POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: System Performance Anomaly Detection using Tracing Data Analysis

Auteur:
Author:
Date: 2022

Type: Mémoire ou thése / Dissertation or Thesis

Iman Kohyarnejadfard

Référence: Kohyarnejadfard, I. (2022). System Performance Anomaly Detection using Tracing
" Data Analysis [Ph.D. thesis, Polytechnique Montréal]. PolyPublie.

Citation: https://publications.polymtl.ca/10281

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . N
PolyPublie URL: https://publications.polymtl.ca/10281/

Directeurs de
recherche: Daniel Aloise, & Michel Dagenais
Advisors:

Programme

' Génie informatique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/10281/
https://publications.polymtl.ca/10281/

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

SYSTEM PERFORMANCE ANOMALY DETECTION USING TRACING
DATA ANALYSIS

IMAN KOHYARNEJADFARD

Département de génie informatique et génie logiciel

These présentée en vue de 'obtention du diplome de Philosophie Doctor

Génie informatique

Avril 2022

(© Iman Kohyarnejadfard, 2022.

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

Cette these intitulée :

SYSTEM PERFORMANCE ANOMALY DETECTION USING TRACING
DATA ANALYSIS

présentée par Iman KOHYARNEJADFARD
en vue de 'obtention du diplome de Philosophie Doctor

a été diiment acceptée par le jury d’examen constitué de :

Gilles PESANT, président

Daniel ALOISE, membre et directeur de recherche
Michel DAGENAIS, membre et codirecteur de recherche
Mohammad Adnan HAMDAQA, membre

Naser EZZATI-JIVAN, membre externe

1ii

DEDICATION

To my Parents, and my Sister, For supporting me all these years. I am thankful for

having you in my life.

To my lovely Parisa, Who has always been a source of support and encouragement, and

has given meaning and happiness to my life.

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my research director, Daniel ALOISE, for
giving me this chance to carry out my research under his supervision. Further, I would take
this opportunity to thank him for his valuable insights, guidance, and significant contributions

to directing and supervising this work.

I would also like to express my sincere gratitude to my research co-director, Michel Dage-
nais. [want to thank him for all his support and encouragement and for creating such a

lovely lab.

Also, I express my thanks to Naser Ezzati Jivan, Seyed Vahid Azhari, Mahsa Shakeri,
Hani Nemati and Genevieve Bastien for their help and constant support during my

research.

Finally, thanks to all my colleagues who have assisted me throughout this work and helped

me solve my problems.

RESUME

Les progres technologiques et 'augmentation de la puissance de calcul ont récemment conduit
a ’émergence d’architectures logicielles complexes et a grande échelle. Les unités centrales
de traitement conventionnelles sont maintenant soutenues par des unités de co-traitement
pour accélérer différentes taches. L’impact de ces améliorations peut étre observé dans les
systeémes distribués, les microservices, les appareils IdO (internet of things ou IoT en anglais)
et les environnements infonuagiques qui sont devenus de plus en plus complexes a mesure
qu’ils grandissent en termes d’échelle et de fonctionnalités. Dans de tels systemes, une
tache simple engage de nombreux cceurs en parallele, potentiellement sur plusieurs nceuds, et
une méme opération peut étre servie de différentes manieres par différents coeurs et noeuds
physiques. De plus, plusieurs facteurs tels que leur distribution dans le réseau, 1'utilisation de
différentes technologies, leur courte durée de vie, les bogues logiciels, les pannes matérielles et
les conflits de ressources rendent ces systemes sujets a la montée de comportements anormaux.
Le haut degré de complexité et la distribution inhérente des petits services compliquent la
compréhension des performances de ces environnements. En outre, les outils de surveillance

et d’analyse des performances disponibles présentent de nombreuses lacunes.

Différents outils de tracage et de surveillance des systéemes monolithiques et des systeémes
distribués ont été explorés dans cette étude pour trouver un moyen d’extraire efficacement
les informations de toutes les unités a tous les niveaux. Le suivi du systeme d’exploitation
ou des applications utilisateur nécessite la capacité d’enregistrer chaque seconde des milliers
d’événements de bas niveaux, ce qui impose une surcharge au systeme susceptible d’affecter
les performances de I'application cible. Par conséquent, nous avons utilisé un outil de tracage
léger appelé Linux Trace Toolkit Next Generation (LTTng) qui fournit un progiciel (package
en anglais) de tragage & haut débit avec une faible surcharge pour le tragage corrélé du noyau
Linux, des applications et des bibliotheques. Cependant, sans outils de diagnostic automatisé,
les experts systeme doivent examiner une quantité massive de données de tragage de bas
niveau pour déterminer la cause d’un probléme de performances, ce qui prend beaucoup de

temps et est fastidieux en pratique.

Dans cette these, divers aspects de la détection des anomalies de performance, y compris
I’architecture de I’environnement cible et le type de données d’entrainement, ont été étudiés,
et plusieurs approches ont été proposées pour réduire le temps de dépannage dans différents
environnements. Ces approches guident les développeurs pour découvrir les problemes de

performances en mettant en évidence les parties inhabituelles des données de tracage. Les

vi

approches proposées fonctionnent en collectant des données de tracage, en extrayant les
données appropriées dans Trace Compass, et enfin en envoyant les données extraites au

module de détection.

Dans la premiere contribution de cette theése, nous présentons une approche de détection
d’anomalies pour la surveillance pratique de processus s’exécutant sur un systeme afin de
détecter des vecteurs anormaux d’appels systéme. Les flux d’appels systeme sont divisés en
courtes séquences a l'aide d’une stratégie de fenétre glissante. Contrairement aux études
précédentes, notre approche proposée considere la durée des appels systeme les plus impor-
tants comme faisant partie des vecteurs de caractéristiques. La durée d'un appel systéme
dans une fenétre agit comme la fréquence pondérée de cet appel systeme. De plus, nous

utilisons une machine a vecteurs de support pour détecter les fenétres anormales.

Notre deuxieme contribution aborde le probleme de la disponibilité des données étiquetées
en proposant des techniques d’apprentissage en fonction du volume de données étiquetées.
Une technique supervisée est introduite lorsqu'une grande quantité de données de forma-
tion étiquetées est disponible, alors qu’une technique non supervisée est préférée lorsque
les données étiquetées ne sont pas disponibles. De plus, nous proposons un nouveau modele
d’apprentissage automatique semi-supervisé, qui bénéficie a la fois de techniques d’apprentissage

supervisé et non supervisé, lorsque seules quelques données étiquetées sont disponibles.

Enfin, dans la derniere contribution de cette theése, nous proposons une méthode basée sur
le traitement des langues naturelles (natural language processing ou NLP en anglais) pour
détecter les anomalies de performance dans les environnements de microservices, en plus de
localiser les régressions entre les versions. La méthode proposée apprend une représenta-
tion des noms d’événements avec d’autres arguments pour remédier aux limitations d’autres
méthodes qui n’utilisent pas d’arguments d’événement. Il bénéficie également du tracage
distribué pour collecter des séquences d’événements qui se sont produits pendant les durées.
De plus, cette méthode ne nécessite aucune connaissance préalable, ce qui facilite la collecte

des données d’apprentissage.

vii

ABSTRACT

Advances in technology and computing power have led to the emergence of complex and
large-scale software architectures in recent years. The conventional central processing units
are now getting support from co-processing units to speed up different tasks. The result
of these improvements can be seen in distributed systems, Microservices, IoT devices, and
cloud environments that have become increasingly complex as they grow in both scale and
functionality. In such systems, a simple task involves many cores in parallel, possibly on
multiple nodes, and also, a single operation can be served in different ways by different cores
and physical nodes. Moreover, several factors, such as their distribution in the network, the
use of different technologies, their short life, software bugs, hardware failures, and resource
contentions, make these systems prone to the rise of anomalous system behaviors. The high
degree of complexity and inherent distribution of small services makes understanding the
performance of such environments challenging. Besides, available performance monitoring

and analysis tools have many shortcomings.

Different tools for tracing and monitoring monolithic systems and distributed systems have
been explored in this study to find a way to efficiently extract information from all units
at all levels. Tracing the OS or user applications needs the ability to record thousands
of low-level events per second, which imposes overhead to the system that may affect the
performance of the target application. Hence, we employed a lightweight tracing tool called
the Linux Trace Toolkit Next Generation (LTTng) that provides high throughput tracing
package with a low overhead for correlated tracing of the Linux kernel, applications, and
libraries. However, without an automated diagnostic tool, system experts have to examine
a massive amount of low-level tracing data to determine the cause of a performance issue,

which is really time-consuming and tedious in practice.

In this thesis, various aspects of performance anomaly detection, including the architecture
of the target environment and the type of training data, have been investigated, and multi-
ple approaches have been proposed to reduce troubleshooting time in different environments.
These approaches guide developers to discover performance issues by highlighting unusual
parts of the tracing data. The proposed approaches work by collecting tracing data, extract-
ing the appropriate data in Trace Compass, and finally sending the extracted data to the

detection module.

In the first contribution of this thesis, we present an anomaly detection approach for practical

monitoring of processes running on a system to detect anomalous vectors of system calls. The

viii

system calls streams are split into short sequences using a sliding window strategy. Unlike
previous studies, our proposed approach considers the duration of the most important system
calls as part of the feature vectors. The duration of a system call in a window acts like the
weighted frequency of that system call. In addition, we employ a Support Vector Machine

to detect anomalous windows.

Our second contribution addresses the problem of the availability of labelled data by propos-
ing learning techniques depending on the volume of labelled data. A supervised technique is
introduced for situations where a large amount of labelled training data is available, whereas
an unsupervised technique is preferred when labelled data is not available. Furthermore, we
propose a novel semi-supervised machine learning model that benefits from both supervised

and unsupervised learning techniques when only a few labelled data are available.

Finally, in the last contribution of this thesis, we propose an NLP-based method to detect
performance anomalies in microservice environments, besides locating release-over-release
regressions. The proposed method learns a representation of the event names along with
other arguments to remedy the limitations of other methods that do not use event arguments.
It also benefits from distributed tracing to collect sequences of events that happened during
spans. Moreover, this method needs no prior knowledge, which facilitates the collection of

training data.

X

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS e iv
RESUME oo v
ABSTRACT e vii
TABLE OF CONTENTS e ix
LIST OF TABLES e e e xii
LIST OF FIGURES e xiii
LIST OF SYMBOLS AND ACRONYMS xvi
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Research Questions 2
1.3 Research Objectives 2
1.4 Contributions 3
1.5 Outline. e 4
1.6 Publications 4
CHAPTER 2 LITERATURE REVIEW
2.1 Basic concepts in anomaly detection o000
2.1.1 Definitions and Terminology
2.1.2 Performance Anomaly Detection. 10
2.1.3 Anomaly detection tools 11
2.1.4 Data collection module 13
2.1.5 Analysis module: Most useful Analysis tools 20
2.1.6 Analysis module: Study on machine learning approaches for anomaly
detection 21
2.2 Related workso 26

2.3 DISCUSSION, 31

CHAPTER 3 RESEARCH METHODOLOGY 33
3.1 System performance anomaly detection using tracing data analysis. 33
3.2 A framework for detecting system performance anomalies using tracing data

analysis L L 34

3.3 Anomaly detection in microservice environments using distributed tracing data
analysis and NLP oo 35

CHAPTER 4 ARTICLE 1: SYSTEM PERFORMANCE ANOMALY DETECTION

USING TRACING DATA ANALYSIS 36
4.1 Abstract 36
4.2 Introduction 37
4.3 Methodology 38
4.3.1 Kernel tracing data extractiono L 39
4.3.2 Short sequence extraction and pre-processing 39
4.3.3 Discriminant feature selection 40
4.3.4 System performance anomaly detection 41
4.4 Experiments 42
4.4.1 Setup and dataset generation L 42
4.42 Results. 43
4.5 Conclusions 48

CHAPTER 5 ARTICLE 2: A FRAMEWORK FOR DETECTING SYSTEM PER-

FORMANCE ANOMALIES USING TRACING DATA ANALYSIS 49
5.1 Abstract L 49
5.2 Introduction 50
5.3 Previous Worko 52
5.4 Performance Anomaly in Processes 55
5.5 The Automatic Integrated Anomaly Detection Framework 58
5.6 Kernel Tracing and Data Extraction 59
5.7 Preprocessing of the Extracted Data 63
5.7.1 Problem of Sparsity 64
5.7.2 Data Normalization 64
5.8 Performance Anomaly Detection 0L 64
5.8.1 Supervised Performance Anomaly Detection 65
5.8.2 Unsupervised Learning of the Performance Anomalies 67
5.8.3 Semi-Supervised Learning of the Performance Anomalies 69

5.9 Evaluation s, 71

xi

5.9.1 Setup and Dataset Generation 72
5.9.2 Analysis of Practical Use-Cases 72
5.9.3 Results. 74
5.10 Conclusions 81

CHAPTER 6 ARTICLE 3: ANOMALY DETECTION IN MICROSERVICE ENVI-
RONMENTS USING DISTRIBUTED TRACING DATA ANALYSIS AND NLP . &4

6.1 Abstract 84
6.2 Introduction 84
6.3 Previous Work 87
6.4 ANOMALY DETECTION FRAMEWORK 90
6.4.1 Tracingmodule oo 90

6.4.2 Data extraction module L. 91

6.4.3 Analysismodule oo 96

6.5 EVALUATION e 97
6.5.1 Experimental setup and dataset generation 98

6.5.2 Evaluation of the anomaly detection framework 99

6.5.3 Analysis of practical use-cases 101

6.5.4 Root cause analysiso 105

6.6 CONCLUSION e 106
CHAPTER 7 GENERAL DISCUSSION, 107
7.1 Summary of works and revisiting milestoneso 107
7.2 Research Impact 108
7.3 Recommendations for Future Research 109
7.4 Limitations 109
CHAPTER 8 CONCLUSION o . 110

REFERENCES o e 112

Table 4.1

Table 5.1
Table 5.2

Table 5.3

Table 6.1

Table 6.2
Table 6.3

xii

LIST OF TABLES

The performance of the proposed RBF based anomaly detection ap-
proach compared to the Sigmoid (SIG) and polynomial (POLY) based
methods. The performances are reported on both duration and fre-
quency of system calls. L 48
The performance of the proposed supervised anomaly detection approach. 77
Validation of K-Means based semi-supervised technique on original fea-
tures versus where the Fisher score feature selection method is applied. 80
Validation of DBSCAN based semi-supervised technique on original
features versus where the Fisher score feature selection method is applied. 81
The categories of events and the arguments used by our framework. . 95
Results of evaluating our model with 10-fold cross- validation. 101
The number of detected unexpected keys along with the total number

of predictions made by our model for three scenarios. 101

Figure 2.1

Figure 2.2

Figure 2.3
Figure 2.4
Figure 2.5
Figure 3.1
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8

Figure 4.9
Figure 5.1

Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figure 5.6

LIST OF FIGURES

Above: the CPU usage of an application during the execution time.
Below: an anomalous latency growth pattern [1].
A general overview of a performance anomaly detection tool and its
component modules.
A tracing process flow with LT Tng [2]

A simple Neural Network.

An arbitary shape dataset [3]
Milestones and research progress. L.
The overview of the proposed framework.

Each system call is assigned to a unique number.

The summary of the extracted information from the stream of system

The Fisher score for each system call in frequency-based approach. . .
The Fisher score for each system call in duration-based approach.

Anomaly detection accuracy versus different number of top-ranked fea-

Heat map of the duration-based anomaly detection accuracy using dif-
ferent parameters y and C.o
Heat map of the frequency-based anomaly detection accuracy using
different parameters yand C.o oL
Accuracy of the proposed approach on multiple runs.
(a) CPU usage of an application during the time. (b) an anomalous
latency growth pattern [1]. Lo
The system architecture of the proposed framework.
Data extraction steps using kernel tracing.
Reading trace file and extracting vectors using windowing method.

Frequency-based samples extracted from Chrome process. Red, yellow
and green points refer to normal, CPU problems, and memory prob-
lems, respectively. (a) uses t-SNE and (b) utilizes PCA to map data
points onto 2D subspaces.

The architecture of the proposed Semi-supervised framework.

xiii

11

12
16
23
25
33
39
40

41
44
44

45

46

47
47

o7
99
60
62

70
71

xXiv

Figure 5.7 The visualized results of the test scenarios in Trace Compass time
charts. (a) The visualized anomaly detection output where zip bombs
simulated DoS attack. (b) the time chart provides the ability to zoom
in and zoom out a specific area. (c) The visualized anomaly detection
output where DoS attack was simulated by Stress. 74

Figure 5.8 Different features our framework has offered. (a) The events editor

table for the selected anomalous area, (b) The statistics chart for the

selected anomalous area.o 75
Figure 5.9 SVM-based anomaly detection accuracy versus the different number of

top-ranked features. (a) Mysql dataset (b) Chrome dataset. 76
Figure 5.10 Heat map of the frequency-based and duration-based supervised anomaly

detection accuracy using different parameters v and C' for Mysql dataset.

(a) The heat map for frequency feature space, (b) The heat map for

duration feature space. L 78
Figure 5.11 Heat map of the frequency-based and duration-based supervised anomaly

detection accuracy using different parameters v and C' for Chrome

dataset. (a) The heat map for frequency feature space, (b) The heat

map for duration feature space.o 79
Figure 5.12 The visual result of K-Means clustering after choosing ¢ = 103 fea-

tures with the highest fisher score on frequency-based data set for the

Chrome process; each color refers to a cluster. The left plot uses PCA,

and the right plot utilizes t-SNE to map data points onto 2D subspaces. 80
Figure 5.13 The visual result of DBSCAN clustering with e = 5 x 10~ after choos-

ing ¢ = 103 features with the highest fisher score on frequency-based

data set for the Chrome process; each color refers to a cluster. The

left plot uses PCA, and the right plot utilizes t-SNE to map data

points onto 2D subspaces. 82
Figure 6.1 The architecture of our proposed anomaly detection method for mi-

croservice environments. L. Lo 90
Figure 6.2 The overview of our distributed tracing module. 92
Figure 6.3 [llustration of the process for creating the training dataset from mul-

tiple traces. L 93
Figure 6.4 The structure of a span and its sub-spans in a distributed trace. . . . 94
Figure 6.5 The overview of our anomaly detection model. 97
Figure 6.6 The architecture of the LSTM network we used in our anomaly detec-

tion framework. L 98

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

A) F__score of the model by varying a.. The dotted line indicates that
the F_score of the model for o values between 11 and 19 is greater
than 0.97. B) F'__score/Training time for different values of a. Only
the values for which the F_score is greater than 0.97 are shown in this
figure.
This Figure depicts the Likelihood of detecting unexpected keys over
the traces obtained from the three mentioned scenarios. A) In this
scenario, CPU-related anomalies were injected into the system. B) In
this scenario, disk-related anomalies were injected into the system. C
) In this scenario, a new release of the application without injecting
anomaly was investigated. 0oL
The anomalous spans that appeared during the trace of the second
scenario where each span has been drawn with a bar.
This figure presents the time chart generated by our script in Trace
Compass, which helped to find the cause of anomalies in our test traces
(due to Ciena’s security rules, we have changed the original names of
the processes in these screenshots). A) A sample of a normal span. B)
A sample of an anomalous span where the PROC-X is the caused of

the problem.

XV

100

102

103

LTTng
OS
VM
vCPU
pCPU
FTP
OLTP
DoS
syscall
CI

Al
ML
NLP
LSTM
SVM
DBSCAN
2D
MinPts
Dist
ARI
t-SNE
Acc
Prec
Rec
RBF
SIG
POLY

LIST OF SYMBOLS AND ACRONYMS

Linux Trace Toolkit Next Generation
Operating System

Virtual Machine

Virtual CPU

Physical CPU

File Transfer Protocol

OnLine Transaction Processing
Denial-of-service

system call

Continuous Integration
Artificial Intelligence

Machine Learning

Natural Language Processing
Long Short Term Memory
Support Vector Machine

Density-Based Spatial Clustering of Applications with Noise

Two-dimensional space
Minimum Points
Distance

Adjusted Rand Index
t-Distributed Stochastic Neighbor Embedding
Accuracy

Precision

Recall

Radial Basis Function
SIGmoid

POLYnomial

xvi

CHAPTER 1 INTRODUCTION

1.1 Motivation

In recent years, the computing infrastructure has significantly evolved, whereas complex
systems have facilitated many complicated and large-scale tasks. For example, functional
co-processing units accommodate conventional processing units to speed up particular tasks
such as virtualization or complex machine learning computations. As a result of these ad-
vances, more sophisticated software architectures such as microservices have been launched,
where small interconnected services present a complex service such as a web application.
Consequently, a simple operation can involve multiple parallel cores being served in a few

seconds or milliseconds.

These improvements in hardware and software have increased user expectations. Even when
some parts of the system are brought down for maintenance, the users usually do not notice it.
Hence, any performance fluctuations or increased latency may lead to user dissatisfaction and
revenue losses. However, although considerable efforts have been made to ensure performance,
the complexity and large scale of new systems make them fragile and prone to performance
anomalies and failures. Different reasons such as misconfigurations, software bugs, hardware
faults, network disconnection, aging phenomena of the systems, and extreme load injected
by other applications into the system, may degrade the performance of an application or

particular service.

Therefore, monitoring and analyzing the performance of programs to find any performance
anomaly or degradation is extremely important, and any delay in identifying performance
problems and troubleshooting can significantly increase the cost of fixing them. In addition,
applications monitoring becomes more challenging by increasing the degree of automation

and distribution.

Anomaly detection is vital in such a context because anomalies in data may translate to es-
sential and critical information in many application domains [4]. In the data analysis context,
anomalies are data that do not conform to the well-defined notation of normal behaviour [5].
Anomalies might appear in the data for various reasons, which are all challenging for the
analyst to reveal. It should be noted that anomaly detection is different from noise detection
and noise elimination, which refer to unwanted noise in the data. Besides, we should distin-
guish between anomaly detection and novelty detection, which is useful in identifying new

unobserved patterns.

The main focus of this thesis is to promote the analysis of the performance of monolithic
and microservice-based applications and enhance the detection of anomalous behaviors and
analysis of the root causes of detected anomalies inside these applications. This includes
the development of several algorithms to process the large volume of tracing data by taking
advantage of machine learning technologies and open-source tools such as LTTng and Trace

Compass.

The insights provided by our research are intended to help companies detect and avoid
different kinds of anomalies. The system’s behavior is defined by the sequence of events
(such as system calls or states) obtained by open source tools. In this way, an extensive
amount of information is accessible from the CPU, Memory, 1/O, and network. Experiments
indicate that the definition of normal behavior is stable during standard UNIX programs [6].
Notably, the horizon of this work is the development of an anomaly detection framework with
negligible overhead and a minimum human intervention that can be applied in a variety of

environments and ultimately convert tracing information into meaningful visualizations.

1.2 Research Questions

Given the issues presented earlier and through a feasibility analysis of different methods, five

basic research questions are identified that have not been addressed in depth in this area:

- How to identify deviations in the performance of the system? Which deviations should

be considered as anomalies?

- How to develop an anomaly detection method that is applicable to different environ-

ments and does not impose excessive overhead on the system?

- What are the best methods and tools for collecting information about a system? In

order to characterize an application’s execution status, low-level information is required.
- What are the most appropriate parameters and features for detecting anomalies?

- Which machine learning methods can be used in performance anomaly detection?

1.3 Research Objectives

Based on recent studies, there is a need to elaborate more automated techniques for per-

formance anomaly detection and root cause analysis. Several anomaly detection techniques

using supervised and unsupervised machine learning methods have been proposed in this the-

sis to obtain a highly accurate view of the performance anomalies while keeping the tracing

overhead almost negligible.

The major aim of this research is to investigate how machine learning techniques can be

adapted and applied to improve automated performance anomaly detection in execution

flow.

1.4

We refined our objective into four specific objectives as follow:

To review the present methods and trends in this research area and identify open

challenges.
To study the behavior of systems using tracing data and machine learning.

To develop a new algorithm for automatic performance anomaly detection with limited

human intervention.

To develop, implement and evaluate a framework that can automatically detect per-
formance anomalies, and investigate the root cause of the anomalies in microservice

environments.

Contributions

In line with the research objectives mentioned above, this dissertation offers the following

main contributions in the field of performance anomaly detection:

It presents a new approach in the field of anomaly detection, which relies on LTThg
and Trace Compass. LTTng imposes a small overhead on the system and makes this
approach usable in various environments, including microservices or monolithic appli-

cations.

It proposes enhanced supervised, unsupervised, and semi-supervised techniques to find

abnormal behaviors during the streams of system calls.

It presents a new framework to find abnormal behaviors in microservice environments

by employing different parameters of the events and NLP.

It provides several meaningful visualizations in Trace Compass, such as a time chart,
which allows the developers to visually analyze the abnormal parts of the execution

fow.

1.5 Outline

This thesis is composed of eight chapters. Following this introduction, Chapter 2 provides
some background information and a summary of available methods for performance analysis,
feature extraction, machine learning, and anomaly detection. Chapter 3 presents our general
methodology and describes the process of identifying problems, applicable cases, milestones,
and final results in terms of articles. In the following, three research articles are presented in
Chapters 4, 5, and 6.

Chapter 4 presents an anomaly detection approach for practical monitoring of processes
running on a system to detect anomalous vectors of system calls. Our proposed approach
computes the execution time of system calls in addition to the frequency of each individual
call in a window. Finally, a multi-class support vector machine is applied to evaluate the

system’s performance and detect anomalous sequences.

In Chapter 5, we propose an anomaly detection framework that reduces troubleshooting
time, besides guiding developers to discover performance problems by highlighting anomalous
parts in trace data. This chapter addresses the problem of the availability of labelled data
by proposing several learning techniques. A supervised method is introduced when large
amounts of labelled training data are available. An unsupervised method has also been
offered to be used in the absence of labelled data. Moreover, we propose a novel semi-
supervised machine learning model within the proposed framework that benefits from both

supervised and unsupervised learning techniques when only a few labelled data are available.

Chapter 6 proposes a natural language processing (NLP) based approach to detect perfor-
mance anomalies besides locating release-over-release regressions in microservice environ-
ments. This approach benefits from distributed tracing data to collect sequences of events
that happened during spans. Furthermore, this approach needs no prior knowledge, which

facilitates the collection of training data.

Chapter 7 summarizes the findings, limitations, and main recommendations for future work.

Finally, concluding remarks regarding this research are provided in chapter 8.

1.6 Publications

The chapters mentioned above are based on the published and submitted articles introduced

in this section. The articles are as follows:

1. Iman Kohyarnejadfard, Daniel Aloise, Seyed Vahid Azhari, and Michel Dagenais. "Anomaly

detection in microservice environments using distributed tracing data analysis and

NLP.", Submitted in Journal of Cloud Computing.

. Iman Kohyarnejadfard, Daniel Aloise, Michel R. Dagenais and Mahsa Shakeri. "A
framework for detecting system performance anomalies using tracing data analysis and
Machine Learning.", Entropy 23, no. 8 (2021): 1011.

. Iman Kohyarnejadfard, Daniel Aloise, and Mahsa Shakeri. "System performance anomaly
detection using tracing data analysis." Proceedings of the 2019 5th International Con-

ference on Computer and Technology Applications. 2019.

CHAPTER 2 LITERATURE REVIEW

Tracing is a popular way to analyze, debug, and monitor a system. It is a valuable technique
for gaining information about a system while minimizing the monitoring influence, and dif-
ferent works have applied machine learning techniques to analyze this information and find
performance anomalies. Several performance analysis tools and methodologies exist in dif-
ferent environments. So, it is essential to review the available state-of-the-art in performance
analysis and anomaly detection tools and see how these tools and techniques have advanced.
This chapter investigates the currently available tools, methods, and approaches developed

in this area of research.

In the first section of this chapter, we examined the basic concepts related to anomaly
detection. We also introduced various data collection methods as well as the machine learning
techniques that can be used to analyze the collected data. Then the previous work and the
progress made in the field of anomaly detection were investigated in Section 2.2. Finally,
in Section 2.3, while reviewing the shortcomings of previous methods, we explore how our

proposed methods differ from the previous related literature.

2.1 Basic concepts in anomaly detection

This section starts with some definitions and terminology related to tracing and anomaly
detection in subsection 2.1.1. Background information on performance anomalies is studied
in subsection 2.1.2. This subsection explains how abnormalities arise and affect the system.
In subsection 2.1.3, we talk about the properties of an anomaly detection tool. Next, a brief
review of the most popular data collection tools and technologies are presented in subsection
2.1.4. Moreover, the most valuable sources of information for anomaly detection, such as
system calls, are reviewed in this subsection. This informs us about the various features
that may be used to create a dataset. Following this, the most useful trace analysis tools
are investigated in subsection 2.1.5. Then, we shall have a detailed look at some machine

learning approaches in subsection 2.1.6.

2.1.1 Definitions and Terminology

In this subsection, we provide some of the most useful definitions and terms that are neces-

sary to understand the rest of this dissertation.

Definitions related to Tracing:

e Operating system: A software that manages a computer’s hardware is called Operating
System (OS). Tt is also used as a basis for application programs and acts as an intermediary

between the computer user and the computer hardware [7].

e Kernel: Kernel mode and user mode are two modes of operation in most computers: The
operating system runs in kernel mode, which is also called supervisor mode. In kernel
mode, it has full access to all the devices and can execute any instruction the machine is

able to execute [8].

e Tracepoint: It is a statement located in the code of an application that provides a hook

to invoke a probe. A tracepoint can be enabled or disabled dynamically [9].

e Probe: a prob is a function that is hooked to a tracepoint and is called at runtime if the
tracepoint is enabled. It should be as small and fast as possible, to add low overhead to

the system and is either implemented by the tracer or by the user [10].

e Event: The event is created by a tracer, when it encounters an active tracepoint at

run-time, and contains information such as a timestamp.

e System call: A system call is a way for programs to communicate with the operating
system. A system call is created when a computer program makes a request to the op-
erating system’s kernel, thus providing the services of the operating system to the user

programs [11].

e Timestamp: The timestamp refers to the time of an event, upon encountering the tra-

cepoint, which is stored as a log element or metadata.

e Atomic Operation: It has the property of being indivisible, which means that interme-
diate values or intermediate states are inaccessible to other operations. They usually need
to be supported by the hardware or the operating system, and developers must take care

of the atomicity [9].

e Monolithic architecture: It is the traditional approach to software development. In

this architecture, the functions are encapsulated into a single application [12].

e Microservices architecture: It is a technique for developing software applications that
has inherited principles and concepts from the Service-Oriented Architecture (SOA) style.

A service-based application includes very small loosely coupled software services [13].

e Virtualization: This technology enables the physical machine to run one or more virtual

machines at the same time.

e Virtual Machine (VM): It is a software implementation of a machine which can execute

programs like a physical machine [14].

e Cloud Computing: Cloud computing is a large-scale distributed computing model which
offers a pool of abstracted, virtualized, dynamically-scalable, managed computing power,
storage, and platforms. It is often used to deliver services on-demand to customers over
the Internet [15].

e Node: A node is an independent physical device in a network of other tools, with the

ability of sending, receiving, or forwarding information.

e Cluster of nodes: It’s a set of nodes that interact with each other, over a high bandwidth

communication network.

e Host: There are several degrees of machine virtualization. Based on the definition of Cloud
Computing, some approaches allow installing and running unmodified guest operating
systems on a host OS [16].

e Instrumentation: Instrumentation is a code section that can be added to any part of
a target system, either at run time or compile time, for collecting information about the
applications. Instrumentation at run time is called dynamic binary instrumentation, and
instrumentation at compile time is called static instrumentation. In static instrumentation,
the source code of the application is needed, and an extra recompilation time imposed.
Also, the applications need to be restarted. On the other hand, in dynamic instrumen-
tation, the source code is not required, and the code is injected into the application at

run-time [17].

Definitions related to Machine Learning:

e Machine Learning: It is the scientific study of algorithms and statistical models that
computer systems utilize to do a specific task, without using explicit instructions, using
patterns and inference instead. Machine learning algorithms construct a mathematical
model based on sample data, to make decisions or predict something without being ex-

plicitly programmed to perform the task [18].

e Anomalies: In general, anomalies are data that do not fit in a standard form of data in

that area [5]. Anomalies might appear in the data for several reasons.

Anomaly detection: Anomaly detection is the process of identifying unusual or rare
items, events, or observations which are significantly different from the majority of the data.
Anomaly detection has become a hot issue, because it can provide valuable information

at critical moments, which can help to prevent or take appropriate action [19].

Anomaly prediction: Anomaly prediction is valuable for anticipating future anomalies
in data. It is valuable for the defense against anomalies before they can have their adverse
effect.

Training dataset: A training dataset is a part of the dataset that is used for learning,

and also to fit the different parameters of the method.

Validation dataset: This part of the dataset is used to tune the hyperparameters such
as the architecture of a classifier. A validation dataset is required to avoid over-fitting

when the classification parameters need to be adjusted [20].

labelled data: labelled data is a group of samples that have been tagged with one or

more labels, for example 1 or 0.

Supervised and unsupervised learning: Supervised learning algorithms are trained
using labelled samples, such as an input where the desired output is known. In contrast,

unsupervised learning algorithms are used when we don’t have labels [21].

Classification: Given an n x d training data matrix D and a class label value in {1, ..., k},
associated with each of the n rows in D, the classification consists of creating a training

model M, which can be used to predict the class label of a d-dimensional record Y € D [22].

Clustering: Given a set of data points, partition them into groups containing very similar
data points [22].

Training: Training is a process in which a machine learning (ML) algorithm is fed with

sufficient training data to learn [21].

Validation: After clustering or classification of the data has been determined, it is essen-
tial to evaluate its quality. This problem is referred to as validation. Different validation

criteria exist for classification and clustering.

Feature engineering: It is the process of using domain knowledge to extract features

(characteristics, properties, attributes) from raw data [23].

10

2.1.2 Performance Anomaly Detection

Performance anomalies are the most significant obstacles for the system to perform confi-
dently and predictably in enterprise applications. Many sources can cause anomalies, such
as varying application load, application bugs, updates, and hardware failure. In a situation
where the workload is the source of the anomaly, the application imposes continuous and
more than expected workload intensity to the system. Faults in system resources and com-
ponents may considerably affect application performance at a high cost [24]. In addition,
software bugs, operator errors, hardware faults, and security violations may cause system

failures.

The preliminary performance profiling of a process that reflects its typical behavior can
be done using synthetic workloads or benchmarks. At a higher level, the performance of
computer systems is delineated by measuring the duration for performing a given set of

tasks, or the amount of system resources consumed within a time interval [25].

There exist many metrics for measuring the performance of a system. Latency and through-
put are the most common ones. They are used to describe the operation state of a computer
system. The elapsed time between the beginning of an operation and its completion is the
latency, (e.g., the delay between when a user clicks to open a webpage and when the browser
displays that webpage). Throughput is a measure of how many jobs a system can perform in
a given amount of time (e.g., the number of user requests completed within a time interval).
In addition, the resource utilization of an application indicates the amount of resources (e.g.,
number of CPUs, and the size of physical memory or disk) used by that application. The
CPU utilization is the percentage of time during the CPU is executing a process, whereas

the memory utilization is the amount of storage capacity dedicated to a particular process.

Figure 5.1(a) shows an example of the CPU utilization of a process during its lifetime. When
an application is running normally, the CPU used by that application is conventional. Hence
an expected maximum CPU utilization threshold can be defined for each application. In
this case, if the CPU usage exceeds the threshold value, the process behavior is prone to the
existence of an anomaly. Furthermore, as represented in Figure 5.1(b), during the anomalous
execution of a process, the latency usually increases, while this curve has a relatively steady

trend during normal behavior [26].

11

Expected

<gmmm NOrmMal
CPU usage

20 |#

100 200 300 400 500 600
times(s)

Latency (ms)

100 200 300 400 500 600
times(s)

Figure 2.1 Above: the CPU usage of an application during the execution time. Below: an
anomalous latency growth pattern [1].

2.1.3 Anomaly detection tools

Anomaly detection tools observe the target system’s behavior to reach a decision about the
status of the system. Figure 2.2 presents a general overview of such a tool. In the first step,
the data collection module employs data-providing techniques and tools to record the system
state and its changes. It gathers data and sends the data to the analysis module. Next, in
the analysis module, the provided data is processed, and meaningful information is extracted

to represent the performance of a target system. Finally, the analyzed data is sent to the

12

visualization module, which generates views for system administrators. It may also trigger
an alert. In the following, the characteristics of the desired tool are examined, and then each

of these modules is described in detail.

Raw
data

Analyzed
data

Data
collection
module

Analysis
module

Visualization
module

Figure 2.2 A general overview of a performance anomaly detection tool and its component
modules.

Characteristics of the desired anomaly detection tool

Several tracing and analysis tools have been employed for monitoring the performance of
Operating Systems, processes, and whole systems. These tools need to evolve to be able
to capture the new types of anomalies in different domains. Some essential capabilities and

features of a suitable analysis tool are described in this subsection as follows [27]:

e Availability: It is essential to ensure that the analysis tool is fully functional and serves
the requests properly when it is needed. Availability can also be defined as the probability

that a system has not failed when it needs to be used.

e Generality: It is crucial for an analysis tool to be free from restrictions and limitations,
to adapt to each configuration, and provide reliable reports. Unfortunately, most tools

often try to satisfy a specific need, and more general tools are needed in this area.

e Open-source: The computing infrastructure and software management are continuously
changing and growing. Accordingly, it is imperative for the analysis tools to be adaptive.
Closed-source tools cannot adapt to the rapid pace of technological changes. Fortunately,
there are many open-source tracing, logging, and visualization tools available that can be

employed to build an open-source anomaly detection tool.

e Resolution: The analysis tool needs to provide high-resolution results. Each event should

have nanosecond precision.

13

e Dynamic: An analysis tool should be dynamic in the sense that it deals with a changing
environment. Static analysis tools cope with a particular system, and do not have this

ability.

e Robust: An analysis tool needs to cope with errors and new situations while continuing
its operation. This is critical since a fault in one part has a devastating effect on the whole

system.

e Low overhead: An appropriate analysis tool should add a low overhead to the system.

Performance analysis tools take as input a vast amount of data that accurately records system
behaviour over time. Tracing data and logs, as the most popular information resources,
have this ability, and they include an enumerated collection of events, sorted by timestamp.
Various works make different uses of this structure, as the input of their performance analysis
tool. Frequency of events, TF-IDF, graphs, and subsequences of events have been widely
used [28-30]. Data collection and representation techniques are discussed in detail in this

survey.

The way of reporting the anomalies is also an essential aspect of any anomaly detection
technique. Two major types of outputs can be defined for such techniques. Some techniques
assign an anomaly score to each sample in the test data, by considering the degree to which
that sample is considered an anomaly. Hence, the output of the score-based techniques is a
ranked list of anomalies. An analyst can investigate the top few anomalies or even can define
a cutoff threshold to select the anomalies. Some other techniques assign a label (normal
or anomalous) to each test sample. They provide binary labels or more than two labels.
The analyst does not need to find any threshold, but can also investigate anomalous points

directly.

2.1.4 Data collection module

The data collection module is the first building block of any performance analysis tool. It
records the behavior of a target system for subsequent processing, using statistics or machine
learning techniques to reach a decision about the system status. The following subsections
elaborate more on the data-providing techniques and most useful tracing tools. We will also
explain how the detailed information obtained from these tools can be used to analyze the

system performance and build the appropriate database.

14

Most popular data providing techniques

The first step in detecting anomalies in any system is to provide the data shown in Figure
2.2 as data collector module. There are different technologies for collecting data, each with
different applications. The first technology is Logging [31]. A log entry is a message from
the operating system or application code indicating that an event occurred. Logs usually
contain body, content, and time and are written as structured or unstructured data in log
files. Logs are widely being used in statistical analysis researches [32]. However, despite the
simplicity of this technique, logging is not efficient when the events are generated with high

frequency.

Another traditional technique is Debugging. Debugging is a part of the process of software
testing and refers to the process of locating and correcting code errors [33]. GDB is a common
debugging tool, which allows one to check what is going on inside another program during
its execution. However, this technique can not be used in this project because the purpose

of this thesis is to find anomalies in programs that have been deployed.

Sampling is another technique that can be used to generate reports on system-level and
application-level performance. Many processors have their own dedicated performance mon-
itoring hardware. Performance analysis tools (e.g., OProfile) employ this hardware (or a
timer-based substitute in cases where performance monitoring hardware is not present) to

collect samples of performance data [34].

Finally, Tracing is another robust and efficient approach for debugging and reverse engi-
neering complex systems. Many tracers have emerged across all software stack layers and
even at the hardware level in recent years. Tracing is a high-speed system-wide fined grained
logging technique. Traditional logging approaches suffer from two significant bottlenecks: 1)
gathering low-level information is really difficult, 2) time accurate details about the system’s
behavior in real-time are hard to obtain. Logging is proper for a high-level analysis of less
frequent events, such as user accesses, exceptional conditions, or database transactions. In
general, logging is one of the applications of tracing. In tracing, a particular piece of code
called tracepoint is inserted in the code. A tracepoint can be as small as a function call or be
part of the standard kernel tracing infrastructure. The generated events are extremely low

level and may occur more frequently. Tracing techniques can be categorized in several ways:

o Hardware tracing vs. software tracing: Tracing techniques can be divided into
hardware and software tracing, based on the source of the events. The ability to record
a complete trace of the instructions executed is available in modern CPUs. On the

other hand, software tracing does not need any specific hardware, and is based on the

15

tracepoints in the program code.

o Static tracing vs. dynamic tracing: Tracing can be classified as static or dynamic,
depending on how tracepoints are added to the code. In static tracing, the program
source code is modified, and recompilation is required. In contrast, tracepoints are
added directly into running processes via dynamic instrumentation, with the help of

debugging information generated during the compilation process.

o kernel tracing vs. userspace tracing: Tracing is divided into kernel and userspace
tracing, depending on the tracing domain. The term userspace tracing is used when
events are collected from userspace, and Kernel tracing refers to the events gathered
from the OS kernel [35].

The advantages of tracing over other techniques led us to use it as the primary data providing

technique during this project.

Most useful tracing tools

Tracing is a technique employed to find out what goes on in a running software system. The
tracer is the software that records events in tracing files. These events are generated by
specific instrumentation points located in the software source code. Tracers have the ability
to trace the OS and user applications simultaneously. Recording low-level events with an
occurrence frequency of thousands per second, helps to solve a wide range of problems. We

study some of the most useful available tracing tools in this subsection.

e LTTng: Linux Trace Toolkit next generation (LTTng) is a tool able to perform an ex-
tremely fast and very low-overhead kernel and userspace tracing [36]. Low overhead is a
point that makes LTTng a good choice for online applications, so it is an appropriate choice
for our anomaly detection project. The tracing technique used in LTTng implements a fast
wait-free read-copy-update (RCU) buffer for storing data from tracepoint execution. Fig-
ure 2.3 presents the typical tracing process flow with LTTng. The components of LTTng,
and how they interact with the application and the Linux kernel, are clearly explained in
this figure. The session daemon is responsible for managing and controlling other compo-
nents. At the beginning of the execution of the instrumented application, which contains
the user’s desired tracepoints, it registers itself to the session daemon. This is similar for
kernel traces. After this registeration, the session daemon will manage all the tracing activ-
ity. Another essential part of LTTng, namely the consumer daemon, has the responsibility

of handling the trace data coming from the applications. It exports the raw tracing data

16

in the Common Trace Format (CTF), to be written on the disk. The CTF file extension
format is a structured compact binary format, which is a good choice for further analysis
by Babeltrace or Trace Compass. LTTng supports both static and dynamic tracing. Tra-
cepoint can be added in both the source code of the kernel, and in user-space programs
with UST. LTTng contains the LTTng kernel modules as well as the UST library. The
LTTng kernel modules hold a set of probes to be attached to Linux kernel trace-points

and entry and exit points of syscall functions.

Target Java app. Python app.
system
emmmmmmes »| LTTng-UST Java agent LTTng-USTPython (4~ -------------~ g
packages

liblttng-ust-jul-jni or
C/C++ app. liblttng-ust-log4j-jni

liblttng-ust

G e o o o Em Em EmoEm o EmeEmomom

) - | v ' Any app./script
- 1
CTF Consumer daemon «—
traces L '
: :
I I
TCP 1 TCP 1
T 1
TCP Trace data path
Remote (O . ¥ |
1
sttem CTF Md“mm "{' - Fd?:gcrglnﬁprequests]
Relay daemon can traces . 1 1 -
also run locally A
LTTng live protocol TCP : @'
—
Viewing | g
system o Uvetmceviewer =
Can also be the remote X
or target system Jmﬁm

Figure 2.3 A tracing process flow with LT Tng [2]

17

e DTrace: Sun Microsystems created this tool to do kernel tracing on its Solaris platform,
but it was quickly ported to MacOS, Linux, and other platforms [37]. The DTrace tool can
interpret user scripts and is able to load code into the Linux kernel for further execution
and collecting the outputted data. DTrace is very flexible and dynamic but causes a larger

overhead than LTTng, especially for multi-threaded applications [9].

e eBPF': eBPF is a subsystem in the Linux kernel in which a small bytecode interpreter
can execute programs passed from the user space to the kernel. Such programs can be
attached to tracepoints and KProbes using system calls, and they can output data to user
space when executed, thanks to different mechanisms like pipes, VM register values, and
eBPF maps [38].

e Ftrace: Ftrace is a tracer included in the Linux kernel which provides dynamic instru-
mentation, function tracing, system calls tracing, and so on. It presents a function graph
in which the entry and exit of all functions at the kernel level are shown. It supports
Kprobe for dynamic instrumentation. This method does not write events to the disk au-
tomatically and keeps them in memory. Moreover, the size of a payload is limited to the
size of the page. A linked list is used to implement the ring buffer, and a buffer page can
be read once it is full [39].

e SystemTap: SystemTap presents a free software infrastructure to simplify the collection
of information about a running Linux system. It allows developers and administrators to
write and reuse simple scripts to scrutinize the activities of a live Linux system. The basic
idea behind SystemTap is attaching user-defined handlers to events. When any specified
event occurs, the Linux kernel executes the handler, as if it were a quick subroutine, and
then resumes. A handler is a series of script language statements which are designated
to choose what should be done whenever the event occurs. This work includes typically
extracting data from the event context, storing it into internal variables, or printing results
[40].

e sysdig: This tool, like SystemTap, uses scripts to analyze Linux kernel events. Sysdig
executes the scripts, or chisels in sysdig’s jargon, in Lua while the system is being traced
or afterward. The interface of sysdig and the curses-based csysdig tool is a command-line
tool [41].

e Distributed tracing tools: Distributed tracing is a tracing method used to profile and
monitor distributed applications, especially microservice-based applications. Distributed

tracing helps find the location of failures and the factors that cause poor performance.

18

Over the past few years, the open-source community has developed several interesting dis-
tributed tracing tools and standards, the most important of which is OpenTracing. Open-
Tracing is the foundation for tools like Jaeger, Zipkin, and OpenCensus. OpenTracing
consists of a set of standards and techniques that allows developers to add instrumen-
tation to their application code using APIs that do not restrict them to any particular
product or vendor. To this end, a coherent API specification for several programming
languages and frameworks is provided. Spans are the primary building blocks in Open-
Tracing. In other words, a Trace can be thought of as a directed acyclic graph of Spans,
where the edges between Spans are called References [42]. Zipkin [43] is an open-source
tool that helps gather timing data needed to troubleshoot latency problems in microservice
architectures [44,45]. Jaeger [46], inspired by Dapper and OpenZipkin, developed by Uber
Technologies, is a popular tool that supports OpenTracing. This tool has been widely used
for monitoring and troubleshooting microservices-based and distributed systems [47,48].
It has instrumentation libraries in C++, C, Go, Java, Node, and Python. However, the
high-level information that these tools provide is not always sufficient to characterize the
execution status of the system, since they do not offer kernel events. In contrast, LTTng
provides details of the program execution with higher resolution by presenting kernel and

userspace events. LTTng imposes the least overhead on the system among other solutions.

Most useful information resources for anomaly detection

System-level performance metrics such as CPU utilization, RAM utilization, hard drive read
rate, hard drive write rate, network device transmission rate, and network device receive rate
are broadly used to discover performance anomalies or evaluate performance degradations.
Besides, thread/process-level analysis such as call stack and execution flow analyses can pave
the way for defining the anomaly detection model. In this subsection, we study the critical

information resources that can help us in this project:

e CPU utilization: The CPU utilization refers to non-idle time, i.e. the time the CPU
is not running the idle thread. The operating system kernel usually tracks this during

context switch. This metric is as old as time-sharing systems.

e Memory utilization: The Memory Utilization metric is defined as an average utilization
statistic derived from the percentage of available memory in use at a given time, averaged

across the reporting interval.

e Events: Events are the most popular source of information and has been widely used in

performance analysis. A trace contains a sequence of time-ordered events, saved in a trace

19

file. We can record user application and operating system events at the same time. Events
consist of well-defined fields such as name, timestamp, process ID, and so on. They open
the possibility of resolving a wide range of problems, and performing application-specific
analyses to produce reduced statistics and graphs useful to resolve a given issue. Many
anomaly detection methods use events frequency, TF-IDF, execution graph, and sequence
of events name, to create meaningful datasets for modeling system behavior, using machine
learning methods [28,49, 50].

System calls: System calls are essential traceable events for determining abnormal be-
havior in a computer system. A system call is a way for programs to communicate with
the operating system. System call traces generated by program executions are stable and
consistent during the program’s normal activities, so that they can be used to distinguish
the abnormal operations from normal activities. System call streams are enormous and
suitable to use in machine learning. A single process can produce thousands of system calls
per second. Moreover, system call sequences can provide both momentary and temporal

dynamics of process behavior.

Call stack: We can obtain much information about the current status and the history (or
the future, depending on how it is interpreted) of program execution from the call stack,
especially in the form of return addresses. Therefore, the call stack of a program execution

is an excellent information source for intrusion and anomaly detection [51].

Execution flow analysis: Tracking processes and finding dependencies between them
can show the cause of the process’ waits. Different reasons can force a process to wait.
A process can wait for a timer to fire. It may also wait for another process to wake it
up, indicating that the process was waiting for another process to finish a task. The
process can even wait for a device. The construction of the execution graph reveals the

dependencies among the processes and different resources.

Critical path: Given the list of participating tasks, the dependencies between them, and
the time taken to complete each task, the critical path is determined by finding the longest
sequence of tasks to complete the process. The length of the critical path is an estimate
for the overall time to completion. The points on the critical path are ideal targets for
optimization, because decreasing the time to complete these tasks decreases the length
of the critical path and also overall time to completion. The critical-path analysis is a
great technique for recognizing the critical bottlenecks in a complex system with multiple

concurrent operations [52].

20

2.1.5 Analysis module: Most useful Analysis tools

Trace viewers and analyzers are specialized tools designed to read the trace files and per-
form various analyses to produce statistics and visualizations that help system experts solve

problems more quickly.

Trace Compass

It is an Eclipse based analysis and visualization tool that provides various views such as a
call graph or a timeline-based view for trace data generated by LTTng or other compatible
tracers [53]. Trace Compass promotes the visualization and analysis of traces and logs from
multiple sources. It facilitates diagnostic and monitoring operations of systems, from a
simple device to an entire cloud. Trace Compass can take multiple traces and logs from
various sources and formats, and join them into a single event stream that allows system-
wide tracing. It is possible to correlate application, operating systems, virtual machine,
and hardware traces to present the results together, delivering unprecedented insight into
your entire system [54]. Using this tool gives us some benefits, such as a faster resolution of
complex problems, easier system performance optimization, etc. It can be integrated into the
Eclipse IDE or even used as a standalone application. Eclipse plug-ins facilitate the addition
of new analysis and views. The EASE scripting feature also makes it very simple to write

new scripts and analyses for developers [55].

Babeltrace

This open-source project produces a library with a C API, Python 3 bindings, as well as a
handy command-line tool that makes it very easy for the user to view, convert, transform,
and analyze traces. Moreover, Babeltrace is the reference parser implementation of the
Common Trace Format (CTF), a popular trace format followed by various tracers such as
LTTng. Using the Babeltrace library and its Python bindings, we can read and write CTF
traces [56].

Traceshark

Traceshark is another trace visualization tool developed in C++4. It supports Linux kernel
traces containing Ftrace and Perf events and allows one to display some basic analyses, such

as CPU status, frequency, and scheduling tasks [57].

21

Perfetto

It is a production-grade open-source performance instrumentation and trace analysis tool. It
includes services and libraries for recording system-level and application-level traces. It also
offers a library for analyzing traces using SQL and a web-based interface to visualize and

explore multi-GB traces [58].

SvcTraceViewer

Windows Communication Foundation (WCF) Service Trace Viewer Tool helps analyze diag-
nostic traces that WCF generates. SvcTraceViewer provides an easy way to merge, visualize,
and filter trace messages in the log in order to diagnose, repair, and verify WCF service

issues [59].

2.1.6 Analysis module: Study on machine learning approaches for anomaly de-

tection

This subsection introduces different supervised and unsupervised machine learning approaches

recently used in anomaly detection tools and research projects.

Supervised techniques

The purpose of supervised learning is to construct a brief model of the distribution of class
labels in term of predictor features. The trained classifier is then used to assign class labels
to test samples where the value of the features are known, but the value of the class label is
unknown [60]. So the supervised anomaly detection techniques operate in two phases. The
training phase learns a classifier using the available labelled training data, and then in the
test phase, a test sample is classified as normal or anomalous, using the trained classifier.
Actually, the classifiers’ goal is to distinguish between normal and anomalous classes that can
be learned from the given feature space. Classification-based anomaly detection techniques
are categorized into two-class and multi-class techniques. Multi-class classification based
anomaly detection techniques assume that the training data includes multiple normal classes
and multiple anomaly classes. Using these anomaly detection techniques, a classifier can

distinguish between each standard class or each anomaly class [61].

e Support Vector Machine: Support Vector Machines (SVMs) [62,63] have been em-
ployed for anomaly detection in many applications. SVM finds the hyperplane with the

largest margin that classifies the training set samples into two classes. Then the unseen

22

test samples are labelled by checking the sign of the hyperplane’s function. Considering
each sample X;, for ¢ = 1,...,n of the training data and its associated label y;, SVM
determines the optimal hyperplane by solving the following problem:

1 n
min ~w' w4+ C ¢ (2.1)
wb 2 i=1
sty (W (X)+b)>1—-&, >0, i=1,..n (2.2)

Where w is a d-dimensional vector and &; is a measure of the distance between the mis-
classified point and the separating hyperplane. The function ¢ (x;) projects the original
data sample z; into a higher dimensional space and b is the bias. C controls the penalty

associated with the training samples that lie on the wrong side of the decision boundary.

K-Nearest Neighbors (KNN): The K-Nearest Neighbors (KNN) technique is a super-
vised machine learning algorithm for solving classification and regression problems that
is simple to implement. KNN is a non-parametric algorithm since it does not make any
assumption on the underlying data. Moreover, KNN is a lazy learning algorithm because
it does not require a training phase, and it uses all the training data in the classification

process. KNN is implemented by the following steps:

— Load training and test data.
— Choose the value of K.
— For each data point in the test data:

o Find the Euclidean distance to all training samples. Manhattan or Hamming
distances can also be used instead of the Euclidean distance.

o Store the distances in ascending order.

o Choose the top K points from the sorted list (K nearest neighbors).

o Label the test point based on the most frequent class present in the selected

points.

— End

Neural Networks: Neural networks, also known as artificial neural networks (ANNs),
are a subset of machine learning that can be used for clustering and classification. The
name and structure of these networks are inspired by the human brain, and they mimic

how biological neurons signal to each other. Neural Networks consist of multiple layers

23

output

input layer hidden layer output layer

Figure 2.4 A simple Neural Network.

(two or more), where the first layer is the input layer, the last layer is the output layer, and
some hidden layers are located in-between. The layers are connected by means of weights

evaluated during the training phase.

Neural networks such as the feed-forward neural network, also known as the multilayer
perceptron [18], are widely used to discover useful patterns or features that describe user
behaviour on a system. They use the set of relevant features to build classifiers that can
recognize anomalies and known intrusions, hopefully in real-time [64]. Figure 2.4 presents
a simple neural network. The circles represent neurons, and each line represents a synapse.

The inputs received by the synapses are multiplied by the weights.

Long-Short-Term-Memory (LSTM) Recurrent Neural Networks: Short-term mem-
ory is a problem in RNNs (Recurrent Neural Networks). If one tries to predict something
from a paragraph of text, RNNs may leave out important information at the beginning.
LSTM was introduced as a solution to the short-term memory problem. It is one of the
most popular techniques among several deep neural network techniques available, first in-
troduced by S. Hochrieter J. Schmidhuber. LSTM networks are capable of learning order
dependencies in sequence prediction problems [65]. This is a behaviour needed in complex

problem domains like anomaly detection. Like recurrent neural networks, LSTM networks

24

process the data passing on information as it propagates forward. However, the operations
within the LSTM’s cells are different. These operations allow the LSTM to keep or forget

information.

The basis of LSTM is the cell states and various gates. The cell states act as the memory
of the network, and they can carry relevant information throughout the processing of the
sequence. So even information from the earlier time steps can lead to later time steps
and reduce the effects of short-term memory. As the cell state continues its journey,
information is added to the cell state or removed from it via gates. The gates are different

neural networks that can learn which data in a sequence should be kept or discarded [66].

Unsupervised techniques

Clustering is an unsupervised method to group similar data instances (observations, data
items, or feature vectors) into clusters [67]. The clustering problem has been addressed in
many contexts, and by researchers in many disciplines. So it is useful as one of the steps in

exploratory data analysis.

e K-Means: K-Means is an iterative clustering algorithm that groups samples based on
their feature values into k different clusters. Data points that are assigned to the same
cluster are supposed to have similar feature values. This algorithm aims to make the
intra-cluster data points as similar as possible, while keeping the clusters as different as
possible. K-Means assigns data points to a cluster, such that the sum of the squares of
the Euclidean distances of data points and the cluster’s centroid is at the minimum. The
cluster’s centroid is the arithmetic mean of all the data points which belong to that cluster.
K-Means works as follows [68,69]:

— Determine the number of clusters K.
— Shuffle the dataset and then randomly select K data points without replacement as
the centroids.

— Keep iterating until there is no change to the centroids:

o Assign each data point to its closest centroid.
o Compute the new centroids for the clusters by taking the arithmetic mean of all

data points that belong to each cluster.

e DBSCAN: The use of K-Means clustering has some limitations. First, it requires the user
to set the number of clusters a priori. Second, the presence of outliers have undeniable

impact on this algorithm. Moreover, the shape of the underlying clusters is already defined

25

implicitly by the similarity function in K-Means, and K-Means performs better when the
clusters are spherical. Figure 2.5 reveals that the K-Means algorithm might not be able to
effectively cluster such a dataset, since it has been designed to discover spherical clusters.

In this case, density-based algorithms could be more beneficial.

Figure 2.5 An arbitary shape dataset [3]

DBSCAN [70] is a density-based algorithm in which the individual data points in dense
regions are used as building blocks after grouping them according to their density. The
density of a point is the number of points that lie within a radius € of that point, which can

be obtained by the following formula:

Ne(p) ={q € D | dist (p,q) < ¢} (2.3)

DBSCAN classifies the data points into three categories of core, border, or outliers, based
on parameters € and MinPts. A point p is a core if at least MinPts points are within the
distance of € (i.e., N.(p) > MinPts). A data point is defined as a border point if N¢(p) is

less than MinPts, but it contains at least one core point within a radius e. Otherwise, p is

26

considered as noise and is assigned to the noise cluster.

This algorithm creates a connectivity graph in which core points are connected if they are
within a distance € from one another. Then, all connected components are identified, where
these segments correspond to the clusters constructed on the core points. The border points
are then assigned to the connected component with which it is best connected. The resulting
groups are considered as final clusters, and noise points are reported as outliers. Thus,
DBSCAN is able to cluster points into distinct categories, without setting the number of

clusters in advance.

2.2 Related works

Many efforts have been made to improve anomaly detection tools and methods in recent years.
However, to the best of our knowledge, each of these tools and methods has drawbacks. This
section reviews most of the available academic and commercial approaches for performance

anomaly detection.

Many sources may cause anomalies or performance degradation, such as application bugs,
updates, software ageing phenomenon, and hardware failure. Many articles have attempted
to discover or resolve performance degradations caused by each of these sources. As an
example, software rejuvenation was introduced to prevent or at least delay ageing-related
failures [71]. Software ageing has been demonstrated to affect many long-running systems,
such as web servers, operating systems, and cloud applications. Ficco et al. [72] have also
examined the effects of software ageing on the gradual increase in the failure rate or perfor-
mance degradation of Apache Storm over time. A variety of bottleneck conditions, including
system overload, and resource exhaustion, can also cause extended and intermittent system
downtime. A number of global web services, including Yahoo Mail, Amazon Web Services,
Google, LinkedIn, and Facebook, have recently suffered from such failures [73]. This problem
has been addressed in the anomaly detection and bottleneck identification approach intro-
duced in [73]. However, only a few examples of several possible sources of anomalies have
been examined by researchers. Relying on the definition of anomaly, we believe that whatever
the source of the anomaly is, it makes the execution flow different from the normal situation.
Hence, it seems interesting to look at the problem from a more general point of view and try

to find the deviations of the execution’s flow, regardless of the source of the anomaly.

The first general aspect of an anomaly detection tool discussed in this section is the input.
As mentioned earlier in this chapter, researchers consider different information such as re-

source utilization and tracing events as input to their analysis tool [74-76]. System resources

27

include physical components such as the CPU, memory, disks, caches, and network. The
resource utilization of an application is a metric that indicates the amount of capacity used,
according to the available capacity. For example, memory utilization measures the amount
of storage capacity consumed by a process or application. We categorize the approaches that
use these metrics as metric-based approaches. In the metric-based approaches, the coarse
system-level metrics are collected and treat the system as a black box [77,78]. Then, with the
help of statistical machine learning methods, performance abnormalities are identified. How-
ever, these system metrics require precise program encapsulation. Ravichandiran et al. [79]
proposed a traditional approach to identify system performance anomalies through analyzing
the correlations in the resource usage data. They use application performance management
(APM) tools that support various measures, to perform resource behavior analysis on mi-
croservices. Log-based approaches extract features from the logs to be used by machine
learning and statistical techniques to detect abnormal behaviours. Wei Xu et al. parse logs
to create composite features, and then analyze the features using machine learning to detect
operational problems in large-scale data center services [80]. In [32], an unstructured log
analysis technique for anomalies detection was proposed. In this technique, after converting
log messages to log keys, a Finite State Automaton learns from training log sequences to pro-
vide the normal workflow for each system component. However, logging is more appropriate
for high-level analysis of less frequent events, and gathering low-level information and time

accurate details using logging is extremely difficult.

Tracing is another robust and efficient approach for reverse engineering and debugging of com-
plex systems [73]. Many tracers across all software stack layers, and even at the hardware
level, have emerged in the last years. Then, statistical methods, machine learning, or just
simple statistics techniques are adopted to diagnose performance anomalies. PerfScope [81]
is a tracing based performance bug inference tool to help the developer understand how a
performance bug happened during a production run. Distributed tracing tools are another
family of tracing tools that can be used in this field of research. Unlike the most traditional
methods that monitor individual components of the architecture, distributed tracing is ap-
plied to complex distributed systems at the workflow level [82]. Tools like OpenCensus and
OpenTracing [42] help to record the execution path of each microservice request. Jaeger [46],
a popular tool that supports OpenTracing and developed by Uber, has been widely used
to collect and store the service call data automatically. The method proposed in [47] uses
Jaeger and dynamic instrumentation to collect execution traces across microservices. Next,
this method calculates the anomaly degree of traces based on the tree edit distance, to find
structural anomalies and then analyzes the difference between traces to determine the com-

ponents responsible for the anomalies. Sage [48] is another machine learning-driven root

28

cause analysis system for interactive cloud microservices. Sage benefits from Jaeger and an
unsupervised ML model to capture the impact of dependencies between microservices and
determine the root cause of unpredictable performance problems. In addition to Jaeger, its
counterpart Zipkin [43] aids in gathering timing data needed to troubleshoot latency problems
in microservice architectures. J.Cardoso et al. [44] proposed an anomaly detection method
based on Zipkin, which uses a single modality of the data, with information about the trace
structure to detect anomalies. Besides this work, the method proposed by Tao Wang et
al. [45] characterizes Zipkin traces with calling trees and then learns trace patterns as base-
lines. It calculates the anomaly degree of the workflows impacted by faults in processing
requests. It then locates the microservices causing anomalies by comparing current traces
and learned baselines with tree edit distance. However, resource utilization measurements,
logging and the mentioned tracing tools provide high-level information, which is not always
sufficient to characterize the execution status of the system. Thus, tracing with LTTng is a
fundamental part of our research. This open-source tool is implemented for achieving high
throughput and includes multiple modules for Linux kernel and userspace tracing, thereby

imposing low overhead to the operating system.

After examining data collection methods in various researches, the next step is how to char-
acterize the executing software. Researchers have made much effort to improve anomaly
detection by using different data representations and information resources. The use of sys-
tem calls has led to dramatic advancements in anomaly detection techniques. Forrest et
al. [6] showed that during the normal execution of a program, a consistent sequence of sys-
tem calls is generated. In their method, all possible normal patterns of different lengths are
collected to form the normal dataset. Then, different patterns in the new trace are com-
pared with the normal dataset, and any deviation from the normal model is considered as
an anomaly. The first weakness of this method is that finding all the patterns with differ-
ent lengths is extremely time-consuming, because a short trace file contains thousands of
events. Furthermore, the resulting database is massive. It is notably time-consuming to
compare a new pattern to the entire normal dataset. Canzanese et al. characterized system
call traces using a bag-of-n-grams model, which represents a system call trace as a vector of
system call n-gram frequencies [76]. In this regard, Kolosnjaji et al. [29] attempted to apply
deep learning to model the malware system call sequences for malware classification. They
constructed a neural network based on convolutions, in order to obtain the most desirable
features of n-grams. A well-known issue with N-gram-based approaches is sparsity. Like
many statistical models, the N-gram model is significantly dependent on the training data.
Besides, the performance of the N-gram model varies with the change in the value of N.

In [28], the Linux kernel system calls are extracted to construct weighted directed graphs.

29

This method, in which the graph-based representation is used for anomaly detection, suffers
from the high cost of obtaining such graphs. Finding related system calls, out of thousands
of events, requires a high computational power. Tracing data or logs, as the most popu-
lar information resource in microservice environments, can be represented in the form of
an enumerated collection of events, sorted by their timestamps [83]. Different works make
different uses of this structure. In DeepLog [49], a deep neural network model is proposed
to model an unstructured system log as a natural language sequence. In [84], by performing
time-series-based forecasting, anomalies on cyclic resource usage patterns are detected. In
the sequel, graph representations of the events are obtained from this data and employed to
detect critical nodes and design anti-patterns proactively. The authors of [85] designed and
developed a simplified MSA application and applied different graph algorithms, and then
assessed their benefits in MSA analysis. In another article, Tao Wang et al. [86] organized
the trace information, collected by the OpenTracing tool, to characterize processing requests
workflow across multiple microservice instances as a calling tree. The proposed approach
converts the given trace into the spans and detects performance anomalies using the model

of normal key patterns.

Another aspect of an anomaly detection tool is choosing the appropriate statistical or machine
learning method. The earliest efforts for anomaly detection had used statistical methods [87].
These works keep the activity of subjects and generate profiles to represent their behaviour.
Profiles include measures such as activity intensity measures, categorical measures, and or-
dinal measures. An anomaly score is computed using an abnormality function, as events are
processed. The detection system generates an alert if the anomaly score is greater than a cer-
tain threshold. In [88], CPU performance and network performance metrics in master-slave
and nested-container models are compared, to provide a benchmark analysis guidance for
system designers. These basic statistical models have some disadvantages. Defining proper
thresholds, which can balance the likelihood of false positives and false negatives, is very dif-
ficult to set. Besides, most statistical anomaly detection techniques require the assumption
of a quasi-stationary process. However, this cannot be assumed for most data processed by
anomaly detection systems. Furthermore, these tools do not provide any details about the ap-
plication execution flow. Wang and Battiti [74] proposed another statistical method in which
the distance between a vector and its reconstruction onto the reduced PCA subspace repre-
sents whether the vector is normal or abnormal. This method is limited to pre-determined
anomalies, and is not able to detect novel types of anomalies, besides suffering from the

problem of defining thresholds.

In addition to statistical methods, several machine learning-based schemes have been applied

to detect anomalies in systems. They work based on the establishment of a model that allows

30

the patterns to be categorized [89]. Bayesian networks can encode probabilistic relationships
among variables of interest, thereby predicting the consequences of an event in the system [90].
Ye and Borror presented a cyber-attack detection technique through anomaly detection and
discussed the robustness of this model [75]. They used a Markov chain model to profile
event transitions in the normal operating condition of a computer system. Achieving high
performance in their technique, to model the sequential ordering of the events, depends
considerably on the quality of the data. This is because the Markov Chain technique is not
robust to outliers, and performs better when the amount of noise in data is low [91]. These

models have better performance for small datasets.

Among other machine learning approaches, clustering algorithms can detect abnormal be-
haviour without prior knowledge. Many clustering algorithms, such as k-means, k-medoids,
EM Clustering, and Outlier detection algorithms, have been employed for anomaly detection.
In [92], the k-Means clustering algorithm with the accompaniment of different dimension-
ality reduction modules (PCA, ICA, GA, and PSO) was used to separate time intervals of
the traffic data into normal and abnormal groups. Apart from clustering methods, classi-
fication based anomaly detection approaches like support vectors, Fuzzy Logic, and Neural
Networks have been widely used in this area [93]. In [3], a fuzzy technique was proposed to
extract abnormal patterns based on various statistical metrics, in which fuzzy logic rules are
applied to classify data. However, in practice, the labelling process is highly complicated and
even impossible sometimes. Recently, deep learning techniques which do not need labelled
data have yielded promising results in different fields. Wang and Zhou [94] explained the
potential of using deep learning techniques in side-channel signal analysis and cyber-attack
detection. They exploited these signals to indicate the state of ongoing computational tasks
without direct access to the device. They examined the application of deep learning methods
to side-channel analysis in the classification of machine state and anomaly detection. Long
Short-Term Memory (LSTM) neural networks is a deep learning method used in [95,96] to
detect anomalies in cloud infrastructures. Malhotra et al. [97] also presented a stacked LSTM
model for anomaly detection in time series, where the network is trained on non-anomalous
data. The drawback of these methods is that many details, including events arguments such
as event type, tag, process name, etc., are ignored. Along with the aforementioned machine
learning approaches, ensemble approaches are applicable in cases where a single model is

incapable of distinguishing anomalies precisely [98].

31

2.3 Discussion

In this section, while reviewing the shortcomings of previous methods, we explore how our

proposed methods differ from the previous related literature.

Most previous works have not provided a solution for data collection, and used pre-existing
datasets [99-101]. Some other works used logging approaches, that cannot gather low-level
information and time accurate details about the system’s behaviour [31,49]. Some popular
tools (e.g. Jaeger and Zipkin) that support OpenTracing were also utilized in some pa-
pers. However, the high-level information that these tools provide is not always sufficient
to characterize the execution status of the system. Besides, they do not offer kernel level
events [44,45,47,48]. Hence, we defined our data collection module using LTTng and Trace
Compass. LTTng provides details of the program’s execution with higher resolution by pre-
senting kernel and userspace events. Tracing also enables us to deeply examine the execution

flow using Trace Compass.

In addition to the detailed information that LT Tng provides, it has several features that make
our proposed data collection module applicable in most Linux-based environments without
much change. Other tracing tools can not be used in different environments and applications,
for example Jaeger and Zipkin, are only dedicated to monitoring and troubleshooting mi-
croservices and distributed systems [43,46]. Chapters 4 and 5 show how our data collection
module is configured to collect information from monolithic applications. Furthermore, the
LTTng relay daemon used in Chapter 6 helps us trace distributed systems and cloud environ-
ments. LTThg as the main component of our data collection module can be installed quickly
and without any special settings in different environments. This makes our data collection

module a practical way to collect data in the real world.

Another strength of the methods proposed in this thesis is the way we used the collected
data. The use of system call sequences [29,102] and frequencies [103] is common in anomaly
detection, but timing information is ignored in these methods. N-gram-based approaches are
other well-known approaches that heavily depend on the training data, as in many statistical
models. Furthermore, the performance of the N-gram model changes with the value of N [76].
To address the shortcomings of previous work, we introduced a new approach in Chapter 4,
that uses the durations of system calls to generate feature vectors. The duration of a system
call in a window acts like the weighted frequency of that system call. The results of Chapter
4 demonstrate that the introduced data collection module, feature selection method, and

classification model provide a practical approach to detecting performance anomalies.

In Chapter 5, we addressed the problem of the availability of labelled data. Collecting labelled

32

data is very difficult due to the nature of the anomaly detection problem and requires a
specialist who has knowledge of machine learning and performance analysis. Previous work
in the literature does not offer a solution that covers a variety of scenarios, including when
labelled data is available, when labelled data is not available, and when a part of the dataset
is labelled [29, 69, 70,94, 100, 104]. We also addressed the problem of the sparsity of the
dataset in this chapter. Other approaches, such as n-gram-based approaches [29], suffer from
this problem. To solve the sparsity problem in the dataset, we proposed a feature selection
method in which the less important system calls are removed from the feature vectors. The

results show that this significantly increases the efficiency of the anomaly detection model.

Chapter 6 proposes an anomaly detection approach for microservice. This approach uses
LTTng for data collection, which provides more details than Jaeger and Zipkin used in other
works [44,45,47,48]. To detect anomalies in microservices, because the interactions between
services have a graph structure, researchers either directly analyze the graphs or convert them
into sequences. However, the graph-based approaches require high computational power
[28] and the sequence-based approaches ignore events parameters [6,29,49,84,90]. Event
parameters such as process name, message, and event type contain beneficial details that
increase detection quality. Chapter 6 presents our solution for solving the problem of high
computational power needed by graph-based approaches. We also use events parameters to

improve anomaly detection in microservices.

33

CHAPTER 3 RESEARCH METHODOLOGY

As discussed in Chapters 1 and 2, this work focuses on performance anomaly detection using
tracing data and machine learning. This chapter presents an overall view of our methodology
and describes the process of identifying issues, applicable cases, milestones, and final results
in terms of articles. Given the nature of this research, the progress of the project can be
visualized in the form of three major threads, as illustrated in Figure 3.1. In the first part
of our research, we applied a supervised technique to find the abnormal windows of system
calls. Our feature vectors consisted of the execution time of system calls, in addition to the
frequency of each individual system call. Then, we proposed a new approach that addresses
the problem of the availability of labelled data by offering several learning techniques. We
suggested supervised, unsupervised, and semi-supervised techniques, considering the amount
of available labelled training data. Afterward, we proposed a natural language processing
(NLP) based approach to detect performance anomalies, besides locating release-over-release
regressions in microservice environments. These works are described briefly in the following

sub-sections. Next, the three articles resulting from this research are presented in Chapters

Supervised Learning
of anomalies
(B s ~
Supervised, Unsupervised and
Monolithic Applications Kernel Tracing Semi-supervised Learning of
anomalies
| S N J
(" N ~ N
- 5 s User-Kernel NLP-based
Microservices Applications N A
Tracing anomaly detection
\. J \. J

Research Progression III*

4, 5, and 6, respectively, in chronological order of their submissions.

Research Leads

Figure 3.1 Milestones and research progress.

3.1 System performance anomaly detection using tracing data analysis

Chapter 4 presents an anomaly detection approach for practical monitoring of processes

running on a system to detect abnormal vectors of system calls. The idea behind this work

34

is that the system call trace obtained from an abnormal process is highly different from
processes running under normal conditions. Our proposed approach employs the Linux Trace
Toolkit (LTTng) to monitor the processes running on a system and extracts the streams of
system calls. Then a sliding window is applied to continuously extract short system call
sequences. Our proposed approach computes the execution time of system calls in addition
to the frequency of each system call in subsequences. In other words, we define a compact
representation for each subsequence that yields two separate feature vectors containing the
frequency and duration of the system calls inside the current sliding window. Thus, our
methodology can handle large and varying volumes of data. The length of feature vectors is
equal to the total number of Linux system calls. Finally, a multi-class support vector machine
approach is applied to evaluate the system’s performance and detect abnormal subsequences.
A comprehensive experimental study on a real dataset collected using LTTng demonstrates
that our proposed approach is able to distinguish normal subsequences from anomalous ones

with CPU or memory related problems.

3.2 A framework for detecting system performance anomalies using tracing data

analysis

The article presented in Chapter 5 is motivated by one of the most critical problems in
machine learning: the availability of labelled data. Data labeling is a complex and time-
consuming process that requires a highly knowledgeable expert in the field. Like the previous
article, subsequences of system calls are sent to the machine learning module that reveals
anomalous subsequences. However, this time, we followed three distinct approaches depend-
ing on the amount of available labelled data. In the case of supervised learning, the Fisher
score feature selection, along with a correlation filtering strategy are applied to determine
the best subset of features in the dataset. Once the top-ranked features are selected, we
employ a multi-class Support Vector Machine model. When labelled data is not available,
our proposal uses the DBSCAN algorithm to group feature vectors into different categories in
terms of performance. Finally, we proposed a novel semi-supervised machine learning model
that benefits from both supervised and unsupervised learning techniques, when only a few

labelled data are available.

35

3.3 Anomaly detection in microservice environments using distributed tracing
data analysis and NLP

Chapter 6 investigates the use of NLP to find abnormal behaviors in microservice-based
environments. Several factors such as the distribution of microservices in the network, the
use of different technologies, and their short life make microservices prone to the occurrence
of abnormal behaviors. This chapter proposes a natural language processing (NLP) based
approach to detect performance anomalies in spans during a given trace. One of the ben-
efits of this approach is that the whole system needs no prior knowledge, which facilitates
data collection. We developed a handcrafted data extraction module in Trace Compass to
construct the spans and sub spans using the request/response events tag. This module is
also responsible for converting each span into a sequence of events. Then our LSTM-based
model learns the possible patterns of events along with their arguments (e.g., event type,
tag, and process name). Using events arguments, and learning this level of detail, sets our

model apart from the others found in the literature.

36

CHAPTER 4 ARTICLE 1: SYSTEM PERFORMANCE ANOMALY
DETECTION USING TRACING DATA ANALYSIS

Authors: Iman Kohyarnejadfard, Daniel Aloise, Mahsa Shakeri
Department of Computer and Software Engineering, Ecole Polytechnique de Montreal, Mon-
treal, H3T 1J4, Canada

Published in: Association for Computing Machinery, New York, NY, United States.

Reference as: 1. Kohyarnejadfard, D. Aloise, and M. Shakeri, “System performance anomaly
detection using tracing data analysis,” in Proceedings of the 2019 5th International Confer-
ence on Computer and Technology Applications, ICCTA 2019, (New York, NY, USA), pp.
169-173, ACM, 2019.

4.1 Abstract

In recent years, distributed systems have become increasingly complex as they grow in both
scale and functionality. Such complexity makes these systems prone to performance anoma-
lies. Efficient anomaly detection frameworks enable rapid recovery mechanisms to increase
the system’s reliability. In this paper, we present an anomaly detection approach for practi-
cal monitoring of processes running on a system to detect anomalous vectors of system calls.
Our proposed methodology employs a Linux tracing toolkit (LTTng) to monitor the processes
running on a system and extracts the streams of system calls. The system calls streams are
split into short sequences using a sliding window strategy. Unlike previous studies, our pro-
posed approach computes the execution time of system calls in addition to the frequency
of each individual call in a window. Finally, a multi-class support vector machine approach
is applied to evaluate the performance of the system and detect the anomalous sequences.
A comprehensive experimental study on a real dataset collected using LTTng demonstrates
that our proposed method is able to distinguish normal sequences from anomalous ones with

CPU or memory related problems.

Keywords: Anomaly detection, Machine learning, Performance evaluation, Data mining,

Time series, Linux Tracing

37

4.2 Introduction

Recently, the usage of distributed systems, like cloud computing infrastructures, enterprise
data centers, and massive data processing systems, are rapidly increasing. The complexity of
these systems makes them prone to performance anomalies. System performance degradation
could be caused by various reasons such as excessive load of an application on resources or
system misconfiguration. It is a tedious task for human administrators to manually monitor
the execution status of the systems. Therefore, it is imperative to develop automatic anomaly

detection approaches with a minimum human intervention.

An anomaly is a change in system performance that does not fit with the expected normal
behavior. It is usually difficult to distinguish between normal and abnormal system status.
Moreover, modeling the normal behavior of a system that enfolds every possible normal
situations can be very complex. In this regard, behavioral analysis techniques could be used
to monitor performance of the processes running on a system. These approaches use the
characteristics of the executing software to identify potential anomalies in a system. One
such technique is system call analysis, in which abnormal behaviors are identified by system
call traces. System calls are requests for services, such as memory and filesystem access, that
a process makes of the operating system. System calls can represent low-level interactions

between a process and the kernel in the system.

Some studies apply time-delay embedding (tide) which records normal executions of appli-
cations using look-ahead pairs [6]. At test time, any deviation from the normal model is
considered as anomaly. Since a single process could produce massive amount of system calls
per second, these approaches do not scale well. Therefore, other studies split the system calls
streams into short sequences and extract features over a fixed time frame window [105]. One
approach extracts the histogram of the system call types for anomaly detection [103]. Kang
et al. [104] utilize a bag of system calls for the intrusion detection and describe the misuses
with the standard machine learning techniques. Other approaches rely on computing the

frequencies of short sequences (n-grams) of system calls over a fixed time window [76].

In general, the studies that are only based on modeling the normal behavior, have the disad-
vantages of missing some normal system call patterns. Therefore, in situations where enough
anomalous patterns are available, including the anomalous samples in the learning procedure
might be useful. In addition, the available performance anomaly detection approaches do not
consider the latency of a system call. A process can be blocked in a system call for different
reasons, like high overload on resources. Thus, considering the duration of system calls could

improve the accuracy of the anomaly detection on a system.

38

In this paper, we propose a performance evaluation approach which uses short sequences of
system calls along with their duration to identify a system’s status, as normal or anomalous.
In this work, we separately evaluate the performance of each individual computer system as
a sub-component of the distributed architecture. Information about the individual system’s
status can guide the administrators in monitoring the performance of the whole distributed
framework. In our method, each system is instrumented with a lightweight kernel tracing
tool called the Linux Trace Toolkit Next Generation (LTTng) [106]. The system calls trace
logs are converted to short sequences using sliding window. Then, the system call tracing
data are represented by the frequency of individual calls and their corresponding execution
time. Finally, a supervised machine learning based approach is applied on the extracted

features to discriminate between normal and anomalous system call sequences.

The rest of the paper is organized as follows. In subsection 4.3 our proposed system anomaly
detection approach is presented. Subsection 4.4 provides the experimental results followed

by the conclusions in subsection 4.5.

4.3 Methodology

The overview of the proposed anomaly detection method is presented in Figure 4.1. The
proposed framework monitors the performance of a system by recording the stream of system
calls produced by its processes. System calls are the fundamental interface between a process
and the Linux kernel, which can be extracted using a Linux API. In our proposed approach,
the system call stream is converted to a group of short sequences and then analyzed to detect
the anomalous behavior of the system. An anomalous system call sequence may correspond

to the following scenarios:

e The system is running a CPU intensive process which causes an insufficient CPU allo-

cation problem

e The system is running a Memory intensive process which leads to an insufficient memory

allocation problem.

The above problems could be modeled through a multi-class classification approach. Our
proposed framework consists of multiple components: trace data extraction, pre-processing
and normalization, feature selection, and anomaly detection. These steps are defined in more

details in the following sections.

39

Kernel Tracing Data Extraction Short Sequence Extraction Pre-pr ing Discrimi Feature Selection Detection >
a4 N
LTTng Tracing Apply sliding window Normalization
L % J Fisher score T
_ erformance
y ase e.a ure Anomaly Detection
selection
e a
Read Trace Data F Fea:ures: Ils + Reduce
(Extract streams Tequency.o system calls Sparsity
of system calls) duration of system calls
N B

Figure 4.1 The overview of the proposed framework.

4.3.1 Kernel tracing data extraction

The Linux Trace Toolkit next generation (LTTng) [106] is used to gather information about
the running processes on a system. LTTng is a powerful and lightweight open source Linux
tracing tool which provides detailed information on the kernel and user-space executions.
LTTng tool is used to collect system calls issued by the monitored processes and Trace
Compass open source software [54] is utilized to read the LTTng trace logs into a dictionary
of events. In this event dictionary, each system call entry consists of a timestamp, process

ID, and other run-time information related to the running processes.

4.3.2 Short sequence extraction and pre-processing

In this work, we assign an index to each system call as shown in Figure 4.2. Once the stream
of system calls data is extracted, the processes other than the one under study (e.g., MySQL)
is filtered out by using the process ID field. Then, the system calls index, timestamp, and
their corresponding execution times are listed for all threads of the selected process (see
Figure 4.3).

In the next step, a sliding window is applied to continuously extract the short system call
sequences. For each short sequence, two separate feature vectors are defined: 1) frequency

of system calls x,., and 2) duration of system calls x4,, where

® T is a vector of size k, one per system call type. Each vector element counts the

number of calls issued during the window time frame.

® 14, is a vector of size k, one per system call type. Each vector component represents

the duration of each system call in the window time frame.

40

Here, k is the total number of system calls that are included in the feature vector. In general
around 318 different system calls exist in Linux system. However, depending on the type of
the application running on the system, some system calls may not occur at all. This would
result in a very sparse dataset. Therefore, here, we reduce the sparsity of the collected data

by removing all unhappened system calls from the feature vectors.

Z
. —
g |

00000000000

open
close
stat
fstat
poll |
mma
eventfd
munmap
readv

Figure 4.2 Each system call is assigned to a unique number.

As a normalization pre-processing step, data standardization is applied on the dataset. This
process rescales the features in a way that they have the properties of a standard normal

distribution with mean of 0 and standard deviation of 1.

4.3.3 Discriminant feature selection

In this step, Fisher score feature selection method [18] is applied to determine the most
discriminative subset of features in the dataset. This algorithm computes a score for each
feature and then selects the desired number of features according to their scores. The larger

the Fisher score, the greater the discriminatory power of the attribute.

Given a dataset {(x;, v:)};_,, where x; € R¥ is the input sequence vector and y; € {1,2,...,1}
is its corresponding class label, we aim to identify the most informative feature subset of size
m. The most discriminative subset of features is determined in two steps. First, the Fisher

score IS for the feature j is comp