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RÉSUMÉ

Les progrès technologiques et l’augmentation de la puissance de calcul ont récemment conduit
à l’émergence d’architectures logicielles complexes et à grande échelle. Les unités centrales
de traitement conventionnelles sont maintenant soutenues par des unités de co-traitement
pour accélérer différentes tâches. L’impact de ces améliorations peut être observé dans les
systèmes distribués, les microservices, les appareils IdO (internet of things ou IoT en anglais)
et les environnements infonuagiques qui sont devenus de plus en plus complexes à mesure
qu’ils grandissent en termes d’échelle et de fonctionnalités. Dans de tels systèmes, une
tâche simple engage de nombreux cœurs en parallèle, potentiellement sur plusieurs nœuds, et
une même opération peut être servie de différentes manières par différents cœurs et nœuds
physiques. De plus, plusieurs facteurs tels que leur distribution dans le réseau, l’utilisation de
différentes technologies, leur courte durée de vie, les bogues logiciels, les pannes matérielles et
les conflits de ressources rendent ces systèmes sujets à la montée de comportements anormaux.
Le haut degré de complexité et la distribution inhérente des petits services compliquent la
compréhension des performances de ces environnements. En outre, les outils de surveillance
et d’analyse des performances disponibles présentent de nombreuses lacunes.

Différents outils de traçage et de surveillance des systèmes monolithiques et des systèmes
distribués ont été explorés dans cette étude pour trouver un moyen d’extraire efficacement
les informations de toutes les unités à tous les niveaux. Le suivi du système d’exploitation
ou des applications utilisateur nécessite la capacité d’enregistrer chaque seconde des milliers
d’événements de bas niveaux, ce qui impose une surcharge au système susceptible d’affecter
les performances de l’application cible. Par conséquent, nous avons utilisé un outil de traçage
léger appelé Linux Trace Toolkit Next Generation (LTTng) qui fournit un progiciel (package
en anglais) de traçage à haut débit avec une faible surcharge pour le traçage corrélé du noyau
Linux, des applications et des bibliothèques. Cependant, sans outils de diagnostic automatisé,
les experts système doivent examiner une quantité massive de données de traçage de bas
niveau pour déterminer la cause d’un problème de performances, ce qui prend beaucoup de
temps et est fastidieux en pratique.

Dans cette thèse, divers aspects de la détection des anomalies de performance, y compris
l’architecture de l’environnement cible et le type de données d’entraînement, ont été étudiés,
et plusieurs approches ont été proposées pour réduire le temps de dépannage dans différents
environnements. Ces approches guident les développeurs pour découvrir les problèmes de
performances en mettant en évidence les parties inhabituelles des données de traçage. Les
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approches proposées fonctionnent en collectant des données de traçage, en extrayant les
données appropriées dans Trace Compass, et enfin en envoyant les données extraites au
module de détection.

Dans la première contribution de cette thèse, nous présentons une approche de détection
d’anomalies pour la surveillance pratique de processus s’exécutant sur un système afin de
détecter des vecteurs anormaux d’appels système. Les flux d’appels système sont divisés en
courtes séquences à l’aide d’une stratégie de fenêtre glissante. Contrairement aux études
précédentes, notre approche proposée considère la durée des appels système les plus impor-
tants comme faisant partie des vecteurs de caractéristiques. La durée d’un appel système
dans une fenêtre agit comme la fréquence pondérée de cet appel système. De plus, nous
utilisons une machine à vecteurs de support pour détecter les fenêtres anormales.

Notre deuxième contribution aborde le problème de la disponibilité des données étiquetées
en proposant des techniques d’apprentissage en fonction du volume de données étiquetées.
Une technique supervisée est introduite lorsqu’une grande quantité de données de forma-
tion étiquetées est disponible, alors qu’une technique non supervisée est préférée lorsque
les données étiquetées ne sont pas disponibles. De plus, nous proposons un nouveau modèle
d’apprentissage automatique semi-supervisé, qui bénéficie à la fois de techniques d’apprentissage
supervisé et non supervisé, lorsque seules quelques données étiquetées sont disponibles.

Enfin, dans la dernière contribution de cette thèse, nous proposons une méthode basée sur
le traitement des langues naturelles (natural language processing ou NLP en anglais) pour
détecter les anomalies de performance dans les environnements de microservices, en plus de
localiser les régressions entre les versions. La méthode proposée apprend une représenta-
tion des noms d’événements avec d’autres arguments pour remédier aux limitations d’autres
méthodes qui n’utilisent pas d’arguments d’événement. Il bénéficie également du traçage
distribué pour collecter des séquences d’événements qui se sont produits pendant les durées.
De plus, cette méthode ne nécessite aucune connaissance préalable, ce qui facilite la collecte
des données d’apprentissage.
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ABSTRACT

Advances in technology and computing power have led to the emergence of complex and
large-scale software architectures in recent years. The conventional central processing units
are now getting support from co-processing units to speed up different tasks. The result
of these improvements can be seen in distributed systems, Microservices, IoT devices, and
cloud environments that have become increasingly complex as they grow in both scale and
functionality. In such systems, a simple task involves many cores in parallel, possibly on
multiple nodes, and also, a single operation can be served in different ways by different cores
and physical nodes. Moreover, several factors, such as their distribution in the network, the
use of different technologies, their short life, software bugs, hardware failures, and resource
contentions, make these systems prone to the rise of anomalous system behaviors. The high
degree of complexity and inherent distribution of small services makes understanding the
performance of such environments challenging. Besides, available performance monitoring
and analysis tools have many shortcomings.

Different tools for tracing and monitoring monolithic systems and distributed systems have
been explored in this study to find a way to efficiently extract information from all units
at all levels. Tracing the OS or user applications needs the ability to record thousands
of low-level events per second, which imposes overhead to the system that may affect the
performance of the target application. Hence, we employed a lightweight tracing tool called
the Linux Trace Toolkit Next Generation (LTTng) that provides high throughput tracing
package with a low overhead for correlated tracing of the Linux kernel, applications, and
libraries. However, without an automated diagnostic tool, system experts have to examine
a massive amount of low-level tracing data to determine the cause of a performance issue,
which is really time-consuming and tedious in practice.

In this thesis, various aspects of performance anomaly detection, including the architecture
of the target environment and the type of training data, have been investigated, and multi-
ple approaches have been proposed to reduce troubleshooting time in different environments.
These approaches guide developers to discover performance issues by highlighting unusual
parts of the tracing data. The proposed approaches work by collecting tracing data, extract-
ing the appropriate data in Trace Compass, and finally sending the extracted data to the
detection module.

In the first contribution of this thesis, we present an anomaly detection approach for practical
monitoring of processes running on a system to detect anomalous vectors of system calls. The
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system calls streams are split into short sequences using a sliding window strategy. Unlike
previous studies, our proposed approach considers the duration of the most important system
calls as part of the feature vectors. The duration of a system call in a window acts like the
weighted frequency of that system call. In addition, we employ a Support Vector Machine
to detect anomalous windows.

Our second contribution addresses the problem of the availability of labelled data by propos-
ing learning techniques depending on the volume of labelled data. A supervised technique is
introduced for situations where a large amount of labelled training data is available, whereas
an unsupervised technique is preferred when labelled data is not available. Furthermore, we
propose a novel semi-supervised machine learning model that benefits from both supervised
and unsupervised learning techniques when only a few labelled data are available.

Finally, in the last contribution of this thesis, we propose an NLP-based method to detect
performance anomalies in microservice environments, besides locating release-over-release
regressions. The proposed method learns a representation of the event names along with
other arguments to remedy the limitations of other methods that do not use event arguments.
It also benefits from distributed tracing to collect sequences of events that happened during
spans. Moreover, this method needs no prior knowledge, which facilitates the collection of
training data.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

In recent years, the computing infrastructure has significantly evolved, whereas complex
systems have facilitated many complicated and large-scale tasks. For example, functional
co-processing units accommodate conventional processing units to speed up particular tasks
such as virtualization or complex machine learning computations. As a result of these ad-
vances, more sophisticated software architectures such as microservices have been launched,
where small interconnected services present a complex service such as a web application.
Consequently, a simple operation can involve multiple parallel cores being served in a few
seconds or milliseconds.

These improvements in hardware and software have increased user expectations. Even when
some parts of the system are brought down for maintenance, the users usually do not notice it.
Hence, any performance fluctuations or increased latency may lead to user dissatisfaction and
revenue losses. However, although considerable efforts have been made to ensure performance,
the complexity and large scale of new systems make them fragile and prone to performance
anomalies and failures. Different reasons such as misconfigurations, software bugs, hardware
faults, network disconnection, aging phenomena of the systems, and extreme load injected
by other applications into the system, may degrade the performance of an application or
particular service.

Therefore, monitoring and analyzing the performance of programs to find any performance
anomaly or degradation is extremely important, and any delay in identifying performance
problems and troubleshooting can significantly increase the cost of fixing them. In addition,
applications monitoring becomes more challenging by increasing the degree of automation
and distribution.

Anomaly detection is vital in such a context because anomalies in data may translate to es-
sential and critical information in many application domains [4]. In the data analysis context,
anomalies are data that do not conform to the well-defined notation of normal behaviour [5].
Anomalies might appear in the data for various reasons, which are all challenging for the
analyst to reveal. It should be noted that anomaly detection is different from noise detection
and noise elimination, which refer to unwanted noise in the data. Besides, we should distin-
guish between anomaly detection and novelty detection, which is useful in identifying new
unobserved patterns.
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The main focus of this thesis is to promote the analysis of the performance of monolithic
and microservice-based applications and enhance the detection of anomalous behaviors and
analysis of the root causes of detected anomalies inside these applications. This includes
the development of several algorithms to process the large volume of tracing data by taking
advantage of machine learning technologies and open-source tools such as LTTng and Trace
Compass.

The insights provided by our research are intended to help companies detect and avoid
different kinds of anomalies. The system’s behavior is defined by the sequence of events
(such as system calls or states) obtained by open source tools. In this way, an extensive
amount of information is accessible from the CPU, Memory, I/O, and network. Experiments
indicate that the definition of normal behavior is stable during standard UNIX programs [6].
Notably, the horizon of this work is the development of an anomaly detection framework with
negligible overhead and a minimum human intervention that can be applied in a variety of
environments and ultimately convert tracing information into meaningful visualizations.

1.2 Research Questions

Given the issues presented earlier and through a feasibility analysis of different methods, five
basic research questions are identified that have not been addressed in depth in this area:

- How to identify deviations in the performance of the system? Which deviations should
be considered as anomalies?

- How to develop an anomaly detection method that is applicable to different environ-
ments and does not impose excessive overhead on the system?

- What are the best methods and tools for collecting information about a system? In
order to characterize an application’s execution status, low-level information is required.

- What are the most appropriate parameters and features for detecting anomalies?

- Which machine learning methods can be used in performance anomaly detection?

1.3 Research Objectives

Based on recent studies, there is a need to elaborate more automated techniques for per-
formance anomaly detection and root cause analysis. Several anomaly detection techniques
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using supervised and unsupervised machine learning methods have been proposed in this the-
sis to obtain a highly accurate view of the performance anomalies while keeping the tracing
overhead almost negligible.

The major aim of this research is to investigate how machine learning techniques can be
adapted and applied to improve automated performance anomaly detection in execution
flow. We refined our objective into four specific objectives as follow:

◦ To review the present methods and trends in this research area and identify open
challenges.

◦ To study the behavior of systems using tracing data and machine learning.

◦ To develop a new algorithm for automatic performance anomaly detection with limited
human intervention.

◦ To develop, implement and evaluate a framework that can automatically detect per-
formance anomalies, and investigate the root cause of the anomalies in microservice
environments.

1.4 Contributions

In line with the research objectives mentioned above, this dissertation offers the following
main contributions in the field of performance anomaly detection:

◦ It presents a new approach in the field of anomaly detection, which relies on LTTng
and Trace Compass. LTTng imposes a small overhead on the system and makes this
approach usable in various environments, including microservices or monolithic appli-
cations.

◦ It proposes enhanced supervised, unsupervised, and semi-supervised techniques to find
abnormal behaviors during the streams of system calls.

◦ It presents a new framework to find abnormal behaviors in microservice environments
by employing different parameters of the events and NLP.

◦ It provides several meaningful visualizations in Trace Compass, such as a time chart,
which allows the developers to visually analyze the abnormal parts of the execution
flow.
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1.5 Outline

This thesis is composed of eight chapters. Following this introduction, Chapter 2 provides
some background information and a summary of available methods for performance analysis,
feature extraction, machine learning, and anomaly detection. Chapter 3 presents our general
methodology and describes the process of identifying problems, applicable cases, milestones,
and final results in terms of articles. In the following, three research articles are presented in
Chapters 4, 5, and 6.

Chapter 4 presents an anomaly detection approach for practical monitoring of processes
running on a system to detect anomalous vectors of system calls. Our proposed approach
computes the execution time of system calls in addition to the frequency of each individual
call in a window. Finally, a multi-class support vector machine is applied to evaluate the
system’s performance and detect anomalous sequences.

In Chapter 5, we propose an anomaly detection framework that reduces troubleshooting
time, besides guiding developers to discover performance problems by highlighting anomalous
parts in trace data. This chapter addresses the problem of the availability of labelled data
by proposing several learning techniques. A supervised method is introduced when large
amounts of labelled training data are available. �An unsupervised method has also been
offered to be used in the absence of labelled data. Moreover, we propose a novel semi-
supervised machine learning model within the proposed framework that benefits from both
supervised and unsupervised learning techniques when only a few labelled data are available.

Chapter 6 proposes a natural language processing (NLP) based approach to detect perfor-
mance anomalies besides locating release-over-release regressions in microservice environ-
ments. This approach benefits from distributed tracing data to collect sequences of events
that happened during spans. Furthermore, this approach needs no prior knowledge, which
facilitates the collection of training data.

Chapter 7 summarizes the findings, limitations, and main recommendations for future work.
Finally, concluding remarks regarding this research are provided in chapter 8.

1.6 Publications

The chapters mentioned above are based on the published and submitted articles introduced
in this section. The articles are as follows:

1. Iman Kohyarnejadfard, Daniel Aloise, Seyed Vahid Azhari, and Michel Dagenais. "Anomaly
detection in microservice environments using distributed tracing data analysis and
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NLP.", Submitted in Journal of Cloud Computing.

2. Iman Kohyarnejadfard, Daniel Aloise, Michel R. Dagenais and Mahsa Shakeri. "A
framework for detecting system performance anomalies using tracing data analysis and
Machine Learning.", Entropy 23, no. 8 (2021): 1011.

3. Iman Kohyarnejadfard, Daniel Aloise, and Mahsa Shakeri. "System performance anomaly
detection using tracing data analysis." Proceedings of the 2019 5th International Con-
ference on Computer and Technology Applications. 2019.
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CHAPTER 2 LITERATURE REVIEW

Tracing is a popular way to analyze, debug, and monitor a system. It is a valuable technique
for gaining information about a system while minimizing the monitoring influence, and dif-
ferent works have applied machine learning techniques to analyze this information and find
performance anomalies. Several performance analysis tools and methodologies exist in dif-
ferent environments. So, it is essential to review the available state-of-the-art in performance
analysis and anomaly detection tools and see how these tools and techniques have advanced.
This chapter investigates the currently available tools, methods, and approaches developed
in this area of research.

In the first section of this chapter, we examined the basic concepts related to anomaly
detection. We also introduced various data collection methods as well as the machine learning
techniques that can be used to analyze the collected data. Then the previous work and the
progress made in the field of anomaly detection were investigated in Section 2.2. Finally,
in Section 2.3, while reviewing the shortcomings of previous methods, we explore how our
proposed methods differ from the previous related literature.

2.1 Basic concepts in anomaly detection

This section starts with some definitions and terminology related to tracing and anomaly
detection in subsection 2.1.1. Background information on performance anomalies is studied
in subsection 2.1.2. This subsection explains how abnormalities arise and affect the system.
In subsection 2.1.3, we talk about the properties of an anomaly detection tool. Next, a brief
review of the most popular data collection tools and technologies are presented in subsection
2.1.4. Moreover, the most valuable sources of information for anomaly detection, such as
system calls, are reviewed in this subsection. This informs us about the various features
that may be used to create a dataset. Following this, the most useful trace analysis tools
are investigated in subsection 2.1.5. Then, we shall have a detailed look at some machine
learning approaches in subsection 2.1.6.

2.1.1 Definitions and Terminology

In this subsection, we provide some of the most useful definitions and terms that are neces-
sary to understand the rest of this dissertation.
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Definitions related to Tracing:

• Operating system: A software that manages a computer’s hardware is called Operating
System (OS). It is also used as a basis for application programs and acts as an intermediary
between the computer user and the computer hardware [7].

• Kernel: Kernel mode and user mode are two modes of operation in most computers: The
operating system runs in kernel mode, which is also called supervisor mode. In kernel
mode, it has full access to all the devices and can execute any instruction the machine is
able to execute [8].

• Tracepoint: It is a statement located in the code of an application that provides a hook
to invoke a probe. A tracepoint can be enabled or disabled dynamically [9].

• Probe: a prob is a function that is hooked to a tracepoint and is called at runtime if the
tracepoint is enabled. It should be as small and fast as possible, to add low overhead to
the system and is either implemented by the tracer or by the user [10].

• Event: The event is created by a tracer, when it encounters an active tracepoint at
run-time, and contains information such as a timestamp.

• System call: A system call is a way for programs to communicate with the operating
system. A system call is created when a computer program makes a request to the op-
erating system’s kernel, thus providing the services of the operating system to the user
programs [11].

• Timestamp: The timestamp refers to the time of an event, upon encountering the tra-
cepoint, which is stored as a log element or metadata.

• Atomic Operation: It has the property of being indivisible, which means that interme-
diate values or intermediate states are inaccessible to other operations. They usually need
to be supported by the hardware or the operating system, and developers must take care
of the atomicity [9].

• Monolithic architecture: It is the traditional approach to software development. In
this architecture, the functions are encapsulated into a single application [12].

• Microservices architecture: It is a technique for developing software applications that
has inherited principles and concepts from the Service-Oriented Architecture (SOA) style.
A service-based application includes very small loosely coupled software services [13].
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• Virtualization: This technology enables the physical machine to run one or more virtual
machines at the same time.

• Virtual Machine (VM): It is a software implementation of a machine which can execute
programs like a physical machine [14].

• Cloud Computing: Cloud computing is a large-scale distributed computing model which
offers a pool of abstracted, virtualized, dynamically-scalable, managed computing power,
storage, and platforms. It is often used to deliver services on-demand to customers over
the Internet [15].

• Node: A node is an independent physical device in a network of other tools, with the
ability of sending, receiving, or forwarding information.

• Cluster of nodes: It’s a set of nodes that interact with each other, over a high bandwidth
communication network.

• Host: There are several degrees of machine virtualization. Based on the definition of Cloud
Computing, some approaches allow installing and running unmodified guest operating
systems on a host OS [16].

• Instrumentation: Instrumentation is a code section that can be added to any part of
a target system, either at run time or compile time, for collecting information about the
applications. Instrumentation at run time is called dynamic binary instrumentation, and
instrumentation at compile time is called static instrumentation. In static instrumentation,
the source code of the application is needed, and an extra recompilation time imposed.
Also, the applications need to be restarted. On the other hand, in dynamic instrumen-
tation, the source code is not required, and the code is injected into the application at
run-time [17].

Definitions related to Machine Learning:

• Machine Learning: It is the scientific study of algorithms and statistical models that
computer systems utilize to do a specific task, without using explicit instructions, using
patterns and inference instead. Machine learning algorithms construct a mathematical
model based on sample data, to make decisions or predict something without being ex-
plicitly programmed to perform the task [18].

• Anomalies: In general, anomalies are data that do not fit in a standard form of data in
that area [5]. Anomalies might appear in the data for several reasons.
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• Anomaly detection: Anomaly detection is the process of identifying unusual or rare
items, events, or observations which are significantly different from the majority of the data.
Anomaly detection has become a hot issue, because it can provide valuable information
at critical moments, which can help to prevent or take appropriate action [19].

• Anomaly prediction: Anomaly prediction is valuable for anticipating future anomalies
in data. It is valuable for the defense against anomalies before they can have their adverse
effect.

• Training dataset: A training dataset is a part of the dataset that is used for learning,
and also to fit the different parameters of the method.

• Validation dataset: This part of the dataset is used to tune the hyperparameters such
as the architecture of a classifier. A validation dataset is required to avoid over-fitting
when the classification parameters need to be adjusted [20].

• labelled data: labelled data is a group of samples that have been tagged with one or
more labels, for example 1 or 0.

• Supervised and unsupervised learning: Supervised learning algorithms are trained
using labelled samples, such as an input where the desired output is known. In contrast,
unsupervised learning algorithms are used when we don’t have labels [21].

• Classification: Given an n×d training data matrix D and a class label value in {1, ..., k},
associated with each of the n rows in D, the classification consists of creating a training
modelM , which can be used to predict the class label of a d-dimensional record Y ∈ D [22].

• Clustering: Given a set of data points, partition them into groups containing very similar
data points [22].

• Training: Training is a process in which a machine learning (ML) algorithm is fed with
sufficient training data to learn [21].

• Validation: After clustering or classification of the data has been determined, it is essen-
tial to evaluate its quality. This problem is referred to as validation. Different validation
criteria exist for classification and clustering.

• Feature engineering: It is the process of using domain knowledge to extract features
(characteristics, properties, attributes) from raw data [23].
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2.1.2 Performance Anomaly Detection

Performance anomalies are the most significant obstacles for the system to perform confi-
dently and predictably in enterprise applications. Many sources can cause anomalies, such
as varying application load, application bugs, updates, and hardware failure. In a situation
where the workload is the source of the anomaly, the application imposes continuous and
more than expected workload intensity to the system. Faults in system resources and com-
ponents may considerably affect application performance at a high cost [24]. In addition,
software bugs, operator errors, hardware faults, and security violations may cause system
failures.

The preliminary performance profiling of a process that reflects its typical behavior can
be done using synthetic workloads or benchmarks. At a higher level, the performance of
computer systems is delineated by measuring the duration for performing a given set of
tasks, or the amount of system resources consumed within a time interval [25].

There exist many metrics for measuring the performance of a system. Latency and through-
put are the most common ones. They are used to describe the operation state of a computer
system. The elapsed time between the beginning of an operation and its completion is the
latency, (e.g., the delay between when a user clicks to open a webpage and when the browser
displays that webpage). Throughput is a measure of how many jobs a system can perform in
a given amount of time (e.g., the number of user requests completed within a time interval).
In addition, the resource utilization of an application indicates the amount of resources (e.g.,
number of CPUs, and the size of physical memory or disk) used by that application. The
CPU utilization is the percentage of time during the CPU is executing a process, whereas
the memory utilization is the amount of storage capacity dedicated to a particular process.

Figure 5.1(a) shows an example of the CPU utilization of a process during its lifetime. When
an application is running normally, the CPU used by that application is conventional. Hence
an expected maximum CPU utilization threshold can be defined for each application. In
this case, if the CPU usage exceeds the threshold value, the process behavior is prone to the
existence of an anomaly. Furthermore, as represented in Figure 5.1(b), during the anomalous
execution of a process, the latency usually increases, while this curve has a relatively steady
trend during normal behavior [26].
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Figure 2.1 Above: the CPU usage of an application during the execution time. Below: an
anomalous latency growth pattern [1].

2.1.3 Anomaly detection tools

Anomaly detection tools observe the target system’s behavior to reach a decision about the
status of the system. Figure 2.2 presents a general overview of such a tool. In the first step,
the data collection module employs data-providing techniques and tools to record the system
state and its changes. It gathers data and sends the data to the analysis module. Next, in
the analysis module, the provided data is processed, and meaningful information is extracted
to represent the performance of a target system. Finally, the analyzed data is sent to the
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visualization module, which generates views for system administrators. It may also trigger
an alert. In the following, the characteristics of the desired tool are examined, and then each
of these modules is described in detail.

Figure 2.2 A general overview of a performance anomaly detection tool and its component
modules.

Characteristics of the desired anomaly detection tool

Several tracing and analysis tools have been employed for monitoring the performance of
Operating Systems, processes, and whole systems. These tools need to evolve to be able
to capture the new types of anomalies in different domains. Some essential capabilities and
features of a suitable analysis tool are described in this subsection as follows [27]:

• Availability: It is essential to ensure that the analysis tool is fully functional and serves
the requests properly when it is needed. Availability can also be defined as the probability
that a system has not failed when it needs to be used.

• Generality: It is crucial for an analysis tool to be free from restrictions and limitations,
to adapt to each configuration, and provide reliable reports. Unfortunately, most tools
often try to satisfy a specific need, and more general tools are needed in this area.

• Open-source: The computing infrastructure and software management are continuously
changing and growing. Accordingly, it is imperative for the analysis tools to be adaptive.
Closed-source tools cannot adapt to the rapid pace of technological changes. Fortunately,
there are many open-source tracing, logging, and visualization tools available that can be
employed to build an open-source anomaly detection tool.

• Resolution: The analysis tool needs to provide high-resolution results. Each event should
have nanosecond precision.
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• Dynamic: An analysis tool should be dynamic in the sense that it deals with a changing
environment. Static analysis tools cope with a particular system, and do not have this
ability.

• Robust: An analysis tool needs to cope with errors and new situations while continuing
its operation. This is critical since a fault in one part has a devastating effect on the whole
system.

• Low overhead: An appropriate analysis tool should add a low overhead to the system.

Performance analysis tools take as input a vast amount of data that accurately records system
behaviour over time. Tracing data and logs, as the most popular information resources,
have this ability, and they include an enumerated collection of events, sorted by timestamp.
Various works make different uses of this structure, as the input of their performance analysis
tool. Frequency of events, TF-IDF, graphs, and subsequences of events have been widely
used [28–30]. Data collection and representation techniques are discussed in detail in this
survey.

The way of reporting the anomalies is also an essential aspect of any anomaly detection
technique. Two major types of outputs can be defined for such techniques. Some techniques
assign an anomaly score to each sample in the test data, by considering the degree to which
that sample is considered an anomaly. Hence, the output of the score-based techniques is a
ranked list of anomalies. An analyst can investigate the top few anomalies or even can define
a cutoff threshold to select the anomalies. Some other techniques assign a label (normal
or anomalous) to each test sample. They provide binary labels or more than two labels.
The analyst does not need to find any threshold, but can also investigate anomalous points
directly.

2.1.4 Data collection module

The data collection module is the first building block of any performance analysis tool. It
records the behavior of a target system for subsequent processing, using statistics or machine
learning techniques to reach a decision about the system status. The following subsections
elaborate more on the data-providing techniques and most useful tracing tools. We will also
explain how the detailed information obtained from these tools can be used to analyze the
system performance and build the appropriate database.
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Most popular data providing techniques

The first step in detecting anomalies in any system is to provide the data shown in Figure
2.2 as data collector module. There are different technologies for collecting data, each with
different applications. The first technology is Logging [31]. A log entry is a message from
the operating system or application code indicating that an event occurred. Logs usually
contain body, content, and time and are written as structured or unstructured data in log
files. Logs are widely being used in statistical analysis researches [32]. However, despite the
simplicity of this technique, logging is not efficient when the events are generated with high
frequency.

Another traditional technique is Debugging. Debugging is a part of the process of software
testing and refers to the process of locating and correcting code errors [33]. GDB is a common
debugging tool, which allows one to check what is going on inside another program during
its execution. However, this technique can not be used in this project because the purpose
of this thesis is to find anomalies in programs that have been deployed.

Sampling is another technique that can be used to generate reports on system-level and
application-level performance. Many processors have their own dedicated performance mon-
itoring hardware. Performance analysis tools (e.g., OProfile) employ this hardware (or a
timer-based substitute in cases where performance monitoring hardware is not present) to
collect samples of performance data [34].

Finally, Tracing is another robust and efficient approach for debugging and reverse engi-
neering complex systems. Many tracers have emerged across all software stack layers and
even at the hardware level in recent years. Tracing is a high-speed system-wide fined grained
logging technique. Traditional logging approaches suffer from two significant bottlenecks: 1)
gathering low-level information is really difficult, 2) time accurate details about the system’s
behavior in real-time are hard to obtain. Logging is proper for a high-level analysis of less
frequent events, such as user accesses, exceptional conditions, or database transactions. In
general, logging is one of the applications of tracing. In tracing, a particular piece of code
called tracepoint is inserted in the code. A tracepoint can be as small as a function call or be
part of the standard kernel tracing infrastructure. The generated events are extremely low
level and may occur more frequently. Tracing techniques can be categorized in several ways:

◦ Hardware tracing vs. software tracing: Tracing techniques can be divided into
hardware and software tracing, based on the source of the events. The ability to record
a complete trace of the instructions executed is available in modern CPUs. On the
other hand, software tracing does not need any specific hardware, and is based on the
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tracepoints in the program code.

◦ Static tracing vs. dynamic tracing: Tracing can be classified as static or dynamic,
depending on how tracepoints are added to the code. In static tracing, the program
source code is modified, and recompilation is required. In contrast, tracepoints are
added directly into running processes via dynamic instrumentation, with the help of
debugging information generated during the compilation process.

◦ kernel tracing vs. userspace tracing: Tracing is divided into kernel and userspace
tracing, depending on the tracing domain. The term userspace tracing is used when
events are collected from userspace, and Kernel tracing refers to the events gathered
from the OS kernel [35].

The advantages of tracing over other techniques led us to use it as the primary data providing
technique during this project.

Most useful tracing tools

Tracing is a technique employed to find out what goes on in a running software system. The
tracer is the software that records events in tracing files. These events are generated by
specific instrumentation points located in the software source code. Tracers have the ability
to trace the OS and user applications simultaneously. Recording low-level events with an
occurrence frequency of thousands per second, helps to solve a wide range of problems. We
study some of the most useful available tracing tools in this subsection.

• LTTng: Linux Trace Toolkit next generation (LTTng) is a tool able to perform an ex-
tremely fast and very low-overhead kernel and userspace tracing [36]. Low overhead is a
point that makes LTTng a good choice for online applications, so it is an appropriate choice
for our anomaly detection project. The tracing technique used in LTTng implements a fast
wait-free read-copy-update (RCU) buffer for storing data from tracepoint execution. Fig-
ure 2.3 presents the typical tracing process flow with LTTng. The components of LTTng,
and how they interact with the application and the Linux kernel, are clearly explained in
this figure. The session daemon is responsible for managing and controlling other compo-
nents. At the beginning of the execution of the instrumented application, which contains
the user’s desired tracepoints, it registers itself to the session daemon. This is similar for
kernel traces. After this registeration, the session daemon will manage all the tracing activ-
ity. Another essential part of LTTng, namely the consumer daemon, has the responsibility
of handling the trace data coming from the applications. It exports the raw tracing data
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in the Common Trace Format (CTF), to be written on the disk. The CTF file extension
format is a structured compact binary format, which is a good choice for further analysis
by Babeltrace or Trace Compass. LTTng supports both static and dynamic tracing. Tra-
cepoint can be added in both the source code of the kernel, and in user-space programs
with UST. LTTng contains the LTTng kernel modules as well as the UST library. The
LTTng kernel modules hold a set of probes to be attached to Linux kernel trace-points
and entry and exit points of syscall functions.

Figure 2.3 A tracing process flow with LTTng [2]
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• DTrace: Sun Microsystems created this tool to do kernel tracing on its Solaris platform,
but it was quickly ported to MacOS, Linux, and other platforms [37]. The DTrace tool can
interpret user scripts and is able to load code into the Linux kernel for further execution
and collecting the outputted data. DTrace is very flexible and dynamic but causes a larger
overhead than LTTng, especially for multi-threaded applications [9].

• eBPF: eBPF is a subsystem in the Linux kernel in which a small bytecode interpreter
can execute programs passed from the user space to the kernel. Such programs can be
attached to tracepoints and KProbes using system calls, and they can output data to user
space when executed, thanks to different mechanisms like pipes, VM register values, and
eBPF maps [38].

• Ftrace: Ftrace is a tracer included in the Linux kernel which provides dynamic instru-
mentation, function tracing, system calls tracing, and so on. It presents a function graph
in which the entry and exit of all functions at the kernel level are shown. It supports
Kprobe for dynamic instrumentation. This method does not write events to the disk au-
tomatically and keeps them in memory. Moreover, the size of a payload is limited to the
size of the page. A linked list is used to implement the ring buffer, and a buffer page can
be read once it is full [39].

• SystemTap: SystemTap presents a free software infrastructure to simplify the collection
of information about a running Linux system. It allows developers and administrators to
write and reuse simple scripts to scrutinize the activities of a live Linux system. The basic
idea behind SystemTap is attaching user-defined handlers to events. When any specified
event occurs, the Linux kernel executes the handler, as if it were a quick subroutine, and
then resumes. A handler is a series of script language statements which are designated
to choose what should be done whenever the event occurs. This work includes typically
extracting data from the event context, storing it into internal variables, or printing results
[40].

• sysdig: This tool, like SystemTap, uses scripts to analyze Linux kernel events. Sysdig
executes the scripts, or chisels in sysdig’s jargon, in Lua while the system is being traced
or afterward. The interface of sysdig and the curses-based csysdig tool is a command-line
tool [41].

• Distributed tracing tools: Distributed tracing is a tracing method used to profile and
monitor distributed applications, especially microservice-based applications. Distributed
tracing helps find the location of failures and the factors that cause poor performance.
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Over the past few years, the open-source community has developed several interesting dis-
tributed tracing tools and standards, the most important of which is OpenTracing. Open-
Tracing is the foundation for tools like Jaeger, Zipkin, and OpenCensus. OpenTracing
consists of a set of standards and techniques that allows developers to add instrumen-
tation to their application code using APIs that do not restrict them to any particular
product or vendor. To this end, a coherent API specification for several programming
languages and frameworks is provided. Spans are the primary building blocks in Open-
Tracing. In other words, a Trace can be thought of as a directed acyclic graph of Spans,
where the edges between Spans are called References [42]. Zipkin [43] is an open-source
tool that helps gather timing data needed to troubleshoot latency problems in microservice
architectures [44,45]. Jaeger [46], inspired by Dapper and OpenZipkin, developed by Uber
Technologies, is a popular tool that supports OpenTracing. This tool has been widely used
for monitoring and troubleshooting microservices-based and distributed systems [47, 48].
It has instrumentation libraries in C++, C, Go, Java, Node, and Python. However, the
high-level information that these tools provide is not always sufficient to characterize the
execution status of the system, since they do not offer kernel events. In contrast, LTTng
provides details of the program execution with higher resolution by presenting kernel and
userspace events. LTTng imposes the least overhead on the system among other solutions.

Most useful information resources for anomaly detection

System-level performance metrics such as CPU utilization, RAM utilization, hard drive read
rate, hard drive write rate, network device transmission rate, and network device receive rate
are broadly used to discover performance anomalies or evaluate performance degradations.
Besides, thread/process-level analysis such as call stack and execution flow analyses can pave
the way for defining the anomaly detection model. In this subsection, we study the critical
information resources that can help us in this project:

• CPU utilization: The CPU utilization refers to non-idle time, i.e. the time the CPU
is not running the idle thread. The operating system kernel usually tracks this during
context switch. This metric is as old as time-sharing systems.

• Memory utilization: The Memory Utilization metric is defined as an average utilization
statistic derived from the percentage of available memory in use at a given time, averaged
across the reporting interval.

• Events: Events are the most popular source of information and has been widely used in
performance analysis. A trace contains a sequence of time-ordered events, saved in a trace
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file. We can record user application and operating system events at the same time. Events
consist of well-defined fields such as name, timestamp, process ID, and so on. They open
the possibility of resolving a wide range of problems, and performing application-specific
analyses to produce reduced statistics and graphs useful to resolve a given issue. Many
anomaly detection methods use events frequency, TF-IDF, execution graph, and sequence
of events name, to create meaningful datasets for modeling system behavior, using machine
learning methods [28,49,50].

• System calls: System calls are essential traceable events for determining abnormal be-
havior in a computer system. A system call is a way for programs to communicate with
the operating system. System call traces generated by program executions are stable and
consistent during the program’s normal activities, so that they can be used to distinguish
the abnormal operations from normal activities. System call streams are enormous and
suitable to use in machine learning. A single process can produce thousands of system calls
per second. Moreover, system call sequences can provide both momentary and temporal
dynamics of process behavior.

• Call stack: We can obtain much information about the current status and the history (or
the future, depending on how it is interpreted) of program execution from the call stack,
especially in the form of return addresses. Therefore, the call stack of a program execution
is an excellent information source for intrusion and anomaly detection [51].

• Execution flow analysis: Tracking processes and finding dependencies between them
can show the cause of the process’ waits. Different reasons can force a process to wait.
A process can wait for a timer to fire. It may also wait for another process to wake it
up, indicating that the process was waiting for another process to finish a task. The
process can even wait for a device. The construction of the execution graph reveals the
dependencies among the processes and different resources.

• Critical path: Given the list of participating tasks, the dependencies between them, and
the time taken to complete each task, the critical path is determined by finding the longest
sequence of tasks to complete the process. The length of the critical path is an estimate
for the overall time to completion. The points on the critical path are ideal targets for
optimization, because decreasing the time to complete these tasks decreases the length
of the critical path and also overall time to completion. The critical-path analysis is a
great technique for recognizing the critical bottlenecks in a complex system with multiple
concurrent operations [52].
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2.1.5 Analysis module: Most useful Analysis tools

Trace viewers and analyzers are specialized tools designed to read the trace files and per-
form various analyses to produce statistics and visualizations that help system experts solve
problems more quickly.

Trace Compass

It is an Eclipse based analysis and visualization tool that provides various views such as a
call graph or a timeline-based view for trace data generated by LTTng or other compatible
tracers [53]. Trace Compass promotes the visualization and analysis of traces and logs from
multiple sources. It facilitates diagnostic and monitoring operations of systems, from a
simple device to an entire cloud. Trace Compass can take multiple traces and logs from
various sources and formats, and join them into a single event stream that allows system-
wide tracing. It is possible to correlate application, operating systems, virtual machine,
and hardware traces to present the results together, delivering unprecedented insight into
your entire system [54]. Using this tool gives us some benefits, such as a faster resolution of
complex problems, easier system performance optimization, etc. It can be integrated into the
Eclipse IDE or even used as a standalone application. Eclipse plug-ins facilitate the addition
of new analysis and views. The EASE scripting feature also makes it very simple to write
new scripts and analyses for developers [55].

Babeltrace

This open-source project produces a library with a C API, Python 3 bindings, as well as a
handy command-line tool that makes it very easy for the user to view, convert, transform,
and analyze traces. Moreover, Babeltrace is the reference parser implementation of the
Common Trace Format (CTF), a popular trace format followed by various tracers such as
LTTng. Using the Babeltrace library and its Python bindings, we can read and write CTF
traces [56].

Traceshark

Traceshark is another trace visualization tool developed in C++. It supports Linux kernel
traces containing Ftrace and Perf events and allows one to display some basic analyses, such
as CPU status, frequency, and scheduling tasks [57].
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Perfetto

It is a production-grade open-source performance instrumentation and trace analysis tool. It
includes services and libraries for recording system-level and application-level traces. It also
offers a library for analyzing traces using SQL and a web-based interface to visualize and
explore multi-GB traces [58].

SvcTraceViewer

Windows Communication Foundation (WCF) Service Trace Viewer Tool helps analyze diag-
nostic traces that WCF generates. SvcTraceViewer provides an easy way to merge, visualize,
and filter trace messages in the log in order to diagnose, repair, and verify WCF service
issues [59].

2.1.6 Analysis module: Study on machine learning approaches for anomaly de-
tection

This subsection introduces different supervised and unsupervised machine learning approaches
recently used in anomaly detection tools and research projects.

Supervised techniques

The purpose of supervised learning is to construct a brief model of the distribution of class
labels in term of predictor features. The trained classifier is then used to assign class labels
to test samples where the value of the features are known, but the value of the class label is
unknown [60]. So the supervised anomaly detection techniques operate in two phases. The
training phase learns a classifier using the available labelled training data, and then in the
test phase, a test sample is classified as normal or anomalous, using the trained classifier.
Actually, the classifiers’ goal is to distinguish between normal and anomalous classes that can
be learned from the given feature space. Classification-based anomaly detection techniques
are categorized into two-class and multi-class techniques. Multi-class classification based
anomaly detection techniques assume that the training data includes multiple normal classes
and multiple anomaly classes. Using these anomaly detection techniques, a classifier can
distinguish between each standard class or each anomaly class [61].

• Support Vector Machine: Support Vector Machines (SVMs) [62, 63] have been em-
ployed for anomaly detection in many applications. SVM finds the hyperplane with the
largest margin that classifies the training set samples into two classes. Then the unseen
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test samples are labelled by checking the sign of the hyperplane’s function. Considering
each sample Xi, for i = 1, . . . , n of the training data and its associated label yi, SVM
determines the optimal hyperplane by solving the following problem:

min
ω,b

1
2ω

Tω + C
n∑
i=1

ξi (2.1)

s.t. yi
(
ωTφ (Xi) + b

)
≥ 1− ξi , ξi ≥ 0 , i = 1, ..., n (2.2)

Where ω is a d-dimensional vector and ξi is a measure of the distance between the mis-
classified point and the separating hyperplane. The function φ (xi) projects the original
data sample xi into a higher dimensional space and b is the bias. C controls the penalty
associated with the training samples that lie on the wrong side of the decision boundary.

• K-Nearest Neighbors (KNN): The K-Nearest Neighbors (KNN) technique is a super-
vised machine learning algorithm for solving classification and regression problems that
is simple to implement. KNN is a non-parametric algorithm since it does not make any
assumption on the underlying data. Moreover, KNN is a lazy learning algorithm because
it does not require a training phase, and it uses all the training data in the classification
process. KNN is implemented by the following steps:

– Load training and test data.
– Choose the value of K.
– For each data point in the test data:
◦ Find the Euclidean distance to all training samples. Manhattan or Hamming

distances can also be used instead of the Euclidean distance.
◦ Store the distances in ascending order.
◦ Choose the top K points from the sorted list (K nearest neighbors).
◦ Label the test point based on the most frequent class present in the selected

points.
– End

• Neural Networks: Neural networks, also known as artificial neural networks (ANNs),
are a subset of machine learning that can be used for clustering and classification. The
name and structure of these networks are inspired by the human brain, and they mimic
how biological neurons signal to each other. Neural Networks consist of multiple layers
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Figure 2.4 A simple Neural Network.

(two or more), where the first layer is the input layer, the last layer is the output layer, and
some hidden layers are located in-between. The layers are connected by means of weights
evaluated during the training phase.

Neural networks such as the feed-forward neural network, also known as the multilayer
perceptron [18], are widely used to discover useful patterns or features that describe user
behaviour on a system. They use the set of relevant features to build classifiers that can
recognize anomalies and known intrusions, hopefully in real-time [64]. Figure 2.4 presents
a simple neural network. The circles represent neurons, and each line represents a synapse.
The inputs received by the synapses are multiplied by the weights.

• Long-Short-Term-Memory (LSTM) Recurrent Neural Networks: Short-term mem-
ory is a problem in RNNs (Recurrent Neural Networks). If one tries to predict something
from a paragraph of text, RNNs may leave out important information at the beginning.
LSTM was introduced as a solution to the short-term memory problem. It is one of the
most popular techniques among several deep neural network techniques available, first in-
troduced by S. Hochrieter J. Schmidhuber. LSTM networks are capable of learning order
dependencies in sequence prediction problems [65]. This is a behaviour needed in complex
problem domains like anomaly detection. Like recurrent neural networks, LSTM networks
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process the data passing on information as it propagates forward. However, the operations
within the LSTM’s cells are different. These operations allow the LSTM to keep or forget
information.

The basis of LSTM is the cell states and various gates. The cell states act as the memory
of the network, and they can carry relevant information throughout the processing of the
sequence. So even information from the earlier time steps can lead to later time steps
and reduce the effects of short-term memory. As the cell state continues its journey,
information is added to the cell state or removed from it via gates. The gates are different
neural networks that can learn which data in a sequence should be kept or discarded [66].

Unsupervised techniques

Clustering is an unsupervised method to group similar data instances (observations, data
items, or feature vectors) into clusters [67]. The clustering problem has been addressed in
many contexts, and by researchers in many disciplines. So it is useful as one of the steps in
exploratory data analysis.

• K-Means: K-Means is an iterative clustering algorithm that groups samples based on
their feature values into k different clusters. Data points that are assigned to the same
cluster are supposed to have similar feature values. This algorithm aims to make the
intra-cluster data points as similar as possible, while keeping the clusters as different as
possible. K-Means assigns data points to a cluster, such that the sum of the squares of
the Euclidean distances of data points and the cluster’s centroid is at the minimum. The
cluster’s centroid is the arithmetic mean of all the data points which belong to that cluster.
K-Means works as follows [68,69]:

– Determine the number of clusters K.
– Shuffle the dataset and then randomly select K data points without replacement as

the centroids.
– Keep iterating until there is no change to the centroids:
◦ Assign each data point to its closest centroid.
◦ Compute the new centroids for the clusters by taking the arithmetic mean of all

data points that belong to each cluster.

• DBSCAN: The use of K-Means clustering has some limitations. First, it requires the user
to set the number of clusters a priori. Second, the presence of outliers have undeniable
impact on this algorithm. Moreover, the shape of the underlying clusters is already defined



25

implicitly by the similarity function in K-Means, and K-Means performs better when the
clusters are spherical. Figure 2.5 reveals that the K-Means algorithm might not be able to
effectively cluster such a dataset, since it has been designed to discover spherical clusters.
In this case, density-based algorithms could be more beneficial.

Figure 2.5 An arbitary shape dataset [3]

DBSCAN [70] is a density-based algorithm in which the individual data points in dense
regions are used as building blocks after grouping them according to their density. The
density of a point is the number of points that lie within a radius ε of that point, which can
be obtained by the following formula:

Nε (p) = {q ∈ D | dist (p, q) ≤ ε} (2.3)

DBSCAN classifies the data points into three categories of core, border, or outliers, based
on parameters ε and MinPts. A point p is a core if at least MinPts points are within the
distance of ε (i.e., Nε(p) ≥ MinPts). A data point is defined as a border point if Nε(p) is
less than MinPts, but it contains at least one core point within a radius ε. Otherwise, p is
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considered as noise and is assigned to the noise cluster.

This algorithm creates a connectivity graph in which core points are connected if they are
within a distance ε from one another. Then, all connected components are identified, where
these segments correspond to the clusters constructed on the core points. The border points
are then assigned to the connected component with which it is best connected. The resulting
groups are considered as final clusters, and noise points are reported as outliers. Thus,
DBSCAN is able to cluster points into distinct categories, without setting the number of
clusters in advance.

2.2 Related works

Many efforts have been made to improve anomaly detection tools and methods in recent years.
However, to the best of our knowledge, each of these tools and methods has drawbacks. This
section reviews most of the available academic and commercial approaches for performance
anomaly detection.

Many sources may cause anomalies or performance degradation, such as application bugs,
updates, software ageing phenomenon, and hardware failure. Many articles have attempted
to discover or resolve performance degradations caused by each of these sources. As an
example, software rejuvenation was introduced to prevent or at least delay ageing-related
failures [71]. Software ageing has been demonstrated to affect many long-running systems,
such as web servers, operating systems, and cloud applications. Ficco et al. [72] have also
examined the effects of software ageing on the gradual increase in the failure rate or perfor-
mance degradation of Apache Storm over time. A variety of bottleneck conditions, including
system overload, and resource exhaustion, can also cause extended and intermittent system
downtime. A number of global web services, including Yahoo Mail, Amazon Web Services,
Google, LinkedIn, and Facebook, have recently suffered from such failures [73]. This problem
has been addressed in the anomaly detection and bottleneck identification approach intro-
duced in [73]. However, only a few examples of several possible sources of anomalies have
been examined by researchers. Relying on the definition of anomaly, we believe that whatever
the source of the anomaly is, it makes the execution flow different from the normal situation.
Hence, it seems interesting to look at the problem from a more general point of view and try
to find the deviations of the execution’s flow, regardless of the source of the anomaly.

The first general aspect of an anomaly detection tool discussed in this section is the input.
As mentioned earlier in this chapter, researchers consider different information such as re-
source utilization and tracing events as input to their analysis tool [74–76]. System resources
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include physical components such as the CPU, memory, disks, caches, and network. The
resource utilization of an application is a metric that indicates the amount of capacity used,
according to the available capacity. For example, memory utilization measures the amount
of storage capacity consumed by a process or application. We categorize the approaches that
use these metrics as metric-based approaches. In the metric-based approaches, the coarse
system-level metrics are collected and treat the system as a black box [77,78]. Then, with the
help of statistical machine learning methods, performance abnormalities are identified. How-
ever, these system metrics require precise program encapsulation. Ravichandiran et al. [79]
proposed a traditional approach to identify system performance anomalies through analyzing
the correlations in the resource usage data. They use application performance management
(APM) tools that support various measures, to perform resource behavior analysis on mi-
croservices. Log-based approaches extract features from the logs to be used by machine
learning and statistical techniques to detect abnormal behaviours. Wei Xu et al. parse logs
to create composite features, and then analyze the features using machine learning to detect
operational problems in large-scale data center services [80]. In [32], an unstructured log
analysis technique for anomalies detection was proposed. In this technique, after converting
log messages to log keys, a Finite State Automaton learns from training log sequences to pro-
vide the normal workflow for each system component. However, logging is more appropriate
for high-level analysis of less frequent events, and gathering low-level information and time
accurate details using logging is extremely difficult.

Tracing is another robust and efficient approach for reverse engineering and debugging of com-
plex systems [73]. Many tracers across all software stack layers, and even at the hardware
level, have emerged in the last years. Then, statistical methods, machine learning, or just
simple statistics techniques are adopted to diagnose performance anomalies. PerfScope [81]
is a tracing based performance bug inference tool to help the developer understand how a
performance bug happened during a production run. Distributed tracing tools are another
family of tracing tools that can be used in this field of research. Unlike the most traditional
methods that monitor individual components of the architecture, distributed tracing is ap-
plied to complex distributed systems at the workflow level [82]. Tools like OpenCensus and
OpenTracing [42] help to record the execution path of each microservice request. Jaeger [46],
a popular tool that supports OpenTracing and developed by Uber, has been widely used
to collect and store the service call data automatically. The method proposed in [47] uses
Jaeger and dynamic instrumentation to collect execution traces across microservices. Next,
this method calculates the anomaly degree of traces based on the tree edit distance, to find
structural anomalies and then analyzes the difference between traces to determine the com-
ponents responsible for the anomalies. Sage [48] is another machine learning-driven root
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cause analysis system for interactive cloud microservices. Sage benefits from Jaeger and an
unsupervised ML model to capture the impact of dependencies between microservices and
determine the root cause of unpredictable performance problems. In addition to Jaeger, its
counterpart Zipkin [43] aids in gathering timing data needed to troubleshoot latency problems
in microservice architectures. J.Cardoso et al. [44] proposed an anomaly detection method
based on Zipkin, which uses a single modality of the data, with information about the trace
structure to detect anomalies. Besides this work, the method proposed by Tao Wang et
al. [45] characterizes Zipkin traces with calling trees and then learns trace patterns as base-
lines. It calculates the anomaly degree of the workflows impacted by faults in processing
requests. It then locates the microservices causing anomalies by comparing current traces
and learned baselines with tree edit distance. However, resource utilization measurements,
logging and the mentioned tracing tools provide high-level information, which is not always
sufficient to characterize the execution status of the system. Thus, tracing with LTTng is a
fundamental part of our research. This open-source tool is implemented for achieving high
throughput and includes multiple modules for Linux kernel and userspace tracing, thereby
imposing low overhead to the operating system.

After examining data collection methods in various researches, the next step is how to char-
acterize the executing software. Researchers have made much effort to improve anomaly
detection by using different data representations and information resources. The use of sys-
tem calls has led to dramatic advancements in anomaly detection techniques. Forrest et
al. [6] showed that during the normal execution of a program, a consistent sequence of sys-
tem calls is generated. In their method, all possible normal patterns of different lengths are
collected to form the normal dataset. Then, different patterns in the new trace are com-
pared with the normal dataset, and any deviation from the normal model is considered as
an anomaly. The first weakness of this method is that finding all the patterns with differ-
ent lengths is extremely time-consuming, because a short trace file contains thousands of
events. Furthermore, the resulting database is massive. It is notably time-consuming to
compare a new pattern to the entire normal dataset. Canzanese et al. characterized system
call traces using a bag-of-n-grams model, which represents a system call trace as a vector of
system call n-gram frequencies [76]. In this regard, Kolosnjaji et al. [29] attempted to apply
deep learning to model the malware system call sequences for malware classification. They
constructed a neural network based on convolutions, in order to obtain the most desirable
features of n-grams. A well-known issue with N-gram-based approaches is sparsity. Like
many statistical models, the N-gram model is significantly dependent on the training data.
Besides, the performance of the N-gram model varies with the change in the value of N.
In [28], the Linux kernel system calls are extracted to construct weighted directed graphs.
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This method, in which the graph-based representation is used for anomaly detection, suffers
from the high cost of obtaining such graphs. Finding related system calls, out of thousands
of events, requires a high computational power. Tracing data or logs, as the most popu-
lar information resource in microservice environments, can be represented in the form of
an enumerated collection of events, sorted by their timestamps [83]. Different works make
different uses of this structure. In DeepLog [49], a deep neural network model is proposed
to model an unstructured system log as a natural language sequence. In [84], by performing
time-series-based forecasting, anomalies on cyclic resource usage patterns are detected. In
the sequel, graph representations of the events are obtained from this data and employed to
detect critical nodes and design anti-patterns proactively. The authors of [85] designed and
developed a simplified MSA application and applied different graph algorithms, and then
assessed their benefits in MSA analysis. In another article, Tao Wang et al. [86] organized
the trace information, collected by the OpenTracing tool, to characterize processing requests
workflow across multiple microservice instances as a calling tree. The proposed approach
converts the given trace into the spans and detects performance anomalies using the model
of normal key patterns.

Another aspect of an anomaly detection tool is choosing the appropriate statistical or machine
learning method. The earliest efforts for anomaly detection had used statistical methods [87].
These works keep the activity of subjects and generate profiles to represent their behaviour.
Profiles include measures such as activity intensity measures, categorical measures, and or-
dinal measures. An anomaly score is computed using an abnormality function, as events are
processed. The detection system generates an alert if the anomaly score is greater than a cer-
tain threshold. In [88], CPU performance and network performance metrics in master-slave
and nested-container models are compared, to provide a benchmark analysis guidance for
system designers. These basic statistical models have some disadvantages. Defining proper
thresholds, which can balance the likelihood of false positives and false negatives, is very dif-
ficult to set. Besides, most statistical anomaly detection techniques require the assumption
of a quasi-stationary process. However, this cannot be assumed for most data processed by
anomaly detection systems. Furthermore, these tools do not provide any details about the ap-
plication execution flow. Wang and Battiti [74] proposed another statistical method in which
the distance between a vector and its reconstruction onto the reduced PCA subspace repre-
sents whether the vector is normal or abnormal. This method is limited to pre-determined
anomalies, and is not able to detect novel types of anomalies, besides suffering from the
problem of defining thresholds.

In addition to statistical methods, several machine learning-based schemes have been applied
to detect anomalies in systems. They work based on the establishment of a model that allows
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the patterns to be categorized [89]. Bayesian networks can encode probabilistic relationships
among variables of interest, thereby predicting the consequences of an event in the system [90].
Ye and Borror presented a cyber-attack detection technique through anomaly detection and
discussed the robustness of this model [75]. They used a Markov chain model to profile
event transitions in the normal operating condition of a computer system. Achieving high
performance in their technique, to model the sequential ordering of the events, depends
considerably on the quality of the data. This is because the Markov Chain technique is not
robust to outliers, and performs better when the amount of noise in data is low [91]. These
models have better performance for small datasets.

Among other machine learning approaches, clustering algorithms can detect abnormal be-
haviour without prior knowledge. Many clustering algorithms, such as k-means, k-medoids,
EM Clustering, and Outlier detection algorithms, have been employed for anomaly detection.
In [92], the k-Means clustering algorithm with the accompaniment of different dimension-
ality reduction modules (PCA, ICA, GA, and PSO) was used to separate time intervals of
the traffic data into normal and abnormal groups. Apart from clustering methods, classi-
fication based anomaly detection approaches like support vectors, Fuzzy Logic, and Neural
Networks have been widely used in this area [93]. In [3], a fuzzy technique was proposed to
extract abnormal patterns based on various statistical metrics, in which fuzzy logic rules are
applied to classify data. However, in practice, the labelling process is highly complicated and
even impossible sometimes. Recently, deep learning techniques which do not need labelled
data have yielded promising results in different fields. Wang and Zhou [94] explained the
potential of using deep learning techniques in side-channel signal analysis and cyber-attack
detection. They exploited these signals to indicate the state of ongoing computational tasks
without direct access to the device. They examined the application of deep learning methods
to side-channel analysis in the classification of machine state and anomaly detection. Long
Short-Term Memory (LSTM) neural networks is a deep learning method used in [95, 96] to
detect anomalies in cloud infrastructures. Malhotra et al. [97] also presented a stacked LSTM
model for anomaly detection in time series, where the network is trained on non-anomalous
data. The drawback of these methods is that many details, including events arguments such
as event type, tag, process name, etc., are ignored. Along with the aforementioned machine
learning approaches, ensemble approaches are applicable in cases where a single model is
incapable of distinguishing anomalies precisely [98].



31

2.3 Discussion

In this section, while reviewing the shortcomings of previous methods, we explore how our
proposed methods differ from the previous related literature.

Most previous works have not provided a solution for data collection, and used pre-existing
datasets [99–101]. Some other works used logging approaches, that cannot gather low-level
information and time accurate details about the system’s behaviour [31, 49]. Some popular
tools (e.g. Jaeger and Zipkin) that support OpenTracing were also utilized in some pa-
pers. However, the high-level information that these tools provide is not always sufficient
to characterize the execution status of the system. Besides, they do not offer kernel level
events [44, 45, 47, 48]. Hence, we defined our data collection module using LTTng and Trace
Compass. LTTng provides details of the program’s execution with higher resolution by pre-
senting kernel and userspace events. Tracing also enables us to deeply examine the execution
flow using Trace Compass.

In addition to the detailed information that LTTng provides, it has several features that make
our proposed data collection module applicable in most Linux-based environments without
much change. Other tracing tools can not be used in different environments and applications,
for example Jaeger and Zipkin, are only dedicated to monitoring and troubleshooting mi-
croservices and distributed systems [43, 46]. Chapters 4 and 5 show how our data collection
module is configured to collect information from monolithic applications. Furthermore, the
LTTng relay daemon used in Chapter 6 helps us trace distributed systems and cloud environ-
ments. LTTng as the main component of our data collection module can be installed quickly
and without any special settings in different environments. This makes our data collection
module a practical way to collect data in the real world.

Another strength of the methods proposed in this thesis is the way we used the collected
data. The use of system call sequences [29,102] and frequencies [103] is common in anomaly
detection, but timing information is ignored in these methods. N-gram-based approaches are
other well-known approaches that heavily depend on the training data, as in many statistical
models. Furthermore, the performance of the N-gram model changes with the value of N [76].
To address the shortcomings of previous work, we introduced a new approach in Chapter 4,
that uses the durations of system calls to generate feature vectors. The duration of a system
call in a window acts like the weighted frequency of that system call. The results of Chapter
4 demonstrate that the introduced data collection module, feature selection method, and
classification model provide a practical approach to detecting performance anomalies.

In Chapter 5, we addressed the problem of the availability of labelled data. Collecting labelled
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data is very difficult due to the nature of the anomaly detection problem and requires a
specialist who has knowledge of machine learning and performance analysis. Previous work
in the literature does not offer a solution that covers a variety of scenarios, including when
labelled data is available, when labelled data is not available, and when a part of the dataset
is labelled [29, 69, 70, 94, 100, 104]. We also addressed the problem of the sparsity of the
dataset in this chapter. Other approaches, such as n-gram-based approaches [29], suffer from
this problem. To solve the sparsity problem in the dataset, we proposed a feature selection
method in which the less important system calls are removed from the feature vectors. The
results show that this significantly increases the efficiency of the anomaly detection model.

Chapter 6 proposes an anomaly detection approach for microservice. This approach uses
LTTng for data collection, which provides more details than Jaeger and Zipkin used in other
works [44,45,47,48]. To detect anomalies in microservices, because the interactions between
services have a graph structure, researchers either directly analyze the graphs or convert them
into sequences. However, the graph-based approaches require high computational power
[28] and the sequence-based approaches ignore events parameters [6, 29, 49, 84, 90]. Event
parameters such as process name, message, and event type contain beneficial details that
increase detection quality. Chapter 6 presents our solution for solving the problem of high
computational power needed by graph-based approaches. We also use events parameters to
improve anomaly detection in microservices.
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CHAPTER 3 RESEARCH METHODOLOGY

As discussed in Chapters 1 and 2, this work focuses on performance anomaly detection using
tracing data and machine learning. This chapter presents an overall view of our methodology
and describes the process of identifying issues, applicable cases, milestones, and final results
in terms of articles. Given the nature of this research, the progress of the project can be
visualized in the form of three major threads, as illustrated in Figure 3.1. In the first part
of our research, we applied a supervised technique to find the abnormal windows of system
calls. Our feature vectors consisted of the execution time of system calls, in addition to the
frequency of each individual system call. Then, we proposed a new approach that addresses
the problem of the availability of labelled data by offering several learning techniques. We
suggested supervised, unsupervised, and semi-supervised techniques, considering the amount
of available labelled training data. Afterward, we proposed a natural language processing
(NLP) based approach to detect performance anomalies, besides locating release-over-release
regressions in microservice environments. These works are described briefly in the following
sub-sections. Next, the three articles resulting from this research are presented in Chapters
4, 5, and 6, respectively, in chronological order of their submissions.

Figure 3.1 Milestones and research progress.

3.1 System performance anomaly detection using tracing data analysis

Chapter 4 presents an anomaly detection approach for practical monitoring of processes
running on a system to detect abnormal vectors of system calls. The idea behind this work
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is that the system call trace obtained from an abnormal process is highly different from
processes running under normal conditions. Our proposed approach employs the Linux Trace
Toolkit (LTTng) to monitor the processes running on a system and extracts the streams of
system calls. Then a sliding window is applied to continuously extract short system call
sequences. Our proposed approach computes the execution time of system calls in addition
to the frequency of each system call in subsequences. In other words, we define a compact
representation for each subsequence that yields two separate feature vectors containing the
frequency and duration of the system calls inside the current sliding window. Thus, our
methodology can handle large and varying volumes of data. The length of feature vectors is
equal to the total number of Linux system calls. Finally, a multi-class support vector machine
approach is applied to evaluate the system’s performance and detect abnormal subsequences.
A comprehensive experimental study on a real dataset collected using LTTng demonstrates
that our proposed approach is able to distinguish normal subsequences from anomalous ones
with CPU or memory related problems.

3.2 A framework for detecting system performance anomalies using tracing data
analysis

The article presented in Chapter 5 is motivated by one of the most critical problems in
machine learning: the availability of labelled data. Data labeling is a complex and time-
consuming process that requires a highly knowledgeable expert in the field. Like the previous
article, subsequences of system calls are sent to the machine learning module that reveals
anomalous subsequences. However, this time, we followed three distinct approaches depend-
ing on the amount of available labelled data. In the case of supervised learning, the Fisher
score feature selection, along with a correlation filtering strategy are applied to determine
the best subset of features in the dataset. Once the top-ranked features are selected, we
employ a multi-class Support Vector Machine model. When labelled data is not available,
our proposal uses the DBSCAN algorithm to group feature vectors into different categories in
terms of performance. Finally, we proposed a novel semi-supervised machine learning model
that benefits from both supervised and unsupervised learning techniques, when only a few
labelled data are available.
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3.3 Anomaly detection in microservice environments using distributed tracing
data analysis and NLP

Chapter 6 investigates the use of NLP to find abnormal behaviors in microservice-based
environments. Several factors such as the distribution of microservices in the network, the
use of different technologies, and their short life make microservices prone to the occurrence
of abnormal behaviors. This chapter proposes a natural language processing (NLP) based
approach to detect performance anomalies in spans during a given trace. One of the ben-
efits of this approach is that the whole system needs no prior knowledge, which facilitates
data collection. We developed a handcrafted data extraction module in Trace Compass to
construct the spans and sub spans using the request/response events tag. This module is
also responsible for converting each span into a sequence of events. Then our LSTM-based
model learns the possible patterns of events along with their arguments (e.g., event type,
tag, and process name). Using events arguments, and learning this level of detail, sets our
model apart from the others found in the literature.
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4.1 Abstract

In recent years, distributed systems have become increasingly complex as they grow in both
scale and functionality. Such complexity makes these systems prone to performance anoma-
lies. Efficient anomaly detection frameworks enable rapid recovery mechanisms to increase
the system’s reliability. In this paper, we present an anomaly detection approach for practi-
cal monitoring of processes running on a system to detect anomalous vectors of system calls.
Our proposed methodology employs a Linux tracing toolkit (LTTng) to monitor the processes
running on a system and extracts the streams of system calls. The system calls streams are
split into short sequences using a sliding window strategy. Unlike previous studies, our pro-
posed approach computes the execution time of system calls in addition to the frequency
of each individual call in a window. Finally, a multi-class support vector machine approach
is applied to evaluate the performance of the system and detect the anomalous sequences.
A comprehensive experimental study on a real dataset collected using LTTng demonstrates
that our proposed method is able to distinguish normal sequences from anomalous ones with
CPU or memory related problems.

Keywords: Anomaly detection, Machine learning, Performance evaluation, Data mining,
Time series, Linux Tracing
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4.2 Introduction

Recently, the usage of distributed systems, like cloud computing infrastructures, enterprise
data centers, and massive data processing systems, are rapidly increasing. The complexity of
these systems makes them prone to performance anomalies. System performance degradation
could be caused by various reasons such as excessive load of an application on resources or
system misconfiguration. It is a tedious task for human administrators to manually monitor
the execution status of the systems. Therefore, it is imperative to develop automatic anomaly
detection approaches with a minimum human intervention.

An anomaly is a change in system performance that does not fit with the expected normal
behavior. It is usually difficult to distinguish between normal and abnormal system status.
Moreover, modeling the normal behavior of a system that enfolds every possible normal
situations can be very complex. In this regard, behavioral analysis techniques could be used
to monitor performance of the processes running on a system. These approaches use the
characteristics of the executing software to identify potential anomalies in a system. One
such technique is system call analysis, in which abnormal behaviors are identified by system
call traces. System calls are requests for services, such as memory and filesystem access, that
a process makes of the operating system. System calls can represent low-level interactions
between a process and the kernel in the system.

Some studies apply time-delay embedding (tide) which records normal executions of appli-
cations using look-ahead pairs [6]. At test time, any deviation from the normal model is
considered as anomaly. Since a single process could produce massive amount of system calls
per second, these approaches do not scale well. Therefore, other studies split the system calls
streams into short sequences and extract features over a fixed time frame window [105]. One
approach extracts the histogram of the system call types for anomaly detection [103]. Kang
et al. [104] utilize a bag of system calls for the intrusion detection and describe the misuses
with the standard machine learning techniques. Other approaches rely on computing the
frequencies of short sequences (n-grams) of system calls over a fixed time window [76].

In general, the studies that are only based on modeling the normal behavior, have the disad-
vantages of missing some normal system call patterns. Therefore, in situations where enough
anomalous patterns are available, including the anomalous samples in the learning procedure
might be useful. In addition, the available performance anomaly detection approaches do not
consider the latency of a system call. A process can be blocked in a system call for different
reasons, like high overload on resources. Thus, considering the duration of system calls could
improve the accuracy of the anomaly detection on a system.
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In this paper, we propose a performance evaluation approach which uses short sequences of
system calls along with their duration to identify a system’s status, as normal or anomalous.
In this work, we separately evaluate the performance of each individual computer system as
a sub-component of the distributed architecture. Information about the individual system’s
status can guide the administrators in monitoring the performance of the whole distributed
framework. In our method, each system is instrumented with a lightweight kernel tracing
tool called the Linux Trace Toolkit Next Generation (LTTng) [106]. The system calls trace
logs are converted to short sequences using sliding window. Then, the system call tracing
data are represented by the frequency of individual calls and their corresponding execution
time. Finally, a supervised machine learning based approach is applied on the extracted
features to discriminate between normal and anomalous system call sequences.

The rest of the paper is organized as follows. In subsection 4.3 our proposed system anomaly
detection approach is presented. Subsection 4.4 provides the experimental results followed
by the conclusions in subsection 4.5.

4.3 Methodology

The overview of the proposed anomaly detection method is presented in Figure 4.1. The
proposed framework monitors the performance of a system by recording the stream of system
calls produced by its processes. System calls are the fundamental interface between a process
and the Linux kernel, which can be extracted using a Linux API. In our proposed approach,
the system call stream is converted to a group of short sequences and then analyzed to detect
the anomalous behavior of the system. An anomalous system call sequence may correspond
to the following scenarios:

• The system is running a CPU intensive process which causes an insufficient CPU allo-
cation problem

• The system is running a Memory intensive process which leads to an insufficient memory
allocation problem.

The above problems could be modeled through a multi-class classification approach. Our
proposed framework consists of multiple components: trace data extraction, pre-processing
and normalization, feature selection, and anomaly detection. These steps are defined in more
details in the following sections.
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Figure 4.1 The overview of the proposed framework.

4.3.1 Kernel tracing data extraction

The Linux Trace Toolkit next generation (LTTng) [106] is used to gather information about
the running processes on a system. LTTng is a powerful and lightweight open source Linux
tracing tool which provides detailed information on the kernel and user-space executions.
LTTng tool is used to collect system calls issued by the monitored processes and Trace
Compass open source software [54] is utilized to read the LTTng trace logs into a dictionary
of events. In this event dictionary, each system call entry consists of a timestamp, process
ID, and other run-time information related to the running processes.

4.3.2 Short sequence extraction and pre-processing

In this work, we assign an index to each system call as shown in Figure 4.2. Once the stream
of system calls data is extracted, the processes other than the one under study (e.g., MySQL)
is filtered out by using the process ID field. Then, the system calls index, timestamp, and
their corresponding execution times are listed for all threads of the selected process (see
Figure 4.3).

In the next step, a sliding window is applied to continuously extract the short system call
sequences. For each short sequence, two separate feature vectors are defined: 1) frequency
of system calls xfreq and 2) duration of system calls xdur where

• xfreq is a vector of size k, one per system call type. Each vector element counts the
number of calls issued during the window time frame.

• xdur is a vector of size k, one per system call type. Each vector component represents
the duration of each system call in the window time frame.
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Here, k is the total number of system calls that are included in the feature vector. In general
around 318 different system calls exist in Linux system. However, depending on the type of
the application running on the system, some system calls may not occur at all. This would
result in a very sparse dataset. Therefore, here, we reduce the sparsity of the collected data
by removing all unhappened system calls from the feature vectors.

Figure 4.2 Each system call is assigned to a unique number.

As a normalization pre-processing step, data standardization is applied on the dataset. This
process rescales the features in a way that they have the properties of a standard normal
distribution with mean of 0 and standard deviation of 1.

4.3.3 Discriminant feature selection

In this step, Fisher score feature selection method [18] is applied to determine the most
discriminative subset of features in the dataset. This algorithm computes a score for each
feature and then selects the desired number of features according to their scores. The larger
the Fisher score, the greater the discriminatory power of the attribute.

Given a dataset {(xi, yi)}ni=1, where xi ∈ Rk is the input sequence vector and yi ∈ {1, 2, ..., l}
is its corresponding class label, we aim to identify the most informative feature subset of size
m. The most discriminative subset of features is determined in two steps. First, the Fisher
score FSj for the feature j is computed as follows:

FSj =
∑l
c=1 nc (µjc − µj)

2

(σj)2 (4.1)

where nc represents the fraction of records in class c, µj and σj = ∑l
c=1 nc (σjc)

2 are the
mean and the standard deviations of the entire dataset corresponding to the j-th feature,
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respectively. Here, µjc and σjc denote the mean and the standard deviations of the c-th class
corresponding to the feature j.

Once the Fisher score for all features are computed, the top-m ranked features with high
scores are selected as the most discriminative ones.

4.3.4 System performance anomaly detection

Once the system call feature vectors are collected per sequence, the monitoring framework
categorizes the system performance into l = 3 separate classes: CPU problem, memory
problem, and normal. Here, we apply multi-class support vector machine classification algo-
rithm [63].

Figure 4.3 The summary of the extracted information from the stream of system calls.

Given the training data {(xi, yi)}ni=1 in the m dimensional space, the goal is to find the
decision boundaries that can separate each training data vector of one specific class from
that of others. We apply one-versus-one multi-class strategy which trains all possible pairwise
classifiers. A test example is labelled to the class with the most votes.
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For each data point xi each binary hyperplane can be defined as following:

ωTφ(x) + b (4.2)

The term ω is normal to the hyperplane and b is the bias. The function φ(x), represents
the projected input data x into a non-linear high-dimensional space. The support vector
technique requires to solve the following optimization problem:

min
ω,b,ε

1
2ω

Tω + C
n∑
i=1

εi (4.3)

under the following constraints:

yi
(
ωTφ(xi) + b

)
≥ 1− εi

εi ≥ 0, i = 1, ..., n

Here, yi ∈ {1,−1}n where 1 is the positive and -1 is the negative class. The constant C
controls the magnitude of the penalty associated with the training samples that lie on the
wrong side of the decision boundary. The radial basis function (RBF) of φ(x) = eγ‖(x−xi)‖2

is applied to map the data into the non-linear high-dimensional space. The term γ is the
parameter controlling the width of the Gaussian kernel. The accuracy of the classification is
dependent on the value of the parameters C and γ.

4.4 Experiments

We evaluate our proposed anomaly detection approach on a real system performance anomaly
dataset generated based on different faults. First, our experimental setup and dataset gener-
ation is described in subsection 4.4.1. Then, the result of the performance anomaly detection
approach is presented in subsection 4.4.2.

4.4.1 Setup and dataset generation

We conducted our experiments on a group of virtual machines (VMs), in order to better
manage system resource allocation. The host machine had an Intel Core i7 4 GHz × 8 CPU
and 32 GB of memory. The VMs had different CPU cores and memory allocations depending
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on the workload simulation. We use the open source MySQL synthetic benchmarks tool,
Sysbench, with oltp (Online Transaction Processing) test in complex mode. In this work,
different faults are simulated on the VMs to generate the performance anomaly dataset.
Examples of the simulated anomalies on the VMs are listed bellow:

• CPU problem: Limiting the amount of CPU resources allocated to a VM. (e.g., 1 CPU
core, while running 8 threads of MySQL).

• Memory problem: Limiting the amount of memory resources assigned to a VM. (e.g.,
256 MB memory, while the MySQL table is of size 6 GB).

In total, the generated dataset includes 18k normal and anomalous samples. Moreover, the
classes (normal, CPU problem, and memory problem) contain the same number of samples
which leads to a balanced dataset.

4.4.2 Results

In this section, we evaluate the performance of the proposed anomaly detection approach.
The proposed method records a stream of system calls and then extracts the short sequences
using a sliding window strategy. The window size is chosen as 10k with the overlapping size of
100. In the next step, duration and frequency based features are extracted from the sequences
of system calls. After applying pre-processing and Fisher score method a multi-class SVM
approach is applied to distinguish between normal and anomalous system.

To validate the accuracy of the proposed methodology, a 10-fold cross-validation strategy
is used which randomly partitions our dataset into 10 equal size subsets. Therefore, the
classifier is trained on 90% of the samples and the remaining data is split into two folds as
validation and test set. The whole process is repeated 10 times for an unbiased evaluation.

As mentioned previously, Fisher scores are computed on the vector of system calls to deter-
mine the most informative features. Figure 4.4 and 4.5 illustrate the Fisher values computed
for each system call in both frequency and duration based feature spaces. As expected, some
system calls have high Fisher scores and therefore play an effective role in discrimination
between classes. To better show the impact of computing the Fisher scores, Figure 4.6 shows
the accuracy of anomaly detection approach on the validation set using different numbers of
selected features. This experiment reveals that m = 22 and m = 6 top score system calls
should be selected for the frequency and duration based approaches, respectively.

As mentioned in subection 4.3.4, we apply a multi-class SVM with RBF kernel on our dataset
to classify the input sequences into three classes: normal, CPU problem, and memory prob-
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Figure 4.4 The Fisher score for each system call in frequency-based approach.

Figure 4.5 The Fisher score for each system call in duration-based approach.
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Figure 4.6 Anomaly detection accuracy versus different number of top-ranked features.
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lem. The accuracy of the classification method can be optimized by varying the two param-
eters, C and γ. The parameter C is the regularization term which controls the maximum
penalty imposed on the margin for the miss-classified points. The regularization parameter
C trades off between the training error and margin maximization. The term γ which is
involved in the RBF Kernel, is a distance measure that defines the training points’ influence
on the hyper-plane. In order to optimize these parameters, a grid search algorithm is per-
formed. Figures 4.7 and 4.8 show the average accuracy of the validation set using different
combination of parameters. The pair with the highest accuracy is chosen as final optimal
one. According to these analysis, the pairs (C = 10000, γ = 0.1) and (C = 100000, γ = 0.1)
are selected for the frequency and duration based approaches, respectively .

Figure 4.7 Heat map of the duration-based anomaly detection accuracy using different pa-
rameters γ and C.

Given these optimal parameters, our proposed anomaly detection method are evaluated on
an unseen test dataset. The result of the three class classification accuracy for 10 multiple
runs is presented in Figure 4.9. This shows that both frequency and duration of system calls
can accurately perform multi-class anomaly detection. However, duration-based approach
produced more accurate detection compared to the frequency-based approach.

In another experiment, the average classification accuracy of the proposed RBF-SVM anomaly
detection framework is compared to SVM with other kernels (Sigmoid and polynomial). Ta-
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Figure 4.8 Heat map of the frequency-based anomaly detection accuracy using different pa-
rameters γ and C.

Figure 4.9 Accuracy of the proposed approach on multiple runs.
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Table 4.1 The performance of the proposed RBF based anomaly detection approach compared
to the Sigmoid (SIG) and polynomial (POLY) based methods. The performances are reported
on both duration and frequency of system calls.

Duration Frequency
Acc Prec Rec Acc Prec Rec

RBF 0.925 0.848 0.806 0.900 0.857 0.911
SIG 0.906 0.796 0.660 0.886 0.884 0.879
POLY 0.911 0.810 0.674 0.882 0.913 0.744

ble 4.1 reports the average accuracy, precision, and recall for these approaches. It should be
noted that in the field of anomaly detection, recall usually plays a more effective role than
precision. These results show that the proposed method based on RBF kernel outperforms
the two other approaches.

4.5 Conclusions

In this paper, a system performance anomaly detection approach is proposed. The proposed
method records the stream of system calls using the Linux kernel tracing. Then, the short
sequences of system calls are extracted and two feature vectors of duration and frequency
are created. Fisher Score method is applied to select the most discriminative features and a
three-class SVM algorithm is employed to distinguish among systems with normal behavior,
CPU shortage, and memory shortage. Experiments showed that our proposed method was
able to produce promising results. Future work includes incorporating other system call
parameters as features.
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5.1 Abstract

Advances in technology and computing power have led to the emergence of complex and
large-scale software architectures in recent years. However, they are prone to performance
anomalies due to various reasons, including software bugs, hardware failures, and resource
contentions. Performance metrics represent the average load on the system and do not help
discover the cause of the problem if abnormal behavior occurs during software execution.
Consequently, system experts have to examine a massive amount of low-level tracing data to
determine the cause of a performance issue. In this work, we propose an anomaly detection
framework that reduces troubleshooting time, besides guiding developers to discover perfor-
mance problems by highlighting anomalous parts in trace data. Our framework works by
collecting streams of system calls during the execution of a process using the Linux Trace
Toolkit Next Generation(LTTng), sending them to a machine learning module that reveals
anomalous subsequences of system calls based on their execution times and frequency. Exten-
sive experiments on real datasets from two different applications (e.g., MySQL and Chrome),
for varying scenarios in terms of available labelled data, demonstrate the effectiveness of our
approach to distinguish normal sequences from abnormal ones.

Keywords: Anomaly detection, Machine learning, Performance evaluation, Operating Sys-
tem, Tracing
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5.2 Introduction

In recent years, computing infrastructure has significantly evolved, whereas complex sys-
tems have facilitated many complicated and large-scale tasks. For example, functional co-
processing units accommodate conventional processing units to speed up particular tasks
such as virtualization or complex machine learning computations. Consequently, a simple
operation can involve multiple parallel cores, being served in a few seconds or milliseconds.
These improvements have increased the expectation level of the users, so that any perfor-
mance fluctuations or increased latency may lead to user dissatisfaction and financial loss.
Different reasons such as software bugs, misconfigurations, network disconnection, hardware
faults, aging phenomena of the systems, or even extreme load injected by other applications
into the system, may degrade the performance of a particular service or application. Hence,
monitoring and analyzing the performance of applications to find any performance anomaly
or degradation is of particular importance. Indeed, any delay in detecting performance prob-
lems and troubleshooting can significantly increase the cost to fix them.

Performance anomaly detection refers to the problem of finding exceptional patterns in exe-
cution flow that do not conform to the expected normal behavior. Many sources may cause
performance anomalies, such as application bugs, updates, software aging phenomenon, and
hardware failure. It should be noted that performance anomalies are different from high
resource consumption. An application might be inherently CPU or I/O intensive without
being categorized as anomalous. However, imposing a continuous and more than expected
average workload intensity on the system can be a sign of an anomaly. Relying on the defini-
tion of performance anomaly detection, we believe that whatever the source of the anomaly
is, it makes the execution’s flow different from the normal situation. Consequently, it seems
interesting to look at the problem from a more general point of view and try to find the
deviations of the execution’s flow, regardless of the source of the anomaly. In case of any
abnormal behavior during software execution, system developers or experts need information
that not only locates that behavior but also provides details of the execution at the time the
anomaly occurs. The performance metrics provided by tools such as top, etc., can represent
the average load on the system. However, they do not help detect anomalies since a live
threshold subject to the current system state would be needed to distinguish whether the
application’s behavior is normal or abnormal, which is practically impossible. Even if such
thresholds were available, these tools would not provide any details about the application’s
execution flow. Therefore, system experts often employ logs and low-level tracing tools to
define efficient strategies to find anomalies as well as their causes. Tracing is an effective
way of gaining information on a system for further analysis and debugging of the underlying
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system, while minimizing monitoring influence [107]. However, it is an exhausting responsi-
bility for human administrators to manually examine a massive amount of low-level tracing
data and monitor the execution status of an application [108]. Hence, an accurate anomaly
detection framework with minimum human intervention is in order.

Tracing data can offer detailed information about the execution of applications and processes.
System calls are essential traceable events that contain valuable information about the pro-
gram’s flow. They represent low-level interactions between a process and the kernel in the
system. Processes must interact with the operating system for each request, such as open-
ing a file, writing into the registry, or opening a network connection, which is done through
system calls. A system call trace provides an ordered sequence of system calls that a process
performs during its execution. The definition of normal behavior is stable for standard UNIX
process [6]. When a process is anomalous, its system call trace is extremely different from
the process running under normal conditions [102,109]. Our goal in anomaly detection is to
find sets of system calls that are not likely to happen together in normal situations.

This work proposes a general anomaly detection framework to process the large volume of
tracing data by taking advantage of machine learning technologies and open-source tools
(i.e., LTTng and Trace Compass). Its main contributions are the following: First, unlike
many other methods that use performance metrics or unstructured logs, we employed LTTng
for data collection, which provides a system software package for correlated tracing of the
Linux kernel, applications, and libraries [110]. LTTng provides high-resolution details of
the program’s execution by presenting kernel and userspace events related to the moment
anomalies occur. Second, this article has addressed the problem of availability of labelled
data by proposing learning techniques depending on their volume. Consequently, when a large
amount of labelled training data is available, a supervised method is introduced, whereas an
unsupervised method is preferred when labelled data is not available. Moreover, we propose
a novel semi-supervised machine learning model within proposed framework that benefits
from both supervised and unsupervised learning techniques when only a few labelled data
are available. It should be noted that all proposed learning methods use the same data
structure. Third, this is the first time that the durations of the most important system
calls are used to make feature vectors. The duration of a system call in a window acts
like the weighted frequency of that system call. Further, using the most important system
calls instead of the whole set of system calls is novel, and it is shown to improve detection
performance. Fourth, the proposed anomaly detection framework reduces troubleshooting
time and directs the developer or troubleshooter to discover the problem by highlighting
the anomalous parts of the trace. It helps developers look at just a few small windows
instead of the whole trace that contains millions of events. Using the proposed anomaly



52

detection framework alongside Trace Compass gives the developers a deep understanding of
what happened at the time of the anomaly. It enables developers to use many preexisting
scripts and views in Trace Compass for further analyzing the anomaly detection output.

The rest of the paper is organized as follows. In Section 5.3, related studies are presented. In
Section 5.4, we describe the details of the performance anomalies in processes. In Section 5.5,
we introduce our automatic integrated anomaly detection framework. Section 5.6 discusses
the algorithm for kernel tracing and data extraction. Preprocessing of the extracted data
is explained in Section 5.7. Then, the feature selection strategy along with supervised,
unsupervised, and semi-supervised anomaly detection methods are proposed in Section 5.8.
Section 5.9 provides the experimental results from two different applications (i.e., MySQL
and Chrome), followed by the conclusions in Section 5.10.

5.3 Previous Work

In this section, the available techniques for performance anomaly detection are reviewed. The
earliest efforts consisted of statistical methods [87]. These works keep the activity of subjects
and generate profiles to represent their behavior. Profiles include measures such as activity
intensity measure, audit record distribution measure, categorical measures, and ordinal mea-
sure. As events are processed, an anomaly score is computed using an abnormality function
and profiles. If the anomaly score is higher than a certain threshold, the detection system
generates an alert. Statistical models have some disadvantages. Defining proper thresholds
which can balance the likelihood of false positives and false negatives is very difficult to set.
Moreover, most of the statistical anomaly detection techniques require the assumption of
a quasi-stationary process. However, this cannot be assumed for most data processed by
anomaly detection systems. Wang and Battiti [74] proposed a method in which the distance
between a vector and its reconstruction onto the reduced PCA subspace represents whether
the vector is normal or abnormal. This method is limited to pre-determined anomalies and
is not able to detect novel types of anomalies, besides suffering from the problem of defining
thresholds.

In addition to these methods, several machine learning-based schemes have been applied to
detect anomalies in systems. They work based on the establishment of a model that allows
the patterns to be categorized [89]. Bayesian networks can encode probabilistic relationships
among variables of interest, thereby predicting the consequences of an event in the system [90].
Ye and Borror presented a cyber-attack detection technique through anomaly detection using
a Markov chain [75]. Achieving high performance in these techniques depends on the quality
of the data. This is because the Markov Chain technique is not robust to outliers and performs
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better when the amount of noise in data is low [91]. Besides, these models have better
performance for small datasets. Among other approaches, clustering algorithms can detect
abnormal behavior without prior knowledge. Many clustering algorithms, such as k-means,
k-medoids, EM Clustering, and outlier detection algorithms, have been employed for anomaly
detection. In [92], the k-Means clustering algorithm with the accompaniment of different
dimensionality reduction modules (PCA, ICA, GA, and PSO) was used to separate time
intervals of the traffic data into normal and anomalous groups. However, none of these works
have mentioned how to collect the data. These works are limited to clustering preexisting
datasets and do not provide a solution for real-world usage. Apart from clustering methods,
classification-based anomaly detection approaches like support vectors, Fuzzy Logic, and
Neural Networks have been widely used in this area [93]. In [3], a fuzzy technique is proposed
to extract abnormal patterns based on various statistical metrics in which fuzzy logic rules
are applied to classify data [3]. Statistical metrics cannot be used to find the root cause of
the anomaly after detecting an anomaly because these metrics do not provide details of the
execution flow.

One imperative point in system performance analysis is how to characterize the executing
software. In this regard, behavioral analysis techniques can be used to automatically monitor
the performance of the processes running on a system. Some other studies have used system
calls to characterize software behavior. Forrest et al. [6] showed that during the normal
execution of a program, a consistent sequence of system calls is generated. In their method, all
possible normal patterns of different lengths are collected to form the normal dataset. Then
different patterns in the new trace are compared with the normal dataset, and any deviation
from the normal model is considered an anomaly. The first weakness of this method is that
finding all the patterns with different lengths is extremely time-consuming because a short
tracing file includes thousands of events. Furthermore, the resulting database is massive. It
is notably time-consuming to compare a new pattern to the entire normal dataset.

The use of system calls has led to a dramatic improvement in anomaly detection techniques.
Canzanese et al. characterized system call traces using a bag-of-n-grams model, which rep-
resents a system call trace as a vector of system call n-gram frequencies [76]. In this regard,
Kolosnjaji et al. [29] attempted to apply deep learning to model the malware system call
sequences for malware classification. They constructed a neural network based on convolu-
tions in order to obtain the most desirable features of n-grams. A well-known issue with
N-gram-based approaches is sparsity. The N-gram model, like many statistical models, is
significantly dependent on the training data. Besides, the performance of the N-gram model
varies with the change in the value of N. In [28], Strace is utilized for collecting logs, and
then the Linux kernel system calls are extracted to construct weighted directed graphs. This
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method in which the graph-based representation is used for anomaly detection suffers from
the high cost of obtaining such graphs. Finding related system calls out of thousands of
events requires extremely high computational power.

Many sources may cause anomalies or performance degradation, such as application bugs,
updates, software aging phenomenon, and hardware failure. Various articles have tried to
discover or solve performance degradations resulting from each of these sources. For example,
software rejuvenation was introduced to prevent or at least delay aging-related failures [71].
Software aging has been demonstrated to affect many long-running systems, such as web
servers, operating systems, and cloud applications. Ficco et al. have examined the effects
of software aging on the gradual increase in the failure rate or performance degradation of
Apache Storm over time [72]. Apache Storm is an open-source distributed real-time com-
putational system for processing data streams. These systems may be affected by software
aging because they usually run for a very long time. In their work, the measures related
to the system resources usage and the user-perceived performance are collected by vmstat
utility and by reading from Storm logs details about emitted requests and their responses.
This information is employed to discover evidence of software aging. However, software aging
is just one of several sources of anomalies. Relying on the definition of anomaly, we believe
that whatever the source of the anomaly is, it makes the execution’s flow different from the
normal situation. Hence, it seems interesting to look at the problem from a more general
point of view and try to find the deviations of the execution’s flow, regardless of the source
of the anomaly. In addition, LTTng can gather kernel events as well as the userspace events
without imposing much overhead to the system. LTTng has several features that make it
usable for most Linux-based environments. For instance, the LTTng relay daemon enables
us to trace distributed systems.

Our work distinguishes from the previous related literature since:

• Unlike most previous works, which did not provide a solution for data collection, we
defined our data collection module using LTTng and Trace Compass. Using various
LTTng features makes our proposed framework applicable in most Linux-based envi-
ronments without much change. For instance, the LTTng relay daemon enables us to
trace distributed systems and cloud environments. In addition, no special settings are
employed while collecting the data. We used tracing in our proposed framework because
tracing enables us to examine the execution flow using tools such as Trace Compass.

• Statistical metrics can not be used to find the cause of the anomaly after detecting an
anomaly. Compared to statistical techniques, our proposed framework has no assump-
tion and is not dependent on the existence of any threshold. This fact and the way we
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use the system calls increase the generality of our method and make it usable for any
application and environment.

• Achieving high performance using Bayesian networks and Markov chain techniques
depends on the quality of the data. These techniques are not robust to outliers and
perform better when the amount of noise in data is low. Besides, these models have
better performance for small datasets. These problems were solved in our work by
carefully choosing the learning method so that the presence of noise or new data points
does not cause much change in the model and works appropriately for large data.

• Many of the available performance anomaly detection approaches use supervised meth-
ods, which require labelled data. However, labelled data is not always available. While
proposing an unsupervised approach is desirable, it is a great challenge to achieve high
accuracy by means of an unsupervised method. We have provided a package of super-
vised, unsupervised, and semi-supervised methods that can be used according to the
volume of available labelled data. All these three methods use the same data struc-
ture, and no special settings are employed while collecting the data. After training the
model in our proposed method, the detection is done very quickly and without high
computational cost.

• Unlike methods that compare a pattern to all normal patterns in a database to de-
termine if it is abnormal, our method is not limited to a primary database. Finally,
presenting events that occurred during the anomaly helps the developer not spend much
time examining the entire events in a trace or log file in order to discover the anomaly’s
cause.

5.4 Performance Anomaly in Processes

Performance anomalies are the most significant obstacles to the system to perform confidently
and predictably in enterprise applications. Many sources can cause anomalies, such as varying
application load, application bugs, updates, and hardware failure. In a situation where
the workload is the source of the anomaly, the application imposes continuous and more
than expected average workload intensity to the system. Faults in system resources and
components may considerably affect application performance at a high cost [24]. In addition,
software bugs, operator errors, hardware faults, and security violations may cause system
failures.

The preliminary performance profiling of a process that reflects its typical behavior can
be done using synthetic workloads or benchmarks. At a higher level, the performance of
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computer systems is delineated by measuring the duration of performing a given set of tasks
or the amount of system resources consumed within a time interval [25].

There exist many metrics for measuring the performance of a system. Latency and through-
put are the most used ones. They are used to describe the operation state of a computer
system. The time that passes between the beginning of an operation and its completion is
the latency, (e.g., the delay between when a user clicks to open a webpage and when the
browser displays that webpage). Throughput is a measure of how many jobs a system can
perform in a given amount of time (e.g., the number of users’ requests completed within a
time interval). In addition, resource utilization of an application indicates the amount of
resources (e.g., number of CPUs, and the size of physical memory or disk) used by that
application. The CPU utilization is the percentage of time in which the CPU is executing
a process whereas the memory utilization is the amount of storage capacity dedicated to a
particular process.

Figure 5.1(a) shows an example of the CPU utilization of a process during its lifetime. When
an application is running normally, the CPU used by that application is conventional. Hence
an expected maximum CPU utilization threshold can be defined for each application. In
this case, if the CPU usage exceeds the threshold value, the process behavior is prone to the
existence of an anomaly. Furthermore, as represented in Figure 5.1b, during the anomalous
running of a process, the latency is usually increased while this curve has a relatively steady
trend during normal behavior [26].

From another perspective, data anomalies can be defined in various forms. Two principal
forms of anomalies are point anomalies and collective anomalies. Point anomalies are data
points that are different from normal data. For example, consider a situation where data is
generated from different data distributions, each one defining a cluster. In this case, data
points which do not seem to have been generated by the data distributions are considered
as point anomalies. While searching this type of anomalies, performance metrics such as
CPU utilization or throughput can be used to determine if abnormal behavior has occurred
at a particular timestamp. In the case of collective anomalies, we cannot detect individual
data points as anomalies by themselves; however, their collective occurrence together may
be an anomalous behavior. In this method, instead of detecting an anomaly at a particular
timestamp, the system’s behavior during a sequence of events is investigated. Due to the
use of tracing data and the fact that a single event obtained from tracing does not contain
enough information to detect an anomaly, we search mostly for collective anomalies in this
work. Besides, looking at the sequence of events provides insightful information about the
system behaviors over a period of time, which is essential for analyzing the root cause of an
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Figure 5.1 (a) CPU usage of an application during the time. (b) an anomalous latency
growth pattern [1].
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anomaly. Finally, by targeting the collective anomalies, our framework can even handle rare
system call invocation paths. For example, a user never opens FTP connections on Chrome,
but one day decides to do so. This will lead to a significantly different invocation path.
In practice, observing a new system call is not a reason for an anomaly to occur, and we
cannot consider a subsequence of events to be abnormal only due to the presence of a new
system call. The subsequence in which the rare system call occurs is considered abnormal
not only because of that system call but also because of the effects the system call has on the
surrounding system calls. This system call may also be ignored during the feature selection
process, in which case its effect is still present in the subsequence.

Anomalies can be defined from the user experience aspect, and in many situations, anomalies
happen on the server-side, but their effect can be realized on the user side. Moreover, a
physical or virtual node is often not dedicated to a unique particular service. So, latency
or throughput in a sampling period cannot help to find anomalies in a program execution
while several programs are running on the node. In this case, separating the normal and the
abnormal behavior is very difficult, and the result depends on the hardware. Furthermore,
the latency or throughput does not contain execution details, while the sequence of events
such as system calls reveals many details about program execution.

5.5 The Automatic Integrated Anomaly Detection Framework

In this work, we propose an automatic anomaly detection framework to process the large
volume of tracing data by taking advantage of machine learning technologies. The system
architecture of the proposed framework is shown in Figure 5.2. The generality of the frame-
work is extremely important, and it must be capable of working along with any program or
system with different settings.

As illustrated in Figure 5.2, the entire framework is divided into several modules. First, kernel
tracing is done to gather the system calls information during the execution of a program.
We employ LTTng (Linux Trace Toolkit Next Generation) in this module, a system software
package for correlated tracing of the Linux kernel, applications, and libraries. The raw tracing
data is fed into the data extraction module that processes it with a windowing method that
will be introduced later in this paper. Data transformation and feature extraction is done
in the Trace Compass application. This module is responsible for preparing data for the
detection module in both the training and detection phases. This data contains feature
vectors extracted from the tracing data. When the model is trained, the data extraction
module sends new feature vectors to the detection module at detection time. We discuss
each module in the following sections.
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Figure 5.2 The system architecture of the proposed framework.

Our anomaly detection framework’s design aims to provide high accuracy and time efficiency
in analyzing tracing data and detect anomalous performance behaviors in large scale sys-
tems. By investigating the required framework specifications it seems challenging to apply
an anomaly detection framework in practice because of two issues. The first is that continu-
ously collecting system calls for machine learning methods is computationally expensive and
of needs much storage space. Furthermore, the machine learning model itself takes a long
time to train. To address the latter issue, we assume that once the model has been trained
for an application, there is no need to retrain it, and periodic updates are enough. However,
continuously collecting system calls is still needed. Hence, we propose using LTTng-rotate
for increasing data collection efficiency, thus reducing the size of the tracing file.

5.6 Kernel Tracing and Data Extraction

In this section, the data extraction technique is explained in which two data sets are created
by tracing the underlying system kernel by means of a sliding windowing technique. We use
our data collection instead of using many existing systems calls data sets. Our data extraction
technique allows us to collect our own fields (name, index, and especially duration) and trace
any program. Furthermore, we can consider the time of data collection in the overall process
because the data collection is not free as it is considered in many existing works, and finally,
the collaborations required to handle a request can be considered, which is not the case in
the existing data sets.
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Tracing is a popular technique to analyze, debug, and monitor processes running on a system.
Furthermore, it is an efficient way of gaining information on a system while minimizing
the monitoring influence. The instrumentation of the traced application provides as output
timestamp-matched events and intuition on the execution of various parts of a system. Thus,
the precision of the monitored events is equal to the internal clock of the device.

Traces are massive data which can be fed into a machine learning framework. Fortunately,
several standard tools and tracing methodologies exist in different environments. Here, in
order to analyze the behavior of each process and find out the performance status, each
system is equipped with a lightweight tracing tool called the Linux Trace Toolkit Next Gen-
eration(LTTng) [110]. It is implemented for high throughput tracing and includes multiple
modules for Linux kernel and userspace tracing with minimal cost. Tracing the OS or user
applications requires the ability to record thousands of low-level events per second which im-
poses some overhead to the system that may affect the performance of the target application.
Hence, LTTng is a proper tool to be used in our experiment as we would like a tracer to have
a low overhead on the monitored systems. Figure 5.3 represents the process of collecting
kernel events in a trace file and transferring it into the Trace Analysis module. As illustrated
in this figure, the userspace application sends requests to the Linux kernel using system calls
which are recorded by LTTng Tracer on .ctf trace files. In the sequel, the trace file is fed into
the trace analysis module to create the dataset and perform more investigation.

Figure 5.3 Data extraction steps using kernel tracing.
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We implemented the trace analyzer module within the Trace Compass open source tool [54],
with visualization mechanisms to promote the analysis of the system performance anomalies
with different perspectives. Actually, the LTTng tool is applied to collect system calls origi-
nated by the monitored processes, and Trace Compass is employed to read the LTTng trace
files and to produce a sequence of events with all their associated information (e.g., system
call name, timestamp, and duration). Our methodology focuses on system calls, so while the
Trace Compass code is reading the trace file, it only collects system calls and skips other
events. In the obtained dictionary, each system call entry contains a timestamp, process ID,
and some additional run-time information associated with that system call, which is depicted
in Figure 5.4.

First, the processes other than the one under study (e.g., MySQL and Chrome) are filtered
out considering the process ID field. Then, instead of working with system call names, an
index is assigned to each system call. The system calls indices, the corresponding execution
times, and other related information are listed for all threads of the target process. Since
a single process can produce a huge amount of system calls, considering all system calls at
once is not practical in real applications. Therefore, a sliding window is used to continuously
extract data from subsequences of system calls. For each subsequence, we define a compact
representation that yields two separate feature vectors containing the frequency (xfrequency)
and the duration (xduration) of the system calls inside the current sliding window. Thus, our
methodology can handle large and varying volumes of data. Since we monitor 318 different
system calls of the Linux operating system, each feature vector has 318 dimensions, one per
system call type. This feature extraction strategy is shown in Figure 5.4.

The pseudocode for extracting the feature vectors is represented in Algorithm 1. The al-
gorithm receives the windowing size α, the windowing step β, a Trace τ which contains a
sequence of events, and the target process m as input. Some factors must be considered when
selecting α and β values. Windows must contain sufficient information about the status of
the system over a period of time. In one hand, choosing a small amount as the length of the
window reduces the useful information volume of the subsequence and increases the number
of subsequences. Furthermore, it may even increase sparsity. In the other hand, if a large α
value is selected, it is likely that the screened subsequences contain both normal and abnor-
mal events. Moreover, small β values make the subsequences very similar, and larger values
also ignore many possible subsequences. There is no need to worry about calculating these
values. It can be a manual trial-and-error process to performed at training-validation time.
It does not impose much computation cost to the whole framework.



62

Figure 5.4 Reading trace file and extracting vectors using windowing method.
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Algorithm 1 Feature extraction procedure

Input: Trace τ , Process m, α, β
Output: D, F

1: D ← ∅, F ← ∅
2: SP = {e ∈ τ | type(e) = systemcall and process(e) = m}
3: W ← MakeSubsequences(SP , α, β)
4: for all i ∈ {1, 2, ..., |W |} do
5: FV ← ∑α

j=1 Ri,j

6: DV ← ∑α
j=1 Si,j

7: F ← F ∪ (FV )
8: D ← D ∪ (DV )
9: end for

Algorithm 1 first obtains the set of frequency based feature vectors (F ) and the set of duration
based feature vectors (D). At the beginning of the algorithm, the system calls belonging to
the process m are extracted from the total events in the trace file and a set SP is built (line
2). The function type(e) determines if the event e is a system call or not. Then in line 3
the function MakeSubsequences() obtains all possible subsequences in SP by considering the
widowing size α and the windowing step β. For each subsequence Wi two data structures of
size (α× 318) are built: Ri and Si. Let Ri,j be a (1× 318) one-hot vector which corresponds
to the j-th system call done in the i-th subsequence. In this vector, the k-th cell where
k=index(wi,j) is equal to one. The vector FV is calculated by the sum of all the one-hot
vectors Ri,j for all j ∈ {1, 2, ..., α}. In a similar way, Si,j represents a (1×318) one-hot vector
which corresponds to the j-th system call done in the i-th subsequence.. In this vector, all
the cells have zero value except the k-th cell where k=index(wi,j). The value of this cell is
equal to the duration of that system call. The vector DV is computed by the sum of all
the one-hot vectors Si,j for all j ∈ {1, 2, ..., α}. Finally, D and F provide a set of duration
vectors and a set of frequency vectors, correspondingly (lines 7 and 8).

5.7 Preprocessing of the Extracted Data

Data preprocessing is an essential stage for the success of any machine learning model. In
almost all knowledge discovery tasks, the data preprocessing step takes the major part of the
overall development effort, even more than the data mining task [111].
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5.7.1 Problem of Sparsity

Each subsequence of events present in a window is represented by a frequency (duration)
vector with the size of total number of system calls (i.e., 318). Naturally, most of the values
in each vector will be zero due to the large number of system calls. Besides, a specific process
utilizes special system calls during its execution. In other words, some columns of the data
sample will consist of zero values. This characteristic dramatically impacts calculating sample
similarities. Moreover, it is hard to understand the relationships between different feature
vectors when the training set is not large enough in the presence of sparsity [112]. Thus, in
this paper, we reduce the sparsity of the collected data by eliminating all unused features
related to system calls that never occur during the execution of the monitored process.

5.7.2 Data Normalization

Data normalization is a fundamental phase of data preprocessing. Data normalization is
employed to reduce the dominating effect of some attributes measured in different scales.
Here, data standardization is applied on the dataset as a normalization preprocessing step.
Let, Γ = {X1, X2, ..., Xn} denote the d-dimensional data set. Thus, Γ is a n× d matrix:

Γ =


x11 ... x1d

... ... ...

xn1 ... xnd

 (5.1)

Given a dataset Γ, the Z-score standardization formula is defined as:

xij = Z (xij) = xij − µj
σj

, (5.2)

where µj and σj are, respectively, the samples mean and the standard deviation of the jth
attribute. This method rescales the features in a way that they have a standard normal
distribution with mean of 0 and standard deviation of 1.

5.8 Performance Anomaly Detection

In this section, first, we assume that enough labelled training samples are available. Thus, we
propose a supervised monitoring framework that classifies the system performance into three
separated classes: normal, CPU issue, and Memory issue. Although a supervised approach
could usually produce acceptable detection results, it requires enough labelled data. Since
providing labelled data for the whole data distribution is not always possible, we propose to
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use an unsupervised approach in Section 5.8.2. The unsupervised approach does not require
any labelled data and clusters the input data into separate categories, which could represent
different groups of normal, CPU issue, or Memory issue. However, unsupervised approaches
usually present worse classification performance than supervised methods in practice given
that no priori information is exploited. Therefore, in order to introduce a from of supervision
into the unsupervised approach and improve the detection performance, we propose a semi-
supervised approach in Section 5.8.3. In this method, we assume that a subset of data is
labelled and can be used to guide the feature selection procedure. In this way, the benefits
of the supervised and unsupervised learning strategy are combined into a semi-supervised
anomaly detection approach.

5.8.1 Supervised Performance Anomaly Detection

Once the system call feature vectors are collected per subsequence, the purpose of the anomaly
detection algorithm becomes to train a model with normal and abnormal data from the
provided labelled training dataset. Later, the task would be to determine whether a test
sample vector belongs to a normal or abnormal behavior. Here, we describe a supervised
monitoring framework that classifies the system performance into three separate classes. If
a vector has a normal behavior, it will be assigned to the first category. The second class is
defined as a CPU issue or, in other words, insufficient CPU allocation problem, which may
happen when the system is running a CPU intensive process. Finally, the vectors extracted
from a system running a memory-intensive process are assigned to the third category. This
class indicates an insufficient memory allocation issue.

Iterative Feature Selection

Feature selection is the process of finding the most discriminative subset of features for
performing classification. In the case of supervised learning, this selection is performed
based on the available labelled data. A proper feature selection can improve the learning
accuracy and reduce the learning time. Here, the Fisher score along with a correlation
filtering strategy [18] are applied to determine the best subset of features in the dataset. In
this algorithm, a subset of features are found in a way that the distances between samples
in different classes become as large as possible, while the distances between data points in
the same class stay as small as possible. The Fisher Score FSj, for j = 1, . . . , d, can be
calculated as follows:
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FSj =
∑k
c=1 nc (µjc − µj)2∑k

c=1 ncσ
2
jc

, (5.3)

where nc is the number of samples in class c, for c = 1, . . . , k (number of classes), and µjc

corresponds to the average value of feature j restricted to the samples in class c. Further,
σ2
jc is the variance of feature j for samples in class c.

The computed Fisher scores of each feature are sorted in non-increasing order and scanned
iteratively to select the ` features that have low correlation together. A feature is selected
to compose the list of ` features if its pairwise correlation with one of the features already
selected in superior to a given threshold. This procedure continues iteratively until ` features
are selected. Here, the correlation between two features j1 and j2 is computed as follows:

Cov(j1, j2) =
∑n
i (xij1 − µj1)(xij2 − µj2)

n− 1 (5.4)

Supervised Multi-Class Anomaly Detection

Once the top-ranked features are selected, we employ a multi-class support vector machine
(SVM) [63] classification model. We choose SVM considering its generalization ability and its
successful utilization in different pattern recognition applications, such as anomaly detection
tasks [113]. SVM finds the hyperplane with the largest margin that classifies the training set
samples into two classes. Then the unseen test samples are labelled by checking the sign of
the hyperplane’s function.

Considering each sample Xi, for i = 1, . . . , n of the training data and its associated label yi,
SVM finds the optimal hyperplan by solving the following problem:

min
ω,d

1
2ω

Tω + C
n∑
i=1

ξi (5.5)

s.t. yi
(
ωTφ (Xi) + c

)
≥ 1− ξi , ξi ≥ 0 , i = 1, ..., n (5.6)

where ω is d-dimensional vector and ξi is a measure of the distance between the misclassified
point and the separating hyperplane. The function φ (xi) projects the original data sample
xi into a higher dimensional space and d is the bias. C controls the penalty associated
with the training samples that lie on the wrong side of the decision boundary. The radial
basis function (RBF) of φ(x) = eγ‖(x−xi)‖2 is applied to map the data into the non-linear
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high-dimensional space. The term γ is a parameter that controls the width of the Gaussian
kernel. The accuracy of the classification is then dependent on the value of the parameters
C and γ.

In this work, we generalize the binary classification model by means of a one-versus-one
approach. In this approach, one classifier per pair of classes is built. In our case, it fits three
classifiers for three possible pairs of classes: (1) samples with memory issues from the samples
with CPU issues, (2) samples with memory issues from the normal samples, (3) samples with
CPU issues from the normal samples. The class which received the most votes is selected
at prediction time. In the case that two classes have an equal number of votes, it selects
the class with the highest aggregate classification confidence by summing over the pairwise
classification confidence levels computed by the underlying binary classifiers.

5.8.2 Unsupervised Learning of the Performance Anomalies

Most current anomaly detection systems use labelled training data. As mentioned before,
producing this kind of training data is usually expensive. Besides, the definition of normal
and anomalous behaviours may change over time. To address these problems, we propose to
use an unsupervised system call based anomaly detection scheme. This technique segments
unlabelled data vectors into distinct clusters. The proposed unsupervised approach should be
able to categorize previously unseen types of anomalies. A wide variety of models for cluster
analysis exists; however, the initial choices are usually representative-based algorithms such
as K-Means, which directly uses the distances between the data points to cluster a dataset.
Another clustering approach based on data density used in this work is DBSCAN which can
group clusters of varied complex shapes. In the following, we briefly describe the K-Means
and the DBSCAN algorithms.

K-Means Clustering

K-Means is a clustering algorithm that groups samples based on their feature values into k
different clusters. Data samples which are assigned to the same cluster are supposed to have
similar feature values. In this clustering technique, the sum of the squares of the Euclidean
distances of data points to their closest representatives is used as an objective function [68,69]:

Dist (Xi, Xj) = ‖Xi −Xj‖2
2 (5.7)

where Xi = (xi1, ..., xid) and Xj = (xj1, ..., xjd) are two input vectors with d features and
‖·‖p represents the Lp − norm. K-Means begins by initializing the k centroids using a



68

straightforward heuristic like random sampling from the dataset and then refines the centroids
in the following steps until stability is reached:

• Assign each vector to the closest centroid using the similarity function (Equation 5.7)

• Determine the optimal centroid for each cluster Cj

Dbscan Clustering

The use of K-Means clustering has some limitations. First, it requires the user to set the
number of clusters a priori. Second, the presence of outliers has an undeniable impact on K-
means. Besides, K-means works better for spherical clusters considering the Euclidean space
as the underlying data space. To further reveal this point, consider the clusters represented
in Figure 5.5. These plots depict the frequency-based vectors extracted from a chrome
process use case along with their real labels. Since the original data has more than 120
attributes, two separate dimensionality reduction approaches were applied to better visualize
the data. In Figure 5.5a we present data obtained with the t-distributed Stochastic Neighbor
Embedding (t-SNE) [114] while Figure 5.5b presents the data projected in the plane by means
of PCA [115]. Both figures reveal that the K-means algorithm is not appropriate to correctly
cluster the illustrated dataset. Here there are three clusters of arbitrary shape in the data,
and thus density-based algorithms are preferable.

Hence, our proposal uses the DBSCAN algorithm [70], in which the individual data points
in dense regions are used as building blocks after grouping them according to their density.

DBSCAN algorithm requires two parameters. The first parameter is ε, which defines the
neighborhood around a data point. Two points are considered as neighbors if the distance
between them is lower or equal to ε. If the ε value is chosen too small, then a large part of
the data will be considered as outliers. On the other hand, if it is chosen very large then
the clusters will merge, and the majority of the data points will be in the same cluster.
The second parameter is MinPts, which indicates the minimum number of neighbors (data
points) within ε radius. The density of a point is the number of points that lie within a
radius ε of that point which can be obtained by the following formula :

Nε (Xi) = {Xj ∈ Dataset | Dist (Xi, Xj) ≤ ε} (5.8)

DBSCAN classifies the data points into three categories of core, border, and outliers based on
the hyperparameters ε andMinPts. A point is a core one if it has more thanMinPts points
within ε, and a border point is a point that has fewer than MinPts within ε, but it is in the
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neighborhood of a core point. A point that is not a core point or border point is considered as
an outlier. Also, three terms required for understanding the DBSCAN algorithm: (1) point
A is “directly density reachable” from point B if A is within distance ε from core point B.
(2) A point A is “density reachable” from B if there is a set of core points leading from B

to A. (3) Two points A and B are “density connected” if there is a core point C, such that
both A and B are density reachable from C. A density-based cluster is defined as a group
of density connected points. By considering these definitions, DBSCAN algorithm can be
described in the following steps:

• For each point xi, compute the distance between xi and the other points. Finds all
neighbor points within distance ε of the starting point xi. Each point, with a neighbor
count greater than or equal to MinPts, is marked as core point or visited.

• For each core point, if it is not already assigned to a cluster, create a new cluster. Find
all its density connected points recursively and assign them to the same cluster as the
core point.

• Iterate through the remaining unvisited points in the dataset.

Those points that do not belong to any cluster are considered as outliers. DBSCAN is able
to cluster points into distinct categories without setting the number of clusters.

5.8.3 Semi-Supervised Learning of the Performance Anomalies

Although unsupervised approaches allow one to tackle a massive amount of unlabelled data,
they might present worse classification performance than supervised learning methods in
practice due to the lack of knowledge about the application itself. In this sense, feature
selection can improve the performance of these methods to a great extent. The primary
purpose of feature selection is to remove the attributes that do not cluster well which is
specially useful for distance-based clustering due to the curse of dimensionality [116]. In
unsupervised problems, feature selection is usually more complicated since external validation
criteria (such as labels in the underlying data) are not available. Nevertheless, if we have
the label of some of the data points, supervised feature extraction methods help discover
subsets of features that maximize the underlying clustering tendency. As mentioned before,
we benefit from labelled data in this project. Therefore, a variety of supervised criteria can
be used, such as the Fisher score. The Fisher score, discussed in Section 5.8.1, measures the
ratio of the intercluster variance to the intracluster variance on any attribute. Our proposed
semi-supervised learning method selects the most discriminative features from a small set
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Figure 5.5 Frequency-based samples extracted from Chrome process. Red, yellow and green
points refer to normal, CPU problems, and memory problems, respectively. (a) uses t-SNE
and (b) utilizes PCA to map data points onto 2D subspaces.
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of labelled data by means of the iterative selection method of Section 5.8.1. In the sequel,
the DBSCAN clustering algorithm is applied to group the remaining data into the sought
number of classes.

Figure 5.6 summarizes the proposed anomaly detection technique. The kernel tracing data
extraction module, which utilized LTTng, Trace Compass, and our windowing method, has
the duty of generating vectors. Then in the preprocessing module, some refinements on
data are done, and the vectors of more informative features are obtained. Finally, DBSCAN
clustering is applied to the obtained dataset.

Figure 5.6 The architecture of the proposed Semi-supervised framework.

5.9 Evaluation

We evaluated both proposed supervised and semi-supervised anomaly detection approaches
on two real system performance anomaly datasets generated based on different faults from
Mysql and Chrome applications. Our experimental setup and dataset generation is explained
in Section 5.9.1. Then, we analyzed a practical use-case in Section 5.9.2. Finally, the results
of the performance anomaly detection approaches are examined in Section 5.9.3.



72

5.9.1 Setup and Dataset Generation

Our experiments were performed on a group of virtual machines (VMs) allowing us to better
manage system resource allocation. The host machine had an Intel Core i7 4 GHz × 8 CPU
and 32 GB of memory. The VMs were equipped with different number of CPU cores and
memory allocations depending on the workload simulation, running Linux Kernel version
4.15.0. As the first use case, we used the open-source MySQL synthetic benchmark tool,
Sysbench 0.4.12, with OLTP test in complex mode. In order to generate the performance
anomaly dataset for MySQL processes, different faults are simulated on the VMs. For ex-
ample, to create a CPU issue, CPU resources allocated to a VM are limited (e.g., one CPU
core, while running eight threads of MySQL). Likewise, a memory issue is created by lim-
iting the amount of memory resources assigned to a VM (e.g., 256 MB memory, while the
MySQL table is of size 6 GB). The second use case regards tracing Chrome processes. The
ChromeUnderStress 1.0 chrome extension is used to open, close, and refresh many light
and heavy pages in Chrome with configurable speed. Faults are simulated by running this
Chrome extension on the VMs with different amount of CPU and memory resources. The
traces are collected using LTTng 2.10.5. The generated datasets include three classes: nor-
mal, CPU issue, and memory issue. Moreover, both MySQL and Chrome datasets are made
to contain the same number of samples (i.e., 6000) from each class. We injected faults into
the system for each use case using the tools we introduced. However, for other applications
injecting faults is possible using two scenarios. The first scenario is injecting faults as inten-
tional software bugs into the code. In this case, we can pause the code for n milliseconds and
then continue, calculate π with m bits of precision, or other scenarios. In the second scenario
of fault injection, the target is the system in which the code runs using a workload generator
tool designed to subject the system to a configurable measure of CPU, memory, I/O, disk,
and network stress such as Stress or Stress-ng [117] and PUMBA [118]. Besides, we must
keep in mind that whether with a label or without a label, the data collection step is such
that all system calls in Linux are considered. We have presented a straightforward method
based on kernel tracing using LTTng, which is very light and easy to install in the system
to gather all system calls information. The most informative system calls are selected in the
next step, the data extraction module. Therefore, the operator does not need to know how
useful each system call is, as this will be done automatically later by the framework.

5.9.2 Analysis of Practical Use-Cases

In this experiment, we analyzed the performance vulnerability due to resource Denial-of-
Service (DoS) attacks. The goal of DoS attacks is to disrupt fair access to system resources.
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We aim to identify a class of DoS attacks in which an application consumes most of the
resources so that no other useful work can be done. Thus, it maliciously destroys, for example,
the memory-related performance of other applications using shared resources.

In our test scenarios, we investigate the effect of such attack on the performance of Mysql.
The machine on which the Mysql is executed is made subject to attacks in few short time
intervals. In order to simulate such an attack, the Stress tool has been used to keep the
system’s resources in an intentionally induced state of overload or deadlock so that the system
is unable to perform any other work. In another test, we simulated attacks on compression
programs (zip bombs) that can involve highly recursive compressed files for which their
decompression result in an uncontrolled consumption of CPU time and file descriptors. Our
proposed detection scheme proves to be effective in locating the windows in which the attacks
actually take place.

Similar to the data collection phase, the trace file is read by our script in Trace Compass.
Then, the whole set of system calls are formatted into windows, which are in turn analyzed by
the detection module which highlights the anomalous ones. Our proposed anomaly detection
framework represents the output of the detection module in a Trace Compass time chart
view. Figures 5.7a,c demonstrate the effectiveness of our proposed method in locating the
attacks that have been simulated by Stress and zip bombs. In these time charts, the normal
and anomalous windows are illustrated in green and red colors, respectively. The proposed
framework helps system experts to focus at just a few small windows instead of the whole
trace that may include millions of events. The resulting time charts can be zoomed in and
zoomed out in specific areas (Figure 5.7b).

More detailed data can be computed from the trace as the user zooms in using the mouse
wheel or right-clicking and dragging in the time scale. The time axis in the time chart is
aligned with other views that support automatic time axis alignment. The other capability of
our framework is its events editor view (Figure 5.8a), which presents the events in a tabular
format. Filtering or searching of events in the table can be done by entering matching
conditions in one or multiple columns in the header row. As can be seen in Figure 5.8, in
addition to the original events fields, a new field has been added to each event. The field
category determines whether the event belonged to a normal or abnormal window. Finally,
the statistics view (Figure 5.8b) is provided to display the various event counters. Time
synchronization is enabled between the time chart view, events editor, and statistics view.
When a filter is applied in the events table, the non-matching ticks are removed from the
Time Chart view (and vice versa) [54]. Moreover, the currently selected time range’s event
type distribution is shown by selecting a time range in the time chart. Figure 5.8b shows
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the statistics view of the selected anomalous area detected by our tool. The distribution
of events in the selected area led us to identify that the attack created by the zip bombs
caused the system not to respond to Mysql requests appropriately during this period. The
implementation of this visualization module which can be run using the scripting plugin
in Trace Compass, is available on Github https://github.com/kohyar/syscall_anomaly_
tracecompass_visualization.git (accessed on 28 July 2021).

Figure 5.7 The visualized results of the test scenarios in Trace Compass time charts. (a)
The visualized anomaly detection output where zip bombs simulated DoS attack. (b) the
time chart provides the ability to zoom in and zoom out a specific area. (c) The visualized
anomaly detection output where DoS attack was simulated by Stress.

5.9.3 Results

In this section, we evaluate the performance of the proposed anomaly detection approaches
with respect to two different extracted feature spaces, one based on the duration and another
based on the frequency of system calls. We deploy MySQL and Chrome processes on VMs
and extract system calls from tracing the Linux kernel events to construct the feature vectors.
In all experiments, the window size is α = 104 with β = 102 of overlapping. At first, we
conduct an experimental study on the supervised method described in Section 5.8.1. Then,
the experimental results of the semi-supervised method are reported.

https://github.com/kohyar/syscall_anomaly_tracecompass_visualization.git
https://github.com/kohyar/syscall_anomaly_tracecompass_visualization.git
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Figure 5.8 Different features our framework has offered. (a) The events editor table for the
selected anomalous area, (b) The statistics chart for the selected anomalous area.

Experimental Results of the Supervised Method

To tune the hyperparameters of our supervised model, 10-fold cross-validation strategy is
used. One fold is used as validation and the union of other folds as training data. This
process is repeated ten times for an unbiased evaluation. Fisher scores of the system calls
are calculated in each run over the training set. As expected, results show that in both
frequency and duration based feature spaces, some system calls have high Fisher scores, and
therefore, play a more important role in separating the classes. Figure 5.9 shows the accuracy
of the supervised anomaly detection approach during 10-fold cross-validation by varying the
number ` of selected features. The experiment on MySQL processes reveals that ` = 17 and
` = 8 should be selected for the frequency and duration feature space, respectively. The same
experiment on Chrome processes shows that the best number of features is ` = 103 regarding
frequency-based features and ` = 112 regarding the duration-based features.

As mentioned before, we employ a multi-class SVM with Radial Basis Function (RBF) ker-
nel on our dataset to classify the input sequences into three classes: normal, CPU issue,
and memory issue. The accuracy of the classification method depends on the value of two
hyperparameters, C and γ, of the Radial Basis Function kernel SVM. Intuitively, the gamma
parameter determines how far the influence of a single training example reaches, with low
values meaning ‘far’ and high values meaning ‘close’. The gamma parameters can be seen as
the inverse of the radius of influence of samples selected by the model as support vectors [119].
The parameter C is the regularization term, which controls the penalty forced on the margin
for the misclassified data points. In order to optimize these hyperparameters, a grid search
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Figure 5.9 SVM-based anomaly detection accuracy versus the different number of top-ranked
features. (a) Mysql dataset (b) Chrome dataset.
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algorithm is performed. Figures 5.10 and 5.11 depict the effect of using different combination
of parameters on the average accuracy over the validation set. According to Figure 5.10, the
pairs (C = 104, γ = 1) and (C = 105, γ = 1) yield the best SVM performance for the MySQL
data set in the frequency and duration feature spaces, respectively. Likewise, we observe in
Figure 5.11 that the pair of values (C = 103, γ = 10) and (C = 105, γ = 10) are the best for
SVM on the Chrome dataset for the frequency and the duration feature spaces, respectively.

After optimizing the SVM hyperparameters, we evaluate our proposed supervised anomaly
detection method on unseen test data. The accuracy, precision, and recall of the proposed
RBF-SVM anomaly detection framework is reported in Table 5.1. These results show that
both frequency and duration of system calls are useful features to perform multi-class anomaly
detection, being SVM able to obtain good classification metrics by using either of them.

Experimental Results of the Semi-Supervised Method

Following the experiment setting mentioned before, we conduct clustering experiments using
K-Means algorithm and DBSCAN to evaluate the performance of unsupervised and semi-
supervised performance anomaly detection. For the case of clustering, ARI (Adjusted Rand
Score) is used to measure the performance [120]. ARI computes a similarity measure be-
tween two clustering solutions by considering all pairs of samples and counting pairs that are
assigned in the same or different clusters in the predicted and true clusterings.

We study in Table 5.2 how the iterative feature selection method of Section 5.8.3 impacts the
performance of K-Means. This table shows that the ARI of the K-Means clustering method
for the frequency-based dataset by selecting the 17 and 103 features with the highest Fisher
scores (i.e., ` = 17 and ` = 103) is 0.003 and 0.128 on MySQL and Chrome, respectively.
On the other hand, for the duration-based dataset, using ` = 8 leads to the ARI of 0.038
for MySQL samples, and the ARI of 0.018 is obtained for the Chrome samples by selecting
` = 112. The values of ` used are the same of the previous section obtained with the
supervised model.

To better explain the output of K-Means clustering, Figure 5.12 presents the result of this

Table 5.1 The performance of the proposed supervised anomaly detection approach.

Number of features Accuracy Precision Recall

MySQL Process Frequency (`=17) 0.928 0.989 0.968
Duration (`=8) 0.937 0.988 0.978

Chrome Process Frequency (`=103) 0.951 0.990 0.994
Duration (`=112) 0.959 0.991 0.985
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Figure 5.10 Heat map of the frequency-based and duration-based supervised anomaly detec-
tion accuracy using different parameters γ and C for Mysql dataset. (a) The heat map for
frequency feature space, (b) The heat map for duration feature space.
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Figure 5.11 Heat map of the frequency-based and duration-based supervised anomaly detec-
tion accuracy using different parameters γ and C for Chrome dataset. (a) The heat map for
frequency feature space, (b) The heat map for duration feature space.
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Table 5.2 Validation of K-Means based semi-supervised technique on original features versus
where the Fisher score feature selection method is applied.

Frequency-Based
Data set

Duration-Based
Data set

MySQL Process Original Features 0.000 Original Features 0.000
Fisher Score (`=17) 0.003 Fisher Score (`=8) 0.038

Chrome Process Original Features 0.084 Original Features 0.001
Fisher Score (`=103) 0.128 Fisher Score (`=112) 0.018

method visually. In general, these results reveal that the K-Means framework does not
perform well in both duration-based and frequency-based feature spaces. This comes from
the fact that the distributions of data samples in the different clusters do not have a spherical
shape. In the next experiment, we analyze the performance of the DBSCAN algorithm.

The clustering results using the DBSCAN algorithm on the original feature space are shown in
Table 5.3 for both MySQL and Chrome datasets. The parameter ε determines the maximum
distance between two samples for one to be considered as in the neighborhood of the other.
The performance of the DBSCAN method is evaluated by varying ε, thus obtaining different
number of clusters.

Figure 5.12 The visual result of K-Means clustering after choosing ` = 103 features with the
highest fisher score on frequency-based data set for the Chrome process; each color refers to
a cluster. The left plot uses PCA, and the right plot utilizes t-SNE to map data points
onto 2D subspaces.

The comparison results of DBSCAN are shown in Table 5.3. By examining the ARI using
values of ` obtained in the supervised model, the DBSCAN yields an ARI of 0.874 by selecting
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` = 17 on frequency-based data set for MySQL process for which three large and five small
clusters are detected. Similarly, on frequency-based data set for the Chrome process, the
DBSCAN leads to an ARI of 0.823 when 103 features are selected based on the highest
Fisher scores. Three large and six small clusters are obtained in this experiment. The results
show that three much larger clusters are obtained in both use cases, and each of these clusters
ideally contains one type of data we introduced before (normal data, memory problems, and
CPU problem). The comparison of Figure 5.5, which shows the data points with the actual
labels, and Figure 5.13, which illustrates the data points with labels obtained from the semi-
supervised method, confirm this claim. From this table, it is clear that the performance
of DBSCAN is superior to that of K-means. Moreover, the classification performance of
DBSCAN clustering largely benefits from the supervised feature selection procedure. Finally,
Table 5.3 displays that the proposed semi-supervised anomaly detection on the frequency-
based feature space shows better ARI than the duration-based space for the mentioned
processes. Interestingly, the evidence from this study intimates that by selecting the most
discriminative features, the number of identified clusters by DBSCAN is decreased. This
finding highlights the role of the mentioned feature selection method for mitigating the effects
of the curse of dimensionality and overfitting.

To better understand the output of DBSCAN clustering model, Figure 5.13 displays the
result of this model visually on frequency-based data set for the Chrome process. In the
first plot, two principal components of PCA are used, and similarly, the second plot utilizes
t-SNE [114] to map data points onto 2D subspaces.

5.10 Conclusions

In this paper, a framework for monitoring of processes and detecting performance anoma-
lies was proposed. The framework is able to distinguish normal behavior, CPU shortage,
and memory shortage in monitored traced systems. The proposed methodology works based
on recording the stream of system calls using the Linux kernel tracing. From that, short
sequences of system calls are extracted, and two feature vectors of duration and frequency

Table 5.3 Validation of DBSCAN based semi-supervised technique on original features versus
where the Fisher score feature selection method is applied.

Frequency-Based
Data set ARI Number of

Clusters
Duration-Based

Data set ARI Number of
Clusters

MySQL Process Original Features(ε = 10−3) 0.281 17 Original Features(ε = 10−3) 0.278 18
Fisher Score (` = 17 and ε = 10−3) 0.874 8 Fisher Score (` = 8 and ε = 10−3) 0.855 8

Chrome Process Original Features(ε = 5× 10−4) 0.254 21 Original Features(ε = 10−3) 0.127 27
Fisher Score (` = 103 and ε = 5× 10−4) 0.823 9 Fisher Score (` = 112 and ε = 10−3) 0.701 11
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Figure 5.13 The visual result of DBSCAN clustering with ε = 5×10−4 after choosing ` = 103
features with the highest fisher score on frequency-based data set for the Chrome process;
each color refers to a cluster. The left plot uses PCA, and the right plot utilizes t-SNE to
map data points onto 2D subspaces.

are created to be exploited by machine learning techniques. The way we defined the data
collection module makes this framework general enough to work with any specific applica-
tion. Collecting system calls can be simply done on any system. Also, no special settings
are used in the data collection module. Then, the extracted feature vectors are exploited
by supervised, unsupervised, and semi-supervised techniques depending on the volume of
available labelled data. In the supervised case, Fisher Score was applied to select the most
discriminative features, and a three-class SVM algorithm was employed to detect classes.
The classification performance of the method is very good, with accuracy never below 0.92.
The performance of unsupervised clustering methods (i.e., K-means and DBSCAN) was also
evaluated for the case when no prior knowledge is used. Our experiments revealed that
the performance of DBSCAN is superior to that of K-means but not as good as that of
the proposed supervised approach. Our research underlined the importance of supervised
feature selection procedure (Fisher score feature selection), which is used in the proposed
semi-supervised approach. Our experiments revealed that the supervised selection of fea-
tures is able to boost considerably the performance of unsupervised clustering algorithms,
with ARI measures as good as 0.874 regarding partition agreement. Taken together, these
findings suggest that our framework is an effective tool for automated anomaly detection
from traced system calls. The proposed framework along with other works done by our team
will be integrated as an open-source Trace Compass extension. In the future, we will explore
the performance anomalies in microservice systems using tracing data and Machine Learn-
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ing. Furthermore, it would be interesting to investigate other learning models for detection
of anomalies to achieve better detection performance.
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6.1 Abstract

In recent years DevOps and agile approaches like Continuous Integration and microservice
architectures have become extremely popular given the increasing need for flexible and scal-
able solutions. However, several factors such as their distribution in the network, the use
of different technologies, their short life, etc. make microservices prone to the occurrence of
anomalous system behaviours. In addition, due to the high degree of complexity of small
services, it is difficult to adequately monitor the security and behavior of microservice en-
vironments. In this work, we propose a natural language processing (NLP)-based approach
to detect performance anomalies in spans during a given trace, besides locating release-over-
release regressions. Notably, the whole system needs no prior knowledge, which facilitates
the collection of training data. Our proposed approach benefits from distributed tracing data
to collect sequences of events that happened during spans. Extensive experiments on real
datasets demonstrate that the proposed method achieved 0.9759 F_score. The results also
reveal that in addition to the ability to detect anomalies and release-over-release regressions,
our proposed approach speeds up root cause analysis by means of implemented visualization
tools in Trace Compass.

Keywords: Performance monitoring, Anomaly detection, Tracing, Microservices, Machine
learning, NLP, LSTM

6.2 Introduction

Nowadays, computing infrastructure has significantly evolved with complex systems facilitat-
ing many complicated and large-scale tasks in distributed environments and cloud infrastruc-
tures.The microservice architecture has emerged as a result of this development. Microser-
vices are small services that are interconnected among many others to present a complex
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service such as a web application [121]. They provide greater scalability, making possible
the distribution of an application over multiple physical or virtual systems. In addition, the
microservice architecture improves productivity by decomposing applications into smaller
services that are easier to manage and faster to develop. Unlike the monolithic architecture,
if one microservice fails the others continue to work.

These improvements have increased user expectations in a way that any performance anomaly
may lead to user dissatisfaction and revenue losses. Even when several services are brought
down for maintenance, the users usually notice it. Although significant efforts have been made
to ensure the quality of microservices, the complexity and large scale of these systems make
them fragile and prone to performance anomalies and failures [122]. Besides, performance
monitoring and tracing of these applications become more challenging by increasing the
degree of automation and distribution. For example, each service can be developed using
its own language or technology while still communicating with other services. Moreover,
unlike monolithic applications in which dedicated teams work on discrete functions such as
UI or database, microservices employ cross-functional teams to handle an application’s entire
life cycle using a continuous delivery model [121, 123]. Nonetheless, dynamic services makes
monitoring more difficult. Even if a tracer can record all the execution details, it is still hard
to detect the source of the problem inside the trace files.

Different reasons may cause performance anomalies in microservice environments [124]. Any
problem in a service, such as a network disconnection or hard disk failure, may cause the
microservice system to crash. Misconfigurations or extreme load by a service can also affect
the whole system. Changes in one service may influence other dependent services’ workload
and may result in response time degradation. Moreover, the agile nature of microservice
environments yields multiple services updates per day, and several versions of the application
may be deployed in a short amount of time. As such, several methods may change in a
new update, which affect the response time behavior of services and may lead to many false
alarms from monitoring tools [124,125].

The way we trace such environments and collect data is of particular importance. A microservice-
based application consists of tens, hundreds, or thousands of services running across many
hosts. Consequently, it is not possible to rely on an individual trace. Distributed tracing
provides a view of a request’s life as it travels across multiple nodes and services communi-
cating over various protocols [126]. It enables to follow the spans and events that occur in
different nodes. A span is the primary building block in distributed tracing and represents
an individual unit of work done in a distributed system. Besides, many sub-spans may be
generated during the spans lifetime, in which tens of userspace and kernel events occur in a
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particular order. The proposed diagnostic approach works based on collecting sequences of
events during spans using the Linux Trace Toolkit Next Generation (LTTng) [110], sending
them to the detection module, and eventually analyzing the outputs of the model in Trace
Compass. LTTng provides a system software package for correlated tracing of the Linux
kernel, applications, and libraries [110].

In this paper, we propose a general framework to find anomalies as well as release-over-release
regressions in microservice environments by taking advantage of NLP and open-source tools
(i.e., LTTng and Trace Compass). In general, anomaly detection and localization is the
process of finding patterns in data that deviate from normal behavior [19] and literally,
it is different from noise detection and noise elimination, which refer to unwanted noise
in the data. Anomalies in data may happen in various forms, such as point anomalies and
collective anomalies, two principal forms of anomalies. Methods that work based on detecting
point anomalies and also metric-based algorithms cannot always identify the root cause of
anomalies. A single data point (event or metric), regardless of the data points that occurred
around it, does not include enough information to determine whether an anomaly happened
in complex systems such as microservices. We usually state that an anomaly has occurred
when the program’s execution has not been normal during a time interval that includes many
events. We look for abnormal event patterns or collective anomalies in these intervals. Only
a limited number of events can be the result of an action. Therefore, just a few of the possible
events can appear as the next event in the sequence of observed events [101]. Similar to words
in natural language processing, events as elements of a sequence follow specific patterns and
grammar rules. We used this idea in our anomaly detection framework and applied a general
NLP-based strategy to distinguish normal and abnormal patterns in the sequence of events.
In this way, we avoid creating labelled datasets for supervised learning. Finally, besides
locating anomalies, our proposed framework also allows analysts to zoom in the detected
anomalous part of the trace to discover the root cause of the problem.

The main contributions of our work can be summarized as follows:

• Unlike many other methods that use OpenTracing, our anomaly detection framework
employs LTTng to perform distributed tracing. OpenTracing is a vendor-agnostic API
to help developers easily instrument tracing into their code [42]. A trace in Open-
Tracing is a directed acyclic graph of spans, and it provides only relationships across
microservices. In contrast, LTTng provides details of the program’s execution with
higher resolution by presenting kernel and userspace events.

• We developed a handcrafted data extraction module in Trace Compass to construct the
spans using the request/response events tag. Moreover, the hierarchical structure of
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these tags helps us to extract subspans. This module is also responsible for converting
each span into a sequence of events.

• Our LSTM-based model, designed for post-analysis of traces, learns the normal patterns
of events along with their arguments (e.g., event type, tag, and process name). Further,
this model is trained to predict the next event’s arguments in addition to the event’s
name. Learning and predicting at this level of detail sets our model apart from the
others found in the literature.

• Our framework makes it possible to examine the system behavior from both the system
and service perspectives, which gives the troubleshooter a deep understanding of what
happens at the time of an anomaly. Our framework’s visualizations considerably reduce
troubleshooting time by highlighting the anomalous parts of the trace and directing the
debugger to the most relevant problem sites of interest. Without such visualizations,
manually tracking the performance of systems within low-level tracing data, possibly
including thousands of events from different spans, is indeed a very exhausting task.

• In addition to anomaly detection, our framework can be applied to identify release-
over-release regressions. Finding potential regressions from one release to another is
extremely valuable, and conventional performance tests cannot reveal sufficient regres-
sions. Many subtle changes in spans or sequence of events signify a regression that can
be captured using our framework.

The rest of the paper is organized as follows. In Section 6.3, related studies are presented. In
Section 6.4, we introduce our automatic integrated anomaly detection framework for microser-
vice environments. Section 6.5 provides the experimental results followed by the conclusions
in Section 6.6.

6.3 Previous Work

In traditional approaches, application performance management (APM) tools that support
various measures are utilized to perform resource behavior analysis on microservices [79].
Tracing is another robust and efficient approach for reverse engineering and debugging of
complex systems [73]. Many tracers across all software stack layers, and even at the hardware
level, have emerged in the last years. Distributed tracing, unlike the most traditional methods
that only monitor individual components of the architecture, is applied to complex distributed
systems at the workflow level [82]. Tools like OpenCensus and OpenTracing [42] help to record
the execution path of each microservice request. Jaeger [46], a popular tool that supports
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OpenTracing and developed by Uber, has been widely used to automatically collect and
store the service call data [47, 48]. Its counterpart Zipkin [43] aids in gathering timing data
needed to troubleshoot latency problems in microservice architectures [44,45]. However, the
high-level information that these tools provide is not always sufficient to characterize the
execution status of the system since they do not offer kernel events. Thus, tracing with
LTTng is a fundamental part of our anomaly detection framework. This open-source tool is
implemented for achieving high throughput and includes multiple modules for Linux kernel
and userspace tracing, thereby imposing low overhead to the operating system. Besides, this
tool can work with a variety of environments, such as monolithic applications, microservices,
and IoT devices [127].

The earliest efforts for anomaly detection had used statistical methods [87] where an anomaly
score was calculated using a function of abnormality to show the behavior of the appli-
cation. In [88], CPU performance and network performance metrics in master-slave and
nested-container models are compared to provide a benchmark analysis guidance for system
designers. However, a live threshold is required given the system’s current state to determine
whether the program behavior is normal or abnormal, which is practically impossible to set
in real-time. Furthermore, these tools do not provide any details about the application’s
execution flow. Several machine learning-based schemes have also been applied to detect
anomalies in microservice systems in addition to statistical and metric-based methods. Hi-
erarchical Hidden Markov Models (HHMM) are adopted in [128] to learn a model based on
different monitored metrics such as CPU, Memory, and Network to locate anomalous behav-
iors. Besides, many clustering algorithms, such as k-means, k-medoids, EM clustering, and
outlier detection algorithms, have been employed for anomaly detection in microservice envi-
ronments [92,99,100]. The main problem with such methods is that they are usually difficult
to interpret. Supervised methods such as SVM, Fuzzy Logic, and Neural Networks, which
use labelled data, were proposed in [93, 129, 130]. Adel Abusitta used SVM to detect DoS
attacks in virtualized clouds under a changing environment [129]. In [3], a fuzzy technique
was proposed to extract abnormal patterns based on various statistical metrics in which fuzzy
logic rules are applied to classify data. However, in practice, the labeling process is highly
complicated, and even impossible sometimes. Recently, deep learning techniques which do
not need labelled data have yielded promising results. Nedelkoski et al. [95] and [96] propose
anomaly detection methods for large cloud infrastructures using long short-term memory
(LSTM) neural networks [97] with data from distributed tracing technologies. In [97], a
stacked LSTM network model was presented for anomaly detection in time series where the
network was trained on non-anomalous data. The drawback of these methods is that many
details, including events arguments such as event type, tag, process name, and return value
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are ignored.

Furthermore, the researchers have made much effort to improve anomaly detection by using
different data representations and information resources. Tracing data or log, as the most
popular information resource, can be represented in the form of an enumerated collection of
events sorted by their timestamps [83]. Different works make different uses of this structure.
In DeepLog [49], a deep neural network model is proposed to model an unstructured system
log as a natural language sequence. In [84], by performing time-series-based forecasting,
anomalies on cyclic resource usage patterns are detected. In the sequel, graph representa-
tions of the events are obtained from this data and employed to detect critical nodes and
design anti-patterns proactively. The authors of [85] designed and developed a simplified
MSA application and applied different graph algorithms, and then assessed their benefits in
MSA analysis. In another article, Tao Wang et al. [86] organized the trace information col-
lected by the OpenTracing tool to characterize processing requests workflow across multiple
microservice instances as a calling tree. The proposed approach converts the given trace into
the spans and detects performance anomalies using the model of normal key patterns.

Some points distinguish our work from previous related literature. Fistly, unlike traditional
approaches where application performance management tools that support various metrics
(e.g., CPU and memory utilization) are utilized to perform resource behavior analysis on
microservices, our work’s main source of information is tracing data. Compared to these
approaches, our proposed framework is not dependent on the existence of any threshold.
Moreover, the metrics used by these approaches do not help to find the cause of the anomaly
after detecting it. Tracing provides considerable details about the application’s execution flow
and about what exactly happened at the time an anomaly occurred. Secondly, most previous
works that make use of tracing data employ OpenTracing-based tools such as Jaeger or Zipkin
to perform distributed tracing. Nevertheless, the high-level information that these tools
provide about microservices interaction is not always sufficient to characterize the execution
status of the system. Our proposed framework employs the LTTng open-source tool, which
imposes low overhead on the operating system and presents low-level kernel and userspace
tracing. Thirdly, while clustering approaches are difficult to interpret, the main drawback of
supervised methods is that they require labelled data. The process of labeling data points
in terms of performance status is highly complicated and sometimes even impossible. In
addition, to collect labelled data related to an application, an very specialized professional is
needed. We propose in this work an unsupervised method to learn normal execution patterns.
Collecting normal data is pretty easy and can be done automatically without any supervision.
Fourthly, Deep learning-based and NLP-based approaches ignore events arguments in their
modeling. Event arguments such as process name, message, and event type contain beneficial
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details that increase detection quality [131]. We use these arguments in the training of our
model. Then, in the prediction phase, our model predicts the name of the next event as
well as its arguments. Finally, previous works from the literature, such as DeepLog, have
not presented any solution to analyze the model’s output. However, using Trace Compass
in our approach enables us to develop analysis scripts and use many preexisting scripts and
visualizations to examine the model’s output more deeply.

6.4 ANOMALY DETECTION FRAMEWORK

In this section, we introduce an NLP-based anomaly detection framework for post-analysis of
LTTng traces. It is designed to help developers to efficiently find the root causes of abnormal
behaviors in microservice environments. We aim to provide a general framework applicable
to microservice-based applications with different settings.

Figure 6.1 presents the architecture of our approach along with its three main modules, i.e.,
the tracing module, the data extraction module, and the analysis module. We discuss this
architecture in detail in the next subsections.

Figure 6.1 The architecture of our proposed anomaly detection method for microservice
environments.

6.4.1 Tracing module

Tracing is an efficient way of gaining information on a system for further analysis and de-
bugging, thus minimizing the monitoring influence. Distributed tracing is derived from
traditional tracing so as to be employed within distributed systems. Distributed tracing
technologies provide a view of the communication among microservices [126] Microservices
mostly use Representational State Transfer (REST) as a usual way to communicate with
other microservices.

We aim to provide a general anomaly detection framework that can be easily applicable for
any microservice-based application in practice and subsequently lead to the discovery of the
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cause of the identified anomalies. To evaluate our framework, we describe how to analyze an
application and prepare its associated dataset, instead of using pre-existing available datasets
which do not inherently contain information needed to extract spans and their associated
sequence of events.

We created our dataset by tracing a distributed software available in Ciena Corporation.
Many new releases of this software are provided by the developers of this company every day,
so that traces are collected from different releases to compose the dataset. We denote the
set of all traces collected from different releases as Γ =

{
T1, T2, ..., Tn

}
, where n indicates the

number of collected traces.

Figure 6.2 illustrates the structure of our tracing modules that make use of the LTTng
open-source tool. As presented in this figure, LTTng is deployed on each node to send the
tracing data to the manager. The running LTTng-relayd daemon on the manager collects the
tracing data received from the nodes. Later, Trace Compass integrates the traces obtained
from different nodes to form a Trace Ti =

{
e1, e2, ..., eg(Ti)

}
, where g(Ti) is the number of

events associated to Ti. Actually, Ti is represented as an enumerated collection of events
sorted by their timestamps.

During the execution of a microservice application, many tasks or spans, such as opening a
web page, are performed. In fact, a trace can be divided into a set of spans, where each span
consists of a sequence of events that are invoked in a specific order to perform the desired
task. It should be noted that spans can not be directly retrieved using LTTng. In the sequel,
we will discuss in detail how to extract spans from tracing data.

6.4.2 Data extraction module

We implemented the data extraction module within the Trace Compass open-source tool,
which offers scripting capability [55] and visualization mechanisms to promote our analysis.
LTTng generates a CTF (Common Trace Format) file for every node in the microservice
environment. The CTF format is a file format optimized for the production and analyses of
big tracing data [110]. After generating the CTF files, Trace Compass is used to read these
files and integrates them into trace Ti, where i indicates the index of this trace in Γ. The
result of this process is an enumerated collection of events sorted by their timestamps.

An event is composed of well-defined fields that are common to all events, such as name,
timestamp, and process ID. However, the delivered sequence of time-ordered events does not
provide the spans that reflect separate tasks. In order to extract spans and their subspans,
Γ is scanned with respect to the tag of request/response events. Other events are then
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Figure 6.2 The overview of our distributed tracing module.

processed, so as that each event is assigned to the span it belongs. In our framework, events
are stored by means of their associated keys composed by the name of the event and its
arguments.

In order to train a model which is able to detect performance anomalies as well as release-over-
release degradations, a massive training dataset is required to cover as many normal patterns
of keys as possible. Actually, the training data Γ correspond to entries of traces obtained
from the execution of previous stable releases of an application. Figure 6.3 summarizes how
to create such a dataset. After collecting n different traces, each of them is processed, so
as that all the spans associated with each trace are individually extracted from Γ. Next,
for each span, its sequence of events is collected and stored in Si, for i = 1, . . . ,m. In our
framework, each sequence Si is represented by its corresponding keys κ1

i , . . . , κ
h(Si)
i , where κki

represents the k-th key in the sequence Si, and h(Si) indicates the length of sequence Si.

Extract spans

In the following, we describe how spans are extracted from an LTTng trace. LTTng uses tra-
cepoints designed to hook mechanisms that can be activated at runtime to record information
about programs execution. Tracepoints are placed inside the code by developers or debuggers
to extract useful information without the need of knowing the code in-depth. Hence, we can
expect to encounter different event types in trace data, indicating the beginning or the end
of a span, or any other operation.
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Figure 6.3 Illustration of the process for creating the training dataset from multiple traces.

Requests and responses are the two types of events we consider for extracting spans. Each
span starts with a request and ends with a response. In addition, the request and response
associated with a span possess the same tag. For example, a request with tag 00 indicates the
start of a span, whereas a response with the same tag marks the end of that span. Moreover,
many sub-spans may be generated during a span’s lifetime since a service may communicate
with other services to answer a demand. Similar to spans, sub-spans are created with a
request and a response that share the same tag. Besides, the parent’s tag of each sub-span is
embedded in the children’s tag. For example, 00/01 indicates a sub-span whose parent is rep-
resented by the 00 tag. As shown in Figure 6.4, each span and its sub-spans form a tree. Yet,
each span can be displayed as a sequence of requests and responses sorted by their timestamp.
In the example of Figure 6.4, this sequence would be S = {Req,Req,Resp,Req,Resp,Resp}.

Construct sequences of keys

In addition to requests and responses, many other userspace and kernel events happen during
each span. After collecting all spans, all events in Γ are processed, and events are assigned to
the span to which they belong. The appropriate span for each event is found by comparing
the event’s arguments (e.g., TID and PID) with the arguments of the events that have
been assigned to the spans. Once the appropriated span is identified, the event is placed
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Figure 6.4 The structure of a span and its sub-spans in a distributed trace.
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in the sequence according to its timestamp. In the example of Figure 6.4, if an event that
happened right after the first request is encountered, the resulting sequence becomes S =
{Req,Event, Req,Resp,Req,Resp,Resp}. This process is repeated for all events so as that
a set of sequences is obtained, in which each sequence refers to a span.

The previous paragraph explained how sequences are extracted from a trace. However, it
is not yet stated how the arguments of events are used. Whenever a specific tracepoint is
encountered at runtime, an event is produced with its arguments such as a name, timestamp,
and possibly many others. Event arguments such as process name, message, and event type
might contain important information to increase detection quality.

The scope of this work is limited to the arguments that are common to all events. In our
experimental traces, event name, process name (Procname), Thread ID (TID), Process ID
(PID), timestamp, message, and event type are present in most of the events. We divided
the events into two categories: 1) requests/responses, and 2) other events. Table 6.1 lists
the arguments we selected for each category of events. The key for requests and responses is
created using the name, type, tag, and procname arguments. Event type specifies whether
the event is a request or a response, and tag specifies the span or sub-span to which the
event belongs. The second category of general events uses the event name, procname, and
message arguments to compose the keys. Thus, the resulting keys are all textual strings,
where V = {v1, v2, ..., vd} denotes the set of all possible unique keys.

Extending our framework to a new argument, albeit simple, may require a much larger
dataset depending on the number of values that argument may have. To illustrate, Let us
suppose we use only one argument to create keys, and that this argument has β1 different
values. In this case, only β1 unique keys are created (d = β1). If another argument with β2

different values is then used, β1×β2 unique keys are obtained (d = β1×β2). Thus, each time
a new argument with βi different values is considered, the number of unique keys increases
βi times.

Table 6.1 The categories of events and the arguments used by our framework.

Event category Argument Type

Request/Response

Event name string
Event type string

Tag string
Procname string

Others
Event name string
Procname string
Message string
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6.4.3 Analysis module

In microservice environments as well as in our experimental application, events are expected
to occur in a particular order. Actually, the keys in the sequences obtained by the data
extraction module follow specific patterns and grammar rules similar to the ones found in
natural languages. It should be noted that the patterns in the data are too complex to be
identified using formal languages. Hence, only a few possible keys can appear as the next key
in a sequence following a specific set of keys. The training dataset in our experiments includes
normal sequences of keys obtained from previous stable releases of the application. In this
section, we review the machine learning model we propose to distinguish normal patterns from
abnormal ones. We adopted the LSTM network to model this sequence to word problem given
its success for modeling text prediction and other similar natural language processing similar
tasks. This model learns the probable keys at the moment t according to the previously
observed sequences of keys. Later in the detection phase, the model determines which events
in a sequence do not conform to normal patterns.

We modeled the anomaly detection problem on our sequences of keys as a multi-class classi-
fication problem for which the input length α is fixed. Remark that the sequences obtained
by the data extraction module are of different lengths. Multiple sub-sequences of fixed size
are hence obtained by considering a window of size α over the larger sequences. It should
be noted that sequences smaller than α are very rare in our dataset. In our experimental
environment, such sequences are related to small operations that are often not prone to per-
formance anomalies. Consequently, they are simply ignored by the analysis module. Let
V = {v1, v2, ..., vd} be the set of all possible unique keys, for which each key vi defines a
class. From a sequence of size h(Si), h(Si) − α subsequences are analyzed. Thus, for each
sequence Si, the input of the model is denoted by Xj

i = κji , κ
(j+1)
i , ..., κ

(j+α−1)
i and the output

is expressed by Y j
i = κ

(j+α)
i , where j ∈ 1, ..., h(Si)−α. The sequences show a part of a task’s

execution path in which keys happen in a particular order. Hence, for each Xj
i , Y

j
i can only

take a few of the d possible keys from V and is dependent on the sequence Xj
i that appeared

before Y j
i . In other words, the input of the model is a sequence of α recent keys, and the

output is a probability distribution over the d keys from V , expressing the probability that
the following key in the sequence is vr ∈ V . Eventually, a model of the conditional probabil-
ity distribution Prob(κj+αi = vr|

{
κji , κ

(j+1)
i , ..., κ

(j+α−1)
i

}
), vr ∈ V is made after the training.

Figure 6.5 shows an overview of the described anomaly detection model.

An LSTM network is employed to learn a probability distribution
Prob(κj+αi = vr|

{
κji , κ

(j+1)
i , ..., κ

(j+α−1)
i

}
) that maximizes the probability of the training se-

quences. The architecture of this LSTM network is shown in Figure 6.6. Each layer contains
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Figure 6.5 The overview of our anomaly detection model.

α LSTM blocks, where each block process a key of the input sequence. LSTM blocks have
a cell state vector C and a hidden vector H. Both values are moved to the next block to
initialize its state. The values of input κqi and H

q−1
i , for q ∈ {j, j+1, ..., j+α−1}, determine

how the current input and the previous output affect that state. They indicate how much
of Cq−1

i (the previous cell state) holds in the state Cq
i . They also influence the construction

of the output Hq
i . Our deep LSTM neural network architecture includes two hidden layers

in which the hidden state of the previous layer is used as the input of each corresponding
LSTM block in the next layer.

During training, appropriate weights are assigned to input so that the final output of the
LSTM provides the desired key. The categorical cross-entropy loss function [132] is used as
the loss function for the designed multi-classification task. Then, a standard multinomial
logistic function is applied to translate the last hidden state into a probability distribution
Prob(κj+αi = vr|

{
κji , κ

(j+1)
i , ..., κ

(j+α−1)
i

}
, vr ∈ V ).

In the detection phase, the trained model is used to analyze unseen tracing data. This trace
can be obtained from an old or a new release of the software. Like what was done to col-
lect the training data, spans are extracted and then converted into sequences of different
lengths. Therefore, from a sequence of size h(Si), h(Si)− α subsequences are obtained, and
h(Si)− α probability distributions are predicted. The model predicts the probability distri-
bution Prob(κj+αi |

{
κji , κ

(j+1)
i , ..., κ

(j+α−1)
i

}
) = {v1 : p1, v2 : p2, ..., vd : pd} , where pj describes

the probability of vj to appear as the next key value. Then, κj+αi is marked as an unexpected
key if the probability of the real seen value of κj+αi is less than the confidence threshold of
0.5. We chose a threshold of 0.5 because the traditional default threshold for interpreting
probabilities to class labels is 0.5.

6.5 EVALUATION

In the following, we evaluate the proposed technique by analyzing a microservice-based appli-
cation. First, the experimental setup and dataset generation are explained in subsection 6.5.1.
Then, in subsection 6.5.2 we evaluate the performance of our model. Subsection 6.5.3 an-
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Figure 6.6 The architecture of the LSTM network we used in our anomaly detection frame-
work.

alyzes some practical use-cases and examines the success of our framework in locating the
anomalies we injected into the system through various simulated scenarios. Finally, in sub-
section 6.5.4, we explain how the scripting feature of Trace Compass as well as different views
can assist experts to find the root cause of anomalies.

6.5.1 Experimental setup and dataset generation

We deployed the target microservice environment (developed by Ciena Co.) on a virtualized
platform with two nodes, each equipped with two cores Intel Core Processor (Broadwell,
IBRS), 4 Gb of RAM. An Oracle Linux server was installed on both nodes. Moreover,
LTTng was employed on each of them to send the tracing data to the manager. The manager
VM benefits from the LTTng-relayd daemon, which is responsible for receiving trace data
from remote LTTng daemons.

In order to create the training data, 12 traces with duration between 5 to 10 minutes were
obtained from the previous stable releases of the studied software. After removing incomplete
spans, a total of 61709 spans were extracted. The dictionary of unique keys collected from
the training data contains 4028 unique keys.

Our data collection module has been implemented using python and the Trace Compass
Scripting feature [55]. Furthermore, we employed PyTorch to implement the LSTM network1.
Finally, the model was trained on a server with two Intel(R) Xeon(R) Bronze 3104 1.70GHz
CPUs and NVIDIA TITAN V graphic card.

1The implementations of the data collection module and the detection module are available in https:
//github.com/kohyar/LTTng_LSTM_Anomaly_Detection.

https://github.com/kohyar/LTTng_LSTM_Anomaly_Detection
https://github.com/kohyar/LTTng_LSTM_Anomaly_Detection
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6.5.2 Evaluation of the anomaly detection framework

As mentioned earlier, we modelled the anomaly detection problem on our sequences of keys
as a multi-class classification problem. Thus, there exist 4028 different classes in the training
dataset, each one associated to a key. As such, we employed multi-class evaluation metrics
to evaluate our model. Precision, recall, and f_score are the metrics we used to evaluate
our model. Unlike binary classification, these metrics are obtained for each class separately
in a multi-class classification problem. For an individual class Ci, the values of precisioni,
recalli, and f_scorei are computed as follows:

precisioni = TPi
TPi + FPi

(6.1)

recalli = TPi
TPi + FNi

(6.2)

f_scorei = 2× precisioni × recalli
precisioni + recalli

(6.3)

The precision, recall and F_score for the overall multi-classification problem is then com-
puted by averaging (1), (2) and (3) for the set of classes Ci, with i = 1, . . . , 4028 [133].

As described in section 6.4.3, the sequences obtained from spans are of different lengths.
Therefore h(Si) − α sub-sequences can be obtained by taking a window of size α over a
sequence of size h(Si). To tune the hyperparameter α, we measured the F_score and training
time for α ∈ {8, 9, .., 30}. The minimum length of sequences in the training data is 8. Also,
the results (Figure 6.7) show that for α values greater than 19, the performance decreases. We
tried to choose a value for α that would lead to a highly effective model in a reasonable training
time. Figure 6.7 presents the F_score of the model as well as F_score/training time by
varying the value of α. According to the results obtained on the training data, α = 17
achieves the best classification results, being used in our experiments hereafter.

We evaluated the quality of our model through 10-fold cross-validation. In 10-fold cross-
validation, the dataset is divided into ten subsets of approximately equal size. One of the
subsets is reserved for testing, while the remaining subsets are used for training. This process
is repeated 10 times, and the results are averaged over each one of 10 different tested subsets.
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Figure 6.7 A) F_score of the model by varying α. The dotted line indicates that the F_score
of the model for α values between 11 and 19 is greater than 0.97. B) F_score/Training time
for different values of α. Only the values for which the F_score is greater than 0.97 are shown
in this figure.
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Results of evaluating our model with 10-fold cross-validation are listed in Table 6.2. It should
be noted that our dataset contains approximately 5 million sequences.

Table 6.2 Results of evaluating our model with 10-fold cross- validation.

Precision 0.9774

Recall 0.9760

F_score 0.9759

6.5.3 Analysis of practical use-cases

In this subsection, a newer release of the application was investigated to evaluate the model on
detecting possible performance degradations and anomalies. For this purpose, we examined
three different scenarios. In the first scenario, the regular execution of the application,
i.e., without any anomaly injection, was analyzed to determine where and why the new
release did not follow the normal patterns learned by the model. In the other two scenarios,
we investigated the performance vulnerability of the new release when an external factor
disrupts fair access to system resources. To simulate such attacks, a significant CPU load
on the multi-core nodes was generated as the second scenario by continuously compressing
and decompressing a stream of random data (zip bombs). Finally, in the third scenario,
disk stress was injected into the nodes by creating a file and then using a loop to copy it
repeatedly.

Table 6.3 The number of detected unexpected keys along with the total number of predictions
made by our model for three scenarios.

Number of detected
unexpected keys

Number of
predictions

Test data (Scenario 1) 32043 518503

Test data (Scenario 2) 65507 489593

Test data (Scenario 3) 66978 453781

After collecting the tracing data for each of the mentioned scenarios, the data collection
module extracted the spans from these tracing files and created the sequences of keys. For
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Figure 6.8 This Figure depicts the Likelihood of detecting unexpected keys over the traces
obtained from the three mentioned scenarios. A) In this scenario, CPU-related anomalies
were injected into the system. B) In this scenario, disk-related anomalies were injected into
the system. C ) In this scenario, a new release of the application without injecting anomaly
was investigated.
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Figure 6.9 The anomalous spans that appeared during the trace of the second scenario where
each span has been drawn with a bar.

all input subsequences, the model determines whether the key that appeared in the sequence
right after the input subsequence is probable to happen or not. The model marks that key
as an unexpected key if it predicts that the probability of that key in the sequence is lower
than the confidence threshold of 0.5.

Table 6.3 reports the number of detected unexpected keys along with the total number of
predictions made by our model for three scenarios. As expected, the number of detected
unexpected keys in the first scenario is less than in the other two other scenarios, where
CPU and disk stress were injected into the system. The injected load in the second and
third scenarios has made the application behave much differently. The first scenario reveals
how the changes applied to the application by developers in a newer release may affect the
execution’s path of the application.

Our proposed framework, however, does not signal keys as anomalous as soon as an unex-
pected key is detected. It also takes into consideration the frequency of unexpected keys
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over the monitored period of time. Once a high frequency of unexpected keys is identified,
that sequence of keys is highlighted for further investigation by developers or system experts.
This is intended to reduce troubleshooting time, as the developers can examine few specific
intervals instead of looking at large amounts of tracing data, which might include thousands
of system events. As we show next, the output of the model can be examined from two
different perspectives.

System-based anomaly detection

In system-based anomaly detection, the entire execution is examined regardless of the span
to which each unexpected key belongs. To illustrate, let us consider traces of 5 minutes
divided into small time intervals of 1 second. The chart displayed in Figure 6.8 shows the
rate of detecting unexpected keys, i.e., number of detected unexpected keys divided by the
total amount of predictions, computed in each of the monitored intervals for the three tested
scenarios. They reveal the intervals in which more unexpected keys have detected, and
are hence, more likely to represent anomalies. This view helps developers to focus only on
the areas prone to anomalies. The peaks in Figures 6.8(a) and 6.8(b) correspond exactly
to the moments the anomalies were injected into the system, being correctly discovered by
our framework. Figure 6.8(c) includes a smaller number of peaks with lower heights. The
observed peaks indicate the moments in which the new release did not follow the normal
behavior of the previous ones.

Service-based anomaly detection

In service-based anomaly detection, we detect anomalous spans. Unlike system-based anomaly
detection, in which we examine the entire execution, service-based anomaly detection iden-
tifies spans with a high rate of unexpected keys. The rate of unexpected keys for each span
correspond to the rate of unexpected keys in the sequence associated with that span.

A span for which the rate of unexpected keys is greater than 0.5 is marked as an anomalous
span. The chart of Figure 6.9 depicts the anomalous spans detected by our framework during
the test trace obtained from the second scenario. Spans are numbered according to their start
time and are shown with a red bar. In Figure 6.9, the x-axis shows the spans index and,
and the y-axis indicates the rate of unexpected keys. From this figure, we observe that many
anomalous spans have been detected when anomalies were injected in the system. This view
enables developers to filter a trace based on the anomalous spans tag, that merits further
investigation.
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Figure 6.10 This figure presents the time chart generated by our script in Trace Compass,
which helped to find the cause of anomalies in our test traces (due to Ciena’s security rules,
we have changed the original names of the processes in these screenshots). A) A sample of
a normal span. B) A sample of an anomalous span where the PROC-X is the caused of the
problem.

6.5.4 Root cause analysis

Using Trace Compass in our framework provides the developers an in-depth perception of
what happens during a trace, especially in the presence of anomalies. Trace Compass is
already used by many companies in the field of performance analysis. Developers can benefit
from many scripts and views developed by these companies in Trace Compass for further
analysis of their traces. Thus, we have converted the output of our anomaly detection model
to Google’s Trace Event format to be able to investigate the root causes of the identified
anomalies. Our output in this format contains a set of events, each of which equivalent to an
event in the original trace. However, three new fields have been added to each event. Field
category determines whether the event identified as unexpected. In addition, each event
keeps the tag of the span in which it is located, and finally, another field shows if the related
span is abnormal or not.

To understand the cause of the anomalies in the introduced test traces, we provided a script
that separates all the processes in the trace thereby displaying them with different colors in
a time chart like illustrated in Figure 6.10. This time chart can be zoomed in and out in
particular areas. Furthermore, the time axis in this time chart is aligned with other views
and tables that support automatic time axis alignment, such as the editor view that presents
the events in a tabular format or the statistics view that displays the various event counters.
More detailed data can be computed from the trace as the user zooms in the time chart or
filters events in the editor table.

Figure 6.10(a) shows the structure of a sample normal span. In Figure 6.10(b), the trace was
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filtered based on the tag of one of the anomalous spans. Interestingly, the provided Trace
Compass script could successfully find the cause of a latency issue in the target application
that has been detected by our anomaly detection model and led us to the process that caused
this problem. This process was present in many other abnormal spans as well. These results
demonstrate the effectiveness of our proposed method in locating anomalies and finding their
root cause.

6.6 CONCLUSION

Microservice environments provide diverse and enormous services, which necessarily require a
stable performance. In this research, a general-purpose NLP-based anomaly detection frame-
work was presented for detecting abnormal behaviors and release-over-release regressions in
microservice environments. It works based on recording streams of events using distributed
tracing, sending them to the data extraction module so as to create sequences of keys, which
are finally analyzed using a deep LSTM model. The model learns a representation of the
event names along with their arguments.

The proposed framework is general enough to work with any specific application since no
particular assumptions and settings are used in the data collection module. Besides, the
whole system needs no prior knowledge. Our framework is also projected to help in the
root cause analysis of system issues. The root cause analysis is performed through various
plots and scripts that we have provided in Trace Compass. Extensive experiments on real
datasets confirm the effectiveness of our approach. Taken together, these findings suggest
that our framework is an effective tool that to reduce troubleshooting time by directing the
developer to the most relevant problem sites of interest. In the future, we will examine the
impact of employing kernel tracing and other arguments of events on the proposed approach.
Furthermore, it would be interesting to investigate other NLP techniques to improve detection
performance.



107

CHAPTER 7 GENERAL DISCUSSION

In this thesis, we studied and introduced novel analytical techniques and tools to improve
performance anomaly detection and reduce troubleshooting time in systems. In section 7.1,
we revisit our objectives and discuss how our research helped achieve those. The broad impact
of our work in the field of performance analysis and industry is addressed in Chapter 7.2.
Finally, section 7.3 discusses the limitations of our research and suggests potential research
projects for future researchers.

7.1 Summary of works and revisiting milestones

Our milestones in this research were discussed earlier in Chapter 3. In this section, we further
discuss how our research helped achieve these milestones.

Motivated by the lack of automated performance anomaly detection tools that use low-level
tracing data and impose low overhead into the system, Chapter 4 introduces a supervised
approach to locate abnormal behaviors during a trace file collected from the execution of an
application. This approach monitors the execution of a process by recording its stream of
system calls by means of an open-source Linux tracing tool (i.e., LTTng), which is able to
provide accurate, detailed information on the kernel and user-space executions. Moreover,
we employed the MySQL synthetic benchmarks tool, Sysbench, with oltp test in complex
mode to generate the dataset. Finally, we demonstrated the power of the proposed technique
by evaluating the model on a dataset of 18k normal and anomalous samples.

On the one hand, preparing a suitable dataset is a significant part of any data science
project. On the other hand, collecting labelled data is very difficult due to the nature
of the anomaly detection problem. Collecting labelled data is probably not attractive to
companies because it is costly and requires a specialist who has a thorough knowledge of
the system. For this reason, in Chapter 5, we examined the issue of labelled data in more
detail. At first, we improved the performance of our supervised anomaly detection approach
for different use cases based on well-known applications like MySQL and Chrome. Then,
the performance of unsupervised clustering methods such as K-means and DBSCAN, for
cases where labelled data is not available, was evaluated. Our experiments revealed that the
performance of DBSCAN was superior to that of K-means, but not as good as that of the
proposed supervised approach. Hence, in the next step, we added some labelled data points
to the unlabelled dataset. In this case, we applied a supervised feature extraction method,
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which help discover subsets of features that maximize the underlying clustering tendency.
The proposed semi-supervised anomaly detection method demonstrates how this supervision
significantly boosts the performance of unsupervised clustering algorithms. Taken together,
we proposed a robust framework that offers solutions for different scenarios. In addition, the
plots and visualizations provided improve performance analysis by domain experts.

In the continuation of this research (Chapter 6), we examined the performance of microservice-
based applications. These complex applications require stable performance, so that users are
always satisfied with the provided service. The way we trace microservice-based applications
is different, because they consist of services running across multiple hosts. Consequently, it
is not possible to rely on an individual trace, and the traces must be collected from mul-
tiple nodes. In this work, we have introduced a data collection module in which we used
distributed tracing, responsible for recording the requests progress as they travel across mul-
tiple nodes and services, communicating over various protocols. In addition, this module is
responsible for extracting the spans, which are the primary building blocks in distributed
tracing and represent individual units of work. Similar to words in natural languages, events
in a span follow specific patterns and grammar rules. We used this idea in our anomaly de-
tection framework and applied an NLP-based strategy to distinguish normal and abnormal
event patterns during the spans. Notably, our LSTM model learns the normal patterns of
events along with their arguments (e.g., event type, tag, and process name). Moreover, the
proposed anomaly detection framework offers some visualizations in Trace Compass, which
considerably reduce the troubleshooting time by highlighting the anomalous parts of the
trace.

7.2 Research Impact

Complex monolithic and distributed applications are pervasively used in industry, and their
performance is of great importance. However, current monitoring tools do not provide enough
information to troubleshoot potential performance degradations in these applications. More-
over, finding the root cause of the problems in logging and tracing data, in which hundreds of
events occur every second, is an exhausting and time-consuming task. Thus, there is a need
for low-overhead tools that can extract meaningful information to solve problems during the
execution of the applications. In this research project, several techniques have been proposed
to address various shortcomings in the field of performance anomaly detection. We have
improved the use of userspace and kernel events by introducing various feature extraction
methods that employ events’ arguments, frequency, and duration. We have also addressed
the problem of the availability of labelled data by introducing supervised, unsupervised, semi-



109

supervised, as well as NLP-based detection techniques. Most importantly, our research covers
a variety of software architectures and environments, including monolithic and microservices,
and makes troubleshooting these environments faster by providing interactive visualization
tools based on Trace Compass.

7.3 Recommendations for Future Research

The techniques presented in Chapters 4, 5, and 6 use various parameters of events as features,
such as frequency, duration, and name. Based on our research experience, we recommend
that future researchers improve our feature selection mechanism to incorporate other pa-
rameters as well. It should be noted that we will often need larger datasets by adding new
features. Furthermore, it would be interesting to examine other supervised and unsupervised
learning models to achieve better performance in identifying anomalies. We have applied
SVM, K-Means, DBSCAN, and LSTM to find abnormal behaviors during this research. In
the articles presented during this dissertation, we created some datasets containing normal
and abnormal data points through the scenarios described earlier. One suggestion for future
work is to enhance these datasets to include other types of anomalies. The proposed detec-
tion techniques are expected to be able to find new anomalies, as these techniques are not
limited to specific anomalies.

7.4 Limitations

The provided techniques in Chapters 4, and 5 are limited to the system calls name and
duration. Some other trace-based methods use insightful details about system calls, such
as the events parameters and their interactions. Although these works can identify some
specific types of anomalies which are detectable through analysing the parameters, they don’t
consider the time of data collection in the overall process. However, the data collection is not
free and we considered this important point in the proposed approaches in the mentioned
chapters. Regarding the approach introduced in Chapter 6, it should be noted that extending
this approach to a new argument, albeit simple, may require a much larger dataset.
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CHAPTER 8 CONCLUSION

In recent years, the computing infrastructure has significantly evolved, and complex sys-
tems have facilitated many complex and large-scale tasks. As a result of this development,
distributed environments and cloud infrastructures have emerged, allowing users to access a
collection of resources from anywhere and anytime. Moreover, various software architectures,
including microservices, have been formed to facilitate the software development process.

These advances have increased the users expectations, and any performance fluctuations may
lead to user dissatisfaction and financial loss. Unfortunately, the complexity of new infras-
tructures and architectures makes them prone to functional anomalies. Hence, monitoring
and analyzing the performance of applications, to find any performance degradation, is of
particular importance. However, performance analysis of these systems with hundreds of
hosts and VMs, is extremely complex.

Tracing data provides information about the execution of applications and processes. How-
ever, tracing tools produce a massive amount of low-level raw data, and it is a tedious task
for human administrators to manually monitor the execution status of the systems and de-
termine the cause of a performance issue. In this regard, behavioral analysis techniques could
be used to automatically analyze the system and reduce troubleshooting time by directing
the administrators to the most relevant problem sites.

In our first contribution, the proposed approach records the stream of system calls using
the Linux kernel tracing. Unlike previous works, this approach acquires the execution time
of system calls in addition to their frequency. Thus, two feature vectors of duration and
frequency are created for each extracted sequence of system calls. In order to optimize
the SVM model, the Fisher Score feature selection method is applied to select the most
discriminative features. Through the promising results obtained from multiple experiments,
we demonstrated that the approach we devised could effectively distinguish normal sequences
from abnormal ones.

In the second part of the work, we addressed the problem of the availability of labelled data in
anomaly detection by proposing a handcrafted data collection module and a multifunctional
learning module. In addition, the way we defined the data collection module, which does not
use specific settings, makes this framework general enough to work with different applications.
This framework introduces supervised and unsupervised techniques that are most compatible
with this kind of dataset. Our experiments also revealed that the supervised selection of
features could significantly boost the performance of unsupervised learning models, leading
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us to propose a semi-supervised approach.

In the last part of the work, we proposed a general-purpose NLP-based anomaly detection
framework for detecting abnormal behaviors and release-over-release regressions in microser-
vice environments. It records streams of events using distributed tracing and sends them to
the data extraction module so as to create sequences of keys. Subsequently, these sequences
are analyzed using a deep LSTM model. The LSTM model learns a representation of the
event names along with their arguments. Notably, the whole system does not require prior
knowledge such as labelled data.

All in all, the findings suggest that our proposed techniques tools, and visualizations ef-
fectively reduce troubleshooting time. We recommend that future studies investigate other
arguments of events to improve our feature selection mechanism. Future research could
also explore other state-of-the-art machine learning techniques to improve anomaly detection
performance.
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