with the requirements of

such equipment.

These limitations depend on the version of the GPGPU

which is used. They were strong for the first nVidia cards

but they tend to reduce. The code which is now executable

approximately matches what can be used onto a standard

CPU.

For example, early versions were unable to call func-

tions. Calls in a code were inlined at compile time, which

obviously prevented recursive functions. This limitation is

part of those which have been removed on the latest cards

(Fermi generation). Similarly, dynamic allocations, which

were forbidden, are now allowed.

However, GPU code remains different from CPU code

on a few points. The card is an external computing accel-

erator which cannot access the main memory of the host

processor. This point prohibits access to global variables

and host machine devices.

Functions that participate to the individual fitness

computation will be compiled by a dedicated compiler

(nvcc) in order to be executed onto the GPGPU. It is,

therefore, essential to prefix these functions by the key-

words __host__ __device__ in the EASEA source file to

indicate that they need to be compiled for both the CPU

and the GPU, as shown in snippet 4. The keyword __host__ is

present to allow the same code to run onto a
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processor, when the algorithm is used on a machine with-

out GPGPU.

As explained in the previous section, the code executed

in the evaluation function is not necessarily suitable for

execution on GPGPU (read parallelizable). However, the

parallelism of evolutionary algorithms can compensate for

this lack if the evaluation function has a high enough ratio

computation/memory access. The parallel population fit-

ness computation is sufficient in this case to take advantage

of the power of GPGPU cards. The population size can

allow the scheduler to manage some of the memory

problems.

Evaluation in genetic programming is a special case.

Indeed, the population evaluation follows in all cases a

strict scheme which is the execution of an individual on the

whole training set. To allow this algorithm to be ported

on GPGPU, following the pattern described in Sect. 1,

EASEA defines several sections to make it more convenient.

Code snippet 4 shows an example of code using these EASEA

sections. Maitre et al (2010a, b) paper describes specifically

the use of these sections.

The first part allows the user to define the initialization

of the evaluation function. Typically this part can be used

to initialize the error variable. The second part is the body

of the evaluation loop. It is possible to use different

keywords like: ‘‘output’’ which is the expected value for

the current training cases and ‘‘EVOLVED_VALUE,’’

the value returned by the tree execution. The last part

is the end of the loop, where the user processes the result

and returns the evaluation value (e.g. the fitness of the

individual).

4.5 Utility sections

EASEA being designed to create custom evolutionary

algorithms, different utility sections allow to add steps

inside the classic pattern of an evolutionary algorithm.

Figure 1 shows the details of the optimization loop that

is implemented by EASEA. The black boxes are the utility

sections that allow to customize the algorithm. These boxes

take an implicit parameter, which is an object including the

algorithm itself. For instance, these sections allow to load

data, apply post-processing on the results and modify the

algorithm during the execution (change the mutation and

crossover probabilities, depending on the number of gen-

erations for instance, . . .).

4.6 Parameters

The end of an .ez file contains the classical evolutionary

algorithm parameters, as well as options specific to their

implementation into EASEA. This section allows the user

to set the default settings of the algorithm as in code

snippet 6. Many of these parameters can be modified on the

command line.

Some parametes are used for the island algorithm,

which are presented in code snippet 6. The first parameter

enables or disables the island model, the second gives the

path and name of a file containing IP addresses to which

individuals can be sent. The last parameter sets the

probability to send an individual to another node per

generation.

5 Experiments/applications

The same .ez source file can be compiled for CPU or for

parallelization on GPGPU cards, if the -cuda parameter is

used on the command line, which helps in comparing both

implementations. Three benchmarks will be used to show

the obtained speedups, before a real-world problem is

presented.
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5.1 Artificial problems

To demonstrate the ability to solve problems and to show

the kind of speedups that can be obtained using EASEA,

initial experiments were performed on well-known

benchmarks and such problems allow to observe the

behavior of an algorithm, as well as some specific char-

acteristics, as the settings and solutions are exactly known.

5.1.1 Weierstrass–Mandelbrot

To evaluate the ES/GA implementation, it was chosen to

optimise solutions of the Weierstrass–Mandelbrot function.

This function is defined as:

Wb;hðxÞ ¼
P1

i¼1 b�ih sinðbixÞ
with b [ 1 and 0\h\1

From the evolutionary algorithm point of view, the

function is difficult to optimize, because it has an

irregular fitness landscape, but this is not the point of the

experiment, which is to analyse the behaviour of the

parallelization over a GPU card. A variant is used here that

calculates an approximation of the infinite sum, by limiting

the number of iterations of the sum. Changing the number

of iterations allows to test the impact of having a short or

long evaluation function on the overhead induced by the

parallelization of the evaluation on a GPU card. A multi-

dimensional version is used to test the impact of the

genome size on transfer time over the GPU, so the

evaluation function finally is

Wb;hðxÞ ¼
Pn

j¼0

Piteration
i¼1 b�ih sinðbixjÞ

with b [ 1 and 0\h\1

These experiments were performed on a Linux machine

with an EASEA code. The same machine was used for

testing CPU and GPU versions. It is a Pentium IV 3.6 GHz

machine-based, equipped with a 8800GTX card (hardware

of the same generation). Different population sizes are

tested with an evaluation function with several complexi-

ties (iteration = 10, 70 or 120). For testing the influence

of population size, the dimension of the problem remains

the same(n = 10), even if the genome size artificially

increases.

This function is also used for its complexity. Indeed,

Fig. 2 shows the distribution of the execution time of the

algorithm on the CPU, for 10 generations.

Figure 3 shows that the population size must be large

enough to fully exploit the parallelism of a GPGPU card.

Below 2,000 individuals, the increase in computation time

comes from the sequential part of the algorithm on the

GPU. This can be seen because for 10 iterations (extremely

Fig. 1 Overview of the EASEA

optimization loop
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fast evaluation function) the slope is identical before and

after 2000.

On longer evaluations (70 and 120 iterations), no impact

is seen as the population increases up to 2,000, because the

card is not fully loaded yet. A larger population means

more evaluations, but since they are done in parallel, they

are done for free.

Beyond 3,000 individuals, the card is fully loaded. The

impact of evaluation time can be seen, for long evaluations

(70 and 120 iterations).

Between 2,000 and 2,500, the slope raises a lot, because

supposing that the card can deal with 2,048 evaluations in

parallel, 2,049 evaluations will take twice the time of 2,048

evaluations. In reality, there is no obvious step because the

complex hardware scheduling capacities of the card man-

age to smoothen the curve until it is fully loaded, which

happens beyond 3,000 individuals.

The curves become straight again as hardware sched-

uling manages to load the parallel card linearly with the

number of threads.

In Fig. 4, it is possible to see that even with a very fast

evaluation function (10 iterations), the GPU card becomes

faster than the CPU when there are more than 400 indi-

viduals for a small genome (10 floats = 40 bytes) and 650

individuals for a very large genome (1,000 floats =

4 Kbytes). The influence of the evaluation execution-time

on the slopes is negligible for the GPU because for such

population sizes, the card is not loaded yet, and the eval-

uation function is very limited in forms of computation, so

execution time is still virtually null. The slopes come from

the sequential management of the population on the CPU.

Transfer plus initiation of the computation on the GPU

takes 0.12 s.

The CPU slope is steeper because to the opposite of

GPU computation, one must add evaluation time on top of

population management.

Finally, several cards were pitted against a recent Intel

core i7 950 CPU, clocked at 3.07 GHz (cf. Fig. 5). Due to

Fig. 2 Time repartition for an ES/GA example taken from the Sect. 6

Fig. 3 Impact of population size and evaluation complexity on

execution time
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Algorithm 1 in Sect. 3.1.2, EASEA distributes the popu-

lation in a transparent way, according to the resources

available on the card. As with all experiments below,

speedups are compared to a sequential execution done on a

single processor of the CPU. At best, one can imagine that

a parallel version running on the CPU could yield a linear

speedup with respect to the number of processor cores.

The figure shows the work of the hardware scheduler as

the population size increases. The 8400GS card is a very

low-end card used for display, that is very cheap, for an

advertised computation power of 33 GFlops. It is inter-

esting to see that its eight cores yield a speedup of around

209 compared with one core of a latest generation Intel

core i7. Because it has eight cores only, the card is fully

loaded with a population of 512 individuals.

The next curve comes from the old 8800GTX card

released in November 2006 that was used to create Fig. 3.

The card hosts 128 cores and is supposed to yield 518

GFlops. The obtained speedup is around 909, which is

great, but disappointing, compared with the very cheap

eight cores 8400GS. The fact that it now needs around

4,096 individuals to attain its maximal speedup (rather than

slightly more than 2,000) suggests that the old 3.6 GHz

Pentium IV that was used in Fig. 3 was too slow to drive

the card.

Then comes a GTX275 card, released in April 2009, that

was the top of the pre-Fermi generation of single GPU

NVIDIA cards. It hosts 240 cores, with an advertised

computing power of 1 Teraflop. The maximum obtained

speedup factor is ‘‘only’’ about 1089, which is again a bit

disappointing because this card was supposed to be nearly

twice as fast as the 8800GTX.

Finally, the top curve comes from a GTX480, which is

the current top of the line Fermi generation card. It hosts

480 cores, i.e. twice as many as the GTX275 card, but

interestingly enough, its computing power is advertised to

be 1.344 TFlops, i.e. only 1.39 more powerful than the

GTX275. Indeed, the observed speedup is around 1329,

which is about 1.229 faster than the GTX275, but for

around 64k individuals.

The speedup obtained with EASEA on these cards is

clearly not proportional to the number of cores they con-

tains even though the clock speeds are roughly identical

between the GTX275 and the GTX480. The difference in

speedup is however in line with the advertised difference in

TFlops.

5.1.2 Memetic algorithm and Rosenbrock function

The experiments were performed on the Rosenbrock

function because it is very fast to compute. The idea was to

expose the incurred overheads as much as possible so as to

obtain the worst possible results and get a fair idea on the

advantages of parallelizing the optimisation on a GPGPU

card. Using an evaluation function that was much longer to

evaluate would have hidden away the inevitable overhead.

Here again, the purpose of the experiments was not to

test the efficiency of the local search algorithm, but rather

to measure the speedup that parallelizing the local search

would bring.

Rosenbrock’s function (Shang and Qiu 2006) can be

defined by the following equation :

f ðx1; . . .; xNÞ ¼
XN=2

i¼1

100ðx2
2i�1 � x2iÞ2 þ ðx2i�1 � 1Þ2

h i

where N represents the number of dimensions, and there-

fore the genome size.

Experiments have been performed on a GTX275 nVidia

card versus a 3.6 GHz Pentium IV under linux 2.6.27 32

bits.

Because GPGPU cards were not fitted with a random

number generator at the time of the experiments, a deter-

ministic local search algorithm was used. If a random

generator is necessary, pseudo-random generators have

been efficiently implemented on GPGPUs (Langdon 2008)

and other pseudo random generators are now available

through the recent CURAND library.

The local search algorithm used for the experiments

requires a specific step and a specific number of search

iterations. Until the maximum number of iterations is

reached, the algorithm adds the step value to the first

dimension of the individual, then evaluates the individual

and compares its fitness to the fitness of the best individual

to date. If the fitness improves, the individual replaces the

best one and one step is added to the same dimension until

the fitness stops improving, in which case the next

dimension is explored in the same way. If, after the first

attempt on one dimension, the fitness does not improve, the

algorithm starts looking in the opposite direction.

Once the algorithm has browsed through all the

dimensions, it goes back to the first dimension and repeats

the process again until the specified number of iterations

has been reached.

This algorithm is very crude, in that the step size is not

adaptive, for instance. But the aim of this study is not to

find the best local search algorithm that would fit all

problems, but to experiment a Lamarkian memetic algo-

rithm on a GPGPU card.

Other local search algorithms were tested during the

development process but no impact on speedup has been

detected. Therefore, all presented results use the simple

algorithm described above.

Finally, the memetic algorithm is a special case for

parallelization. Indeed, as one can see in Fig. 6, the time

needed to evaluate an individual does not represent the
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main part of the algorithm. Rosenbrock’s function is light-

weight to compute. Nevertheless, the parallelized part

being the evaluation and the local optimization, the code

ported onto the GPGPU is clearly predominant in terms of

computing time. Moreover, as explained in Sect. 3, the

optimization includes a call to the evaluation function in

each cycle, which can explain why the optimization part is

so much time consuming.

Figure 7 shows the obtained speedup for evaluation time

and population transfer time on the GPGPU versus only the

evaluation time on the Intel CPU, i.e. all this without the

evolutionary algorithm.

Maximum speedup reaches a plateau above 9120 for a

population size of 32K individuals and as few as 256

iterations of the local search function.

Maximum speedup is attained for 2,048 and more

individuals because under this population size, the cores of

the GPU card are not fully loaded.

A good speedup of 958 is obtained for 2,048 individ-

uals and 256 iterations, but it is important to remember that

this very fast benchmark function maximises the influence

of overhead. The surface seems to rise steeply still after-

wards, but this impression is given by the fact that the

scales are logarithmic. It requires 16K individuals to obtain

a 9 115 speedup, i.e. approximately only twice as much

speedup (over 958) for eight times the population size.

No explanation was found for the ‘‘pass’’ observed for

1,024 and 2,048 iterations above 8K individuals.

Because the power of GPU cards comes from their

parallel architecture, one must use large populations to

benefit from it.

Figure 8 shows the obtained speedup for the complete

memetic algorithm (and not evaluation time only) auto-

matically created by the EASEA language.

Maximum speedup reaches a plateau at around 991 for

a population size of 32K individuals and 32K iterations of

the local search function.

As above, speedup increases a lot up to 2,048 individ-

uals, because under this population size the cores of the

GPU card are not fully loaded.

A good speedup of 947 is obtained for 2,048 individ-

uals and 2,048 iterations. Much larger numbers are

required to overcome the overhead of the evolutionary

algorithm that runs on the CPU. Maximum speedup (995)

is obtained for 32K individuals and 16K iterations.

5.1.3 Symbolic regression

To test the parallel genetic programming implemented by

EASEA, it was decided to use a problem from Koza’s book

(1992) that is quite common in GP: symbolic regression.

To analyze the behavior of this implementation, different

tree and training set sizes were used.

Figure 9 shows the speedup achievable by the evalua-

tion function only, with the evaluation method described in

Sect. 1. The speedup is calculated for randomly generated

populations with different sizes. These tests were per-

formed on a Linux machine, equipped with an Intel Quad

core Q8200 and a GTX275 GPGPU card. The multi-indi-

viduals per MP evaluation method described in section

3.2.3 was used, four individuals being evaluated at the

same time on each MP.

As before, the evaluation phase is the predominant part

in the algorithm, as long as the number of learning cases is

sufficiently high. Figure 10 shows the distribution of

Fig. 6 Memetic algorithm time repartition on the artificial problem

of the section 5 for different number of iterations

Fig. 7 Speedup for evaluation ? transfer time only

Fig. 8 Speedup for the complete algorithm
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execution time with respect to the number of training cases,

in a symbolic regression algorithm using a population of

4,096 individuals over 10 generations.

A first point that can be seen from this figure is that the

speedups reach a plateau fairly quickly, with only 32 fitness

cases, confirming that scheduling is a real gain. Secondly,

in terms of speedup, the influence of tree size is much less

important than the fact that the number of fitness cases is

greater than 32.

Another interesting point is the influence of the function

set on the speedup. Indeed, two learning function sets are

listed in Table 1 that have different arithmetic intensities.

Using the set containing the trigonometric functions, the

computation / memory consumption ratio increases and the

speedup improves, as can be seen in Fig. 11. Furthermore,

with this set, it is possible to use SFUs, which allows to

compute approximate values of trigonometric operators

and to accelerate the calculation of the population evalu-

ation with less accuracy. For the low arithmetic intensity

function set, the speedup does not exceed 509, while it

reaches 2009 using FS2 and 2509 using the SFU.

Figure 12 shows the speedup achieved on the complete

algorithm on a symbolic regression problem. The goal

function being cos(2x), the learning function set used here

is the FS2 of Table 1. Even if the speedup is much greater

than 1 on the evaluation function only even with a small

number of training cases, it is to be noted that the speedup

of the complete algorithm is lower. Indeed, the data volume

is quite high here compared to the cost of the population

evaluation. For a large number of training cases, the

speedup becomes more attractive especially on a large

population, such population sizes being common in genetic

programming. This negative effect can also be attributed to

the cost of the tree flattening step, which is more easily

made beneficial in these extreme cases.

It is interesting to see that the obtained speedup is

greater for GP than for other EAs. This comes from the fact

that GP is very computation intensive, and parallelizing

evaluation of the same individual over different test cases

in SIMD mode is very efficient.

Fig. 9 Speedup factor with respect to the tree depth and the size of

the learning set for the evaluation function only

Fig. 10 Time repartition with respect to the number of learning cases

Table 1 Different learning function sets

Fig. 11 Influence of function set computational intensity
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Fig. 12 Speedup for symbolic regression with respect to the number

of fitness cases
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5.1.4 Conclusion on benchmark problems

The use of GPGPUs into EASEA reaches very interesting

speedups with minimal effort (compile with the -cuda option

on the command line). This achieves a real gain in the quality of

the solution when search time is a problem, even for very cheap

NVIDIA graphics cards. In addition, by providing speedups in

the hundreds, EASEA should allow the exploration of search

space still inaccessible to evolutionary algorithms.

Then, EASEA can parallelize over several GPU cards in one

machine, and, if even more computing power is needed,

EASEA provides an island model that can deal with potentially

heterogeneous machines with or without GPUs, assuming they

are accessible over the internet through their IP number.

It is still necessary to keep a few considerations in mind.

Speedups obtained with the EASEA parallelisation model

are interesting when the evaluation time taken by one

generation is important. GPGPU is an external host system

and communication between the systems must of course be

justified. For tasks with a high computation/memory con-

sumption ratio, using GPGPUs for evolutionary computa-

tion gives very interesting results.

5.2 Real-world problems: aircraft model regression

One of the main automation science principles is to

describe the evolution of any controlled system as a first-

order differential equation with respect to physical vari-

ables and control inputs. The number of physical variables

(called state variables) needed to describe such a system

can vary, as well as the number of control inputs.

Usually, the state variables cannot be directly measured and

the system outputs correspond to installed sensor measure-

ments. In such cases, state estimators (or observers) are used to

estimate the state variable values from the sensor outputs.

A system is called SISO (Single Input Single Output) when

its control and output vector contain only one element each.

Respectively, a system with multiple control variables and

multiple outputs is called MIMO (Multi Input Multi Output).

This means that only one differential equation can describe the

physical evolution of a SISO system, while several equations

are needed in the case of an MIMO system and such a system is

called a State Space Representation.

There are two types of State Space Representations:

Linear State Space Representation (which is represented by

matrix products) and Nonlinear State Space Representation

(which is represented by mathematical functions).

Most of the automation tools are designed to be used

with a linear representation. However, in the case of a

nonlinear system modelling, a linearization is performed

around the equilibrium point and the obtained linear form

allows the use of classical automation mathematical

operations.

Let us consider the state vector X:

xT ¼ ½x1x2x3. . .xn�

and the following control vector U:

uT ¼ ½u1u2u3. . .um�

the associated nonlinear state space representation is

_x1ðtÞ ¼ f1ðt; x1ðtÞ; . . .; xnðtÞ; u1ðtÞ; . . .; umðtÞÞ
_x2ðtÞ ¼ f2ðt; x1ðtÞ; . . .; xnðtÞ; u1ðtÞ; . . .; umðtÞÞ

. . .
_xnðtÞ ¼ fnðt; x1ðtÞ; . . .; xnðtÞ; u1ðtÞ; . . .; umðtÞÞ
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5.2.1 Aircraft nonlinear state space

In aeronautics control science, an aircraft can be described

as an MIMO nonlinear system.

The state variables vector was chosen to contain 14

elements and the control input vector to contain 4. All the

state variables are supposed to be known, due to the proper

application of an Extended Kalman Filter (EKF) dedicated

to navigation.

It is important to notice that an autopilot needs a theo-

retical state–space representation to perform adapted con-

trol laws and to determine the optimal actuator orders to be

sent to the platform system (the plane). As previously

mentioned, for each algorithm step, the nonlinear state–

space representation is linearized in real time, and classical

automation laws are applied (such as optimal control,

robust control).

The choice of the state vector is

xT ¼ ½V; a; b; p; q; r; q1; q2; q3; q4;N;E; h; T �;

where V is the airspeed, a the angle of attack, b the heeling

angle, p the x axis rotation rate, q the y axis rotation rate, r

the z axis rotation rate, q1q2q3q4 the attitude quaternions, N

the latitude, E the longitude, h the altitude, T the real thrust.

The choice of the control vector is uT ¼ ½Tcdedadr�;
where Tc is the commanded throttle, de the commanded

elevators, da the commanded ailerons, dr the commanded

rudders, as in Fig. 13.

Fig. 13 State and control variables of an airplane
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As described earlier, the nonlinear state–space repre-

sentation is _xðtÞ ¼ f ðt; xðtÞ; uðtÞÞ
And more precisely

_VðtÞ ¼ f1ðt;VðtÞ; aðtÞ; . . .; TðtÞ; TcðtÞ; . . .; drðtÞÞ
_aðtÞ ¼ f2ðt;VðtÞ; aðtÞ; . . .; TðtÞ; TcðtÞ; . . .; drðtÞÞ

. . .
_q1 ¼ f7ðt;VðtÞ; aðtÞ; . . .; TðtÞ; TcðtÞ; . . .; drðtÞÞ
_q2 ¼ f8ðt;VðtÞ; aðtÞ; . . .; TðtÞ; TcðtÞ; . . .; drðtÞÞ
_q3 ¼ f9ðt;VðtÞ; aðtÞ; . . .; TðtÞ; TcðtÞ; . . .; drðtÞÞ
_q4 ¼ f10ðt;VðtÞ; aðtÞ; . . .; TðtÞ; TcðtÞ; . . .; drðtÞÞ

. . .
_hðtÞ ¼ f13ðt;VðtÞ; aðtÞ; . . .; TðtÞ; TcðtÞ; . . .; drðtÞÞ
_TðtÞ ¼ f14ðt;VðtÞ; aðtÞ; . . .; TðtÞ; TcðtÞ; . . .; drðtÞÞ

8
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5.2.2 Aircraft model regression

As previously mentioned, an aircraft theoretic State-Space

representation is needed by the autopilot system. The deter-

mination of the system equations can be quite difficult and

specialized experts are often needed to perform this task.

Genetic programming could be used to compute all the

equations of the state–space system, by learning from

telemetry files containing data of a previously performed

flight. A telemetry file is a sequence of recorded points,

each of them describing the state space variables and inputs

of the plane.

In this paper, a small F3A airplane has been chosen through

its nonlinear state space representation. F3A are radio-con-

trolled aerobatic competition airplanes that can fly various

trajectories, without major structural constraints.

5.2.3 Considered functions

Usually, the attitude of an aircraft can be described in two

ways: Euler angles and Quaternions. The Euler angles are

intuitively easier to understand, because they represent

what is called: Roll (aircraft angle around x axis), Pitch

(aircraft angle around z axis) and Yaw (aircraft angle

around z axis). Quaternions are four variables which are

more often used in the navigation field, because they cover

the entire angles domain.

In the state–space system, an equation is dedicated to the

evolution of each quaternion. These equations have been

chosen to be regressed by genetic programming.

The Quaternion functions in the state–space system are

given by the following equations:

_q1 ¼ f7 ¼ 0:5ðq4p� q3qþ q2rÞ
_q2 ¼ f8 ¼ 0:5ðq3pþ q4q� q1rÞ

_q3 ¼ f9 ¼ 0:5ð�q2pþ q1qþ q4rÞ
_q4 ¼ f10 ¼ 0:5ð�q1p� q2q� q3rÞ

8
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A telemetry file, containing the necessary state variables as

well as the control variables, has been created through a

nonlinear state space system of a small F3A airplane per-

forming a simulated flight. The learning set contains 6,000

points, i.e. around 1 min of flight.

5.2.4 Experiments

An EASEA GP run has been done in order to regress each

equation on a GNU/Linux machine, equipped with an Intel

Core i7 CPU 920 and three NVIDIA GTX480 GPGPU

cards. The same machine has been used to compute CPU

and GPGPU algorithms, to calculate speedups. Figure 14

shows the obtained speedups using the parameters shown

in Table 2, using 1–3 GPGPU cards versus the Intel Core

i7 only. EASEA divides the population into bundles that

are sent to each GPGPU. A GPGPGU evaluates its part of

the population and results are collected by the CPU

whenever the evaluation phase is finished onto each

GPGPU. In this case, the time spent in the evolution engine

is negligible as compared to the evaluation time. Because

of the simple function set (which does not contain complex

functions such as sine, cosine, exponential, that are

approximated by SFUs in a very efficient way), the

speedup is lower than shown in previous section 8 for more

complex function sets. In the current experiment, the

terminal set is larger (ERC, 17 variables), i.e. the GPU

interpretor has to perform more memory accesses than the

one presented in the original paper, where the only variable

can be stored in a register by the optimizer. These draw-

backs, as well as the evolutionary process, can be held

responsible for the drop in speedup.

Speedup factors still remain satisfactory given the size

of the problem. A real run takes hours of computation on
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Fig. 14 Speedup obtained on the airplane problem with EASEA tree-

based GP implementation

Table 2 Parameter used to regress a part of the airplane model

Population size 40 960

Number of generation 250

Function set ?, -, *, /

Terminal set 9[1]...,9[17], ERC {0,1}

Learning set 6,000 values
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CPU, but just several minutes on GPU. It is very important,

because 14 different functions need to be found to solve the

complete problem.

To assess the four regression functions, the same series

of orders have been sent to the real state–space represen-

tation, originally used to create the telemetry file, and to the

state–space representation containing four evolved Qua-

ternion functions, taken at different generations. The plot-

ted curves are shown in Fig. 15.

Quaternion functions impact the plane trajectory in a

very strong manner, because they describe the attitude of

the aircraft which has important consequences on the

navigation equations, as an attitude matrix is used to

determine the direction and the length of the absolute air-

craft acceleration vector, in the inertial frame.

In this example, the last trajectory is so close, that it is

not possible to distinguish it from the trajectory obtained

with the original model. Other trajectories are given by the

best individuals of different generations showing that bad

individuals have a real influence on the model.

6 Conclusion

Multi-core architecture is becoming the new standard, due

to hardware (heat emission) constraints which limit CPU

frequency. Furthermore, many-core processors, such as

GPGPUs, are widespread nowadays. Highly parallel algo-

rithms can directly benefit from the full power of these

processors, which is the case of evolutionary computation.

In fact, evolutionary algorithms have an edge over other

paradigms, as they are not only intrinsically parallel, but

they follow the same flowchart as rendering algorithms,

where an identical algorithm is run over thousands of

pixels or vertices. This means that the hardware that is

developed for graphic video industry can directly be used

by evolutionary algorithms to optimize virtually any kind

of problems. This is quite unique, as the use of GPGPU

cards is currently restricted to small parallel parts of large

scientific programs. Further developments consist in port-

ing a complete algorithm on a GPGPU card, for even better

speedups.

Once this is done, EAs will be able to completely har-

ness the power of massively parallel systems, which will

give them a tremendous edge over other techniques that

may not parallelize as well.

Then, it is probable that the current algorithms that have

been designed in the late 1970s will need to be revisited, as

they were tuned for populations ranging between 100 and

1000 individuals (GP was an exception with John Koza,

who regularly used populations in the million).

The advent of massively parallel systems will put for-

ward the necessity to be able to deal with huge populations,

even for evolution strategies if users want to benefit from

the speedup that such systems offer.

Massively parallel evolutionary systems will allow to

tackle problems that are yet unreachable with standard

CPUs. Right now, our team can execute runs on a heter-

ogeneous cluster of 30 TeraFlops that has yielded inter-

esting results in chemistry. The time is near where the

computing power that was needed by Koza’s GP to rou-

tinely obtain human-competitive results is widely avail-

able, due to massively parallel systems.

The EASEA platform is a first step towards a general

use of massively parallel systems for evolutionary

computation.
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Esparcia Alcázar A, De Falco I, Della Cioppa A, Tarantino E

(eds) 11th European conference on genetic programming

(EuroGP), vol 4971. Springer, Berlin, pp 98–109

Robilliard D, Marion V, Fonlupt C (2009) High performance genetic

programming on GPU. In: Workshop on bio-inspired algorithms

for distributed systems. ACM, New York, pp 85–94

Shang YW, Qiu YH (2006) A note on the extended Rosenbrock

function. Evol Comput 14(1):119–126

Sharma D, Collet P (2010a) An archived-based stochastic ranking

evolutionary algorithm (ASREA) for multi-objective optimiza-

tion. In: GECCO ’10: Proceedings of the 12th annual conference

on genetic and evolutionary computation. ACM, New York,

pp 479–486

Sharma D, Collet P (2010b) Gpgpu-compatible archive based

stochastic ranking evolutionary algorithm (g-asrea) for multi-

objective optimization. In: Schaefer R, Cotta C, Kolodziej J,

Rudolph G (eds) PPSN (2). Lecture notes in computer science,

vol 6239. Springer, Berlin, pp 111–120

Spector L, Robinson A (2002) Genetic programming and autocon-

structive evolution with the push programming language. Genet

Program Evol Mach 3(1):7–40

Wong ML (2009) Parallel multi-objective evolutionary algorithms on

graphics processing units. In: GECCO ’09: proceedings of the

11th annual conference companion on genetic and evolutionary

computation conference. ACM, New York, pp 2515–2522

Wong ML, Wong TT (2006) Parallel hybrid genetic algorithms on

consumer-level graphics hardware. In: IEEE congress on evo-

lutionary computation (CEC). pp 2973–2980

Yu Q, Chen C, Pan Z (2005) Parallel genetic algorithms on

programmable graphics hardware. In: First international confer-

ence on natural computation (ICNC). LNCS, vol 3612. Springer,

Heidelberg, pp 1051–1059

Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the

strength pareto evolutionary algorithm for multiobjective opti-

mization. In: Giannakoglou K et al (eds) Evolutionary methods

for design, optimisation and control with application to industrial

problems (EUROGEN 2001). International Center for Numerical

Methods in Engineering (CIMNE), pp 95–100

EASEA: specification and execution of evolutionary algorithms on GPGPU

123


	EASEA: specification and execution of evolutionary algorithms on GPGPU
	Abstract
	Introduction
	Some hardware considerations
	Implementation of evolutionary algorithms on GPGPUs
	Evolution strategies and genetic algorithms
	Related works
	EASEA implementation
	Evaluation step

	Genetic programming
	Related works
	EASEA implementation of GP
	Evaluation step

	Memetic algorithms
	Related works
	Implementation of a generic memetic algorithm in EASEA
	Evaluation step

	Island model
	Implementation


	EASEA
	Genome
	Initialization
	Crossover and mutation
	Evaluation method
	Utility sections
	Parameters

	Experiments/applications
	Artificial problems
	Weierstrass--Mandelbrot
	Memetic algorithm and Rosenbrock function
	Symbolic regression
	Conclusion on benchmark problems

	Real-world problems: aircraft model regression
	Aircraft nonlinear state space
	Aircraft model regression
	Considered functions
	Experiments


	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


