Classical Field Theory
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Introduction

A physical system is usually described in terms of states and observables. (See
the discussion in [I-Faddeev, §1.1).) In the Hamiltonian framework of classical
mechanics, the states form a symplectic manifold (M, 2) and the observables are
functions on M. The dynamics of a (time-invariant) system is described by a
one-parameter group of symplectic diffeomorphisms; the generating function is the
energy or hamiitonian. The system is said to be free if (M, §2) is an affine symplectic
space and the motion is by a one-parameter group of affine symplectic transforma-
tions. This general description applies to systems which include classical particles,
strings, fields, and other types of objects. Often the dynamies of the theory is
embedded in a larger symmetry group. For example, in relativistic field theories
one assumes that (M, Q) carries a representation of the Poincaré group.

Many classical systems admit a lagrangian description in which (M, 2) is de-
rived from a relatively simple expression, called the lagrangian density. One of the
main features of a lagrangian description is that the conserved quantity—called
the Noether charge—corresponding to a symmetry is computed directly from the
lagrangian. Furthermore, in field theories there is a local Noether current which
integrates to the global charge and which gives rise to local conservation laws. This
reflects the physical fact that, for example, we can measure energy in any region
of space, not just the total energy over all of space. In this text we develop the
basic ideas of classical lagrangian field theory. The examples we have in mind are
the ones which arise in relativistic quantum field theory as treated in other parts
of the book. One should be careful in trying to apply the formalism developed
here to constrained systems {e.g., nonholonomic constraints in classical mechanical
systems, or constraints imposed on superfields in the superspace descriptions of su-
persymmetric fields theories). In most of the exposition, we will assume that fields
are arbitrary sections of some fixed fiber bundle £ over spacetime. Also, we develop
the formalism in a purely local way from the lagrangian density, hardly mentioning
its integral, the action. If one is interested in calculus of variations problems, then
the emphasis is different: the action is of primary interest and boundary conditions
play a crucial role. A last warning is that not all classical field theories admit a la-
grangian description. There is a free example which is important in two-dimensional
conformal field theory: a free chiral scalar field in two dimensions.
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In Chapter 1 we review some classical mechanics. In a few standard examples
we describe the classical equations of motion and the construction of a symplectic
structure on the space of classical solutions. Noether’s theorem—the construction of
a conserved quantity from a one-parameter group of symmetries—is also discussed.
We treat both nonrelativistic and relativistic examples, and in §1.4 we show how
to obtain nonrelativistic Galilean spacetime as a limit of relativistic Minkowski
spacetime.

The general theory of classical fields is laid out in Chapter 2. A classical
lagrangian field theory consists of a spacetime M, a space of fields 7, and a la-
grangian density L. We are mostly interested in Minkowski spacetime, but the
theory is quite general and applies to spacetimes which are curved Lorentzian or
Riemannian manifolds as well. The fields are some sort of functions on A, more
precisely sections of a fiber bundle E over M. The lagrangian density is a density
on M for each point of F. It is assumed' to be of a local nature on M. More
precisely, for some k the value of L(¢) at a point m of M should depend only on
the k-jet of ¢ at m. Usually ¥ = 1. The lagrangian density L determines Euler-
Lagrange equations DL = 0, also called equations of motion, which cut out the
space of extremals M C F. If ¢ is a field, the tangent space of F at ¢ is the space
of sections of the vector bundle ¢*T'(E/M) over M. The Euler-Lagrange equation
DL is a morphism of vector bundles from ¢*T(E/M) to the bundle of densities on
M . Its characteristic property is that for a deformation with compact support ¢[u]

of ¢, one has
d d
[ atom| = [prgow

The formalism naturally takes place in the double complex of differential forms
on F x M. This is qualified in two ways: {1} as we want L(¢) to be a density, rather
than a differential form of maximal degree, this double complex should be twisted
by the orientation bundle of A; and (ii) we want to consider only (p, ¢)-forms o
which are local on M: to a field ¢ and tangent vectors &,,...,§, € ¢"T(E/M),
the form o attaches a g-form a(¢;&,...,&) on M, and for some k& the value of
;&1 .. &) at a point m of M should depend only on the k-jet at m of ¢ and
the &. The cohomology of the double complex of local forms has been investigated
by F. Takens®. Write the exterior differential as D = § + d, with & of degree (1,0)
and d of degree (0,1). Takens’ main result is Theorem 2.15: For p > 0 the complex
(0%, d) of local differential forms is exact except in top degree. Ome can view

loc?

the Q7 as an inductive limit, in k, of spaces of giobal sections of soft sheaves

on E, and this makes the exactness of {2.°,d) (p > 0,  # top) a local question
on E. Let J*(E) be the bundle over M of k-jets of sections of E. Takens also
observes that the associated simple complex ), is the inductive limit over k of the
de Rham complexes of the J*(E). As the projections J*(E) — E are fibrations,
with fibers affine spaces, they induce isomorphisms in cohomology. It follows that
the cohomology of E maps isomorphically to that of Qf .. We include a proof of

loc®
Takens’ results in an appendix to Chapter 2.

u=0

1 Although we restrict to lagrangians which depend locally on fields, in quantum field theory one
meets effective lagrangions which are not lo:al. Some of the formal aspects carry over to nonlocal
lagrangians, but we have not taken the trouble to distinguish them.

2Gee References at the end of the manuscript.
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If the lagrangian density L{¢) depends only on the first jet of ¢, it defines
a (1,n — 1)-form + (where n = dim M), which we call the wvariational I-form,
characterized by the following properties: (i) the value of the {n — 1)-form ~(¢; £)
at m € M depends only on the 1-jet of ¢ at m, and on the value of £ at m; and (ii)

DL =48L +dvy.

The variational (1,n — 1)-form 4 encodes the usual integration by parts argu-
ment which occurs in computing Euler-Lagrange equations. For more general la-
grangians, the choice of a local (1,n — 1)-form y with DL = 6L + dv should be
considered part of the definition of the theory. Such a form -y always exists and, by
Takens’ theorem, it is unique up to the addition of d3, for # a local (1, n — 2)-form.

Classical mechanics corresponds to M = R (time). In classical mechanics, one
is used to the following package: (i} the space of extremals M is a symplectic man-
ifold; (ii) symmetries give symplectic automorphisms of (M, w), and infinitesimal
symmetries £ are given by generating functions @, with dQ = —4(§)w. A particular
case is the one-parameter group of time translations, whose generating function is
minus the hamiltonian. In (i), Q is ambiguous up to an additive constant (and
its existence can be obstructed by H'(M,R)). This ambiguity can often be re-
moved by refining (i) to: (i’) the space of extremals carries a canonical principal
R-bundle T with connection ¥V whose curvature is w. Infinitesimal automorphisms
of (M, T, V) can then be identified with pairs (£, Q) consisting of a vector field §
on M and a function @ such that d@ = —¢{§)w.

In field theory one has a similar Hamiltonian interpretation if M is given as time
x space, or if one has a suitable notion of space-like hypersurface. A new problem is
to obtain counterparts local on M of those constructions. These local counterparts
do not require a notion of space-like hypersurface, or a splitting into time X space,
but rather exist for any spacetime M. In particular, they make sense for Euclidean
analogs, obtained by a Wick rotation ¢ — it. For the 2-form on M, which we now
denote ‘1", this is done in a paper of G, Zuckerman:® if w is the local (2,n — 1)-
form &y on F x M, then the 2-form @ on M is deduced from w by integration
on any space-like hypersurface. Similarly, one can express the generating functions
of infinitesimal symmetries as integrals over space-like hypersurfaces of conserved
currents, called Noether currents. Let £ be a vector field on F which is local: £, at
m € M depends only on some jet of ¢ at m. Suppose it is a generalized symmetry
of L, in the sense that for some given (0,n — 1)-local form «¢, one has

Lie(£)L = dag.

Then the Noether current j¢ := t(§)y — a; is conserved: djz(¢) = 0 for all ¢
in M,. The vector field £ is tangent to M, and the integral Q¢ of j; on a space-like
hypersurface is a corresponding generating function.

It can be more natural to consider symmetries which act on F and M simulta-
neously. We will say that a symmetry is manifest if it preserves L and - exactly. For
example, time transiation is usually a manifest symmetry when it acts on both F
and M. If we let it act only on fields, not on spacetime, it is only a generalized
symmetry (with o = —¢(8;)L).

3See References.
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Theories whose field content includes a connection or metric possess an infinite
dimensional group of local “gauge” symmetries. (For metrics the gauge symmetry
group is the group of diffeomorphisms.) We can freeze the metric or connection at
fixed values go, Ag; then local symmetries which fix gg or Ag act as global symme-
tries in the theory of the remaining fields. The Noether current for these global
symimnetries may be computed by differentiating the total lagrangian with respect
to the metric or connection, as explained in §2.8 and §2.9. The derivative with
respect to the metric is called the energy-momentum tensor.

In §2.10 we discuss time-invariant field configurations of finite energy on space-
times which are time x space. Among these we find classical vacua and solitons.
We also explain briefly perturbations around a classical vacuum and the Higgs
mechanism.

Chapter 3 summarizes the basic free lagrangian field theories on Minkowski
spacetime. We treat scalar fields, spinor fields, and abelian gauge fields (connec-
tions). Our goal is to illustrate the general theory in the simplest case and to record
useful formulas.

In classical physics one of the main applications of field theory is to electro-
magnetism. Chapter 4, which is a discussion of gauge theory in general, begins
with a brief treatment of Maxwell’s equations in the lagrangian framework. Some
familiarity with this material is necessary to understand the intuition behind more
complicated models with gauge fields, which are encountered in many lectures in
these volumes. In §4.2 we review the basic geometry of connections in principal
bundles, paying special attention to the universal connection (in terms of which
we write gauge theory lagrangians). Then in §4.3 we write the lagrangian for
Yang-Mills theory and describe some additional “#-terms” which may appear in
low dimensions. Finally, we define electric and magnetic charge in §4.4 and discuss
the relationship to global gauge transformations.

The general bosonic lagrangians without gravity usually include only scalar
fields and gauge fields. We discuss a general lagrangian for these fields in Chapter 5;
it includes many important bosonic theories as special cases.

There are special topological terms in lagrangians which are invariant under
(orientation-preserving} diffeomorphisms. Some, like the f-terms mentioned above,
are related to primary topological invariants. More subtle are the ones associated
to secondary invariants, like the Wess-Zumino-Witten term in a o-model or the
Chern-Simons term in three-dimensional gauge theory. In Chapter 6 we briefly
introduce the main examples and explain how the action acquires a more subtle
geometric meaning. The geometric home for the lagrangian is a “T-calculus” which
extends the usual calculus of differential forms, as we indicate in §6.3.

Finally, in Chapter 7 we discuss the “Wick rotation” of a lagrangian from
Minkowski spacetime to Euclidean spacetime. For reference we collect the signs
and factors of v/=1 which occur in this analytic continuation.

To a large extent this text presents a preliminary version of this material;
we are not satisfied at all with our understanding in many places. Still, we felt
it important to include some mathematical framework for the computations in
lagrangian field theory. Our treatment is guided by what is needed to follow the
lectures and problems recorded in these volumes, and we hope at least to have
provided sufficient background for that. Other mathematical accounts appear in
the references.
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The definition of a classical lagrangian that we use (Definition 2.39) is adopted
from a lecture of Joseph Bernstein. The basic formalism appears in the aforemen-
tioned paper of Gregg Zuckerman. In preparing this text we also benefited from
many discussions with David Kazhdan, John Morgan, Nati Seiberg, and Ed Witten,
among others.



CHAPTER 1
Classical Mechanics

The equation of motion of classical mechanics is the Euler-Lagrange equation
for extremizing the action integral. From this extremal description we construct
a canonical closed 2-form w on the space M of classical evolutions. It turns out
that w is nondegenerate, and so M is a symplectic manifold. More precisely, we
construct on M a canonical R-torsor? with connection whose curvature is w. As
usual in symplectic geometry, to an infinitesimal symmetry we associate a function
which is called the Noether cherge. (It is often called the momenium or momentum
map.)

In quantum theory we apply exp(%-) to turn this R-torsor into a unitary line
bundle with connection whose curvature is ;w.

§1.1. The nonrelativistic particle

We treat three cases: the free particle, a system of particles with potential, and the
electromagnetic field.

Free Particle

Let X = R™ be Euclidean space with its standard inner product {-,-). The evolution
of a classical free particle of mass m is described by a map x from R (time) to X.
The lagrangian density® is the density on R

(1.1) L= %l:’clzdt,

where |%|? is the inner product (dx/dt,dx/dt). The integral of the lagrangian
density

(1.2) S= /t ‘I

from time fg to time £; is the action integral, or simply action. If we deform z we
have
§L = mi{z, o) dt

(1.3) = —m{3,bz) dt — d{m(:i:,é‘:c)}-

1In this context ‘R-torsor’ means ‘principal R-bundle’.
5We should use the density |dt| in place of the form dt in (1.1}, but in this section we simply
orient R and so identify 1-forms and densities.
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Here § is the differential on the space F of trajectories x of the particle. d is the
differential on R, and the second minus sign® in the second line of (1.3) arises since
§ and d anticommute on F x R. Integrating we find
t 4 t
(1.6) §5=46 [ - / dt m{E(t), 6z(t)) + [m(:ﬁ:(t),éw(t))]t
ta to 0
The extremality condition is that the 1-form S on F vanish on deformations
of z with compact support in (fo, ¢;). This leads to the classical equation of motion
{1.7) =0

whose solutions are uniform motion. The boundary term leads one to consider, for
each time ¢, the 1-form

(1.8) ¥(t) = m{z(t), 6z(t))

on the space F of all paths . On the subspace M of extremals (solutions to (1.7))
the action S is a function whose differential is

{(1.9) 88 = v(t1) — v(to) on M.
Tt follows that the 2-form on M defined by
1) = éy(t
(1.10) w(t) : = v( )
= m{8z(t) A 6z(t))

is independent of ¢. Tt is even independent of ¢ for a specific reason, namely (1.9),
with a compatibility among the reasons if three times ty < ¢; < t2 are considered:

ty tz 3]
(1.11) f L+/ L=/ L.
to t o

This can be rephrased as defining an R-torsor with connection (T, V) on M whose
curvature is w: for each fixed ty it is the trivial R-torsor T'(tp) with the con-
nection V(tg) given by (ts). By (1.9) addition of — f;’ L gives an isomorphism
from (T(tp), V(to)) to (T(t1),V(t1)}, and by (1.11) these isomorphisms form a
compatible system of isomorphisms. The desired (T, V) is the “common value”
(projective limit) of the (T'(t), V(2)).

If we fix tg, the map z — (z(to), £(fo)) from the space M of extremals to the
tangent bundle TX of X is an isomorphism. If we use (1.8) to map the tangent
bundle to the cotangent bundle, then - (resp. w) is the pullback of the canonical
1-form (resp. canonical 2-form) on the cotangent bundle.

61t is more usual to let x denote a tangent vector to F, in which case there is no minus sign. We
emphasize that our computations take place on F x B. For example, ‘'z’ in (1.1) is the evaluation
map F x R — R and ‘1’ is its time derivative. To convert (1.3) into the more usual formula, let £
be a vector (field) on 7, and set

(1.4) fr=1{)z =X,

Apply the contraction ¢(£) to (1.3). Note that in commuting +(£} past d in the last term we pick
up a minus sign. Thus we find

(1.5) UE)L = EL = —m(z, X}t + df m(z, X) .
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System of Classical Particles with Potential

More generally, if we consider a system of classical particles with rigid constraints,
the configuration space is a Riemannian manifold X with Riemannian structure
given by twice the kinetic energy. Evolution is described by a map from R (time)
to X. The lagrangian density is

(1.12) L= %|m’|2dt;

here the masses are included in the metric. If in addition we have an external field
of forces depending on a potential, or interaction between the particles described
by potentials, then the potentials are encoded by a real-valued function V on X,
and the lagrangian density is

(1.13) L= {%|¢|2 V() } ar.

The free story can be repeated with the following changes. The Euler-Lagrange
equation (1.7) is now Newton's law

(1.14) Vit +gradV =0.
The 1-form on the space of x is

(115) y(t) = (£(2), 62(2))
and the symplectic 2-form is

(1.16) w(t) = (6£() A dx(8)}.

The construction of the R-torsor is as before. The identification of the space of
solutions with the initial data at a fixed time depends on suitable completeness
assumptions.

Electromagnetic Field

An electromagnetic field can be described as an R-torsor with connection (P, V) on
spacetime R x X. For now choose a trivialization of P (a “gauge”), and so write V
as a 1-form o. We separate the time and space components by

(1.17) a=Vdt+ A

Then V is the scalar potential and A is the vector potential. The evolution of a
single charged particle is described as before by a map =: R — X, and for a particle
of mass m and charge ¢ the lagrangian density is

(1.18) L= ’gm? dt — gz* ().

The action S = |, :J’ L is the sum of a kinetic energy term and of ¢ times the parallel
transport along z from x(tg) to z(t;), computed in the chosen gauge. In 6L the
boundary term is now

(1.19) () = m{@(t), 6z(t)) — qA(62(8)).
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Fix to; then under suitable completeness assumptions the map x — (z{to), £(t0))
identifies the space MM of extremals with the tangent bundle TX. Notice that the
map from the tangent bundle to the cotangent bundle given by (1.18) is the previous
map shifted by gA.

If we change the gauge, the space of extremals does not change. This becomes
clear if we do not interpret f:ol L as a number, but rather as an isomorphism
from qP; 2(10)) t0 P, 2(1,)), the sum of a kinetic energy term and of parallel
transport. This isomorphism is manifestly gauge independent. On the space of
extremals M we continue to have an R-torsor with connection whose curvature
is w, independent of the gauge. For tg fixed it is naturally (to,w(to))*(qP) with
connection given by (ty, z(t))*(gV) +m{i(to), 62(to)). Isomorphisims between this
R-torsor with connection for different choices of ¢y are given by the action—parallel
transport plus a kinetic energy term.

In this example we see that the action need not be a number, but rather can be
an element of an R-torsor. We discuss such topological terms further in Chapter 6.

§1.2. The relativistic particle

Let X be n-dimensional Minkowski spacetime. This is standard n-dimensional

affine space with a Lorentz metric. Fix affine coordinates £, ', 22,..., 2™ ! so that
the metric takes the form
(1.20) c2(dt)? — (dz')? = -+ ~ (dz"" 1),

The corresponding basis of the underlying vector space of translations is called an
inertial frame. Here ¢ is the speed of light. It is often convenient to set z° = ct.
The worldline of a relativistic particle is represented by a map

o R— X
z(r) = (t(r),2'(7),..., z" (7))

with {(dz/dr,dx/dr) > 0 and dt/dr > 0. The lagrangian density of a free particle
of rest mass my is

(1.21)

dx dz\'/*
(1.22) L= —mgc<£, ;) dr.
T
For a physical particle dx/d7 lies in the positive light cone; in particular, we have
j—f, j—f) > 0. This lagrangian is invariant by the Poincaré group of symmetries of

X, as well as by the group Diff* (R) of reparametrizations of z. An action integral
is attached to a region R of spacetime bounded by two space-like hypersurfaces Hy
and H;. One can, for instance, take for R the region tq <t < {,. For a free particle
of rest mass my, the action integral is —mgc times the arc length of the portion of
the path 2 contained in R.

The extremals for this action are straight lines. If S is the action integral for
the region R bounded by hypersurfaces Hy, Hy, and if we deform x, then 45 is the
sum of two terms: (i) an integral f:;‘, where z(7;) € H;; and (ii) boundary terms.
The boundary term for H is

(1), 62(r))

(1.23) Y[H1] = —moc ()]
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Note that this expression is Diff(R)-invariant. As previously, w 1= §y[H1] is inde-
pendent of Hy on the space of extremals and turns it into a symplectic manifold.
More precisely, the space of extremals carries an R-torsor T with connection whose
curvature is w. For each choice of space-like hypersurface H it can be identified
with the trivial R-torsor, with connection given by ~[H]. Action integrals give
a transitive system of isomorphisms between the descriptions of (T, V) given by
different H.

To go to the nonrelativistic limit we proceed as follows. We work in our chosen
coordinate system and consider velocities which are small relative to the speed of
light c. If we take for coordinate T the time ¢, then the path is

(1.24) 2(t) = (t,z'(t), ..., (t)).
The lagrangian is then

L= —moc®/1 —v?/c2dt

1.25) . k
( = {—mocz + %mgv2 + O(%)} dt,

where

(1.26) v = Z (%)2

3

is the velocity squared. The second line of (1.25) shows that the nonrelativistic
limit v/c — 0 of L is the kinetic energy 1imov? minus the potential energy moc? of
the particle at rest. The reader can also check that the nonrelativistic limit of (1.23)
for the hypersurface Hy : {t = constant} is (1.8) (for m = mo).

In the relativistic setting it does not make sense to introduce rigid constraints on
a system of particles, nor to introduce potentials. On the other hand, a background
electromagnetic field can be introduced on Minkowski spacetime analogously to the
nonrelativistic case.

§1.3. Noether’s theorem

We have seen a number of examples of how, because equations of motion are Euler-
Lagrange equations, the space of classical evolutions M carries a symplectic struc-
ture w. More precisely, it carries a canonical R-torsor T with connection V whose
curvature is w. Any automorphism of the data used to define the extremality con-
dition induces an automorphism of (M, T, V). The same holds for infinitesimal
automorphisms. Infinitesimal automorphisms of (M, T, V) can be identified with
functions Q on M. Namely, if a vector field £ on T is such an infinitesimal au-
tomorphism, let £ denote the projection to M and § the horizontal lift of £ to T.
Then

(1.27) £=£E+QC

where ¢ is the infinitesimal action of R which defines the torsor structure. The
infinitesimal automorphism & of T respects the connection if and only if

(1.28) dQ = —i{E)w.
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If the curvature w is nondegenerate, i.e., turns M into a symplectic manifold, then
{1.28) shows that vector field ¢ is determined by the generating function Q. For
functions Q,,Q: corresponding to vector fields £0,,€Q,, we compute the vector
field which corresponds to the Poisson bracket {Q, @2} to be

(1'29) ‘E{Ql,Qz} = [EQUEQQ]'

{Note: Brackets of infinitesimal automorphisms are given by the opposite of Poisson
brackets, in the same way that the Lie algebra of diffeomorphisms is the set of vector
fields with bracket opposite to the usual brackets of vector fields.)

If we have a trivialization of (T, V) which is preserved by an infinitesimal au-
tomorphism ";: , then

(1.30) Q= (&),

where -y is the connection form on M induced from the trivialization. If the triv-
lalization changes, then there is an additional term in (1.30). In §2 we develop a
more systematic formalism in which to make computations, so in this section when
the trivialization changes we simply report the result.

We apply these ideas to the free particle in both the nonrelativistic and rel-
ativistic settings. Consider first a free nonrelativistic particle of mass mg moving
in R*. Let z',...,z"™ be standard coordinates on R" and 8;; the standard metric.
The isometries of R™ induce automorphisms of (M, T, V) which fix the trivializa-
tion at a fixed time ¢y. Thus we can use (1.30) in conjunction with (1.8) to compute
the charges. The charge corresponding to the infinitesimal translation £ = 8/8z
is the linear momentum

(131) Pi= mgéijij.

The charge corresponding to an infinitesimal rotation & = £'9/8z7 — 279/8z* is the
angular momentum

(1.32) M} = mobje(z'® — ki)

Now the hamiltonian or energy E is the charge associated to minus time translation
in the domain R, and this does not preserve the trivialization of (7, V) induced at
a fixed time. Rather, the derivative of the trivialization at ¢y is Lo(tg), where we
write the lagrangian density as Lo dt. (The change in trivialization comes because
infinitesimal time translation only preserves the lagrangian up to a total derivative.)
Accounting for this we compute the nonrelativistic energy (see Example 2.105).

1
(1.33) E= §m0|i|2.
There is an additional symmetry called a Galilean boost. We write the infinitesimal
version as a time-varying vector field £ = t8/8x*. Again there is an additional term
in the formula for the charge N; since the lagrangian is only preserved up to a total
derivative:

(1.34) N; = moéy;(ta? — z9).
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This is simply minus the initial position times the mass.

Consider now a relativistic particle. The lagrangian (1.22) is invariant under
the isometries of X, the Poincaré group, and we would like to compute the corre-
sponding charges. Fix a splitting of Minkowski spacetime into time X space and
use the hypersurface £ = ¢ to trivialize (T, V). We parametrize the worldline as
in (1.24). The subgroup of Poincaré which fixes this hypersurface also fixes this
trivialization and we use {1.30) and (1.23) to compute the associated charges. Thus
the momentum p; is the charge corresponding to £ = 8/dx*, which we compute to
be

moéij:i'j
W1 —v?fe?

Here we have introduced the relativistic mass

(1.35) pi = = m{v)§;;27.

mp
V1-v2/c?

Note that the nonrelativistic limit v/c — 0 of the relativistic mass m(v) is the rest
mass mg. Similarly, an infinitesimal spatial rotation £ = z'8/0z7 — x79/0x* has
charge the aengular momentum

(1.36) m(v) =

(1.37) i = Mod(aEt — ahd)

Y

Now the charge corresponding to £ = —8/8t is the relativistic energy E. As in the
nonrelativistic case the trivialization changes according to the lagrangian (1.25)
{divided by the standard density dt), and so we compute Einstein’s famous formula

= m(v)dp(a's* — 2*5%).

mo(:2
V01— w2 /c?

Note that (E,—p;) transforms in the dual to the standard representation of the
Lorentz group. In n = 4 dimensions this quantity is called the 4-momentum.
Finally, the infinitesimal Lorentz boost

(1.38) E= = m{v)c?.

z' 9 0
(1.39) £=C_ZE +ta—m'{

has corresponding charge

mod;; til — zd » X
= i/%'%v?/?—) = m(v)&ij(t:r:’ - :I.'J).

Here again the symmetry does not preserve the trivialization, so there is an extra
term to compute. The charge N; is simply minus the initial position of the particle
times the relativistic mass.

The nonrelativistic limits of (1.35), (1.37), (1.38), {1.40) give (1.31), (1.32),
(1.33), (1.34). (From E in (1.38) we must subtract the rest energy moc? to obtain
the nonrelativistic energy (1.33).)

(1.40) N,
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§1.4. Synthesis

Let M. denote n-dimensional Minkowski spacetime with metric g, given in (1.20).
Let My, denote the limiting space as ¢ — oo, Of course, the affine spaces which
underlie M, and M are identical. Let W be the vector space of translations
of Mo.. The limit c]iblgo 971 = g3} of the inverse metric is a degenerate quadratic

form on W*. It has a one-dimensional kernel S° ¢ W* whose annihilator § ¢ W
determines a codimension one foliation of M., by affine subspaces. Then g3!
on W*/S° is inverse to a negative definite metric on 5. We think of this foliation
(with the metric on the leaves) as defining the simultaneous spatial events in M,,.
We also fix a scale dt € §° for time; then there is a one-dimensional space of
distinguished affine time functions which differ by a constant. The group G, of
affine transformations of M. which preserve 9! and dt is the Galilean group. Let
G, denote the group of affine transformations of M, which preserve ge; the double
cover of its identity component is the Poincaré group. Note that Gy, Go. act on the
same affine space, so there is a well-defined sense in which G. — Go, as ¢ — 00.

The translations sit inside G, and Gu. In G the spatial translations lie in
a subgroup H of dimension 2(n — 1) generated by vector fields ¢t + &', where ¢ is
any affine time function and 8,d" are spatial translations. Vector fields td generate
affine transformations called Galilean boosts; they are the ¢ — oo limit of Lorentz
boosts (1.39).

There is a nontrivial central extension of G, which restricts nontrivially on H.
For a geometric picture we begin with a fixed (n+ 1)-dimensional Minkowski space-
time N with vector space of translations V. For each spacelike vector v € V we
consider the subgroup G, of the Poincaré group which fixes v. It acts on the quo-
tient affine space M, = N/R - v. This quotient space M, inherits a Minkowski
metric we describe in two equivalent ways: it is the metric induced from the or-
thogonal space (R - v)L C V, or equivalently its inverse is the subspace metric on
the annihilator (V/R - v)* & (R - v)° C V*. The subgroup G, is the trivial central
extension of the Poincaré group of M, by translations along v. Now consider £ € V'
a lightlike vector. Set M; = N/R - ¢, and let G, be the subgroup of the Poincaré
group of N which fixed £. Now the inverse metric on V'* restricts to a degenerate
form on (V/R - £)* = (R- £)° C V*. Also, we take the functional {¢,-) to be the dt
above. The group of affine transformations of M, which preserves the degenerate
form and £ is the Galilean group. Thus G, is the central extension of this group
by translations along v. Note that the subspace of (V/R - £)* = (R - £)° previously
called §° is here (£1)°, the annihilator of the orthogonal subspace to £. (Since £ is
lightlike, we have R-¢ C €1, which is why it makes sense to define dt = {(£,-3.) Also,
S is simply ¢4 /R - £.

For an explicit description introduce coordinates ¢t*,¢~,2',...2*~! on N so
that the metric is”

(1.41) dttdt™ — (dz')? — .- — (dz™ )2

"Here the speed of light is inessential, so we set it to one.
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Take ¢ = 9, = 9/6tT. Then (£+)° is the span of dt~, and the possible time
functions are {at™ + b: a,b € R}. The Lie algebra of Gy is spanned by

04 {central element)
7] d :
(142) o_ = pred & = 5;:—1 (translations)
1'9; — 279, (spatial rotations)
B, =t"9;+ a:i8+ (Galilean boosts)
The nontrivial bracket
(1.43) [0:, Bj] = 650+

reflects the nontrivial central extension. Note from (1.31) and (1.34) that for the free
nonrelativistic particle the Poisson bracket of the Noether charges corresponding
to 8; and B; is

(1.44) {pi, N;} = —éi;mo.

Comparing (1.43) and (1.44) we see that the conserved quantity corresponding
to 84 in a theory should be identified with the mass. Thus in the Galilean theory
there is an additional conserved quantity over the relativistic theory—the mass.
(The bracket of elements in the centrally extended Galilean algebra and the Pois-
son bracket of the corresponding Noether charges are opposite. This is the usual
situation for left group actions on symplectic manifolds; see §5 of [I-Signs].)

Quite generally, suppose we have a classical theory whose state space (M, w)
carries a symplectic action of either the Galilean group or the Poincaré group.
Infinitesimally we have an antihomomorphism from the Lie algebra g of that group
into the Lie algebra of vector fields on M. We assume that each vector field £ in
the image satisfies —1(&)w is exact, i.e., is the symplectic gradient of some function.
For a general group G, the existence and uniqueness of a lift g — C*°(M) which
is an antihomomorphism of Lie algebras is measured by H!(g) and H?(g). For the
Poincaré group there is a unique lift; for the Galilean group there is a lift of the
central extension we constructed above, unique up to a shift of the total energy.
(If spacetime has dimension 3, then we can also shift angular momentum.) The
central element then maps to a locally constant function which is the total mass of
the system. In the Poincaré case the vector space V of translations maps to a vector
space of functions which—after choosing an inertial frame—is (—E,p1,...,Pn-1),
where E is energy and p; are linear momenta. Under Lorentz transformations this
transforms as the coefficients of an element in® V*, and out of it we construct an
invariant using the metric:

(1.45) E?Jc® — |p|> = m3ct.

This defines the “rest mass” mg of the system. It is a Poincaré invariant, though in
general not locally constant, function on M. In the Galilean case there is a Galilean-
invariant codimension one subspace § C V of translations in spatial directions, and

8Note that the vector dual to (F, -p) is (E/c?, p).
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S carries a metric. If the Galilean algebra, and not a central extension, were to
lift to functions, then we would conclude that the norm square |p|? of the total
momentum is Galilean-invariant. But clearly [p|? typically changes under boosts,
and this shows why boosts and spatial translations have a nonzero commutator in
the central extension.

We can formulate the theory of the free nonrelativistic particle by considering
its worldline in the space M.,. The difference from the relativistic situation is
that the time functions provide distinguished parametrizations of the worldline
up to translation. This allows us to “couple” the free nonrelativistic particle to
an arbitrary potential function V, as in (1.13); the integrated lagrangian (action)
does not change if we translate time and so is Galilean invariant. By contrast, as
stated earlier we cannot introduce a Poincaré invariant coupling of the relativistic
particle to a potential function. Rather, we can couple it to fields, specifically to
an electromagnetic field (abelian connection) and to a gravitational field {variable
Lorentz metric). In the next chapter we take up the general theory of fields.




CHAPTER 2
Lagrangian Theory of Classical Fields

§2.1. Dimensional analysis

It is often useful to follow the advice we give to beginning students: Check units!
Every physical quantity has units attached to it. The basic units are units of
mass, length, and time. The number measuring a physical quantity @ depends
on the choice of units, and Q is said to be of dimension M?LbT* if the number ¢
measuring @ is multiplied by A~%x~%»~¢ when the units are multiplied by A, u,v.
Notation: [@] = M®LT®. For example, the action integral S of (1.2), where the
integral is taken between prescribed instants, has the dimension of an action:

(2.1) (5] = ML*T™L.

The dimension of a p-form is defined to be the dimension of its value on a fixed
p-vector. The lagrangian density (1.1) {a 1-form on the time line), the variational
1-form v of {(1.8) (a 1-form on the space of trajectories), and the closed 2-form w
all have the dimension of an action.

The dimension of the conserved quantity @ corresponding to an infinitesimal
Galilean transformation 7 is given by

(2.2) (@) = [action]]

In the relativistic setting we will usually impose ¢ = 1, so that a unit of length gives
one of time. Then [action] becomes M L, and the conserved quantities corresponding
to infinitesimal generators of the Poincaré group once again have

(2.3) [Q) = [action][n].

We can consider electric charge to have units C and take the constant ¢ in (1.18)
to have [g] = C; then the 1-form « in (1.17) which represents the electromagnetic
field has units of action divided by charge:

(2.4) [of = ML*T'C~L.

Alternatively, we can work in a system of units in which charge is expressed in
terms of mass, length, and time by

(2.5) C? = MI3T2,

153
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This comes from declaring the constant k in Coulomb’s law “F = kqq; /r?” to be
dimensionless.

Universal physical constants allow us to convert units. In relativistic theories
the speed of light

(2.6) {c) = LT™!
identifies time with length. In quantum theories Planck’s constant
(2.7) {A] = ML*T™!

has units of action, which eliminates one of M,L,T. In theories of gravity the
Newton constant G in the Newton force law “F = Gmyma/r?* has units

(2.8) [G] = L*M~1T73,
which again allows us to eliminate one of M, L, T. In a relativistic quantum field
theory we can use ¢, fi to express all units in terms of mass, and so each physical

quantity has a mass dimension.? If the theory includes gravity (e.g. string theory),
then we can use c, &, G to express everything in terms of dimensionless quantities.

§2.2. Densities and twisted differential forms

In this section M is an ordinary (not super) manifold.

If M is oriented of dimension n, then n-forms with compact support can be
integrated on M. Changing the orientation multiplies the integral by —1. This
leads to the consideration of densities, defined to be sections of

(2.9) Dens M := A"T* M ® oar,
where 03 is the orientation line bundle. On any M, oriented {and orientable) or
not, the integral of a density w with compact support is unambiguously defined:

one writes w as a sum of densities w; with support in orientable local charts U,, one
orients each U;, and doing so identifies w; with an n-form on U, and one defines

foyw = qui Wi
More generally, we will have to consider the complex of twisted forms, the tensor

product of 0%, with the local system op;. We treat ops as being in cohomological
degree —n, and define
(2.10) ol = QP @ oy
A compactly supported element of Qlﬁ,',pl can be integrated on a normally oriented
submanifold of M of codimension p. Elements of Qlﬂ_',p | can be viewed as sections
of
(2.11) A'TM ® Dens M;
the isomorphism with the description (2.10) comes by contracting a p-vector field
with a density.

In the sequel we often say simply ‘form’ for ‘twisted form’.

In the case of supermanifolds, densities are related not to an exterior power of
the cotangent bundle, but to its Berezinian, and (2.11) defines the components of

the complex of integral densities. See [[-Supersymmetry, §§3.9-12| for details.
On a Riemannian manifold M the Hodge *-operator is an isomorphism

(2.12) x4 — Q9

9Then for a physical quantity @ instead of writing [Q] = M™ we usually write {Q] = n.
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§2.3. Fields and lagrangians

Let M be a smooth manifold of dimension n. We formulate field theory on A. In
the standard physical setup M = M" is affine Minkowski spacetime. For n =1
this is M1, which is (affine) time; it is the appropriate “spacetime” M for classical
mechanics. In usual examples of field theory we can analytically continue to imagi-
nary time and so obtain a field theory on Euclidean space. Often field theories can
also be formulated for curved metrics—of Lorentz or Euclidean signature. We also
allow the spacetime M to be a supermanifold. As we cautioned in the introduction,
our framework is not adequate for many types of constrained mechanical systems.

Fields on M are {smooth) sections of a given fiber bundle E — M. Let
F denote the space of all sections. For example, the basic field in a ¢-model is
a map ¢: M — X for some auxiliary manifold X. In this case we simply have
E = M x X. We can also study a twisted version in which E is not a product. An
important case is when E is a vector bundle. The basic field in a gauge theory is
a connection A with gauge group some specified Lie group G. If we fix a principal
G-bundle P — M, then A is a section of a certain associated bundle of affine
spaces. For many purposes it is best not to fix P and rather to view the collection
of all connections as a category. However, in this section we simply view P as fixed.
There is an evaluation map

{2.13) e: FxM-—E.

Again we allow E—and so also F—to be a supermanifold, even if M is an ordinary
manifold.

Of course, a field theory typically contains several fields ¢; and correspondingly
E = x E; is a fiber product. Roughly speaking, each E; decomposes into an intrinsic
part times an extrinsic part. The intrinsic part is associated to the principal frame
bundle of M via a representation of GL {or Spin), and the representation determines
the type of field. Thus a scalar field is associated to the trivial representation. The
basic field ¢: M — X in a o-model is a typical example. A scalar field may take
values in a nonlinear space, but the extrinsic values of other types of fields are linear.
A p-form field is a p-form on M; it may take values in some vector bundle over M.
Physicists often use the word ‘vector field’ to refer to a 1-form field. They also use
‘vector field’ or ‘gauge field’ to refer to a connection, which is a type of field which
was discussed above. There are also “connectionlike” versions of p-forms (see §6.3),
but only for abelian structure groups. If M is a spin manifold then we can also
consider spinor fields, which are sections of a spin bundle possibly tensored with
another extrinsic vector bundle. The precise choice of spinor bundle varies with
the example. Theories of gravity also include a metric on X, sometimes called a
‘gravitational field’. In theories of supergravity there is also a Rarita-Schwinger
field, which is a section of an irreducible subbundle of S ® T* M, where S is a spin
bundle.

The spin of a field depends on the representation of Spin (or GL) which defines
it. Namely, we decompose the complexified representation under the Spin(2) sub-
group which double covers the group of rotations in some 2-plane. We obtain a sum
of one-dimensional representations which we label by half-integers ¢, £1/2, £1,....
Replace these numbers by their absolute values; then the largest number which
occurs is the spin of the field. Thus a scalar field has spin 0, a spinor field spin 1/2,
a p-form field or connection spin 1, a Rarita-Schwinger field spin 3/2, and a metric
spin 2.
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There are physical reasons to restrict to these values of the spin in quantum
field theories (see [[I-Dynamics of QFT, §2.4)).

In unitary quantum field theories there is a connection between spin and sta-
tistics, the statistics being whether the field is even or odd (in the sense of super-
geometry): fields of integral spin are even and fields of half-integral spin are odd.
The usual physical terminology is that even fields are bosons and odd fields are
fermions. This spin-statistics connection is violated in some nonunitary topologi-
cal field theories.

In some theories there are local gauge symmetries {(see Definition 2.93) which
act on the fields. This occurs for fields which are p-forms (p > 1) and for connections
in gauge theory. (A p-form « is gauge equivalent to oo+ dg for 8 any (p— 1)-form.)
The gauge symmetries of a connection are as usual. Local symmetries are sections
of a bundle of groups over M. Let F denote the quotient of the space of fields F by
the action of local symmetries. In our notation we treat F as a manifold, though
this may not be true and we may need to work equivariantly on some space which
projects onto F. (For example, in gauge theory we often fix a basepoint on each
component of M. Then the group of gauge transformations which equal the identity
at the basepoints acts freely on the space of connections, and the finite dimensional
group of automorphisms at the basepoints acts on the quotient.)

Our formulation is not meant to include theories of gravity, where one of the
fields is a metric and the group of diffeomorphisms of M acts as a local symmetry.
We will, however, use the metric as a background field when we discuss the energy-
momentum tensor. Then in some cases {e.g., with spinor fields) the fiber bundle
E — M wvaries with the metric. The appropriate modification of this setup is
described later when we discuss the energy-momentum tensor.

We will use a complex which is, basically, the de Rham complex of F x M.
Reflecting the product structure of F x M, it is a double complex. Suppose first
that M is oriented, of dimension n. The complex Q*!* we will use is then the de
Rham complex shifted by n: in other words, QP!=4(F x M) is the space of p-forms
on F with values in the space of (n — ¢)-forms on M. We let é be the exterior
derivative of F, d the exterior derivative!® of forms on M, and D = § + d the total
exterior derivative. For general M we use twisted (n — ¢)-forms: instead of the de
Rham complex of M, we use Qlel = Do,

More relevant is the subcomplex Q,:,’l" of local elements of 2”1, where o €
27/=4l is said to be local if for some k, at any ¢ € F the value of the twisted (n—g)-
form a(¢; &1, ..., &p) at m € M depends only on the &-jet at m of #.61,... ,ép. Here
§; are tangents to F at ¢. If F is the space of sections of a bundle E over M, and
if wl®: JEE — M is the bundle of k-jets of sections of m: E — M, such an o is a

global section over J*E of 07, . @ Tr(k)*Qlﬁfl. Note that k cannot be kept fixed,
as d maps ngE/M ® ﬂ(kj.tQIB;ql to QﬂkHE/M ® 1,],.;,v;.H)»4Q|ﬂ7’q+1._

**| has been investi-

As mentioned in the Introduction, the double complex £, .

gated by Takens, who proved the following.

180ur sign convention is that for a € P(F) and B € 2 ~9 (M),

(2.14) dlanp)={-1Pands
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Theorem 2.15 (Takens). For p > 0 the complez {9, l(F x M), d) of local

loc
differential forms is exact except in the top degree |¢| = 0.

This theorem plays a crucial role in the discussion of generalized symmetries (§2.6),
and also plays a part in the general discussion of this section. We also make use of
the following generalization, proved by the same method.

Theorem 2.16 (Takens). Let V; — E, i = 1,...,p, be vector bundles, where
we require p > 1. Let V = xgV; be the fiber product. For ¢ € F a section

of E, let V4 be the space of sections of ¢*V — M. Consider in Q&l‘l(l’qb x M)
the subcomplez of forms a{é;(y,. .., (p) which are R-multilinear in ¢;. Then this

subcomplez is exact except in the top degree |o] = 0.

In the appendix to Chapter 2 we give a proof of these theorems.
We will use the following picture to depict elements in the double complex:

‘7.‘
lof

al

|-1 e

M

We remark that certain topological (terms in} lagrangians do not fit into this
formalism. We discuss the necessary modifications in Chapter 6.
The basic ingredient in & classical field theory is a lagrangian (density)

(2.17) L e QXU (F  M);

loc

it has units of action:
(2.18) (L) = ML*T" L.

The notation in (2.15) indicates that for each field ¢ in F we have a density L(#)
on M, while (2.16) indicates that the integral of L(¢) on a fixed compact region
of M has the dimension of an action. Typically, L{¢) is a local functional of ¢ and,
for most fundamental lagrangians, the value of L(¢) at a point m depends only on
the 1-jet of ¢ at m (gravity is an exception).

Typically, the integral |, 2y L{(@) is divergent. Even if, as often, one can restrict
one's attention to fields decaying rapidly at spatial infinity, so that the integral be-
tween two space-like hypersurfaces converges, the integration over time will diverge.
Computations given below show that otherwise the expected symplectic structure
on the space of extremals would vanish. However, for a deformation with compact
support of ¢, and if we assume L local, then §L(¢) is a density with compact sup-
port, which can be integrated. One says that ¢g is extremal if J 6L = 0 for any
such deformation of ¢y. We now make this more precise. One considers families
of fields ¢[u), with ¢[0] = ¢p, and with ¢[u] independent of « in the complement
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of a compact region of M. The density %L(qﬁ[u])h_o then has compact support.
The extremality condition is that its integral should vanish, for any ¢lul. It is
suggestive, if abusive, to write the condition % Sy L(g[u]) = 0.

Let us suppose that the fields ¢ are sections of a bundle E over M. For a
deformation ¢[u] of ¢g, the density %L(qﬁ[u}) at u = 0 will depend only on the field
of vertical vectors %qﬁ on E, along ¢, which is a section & of $ST(E/M). The
R-linear form

(2.19) £— /M %L(@

on the sections with compact support of ¢5T(E/M) can be uniquely written as

(2.20) [M DL(E)

for DL a (¢{T(E/M))*-valued density. The unicity of DL is clear, and its exis-
tence is a local question. It is proved by the usual integration by parts argument
leading to Euler-Lagrange equations. Extremality of ¢y means that DL = 0 at ¢g
(Euler-Lagrange equations). We note that DL is in QU1%, with a value at m € M
depending only on some jet of ¢ at m, and on the value at m of £.

This formalism does not hold if, as is typical of superspace formulations of
supersymmetric theories, the fields ¢ are sections of a bundle E subjected to con-
straints. The problem is that £ is no longer arbitrary in ¢3T(E/M). Let M be
the space of extremals. We now explain that if spacetime M is time x space, or at
least if there is a suitable notion of space-like hypersurface, then the construction
on M of a closed 2-form—on the model of Chapter 1—uses only conditions on L
which hold for such constrained superspace formulations. The crucial condition is
that the constraints allow ¢ to be deformed independently in disjoint regions of M.
(Formally: the sheaf of fields, a subsheaf of the sheaf of C®-sections of E/M, is
soft). In practice, for superspace formulations, this means that superfields can be
described in components.

Let H; and H, be space-like hypersurfaces with, to simplify the picture, H,
before Hz. In superspace formulations, A; and H; should be codimension 1|0
submanifolds of M. We consider

Ha
(2.21) f L{¢)

H,y

which we at first assume to converge. If ¢ is extremal, and if ¢[u] deforms ¢y

{(#[0] = ¢o), then

(222) Y T
2.22 — j L(dju

du H,
will in general not vanish at » = 0, except if the support of the deformation is be-
tween H; and Hy. For deformations with compact support, it will be the difference
of boundary terms attached to H; and Ho:

d [he . .
(2.23) - L{glu]) =T2(£) - T1(§) .

du H,
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In this formula, T; is & 1-form on F, defined only on M, whose value at a tangent
vector £ at an extremal ¢o depends only on some jet of § along H;. We now restrict
those 1-forms to (the tangent bundle of) M. Equation (2.23) means that, with §
the de Rham differential on M,
Hz

(2.24) & L=T-T4,

Hy
s0 that the exterior derivative 8T; is independent of i. One defines the canonical
closed 2-form on M by

(2.25) Q= 6T, .

Remark 2.26. If the integral of L(¢) on the whole of M did make sense, this
construction would collapse: I'y(¢) would be § of the integration of L(¢) from the
infinite past to Ha, giving 2 = 6’2 = 0.

Remark 2.27. Instead of assuming | ;’: % to exist, one may consider only fields
which coincide with a fixed extremal ¢, at spatial infinity. The given construction
then defines [, for tangent vectors to M whose support intersects the region of
spacetime in between any two space-like hypersurfaces in a compact set.

Remark 2.28. As in Chapter 1, the construction gives an R-torsor T with con-
nection V on M, whose curvature is €. The choice of a space-like hypersurface H

trivializes T, and the trivializations given by H; and H differ by f ;:1 * L{¢).

Remark 2.29. Adding to the lagrangian density an exact term da, for o in Q?SL_I:,

does not change the space of extremals. For H a space-like hypersurface, it changes
the corresponding 1-form T’ on M by

(2.30) él——rflid%;a(qb[u]) at u=0.

The torsor with connection (T,V) for L, and the one (7",V') for L + da, can
be identified, by sending the trivialization Oy of T corresponding to a space-like
hypersurface H to the trivialization 0%y — Jiy o of T'. In Chapter 1 {particle in an
electromagnetic field), we saw one example where a change of gauge changes L(¢)
by an exact term, and where the torsor T’ of Remark 2.28 is defined, but where a
trivialization of T is given by the choice of H and of a gauge along H.

Remark 2.31. We now give a variant of the definition of 2, to make clearer on
what it depends. Let ¢[u, v] be a 2-parameter family of extremals. At ¢g = #[0,0]
in M, we have the two tangent vectors & = -5%¢[u, v] at (0,0} and &y = a%qb[u, v
at (0,0). What is Q(é,,£5)7 Let H be a space-like hypersurface. It has a past and
a future side, and we identify a neighborhood of H with H x (=1,1), with h € #
corresponding to (h,0) and the future side of H corresponding to H x [0,1). Let
$1[u,v] be a family of fields, deforming ¢[u, 0], agreeing with ¢[u,v] in the future,
and with ¢[u,0] in the past: for some «, b with —1 < a < b<l,

¢1 [u,O] = 45[?1,, 0]1

(2.32) é1[u, v] = dlu,v), at (h,t) for t > b;
$lu, v] = ¢[u, 0], at (h,t) for t < a.
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Let ¢3[u, v] be a similar family, with the roles of 1 and v interchanged. Then
(2.39) v o) = [ 0L - 0BuL(B) a6 (u2) = (0,0)

The integrand vanishes for ¢ > b (where L(¢;1) = L($2)) and for t < a (where
Oy L{#1) = Bul{d2) = 0). If ¢p{u,v] = ¢y at (h,t) for h outside a compact of H,
one can take ¢ = ¢ = ¢ outside of such a compact, and the integrand has then
compact support.

We now relate the definition of {? to the previous one. We frst consider a
one-parameter family ¢[u] of extremals, with ¢[0] = ¢g. Let ¢;[u] agree with ¢[u]
for t > b, and with ¢g for { < a {~1 < a < b <0). We have

=0
- d
(2.34) @)= [ LLoll) a u=o,
i=—1 GU
with I'yy the boundary term attached to H. For commuting vector fields, we have
da(X,Y) = Xa(Y) — Yao{X). Applying this to the (u,v) plane, and to 8, 8, to
compute dI'y, we get the formula given for Q(él, &a).

The construction of the closed 2-form Q on the space M of extremals is reas-
suring, but not particularly useful. What is more interesting are analogs local on
M of § and for Q nondegenerate of functions on M corresponding to infinitesimal
symmetries. Such local analogs will continue to make sense after a Wick rotation,
in Buclidean field theory.

We will see in §2.4 that if the space of fields is the space of sections of a bundle
E over M, and if the value of L{¢) at m € M depends only on the first jet of ¢
at m, there is a unique

(2.35) v e QXN(F « M)
such that
(2.36) DL =6L+dy

and that v is “linear over functions”: at ¢, for £ a tangent vector to F at ¢,
identified with a section of ¢*T(E/M), the value of the form (£) at m € M should
depend only on £ at m. More generally, we have the following

Definition 2.37. A form 8 € Ql’l"(.’/—' x MY} is linear over functions at (¢, m) if

loc

for every £ € T4 F and every function f on M,
(2.38) Bs.my(FE) = F(m}B1g.m (£).

This v is a local counterpart to the 1-form 'y on M attached to a space-like
hypersurface H. Indeed, I'y is the integral of ¥y on H. Taking an exterior derivative
in the F direction, we obtain a local analog of the 2-form ©: the 2-form Q is the

integral on H of w := §v in Qﬁi—ll(}' x M). This integral is a 2-form on the whole
of F, but it is independent of H only as a 2-form on M.

In the case of gauge theories, even if L and + are invariant by gauge transfor-
mations, one should not expect ¥ to vanish in the direction of the gauge orbits.

For more general Lagrangians, to localize the construction of Q, one should
choose +y in Ql’l_ll(}' x M) such that DL = §L + dy. We call v the variational

loc

I-form. The pair (L, ) defines a field theory.
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Definition 2.39. £ = L + v defines a classical (lagrangian) field theory if
(2.40) (DLYMO = 6L + dy

is linear over functions.

Equation (2.40) is a simple rewriting of (2.36).

Since DL is uniquely determined by L, and is local, it follows from Theorem 2.15
that the difference between any two choices for the variational 1-form -y is d-exact. A
d-exact change in 7y leads to a d-exact change in the local symplectic form w, defined
below in (2.44). In the Hamiltonian situation, where spacetime is time X space,
the symplectic form €2 on the space of classical solutions and the B-torsor with
connection whose curvature is £2 do not depend on the choice of .

For K € Q,?,’.i' 1'(}" x M) we can form a new lagrangian L + dK. Then v +
§K is a valid choice of variational 1-form, and the new total lagrangian is £ +
DK. In this case the local symplectic form w is unchanged, as are the equations
of motion (DL)M%. In the Hamiltonian situation the global symplectic form Q
is unchanged, and there is an isomorphism of the R-torsors for L and L + dK
constructed from K.

If v is linear over functions, in the sense of Definition 2.37, we write

(2.41) y=4dAm.

In this formula ¢ is a section of E over F x M, §¢ is the corresponding local
(1,0)-form with values in ¢*T(E/M), and 7 is a local (0,|—1|)-form with values
in ¢*T*(E/M). If ¢ is a real scalar field ¢: M — R, then 7 € Qud~"/(F x M) is
called the conjugate momentum (density) to ¢. Roughly speaking, at least locally
we can choose a coordinate system (on the fibers of F) to write any set of fields as
a collection of real scalar ficlds and so obtain conjugate momenta.

As explained above, we have the

Definition 2.42. The space M C F of classical solutions is the space of ¢ such
that the restriction of (DL£)V1° to {¢} x M vanishes:

(2.43) (DLYY = 6L +dy=DL=0 onMxM.

Physicists refer to the submanifold M (or M x M) as on-shell; its complement
in F (or F x M) is off-shell, though that term is usually used to describe all of F
(or F x M). We let M denote the quotient of M by gauge symmetries; as with F
we treat M as a manifold. In some contexts M is called the moduli space.

Define

(2.44) wi=06y, i Q2NF x M)
Restricted to the space of classical solutions we have
{2.45) w= DL on M x M,

and so

(2.46) Dw=20 on M x M.
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We call w the local symplectic form, since in the Hamiltonian situation its integral
over a spacelike hypersurface is the global symplectic form on the space of classical
solutions. w also has units of action:

(2.47) [w] = ML*T™L.

The picture of our on-shell data is:

0
(0] L —

- = O |

-1

M

0,-1]

loc

Elements of (F x M) are called currents. A current j is conserved if

(2.48) di=0 on M x M.

Below we discuss symmetries and show how they lead to conserved (Noether) cur-
rents. Such currents are local counterparts of generating functions, on the sym-
plectic manifold M of extremal fields, of infinitesimal symplectic transformations.
More precisely, their integral on a spacelike hypersurface, to the extent that it
makes sense, is such a generating function. The current being conserved, its inte-
gral is invariant under suitable deformations of the spacelike hypersurface. Another
source of conserved currents is topology. Namely, in some theories the space of fields
has nontrivial topology and topological invariants are constructed by integrating
topological currents. Note that the units of a current are not fixed; see (2.3).

§2.4. First order lagrangians

Let m: E — M be a fiber bundle. For s; and s; two local sections of E/M defined
in a neighborhood of m € M, the relation “in local coordinates, the derivatives of
order < k at m of s; and s coincide” is an equivalence relation. The equivalence
classes are called the k-jets of sections of £/M at m. They form the fiber at m
of a new fiber bundle J¥(E) —» M. Local coordinate systems on J*(E) can be
obtained as follows. One fixes near m € M a local coordinate system {z*} on M,
a trivialization E = M x F of E, and local coordinates {y*} on F. Sections of
E — M near m are given by functions ¢°(x*) from M to F. The z* and 9"¢°
with |n| € k form a local coordinate system.

A local section ¢ of E — M defines a section j%(¢) of JF(E) — M, with value
at m € M the k-jet of ¢ at m.

Definition 2.49. A lagrangian L € Q,?,’col(}' x M) depends only on the k-jet of

the fields if there exists a morphism £: J*(E) — Dens(M) of bundles over M such
that

(2.50) L(¢) = £(5*(¢))-
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Example 2.51. Most “fundamental” lagrangians L depend only on the 1-jet of
the fields. (A notable exception occurs in theories of gravity, since the curvature
of a metric depends on the 2-jet of the metric.) A simple example to keep in mind
is a theory of a scalar field ¢: M — X with values in a Riemannian manifold X.
Then E — M x X and the fiber of J'E — E at (m,z) is Hom(TnM, T X). Let
V: X — R be a (potential energy) function. The theory of the scalar field in the
potential V' has

(2.52) t(m, x, T) = %|T|2 ~V(z),

where T € Hom(T,n M, T- X).

We now assume that L is a lagrangian density depending only on the first
jet of the field ¢. The condition DL = L + dy means, in integrated form,
that for U a compact integration domain with smooth boundary, one has, for
¢ € T(M,¢*T(E/M)) a tangent vector of F at ¢,

(2.53) ¢ fu L(g) = ]U W€)DL + [a e

The last sign comes from the fact that (({)dy = ~di(€)y. If v is assumed to satisfy
W fE)y = fe(€)y for f a function on M, ie., if ¥(#,£) at m depends only on the
value of £ at m, this formula makes it clear that « is unique. Indeed, the formula
determines fau fu(€)y for any U and f, hence ¢(€)7 for any £ As any ¢ can be
decomposed into sections of F(A/I L' T(E/M )) with small support, existence is a
local question on E and M. Locally on M, one can trivialize E as M x F. Let
us choose local coordinate systems {z*} on M and {y*} on F. This gives a local
coordinate system {z*,y°,y2} on J!(E). By assumption, L = £(5% () with

(2.54) ¢ =z, y*, yp)ld .

The |- 1|-form ¢(¢)y on M is then given by the standard integration by parts:

(255) B TR

§2.5. Hamiltonian theory

Suppose that spacetime is M = M L « N for some manifold N, where M! is affine
one-dimensional Minkowski space, i.e., the affine real line with its standard metric.
We view M! as time and N as space. We also assume that the fiber bundle
E — M! x N is pulled back from a fixed bundle on N, or equivalently that time
translation has been lifted to E. In this case we integrate the local symplectic
form w to obtain a closed 2-form  on the space of classical solutions M:

(2.56) 0= w € QM)

{t}xN

Typically N is noncompact and so fo ensure convergence we only evaluate { on
tangent vectors to M with compact support in spatial directions, or at least with
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sufficient decay at spatial infinity. The hyperbolicity of the classical equations
of motion implies finite propagation speed of the classical solutions, and so the
decay conditions are uniform in time. By (2.46) the right hand side of (2.56) is
independent of ¢t € M, and also Q is a closed 2-form on M.

A generalized infinitesimal local symmetry is a construction as follows (see
Definition 2.93). One gives: (i} a vector bundle V over M; (ii) for each section ¢
of V, a vector field X, on the space F of fields and a (0, ]~ 1|)-form o such that
Lie(X¢)L = da¢. One requires that X and o be local: the value at m € M of
Xc(¢) € T(M,¢"T(E/M)) should depend only on the k-jet of ¢ and ¢ at m, and
similarly for a. One also requires X and « to be additive in . The basic example
is the algebra of infinitesimal gauge symmetries, for which V is the adjoint bundle
of a principal bundle.

In the presence of such symmetries, one cannot hope for the closed 2-form Q
on M to be nondegenerate. Indeed, the X, are tangent to M, because Xcis a
generalized symmetry (see Definition 2.71). We claim that the X preserve £ and
are in the kernel of §, at least for { with compact support so that everything is
well-defined. Indeed, decomposing ¢ one can assume it has a small support. Let
us choose ¢ such that {t} x N does not meet the support of ¢. If we compute Q2
using {t} x N, then  does not see ¢ and the claim follows. Therefore, § is the
pullback of a 2-form 2 on the quotient A of M by the local symmetries (or on
the quotient by any subgroup). The best one can hope for, then, is that I is a
symplectic structure.

Ifje Qo’l'll(f X M) is a conserved current then the associated charge Q; is

loc

(2.57) Q= f{ W

If ¢ is in M, then since df = 0 the right hand side is independent of ¢£. This is
a global conservation law. Local conservation laws are obtained by considering a
domain U C N. For simplicity assume the closure of U is compact with smooth
boundary 8U. Let

(2.58) Gt =/ J
{t}=xU

be the total charge contained in UV at time &. Write
(2.59) J=dtAji+ jo,

where j1, j» do not involve di. Stokes’ theorem applied to integration over the fibers
of the projection M! x U — M implies

dq, .
(2.60 —+/ 1 =0.
) dt  Jpyxeu”!

This says that the rate of change of the total charge in U is minus the flux through
the boundary. The units of a charge are the same as that of the current.

In theories with local symmetry the global charge is gauge invariant since we
require the local current to be gauge invariant up to an exact form.
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A field ¢ on M = M*! x N is static if its time derivative Lie(8/0%)¢ vanishes.
(Recall that ¢ is a section of £ — M x N and we have fixed a lift of 8/8¢ to E.)
When there are gauge symmetries we say that ¢ is static if locally on NV there is
a gauge in which Lie(d/8t)¢ = 0. For a p-form field @ such a local gauge exists if
and only if the gauge-invariant field dov is invariant under ¢. The same assertion
holds for abelian connections a, where do is replaced by the curvature. The proof
of this assertion is straightforward.!! The local gauge in which a is static is unique
up to static local gauge transformations. There does not seem to be an analogous
criterion for static nonabelian connections in terms of the curvature.

Let Fn denote the space of static fields and Fn the quotient by static gauge
symmetries. In §2.10 we define the energy of a static field and so a subspace F&n
of static fields of finite energy.

§2.6. Symmetries and Noether’s theorem

We assume that the space of fields F is the space of sections of a fiber bundle F
over M, and that L in Qﬁ;?l(}' x M) is a lagrangian density. An automorphism

g F — F of F is local if for some & the value of g(¢) at m € M depends only on

the k-jet of ¢ at m, and if the same condition holds for the inverse g=! of g. A
generalized symmetry of L is a local automorphism g of F, given with a in Q?c',lc_”

such that

(2.66) L(g(¢)) - L{¢) = da(¢) .

By the locality assumption, deformations with compact support of ¢ and g¢ cor-
respond to each other, and by (2.66), the integral of the variation of L({¢) is pre-
served. It follows that g preserves the space M of extremals. As in §2.3, the
lagrangian density L gives rise to an R-torsor with connection (T,V) on M. A
generalized symmetry acts on (T, V) as follows. Let H be a space-like hypersur-
face. It defines a trivialization Qg of T. We map 0y at ¢ to

(2.67) 6(0 at ¢) = (oH -/ a(cb)) at 9(6) .

¥rite

a=diAA(t)+ B(t), AR e, B(1) ek,

(2.61) -2 ~1
B8 =dt A P{t) + Q(1), Pty e Q775 Q1) € af

on some small open set I/ C N. Then a + df is time independent if and only if

(2.62) A-dP+d=0
(2.63) B+dQ =0,

whereas de is time independent if and only if

(2.64) B-dA=0
(2.65) dB =0.
The integrability condition for (2.63) is (2.65), so we can solve for (. Then we solve (2.62) for P;

the integrability condition is {2.64). (A slightly different argument is required for p = 1 since in
that case P=0.}
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The resulting map ¢g: T — T is independent of the choice of H. Indeed, if H; and
H, are two space-like hypersurfaces, with H; before Ho, we have at ¢

Ha
(2.68) On, — On, =/} L(g) .

T

As [ L(gg) = fi? L(#) + | a(@))}f?, this is compatible with 0y, and O, at ¢
to be mapped, respectively, to

{2.69) Oy, — le alg) and 0Op, - /H2 ()

at g(¢). Indeed, at g(¢),

(2.70) .
@M—waﬂ—@M—Afw0=ﬁfLM@%[[Mﬂ;

=0y, — O0g, at ¢.

We now consider the infinitesimal analog of this construction. A vector field f
on F is local if for some k the value of €4 € T'(M,¢*T(E/M)) at m € M depends
only on the k-jet of ¢ at m. In other words, if ¢ is the projection from J “(E)to E,
then £ is given by a section of ¢*T(E/M) on J*(E).

Definition 2.71. A genemhzed infinitesimal symmetry of L is a local vector field
§ on F, given with oy in 0y 0= gych that

loc

(2.72) Lie(§)L =do; on Fx M.

Here, Lie(£)L is simply L(é)éL. Such a symmetry should not be expected to inte-
grate to a generalized (local) symmetry, as defined above. For instance, the vector
field on F corresponding to an infinitesimal time translation is local. A finite time
translation on F is not. To make it local, one would need to act both on F and M,
as we will do later.

One can, however, repeat the previous construction, if one views a generalized
infinitesimal symmetry as a generalized symmetry (g, @) depending on an infinites-
imal parameter g, with (g(0), a{0)) = (Identity,0). Formally, this means working
over Spec(Re]/( 2)) Doing so, we get a lifting of g(e} to T, i.e., a lifting of the
vector field { on M to T, respecting the connection. Such a lifting corresponds to
a function ¢z on M, such that

(2.73) dQ; = —u(£)9

for €2 the curvature form of T. The function Q; is the difference between the lifting
of £ and its horizontal lifting. For any space-like hypersurface H

(274) % =Tu@ - [ ag= [ dlrr-ee
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The Noether current of (£, ag) is the local (0, |-1}-form

(2.75) je =€) — oz -

By construction, its integral on a space-like hypersurface H is the charge Qé, giving
the lifting of the vector field £ on M to (T,V). For ¢ in M, [, J¢ is hence
independent of H. It follows that j; is a conserved current.

To prove that the Noether current j; is conserved, i.e. that jé(qb) is closed when
¢ is extremal, we have used a global argument, relying on a notion of “space-like
hypersurface” H. This leads to extraneous convergence problems. They could be
avoided by using instead hypersurfaces homologous to zero, in a small neighborhood
of a point. The corresponding line bundle on M has trivial curvature, but this
does not spoil the argument. Here is another way out, which gives as well a local
counterpart of (2.73).

Proposition 2.76. Suppose (é, aE-) is o generalized infinitesimal symmetry of L.

Then, for some f3; in Ql'l_zl(}' x M), the identity

loc
(2.77) Lie(¢)y = 6a; +df;  on M x M

holds on shell. The Noether current jz := )y — ag is conserved,

(2.78) dj; =0 on M x M,
and
(2.79) 8je = —(fw+dB;  on Mx M.

Remark 2.80. Both (2.77) and (2.79) hold as equalities, on M x M, of (1,{-1]}-
forms on F x M: at ¢ in M, they give rise to an equality of |- 1|-forms on M
when evaluated against any tangent vector 1 of F at ¢, whether or not it is tangent
to M.

The formula (2.79) is the promised local counterpart of (2.73). We summarize
(2.72) and (2.77) in the diagrams:

| 0 - 0 1 N
o | Lie(L o] | Lie@L
T T )
|—1] &g | -1 o —  Lie(&)y
.
M 2] 8
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Proof. The vector field £ is tangent to M. Since on M x M we have DL =
8L + dy =0, we also have on M x M

(2.81) Lie(€)D L = 6 Lie(€)L + d Lie(f)y =
in other words,
(2.82) d(—boy + Lie(§)y) = 0.

If ¢ is in MM, then this identity holds when evaluated on any tangent vector 5 €
(M, ¢*T(E/M)) of F at ¢. As L(?’})(—ﬂ’ + Lie(€)7} is local in 7, it follows from
Takens that for some ﬁf(qﬁ 1), local in 7, one has

(2.83) —ba(¢) + Lie(€)v(4) = d; .

Suppose we have chosen locally on M coordinate systems U; — R™, trivializations
of E as F x U; and local coordinate systems on F. In terms of those, and of a
partition of unity attached to the resulting covering of E, B is given by Takens by
explicit local formulas. Those formulas define ,6 on Fx M, w1th (2.77) holding on
M x M. A fortiori, (2.77) holds as an 1dent1ty of (1,|~1f)-forms on M x M, ie.,
when applied to vectors tangent to M x M only. Applying § to it, we obtain that
é preserves the (2,|—1|)-form w on M x M up to an exact derivative:

(2.84) Lie(§)w = d(—68;) .
As £ is a vector field on F , Cartan’s formula takes the form

(2.85) Lie(€)y = 8u(é)y + «(é)6y = 6ulé)y + ué)w
Plugging this in (2.77), we obtain (2.79) on M x M.

A vector field & on F x M is said to be decomposable and local if it is the sum
of a local vector field £ on F and of a vector field n on M. For such a vector field,
the Lie derivative Lie(¢) preserves the bigrading of Q) M(}' X M). We say that

Ioc

(&, a¢) is a generalized infinitesimal symmetry if ¢ in Q- 1'(}' x M) is such that

loc

(2.86) Lie(¢)L = da .

The Lie derivative Lie(¢) is the sum of Lie(¢) and of Lie(n). As Lie(n)L = di(n)L,
it hence follows from (2.86) that

(2.87) Lie(§)L = d{oe — (n)L) :

the vector field £ on F, and ag = ag — ()L, form a generalized infinitesimal
symmetry. The corresponding Noether current is

(2.88) de = Uy + e(mL — g = [ue)£)™ M -
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In this formula, as before, £ = L + . We say that £ is a manifest symmetry of L
if Lie(¢)L = 0. For a manifest symmetry, one can take ag = 0, hence a; = —¢(n)L,
and the formula (2.88) for the Noether current then simplifies to

(2.89) je = [L(E)E]o'ldl (for a manifest symmetry of L).

We say that £ is a manifest symmetry of £ =L+~ if Lie(§)L =0, ie. if§
preserves L and . As Lie(§) = Lie(£) + Lie(n), this gives

(2.90) Lie(§)y = —(du(n)y + e(n)dy) .

On shell, ¢(n)dy = —(n)dL = éu(n)L = —bay, hence Lie(f)y = bog + d(—e(n)7):
the formula (2.77) holds for the generalized symmetry (€, og¢) and 3; = —u{n)y. For
this choice of B, (2.79) becomes

(2.91) 8j = —u(éw — duln)y .

Proposition 2.92. Suppose that L depends only on the first jet of the fields, that
v is the canonical variational form, that § = £+ 7 is a manifest symmetry of L,
and that it is induced by an infinitesimal automorphism of the bundle E — M, that
is, by a vector field X on E projecting ton on M. Then, £ is o manifest symmelry
of L.

Integrating &, this reduces to the statement that if an automorphism of the
bundle £ — M preserves L, it also preserves . As 7 is canonically deduced
from L, this is an application of transport of structures.

This argument seems to assume that X can be integrated, i.e. that exp(tX)e
does not go to infinity in finite time. However, as the question is local, integrability
is immaterial. One only needs to know that for ¢ < £ and for suitable E' — M’ with
E’ open in E and M’ in M, exp(tX) and exp(tn) map E’ and M’ isomorphically
to E} C E and to M| C M.

Following Zuckerman, we give the formal definition of a local, or gauge, sym-
metry.

Definition 2.93. A generalized infinitesimal local symmetry of a theory £ = L+
is specified by a vector bundle V — M and linear maps

2.94
(2.94) A,

where ¢ is a section of V and X is a generalized infinitesimal symmetry of L:
(2.95) Lie( X)L = dog on F x M.

We require that the dependence of X and a¢ on ¢ be local.

Two examples: In gauge theory V is the adjoint bundle of a principal bundle and
X acts by infinitesimal gauge transformations. In theories of gravity V = TM and
X acts by the Lie derivative of ¢.
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Proposition 2.96. The Noether current attached to a generalized infinitesimal
local symmetry is d-ezact on M x M.

Proof. This follows directly from Theorem 2.16.

Assuming suitable decay at infinity, we see that the Noether charge associated to
a local infinitesimal symmetry vanishes.

Finally, we introduce a bracket operation on Noether currents. There is a
standard Poisson bracket of functions on A in the Hamiltonian situation. If
j = j#(z} 0, @ |d"z| is a current, then we can view j#(x) for z fixed as defin-
ing a (singular) function on M and so compute Poisson brackets of components of
currents. This is a standard procedure in physics. Such computations go under the
name current algebra. The bracket we introduce on Noether currents is defined in
arbitrary field theories: we need not be in a Hamiltonian situation and there is no
nondegeneracy assumption. The bracket (2.101) below is often simpler to compute
in practice than the standard Poisson bracket of distributions on M.

Consider a theory £ = L+« on F x M for some manifold M.

Definition 2.97. We call (§,£) a Noether pair if j € ng’c'_ll(f x M) is a current,
£ is a generalized infinitesimal symmetry of £, and if

(2.98) Lie(§)L = da on F x M,
where
(2.99) a=[ue)c]” M-

Let (4;,&), i = 1,2 be Noether pairs. We define the bracket

(2.100) {(G1,61), (J2, &2) } = (Lie(&1)d2 + C, [&1, &),

where

(2101)  C =C(61,51582,52) = [—L(éz) Lie(&1)£ + Lie{&) («(&1)£ - j1)]0,|_1

A straightforward computation shows that the right hand side of (2.100) is a
Noether pair.

Remark 2.102. The formula for C may be changed by an exact term, though
this particular choice is nice: for this choice the quantiiy « defined in (2.99) for the
bracket is

(2103) Lie({l)ag - Lie(£2)al,

where o, are the corresponding quantities for &;. The precise formula for C is not
valuable; the important term in the bracket of currents is Lie(£, ).

For manifest symmetries C' = 0, and in all cases C is exact on-shell (after impos-
ing the equations of motion). The bracket makes the space of Noether pairs into a
Lie algebra (off-shell). For nonmanifest symmetries, this Lie algebra is typically infi-
nite dimensional and becomes finite dimensional only after we impose the equations



CHAPTER 2. LAGRANGIAN THEORY OF CLASSICAL FIELDS 171

of motion. Then it is nice to work modulo exact forms. Hence define an e-Noether
pair [4,£] to be an equivalence class of Noether pairs (4,€) where {j1,&) ~ (j2,€)
if jo — 71 is d-exact. Thus 7 in [4,£] is determined on-shell by £ up to an element
of the local cohomology group H&’l’ll(M x M). Under the bracket (2.100) the set
of e-Noether pairs is a Lie algebra on-shell. If we restrict the symmetries £ to lie

in some Lie algebra b, then the corresponding set of e-Noether pairs is a central
extension of h by H;)c;l_”(M x M).

Example 2.110 in §2.7 illustrates the difference between on-shell and off-shell
symmetries. Note that the algebra of symmetries generated off-shell is infinite
dimensional.

Suppose now that we are in the Hamiltonian situation M = M! x N and that
(M, Q) is symplectic. We work with Noether pairs (4,€) such that  projects to a
vector field £ on M and j is gauge invariant. Then by (2.73) £ is the symplectic
gradient of the global charge Q € Q°(M). The charge @ only depends on the
equivalence class of (4, £) in the set of e-Noether pairs. Let [4:, &] be e-Noether pairs
with global charges @;. Set [5,6] = {[j1, &), [j2,&2)}. Then the global charge Q
associated to j is the Poisson bracket

(2.104) Q=1{Q1. Q=

Equation (2.104) relates the bracket on Noether pairs to the Poisson bracket on M;
it follows directly from (2.100), the definition of Poisson bracket, and Stokes’ the-
orem.

Recall that if  is a Lie algebra of Hamiltonian vector fields on a symplectic
manifold, then the sub-Poisson algebra of functions whose symplectic gradients lie
in h is a central extension of h by the space of locally constant functions. For a Lie
algebra b of symmetries of L as above, the set of e-Noether pairs [j,£] with § € b
is a local version of the global central extension defined by the charges.

§2.7. More on symmetries

This section is not strictly speaking needed for the theoretical development. Rather,
we present examples of symmetries and Noether currents. These examples also
illustrate the calculus we use to compute in function spaces.

Example 2.105. For a system of nonrelativistic point particles (1.13) time trans-
lation is a symmetry. As in the discussion of Example 2.110 it is manifest'? for the
vector field £ in (2.120). Explicitly,'®

U§)bz = -,

(2.107) (E)dt = 1.

1213 Example 2.131 below we discuss time translation as a nonmanifest symmetry.
13Beware that usually the vector field £ is omitted and one simply writes
(2.1086) bz = —i

instead of the first equation in (2.107). In (2.106) ‘6’ does not denote the differential on F, but
rather the vector field £, Then signs are different when commuting d and é.
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Then we compute directly from (1.13) and (1.15) that Lie{£}£ = 0. The associated
Noether current

Je = &y + &)L
. 1,.
(2.108) = -2 + (5]l - V(x))
1
= — (512> + V(z))
2
is minus the hamiltonian. The Hamiltonian formulation of classical mechanics
involves the hamiltonian function (2.108) and the symplectic form (1.16) on the
symplectic manifold M. Noether currents coincide with charges.
In this example the field is a map M! — X, where M! is affine time and X is

a Riemannian manifold. One should view ‘z’ in these formulas as the evaluation
map (2.13)

{2.109) x: Fx M — X,
though we often also denote a specific field z: M! — X with the same letter. The

coordinate t on M! is a real-valued function on F x M! which is constant in the
F direction.

Example 2.110. Let X be a real inner product space of dimension + with inner
product {-,-}, and for z: M! — X let

— 1 +12 1 2
(2.111) L-{2|a:| >zl } dt.

This lagrangian describes a system of r identical harmonic oscillators. The equation
of motion (1.14) is

(2.112) &= -z

(We omit the argument ‘t’ from equations for readability.) Consider the vector
field £ on F = Map{M!, X) given by

(2.113) W(€)6x = Az + Bi

for some A, B € End(X). Then

(2.114) W€)6% = Az + Bi.

Assume that A is skew-symmetric and B is symmetric. We compute
(2.115) Lie(§)L = u(§)§L = do;  on F x M,

for

(2.116) o = (B, 1) — é(Bz, x).

B =
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Thus £ is a generalized infinitesimal symmetry for A skew-symmetric and B sym-
metric. Also,

(2.117) Lie(€)y = «(€)éy + 6u(€)y = (B, 6&) + (B, 6z).
From (2.116} we find
(2.118) Sa; = (B, 5¢) — (Bz, 8z),

<o that on-shell —that is, after imposing the equation of motion (2.112)—we have

(2.119) Lie(£)y = 6oz on M x M1,

as implied by Proposition 2.76.

Only when B = 0 is the symmetry manifest. In that case it is the internal
symmetry generated by an infinitesimal rotation in X. For A=0and B =id we
see that £ is the vector field on F induced from the vector field 8/8t on M 1. We
make this symmetry manifest by forming the vector field

(2.120) ¢ =—£+08/8t

then Lie(£)£ = 0. In other cases the symmetry is nonmanifest and is not induced by
any symmetry of M!. Also, note that on-shell the group of symmetries generated
by (2.113), (2.114) is isomorphic to the unitary group U(r), whereas off-shell it
is infinite dimensional. We meet this same phenomenon in the more complicated
situation of supersymmetric theories with no off-shell formulation, i.e., no auxiliary
fields. Then the supersymmetry algebra only closes on-shell and the supersymmetry
is not manifest.

The conserved quantity associated to a diagonal element of the Lie algebra u(r)
with one nonzero entry is the energy of one of the r oscillators.

Next, we give an example in field theory where 3¢ in Proposition 2.76 is nonzero.

Example 2.121. Let M = M? denote two-dimensional Minkowski spacetime with
coordinates z°, z'. Here 0 is the speed of light times a standard time coordinate.
For convenience fix the orientation {z° '} and use it to identify twisted forms
with forms. Note that *dz® = dx! and *dz' = dz®. Let F = {¢: M*' — R} be
the set of real scalar fields. The free (massless) lagrangian is

L= %dq& A xde
(2.122) = %|d¢|2 dx® A dz!
_ %{(60915)2 ~ (019)?} da® A da”.
From this we derive

(2.123) v = 8o 8¢ A dx! + 0y 8¢ A dx®
(2.124) w = Do A b Adz + 0164 A 8¢ A da®
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and the equation of motion
(2.125) Bp—07¢=0 on MxM.

Consider infinitesimal translation in the z° (time) direction. It defines a vector
field £ on F x M by

(&)o¢ = —Bogp
(2.126) (&)dz® =1
(E)dz! = 0.

Then a routine computation shows that £ is a manifest symmetry: Lie(£)L =
Lie(¢)y =0 on F x M. (By Propaosition 2.92 we need only check Lie({)L = 0.) But
we can also regard infinitesimal time translation as a nonmanifest symmetry 1;: by
letting it operate only along F:

W€)6¢ = — 0o

(2.127) ((£)dz® =0

Y&)dz! = 0.
Then we compute
(2.128) Lie(é)L = do on F x M,
(2.129) Lie(f)y=6a+d8 onMxM,
where

o= 2{(008)? — (016)?] da* € Q27

(2.130) 2 o

8 =014é¢ EQ,IO'! A

A simple example from mechanics illustrates the importance of locality in Def-
inition 2.71.
Example 2.131. Consider a free particle x: M! — R with lagrangian L = %rf:2 dt

and the canonical ¥ = mi 6z. Let € be infinitesimal time translation, considered!4
as a motion only along F:

(2.132) {6z = ¢,
' (f)dt = 0.
Then
(2.133) Lie(§)L = —mai dt = da;

14Tn Example 2.105 we discuss time translation as a manifest symmetry.
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for

1
(2.134) a; = —Em:nz,

so that 2;: is a generalized infinitesimal symmetry. Imposing the equation of mo-
tion ¥ = 0 we compute

(2.135) Lie(€)y — 6a; =0  on M x M1,

as it must by Proposition 2.76. Now fix a time o and a function F: M' — R and
consider instead

(2.136) a.é = —%miz + F(ﬂ:(to))

(We could put any function on F here; we take one of this explicit form for ease of
writing.) Since F' (:L‘(to)) is independent of ¢ we have Lie(§)L = dig, but now

{2.137) Lie(£)y — ba; = —F'(z(to)) 6x(to) on M x M!

is nonzero unless F is constant,

Note that F{z(to)} is a nonlocel function of T—its value at ¢ € M ! does not
just depend on a finite jet of x at ¢. This example shows that without locality in
Definition 2.71, the energy would be completely ill-defined.

§2.8. Computing Noether’s current by gauging symmetries

Let us make the following assumptions: (a) the space F of fields is the space of maps
from M to a manifold X, that is, E is a product M x X; (b} the lagrangian density
L depends only on the first order jet of fields; (c) <y is the canonical variational
form; (d) a Lie group G acts on X it preserves L, hence .

Let P be a principal G-bundle on M, and let EF be the twisted form of E
defined by P: a section p of P over an open subset U of M defines an isomorphism
o(p): By — EF, and for g a map from U to G, o(pg) = o(p}g. Let 77 be the space
of pairs (A, ¢), where A is a connection on P and where ¢ is a section of EF. On
Fix M, let Li(A,¢) be the lagrangian density whose value at min M is computed
as follows. Choose a local trivialization p of P which is horizontal (for A) at m.
The section o(p)~'¢ of E can be identified with a map from M to X, and

(2.138) L1(A,¢) at m:= L(c(p)~'¢) at m .

The assumptions (b) and (d) ensure that the second member does not depend on
the choice of p. The value of L;(A4, $) at m depends only on the value of A at m
and on the first jet of ¢ at m. We let -, be the canonical variational 1-form.

In local coordinates, L is computed as follows. Over a local coordinate system
x: U — R" of M, one chooses a trivialization of P. This identifies EF with M x X.
The connection A is a 1-form on M with values in Lie(G}, which the action of G
on X turns into a l-form on M with values in vector fields on X. The original
lagrangian L is of the form

(2.139) L($) = &(¢; ¢:)dzx
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with ¢; = 0¢/0z;. The new one is
(2.140) L1(A, ¢) = Ue; ¢i + Ai(¢))dz .

It follows that if the variational 1-form v(¢) is 3 ¢/ (¢; ¢:)dz?, then

(2.141) 1A, ¢) =Y ci(d. ¢ + Ai(¢))dz’ .

The gauge group Gp of automorphisms of P acts on F, by transport of struc-
tures. As Ly and 7, have been defined (in terms of structures preserved by Gp),
they are preserved. If P is the trivial principal bundle G, so that £ = E, and if
A is the trivial connection Ay, the group G acting on P (on the left) by constant
gauge transformations respects Ay; its action on ¢ is the action of G on F, and

(2.142) L(Aq, ¢) = L($) .

The construction of Fy, L, from F, L and the action of G is called “ganging
the symmetry”. Our aim in this section is to explain how the Noether current
attached to the manifest infinitesimal symmetry of L given by the action of Lie(G)
can be computed by differentiating L1(A, ¢) in A. We will work in a more general
framework than the one above, which covers as well the case where the fields are a
map ¢: M — X and a ¢*TX-valued spinor.

Let P be a fixed principal G-bundle on M, and let con(P) be the bundle over
M whose sections are the connections on P. Let us first assume only that £ is a
fiber space over con(P), so that the space of fields F fibers over the space A of
connections, that the action of the gauge group Gp of automorphisms of P on A is
lifted to an action of F, that this lifted action is local—g¢ at m € M depends only
on some jet of g and ¢ at m—and that it preserves a lagrangian density L. For 4
in A, let F4 be the fiber of F over A at A. It is the space of sections of E4, the
inverse image in E of the section A of con(P). The lagrangian density L induces a
lagrangian density L4 on F4 x M. Let ¢ in F4 be an extremal for L 4. This means
that DL at ¢, a morphism of vector bundles from ¢*T(E/M) to densities on M,
factors through A*T{con(M)/M). As con(M)/M is an affine space bundle over M,
the latter is independent of A. It is the vector bundle of 1-forms with values in the
adjoint bundle g”.

The bundle Hom(Q'(g”), 1%} is identified with 2=1/(gP*}: to an element B@¢’
in Q1=1{(g) corresponds the morphism a®£ — anf. (€,£'). To ¢ in Fa, extremal
for L4, we's have attached a section J; of Q=1 @ gP*. The gauge invariance of L
gives:

Proposition 2.144. One has
daJ) =0

In particular, if the infinitesimal gauge transformation £ is horizontal for A, then
J(€) = (£, 71} is a conserved current.

Y5 Physicists typically summarize the definition of J; by the equation

(2.143) 88(¢) = fn ] J(B)8A,,

where S is the action.
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Proof. Let £ be an infinitesimal gauge transformation, a section of g¥. Then, £
induces a vector field on A whose value at A is —d4€. If £ has compact support,
one has

(2.145) [(—dAEAJ1> =0.

Suppose indeed that g(x) is a family of sections with compact support of the gauge
group, with £g(u) = £ at u = 0. By gauge invariance of L and extremality of ¢,
we have

d d
eue)  [imdansir= (DL goowis) = [ S B =0,
By integration by parts, i.e., using that

(2.147) d{€, 1) = {da§n 1) + {Eadady),

equation (2.145) gives that for any § with compact support,

(2.148) (/fAdAJl) =0,
so that daJ, = 0. The second statement follows from (2.147).

We now give conditions under which the current J)(£) can be interpreted as a
Noether current. We suppose that:

(a) the fiber bundle E over M is a fiber product con(P) x E’, so that the space F
of fields is a product A x F';

(b) the action of Gp on E is deduced from its action on con(P), and from an action
of GP on E': the value at m of g¢', for g in Gp and ¢’ a section of E', depends
only on the values of g and ¢’ at m;

(c) the value of L{A, ¢') at m depends only on the value of A at m, and of the 1-jet
of ¢ at m.

The assumptions (a) (b) (c) hold for a lagrangian obtained by gauging a symmetry.
The assumption (c) ensures that the canonical variational 1-form depends only
on 6¢/, not on §A. Tt agrees with the y4 for the Ly on F' = Fa.

As Gp acts on JF', an infinitesimal gauge transformation & induces a vector field
£" on F'. If € is horizontal for A, i.e. fixes A, then the vector field £* on Flisa
manifest symmetry of La.

Proposition 2.149. If the lagrangian density L is invariant by gauge transforma-
tions, if the assumptions (a) (b) (c) above hold, and if £ is an infinitesimal gauge
transformation which fizes the connection A on P, i.e. if daé = 0, then the Noether
current for the manifest symmetry £~ of the lagrangian L4 is the conserved current
J1(&) of Proposition 2.144.
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Proof. Let £ be an infinitesimal gauge transformation. By gauge invariance of L,
(2.150) Lie(§)L = «(£)6L = t(—da&)6L + (£")6La =0 .

As L depends only on the 0*'-jet of 4, we have

(2.151) (~da8)0L = t(~da&)DL = —da&n Jy .

We also have

(2.152) UE™ELa =UEMDLA — L(E")dya = DLA(E") + duf€")ya ,
and so
(2.153) de(€")va = daénJi — DL4(E") .

For any function f on M, we have (f¢)" = f£~. Taking (2.153) for f€, and
subtracting f times (2.153) for £, we get for any f

(2.154) df ne(E)ya = df » Ji(€) ,
hence
(2.155) (€M) va = J1(€) -

For d4¢ = 0, the left side is the Noether current corresponding to the manifest
symmetry £".

Elements in the center of g determine infinitesimal “global” gauge transforma-
tions which act trivially on all of A, and so by Proposition 2.144 lead to currents
defined on the entire space of classical solutions of a theory £. In §4.4 we relate
these currents to electric charge.

§2.9. The energy-momentum tensor
First approach

Let M denote (affine) n-dimensional Minkowski spacetime. Fix a coordinate sys-
tem % !, .. 2"~ with respect to which the metric is

(2.156) g=(dz®)? = (dz")? — .- = (dz" ™12,
and the natural density is
(2.157) |d*x| = |dz® Adz! A--- Adz™ .

Here z° = ct is the speed of light times the standard time coordinate. Of course,
the metric and density have their geometric units, a power of length:

(2.158) o) =1%  [ld"a]] = L™
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Suppose £ = L+ describes a field theory on M. We assume that the Poincaré
group is a manifest symmetry group of the theory. Now the constant vector field

d

(2.159) (Tl yovn

on M induces a vector feld on F x M, which we are assuming is a symmetry, and
we dencte minus the (0, - 1|)-component of the associated Noether current by

(2.160) O * dz” = 0,,9"" (B,)|d"z]
for some functions
(2.161) Bu: FxM —R

The tensor © = (0,,) is called the energy-momentum tensor. The conservation
law (2.78) is

(2.162) > 8,8, =0

The units of the functions ©,, are those of a spatial momentum density:

M ML 1

(2.163) Oul = tomer = 7 o1

Physically correct units for the components involving x? = ct are obtained by
re-expressing © in the coordinate system {t, z!,..., "}
A vector field n = ##9,, on M defines a current

(2.164) n-0 =0,,7"*dz".

Lemma 2.165. © is symmetric if and only if n- © s conserved for every infini-
tesimal Loreniz transformation 7.

Proof. Let g,, denote the Minkowski metric. Then a skew form B = (B**)
corresponds to an infinitesimal Lorentz transformation

(2.166) n = B g\,2° 0,

Using (2.162) we find

d(n-©) = d(@w,B'“’\g,\U:EG * dz¥)
(2'167) = eyqu\.’?Aaggv |dn$|
— ©,, B |d"z].

The conclusion follows.
In practice © is symmetric only for theories of scalar fields. For other types

of fields there is an “improved” symmetric energy-momentum tensor, as we discuss
below.
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The various components of the energy-momentum tensor have a physical in-
terpretation, as the name suggests. (See the general discussion at the end of §1.4.)
In this paragraph we work on-shell. We also insert factors of ¢ to obtain correct
physical units. Let

(2.168) [d" 12| = |dz' A Adz™T!

be the canonical density on a time slice {z® = constant}. Then ¢®qp |d" x| is
the energy density and —@,|d" "'z} (i > 1) the momentum density. Assuming
suitable decay at infinity, we integrate these densities over space to obtain minus
the charges associated to the infinitesimal translations &,:

E= Qoo [d"_laz|,

{x%=constant}

Py =[ —640 |d""2|
{x%=constant}

{The minus sign comes since ©;, is minus the Noether current associated to 8,
whereas the momentum P; is the Noether charge associated to &;. Recall that —F is
the Noether charge associated to ¢d).) The conservation law asserts that on-shell
E and F; are independent of time. E is the total energy or hamiltonian and F, the
momentum in the i'" spatial direction. The square of the (rest) mass of a field
configuration is

(2.170) =F%/ct — Z P2/,

(2.169)

as in (1.45). The remaining components of © comprise the stress tensor (04;)i j>1.

Second approach

For field theories which can be formulated in an arbitrary background metric, an-
other approach to energy-momentum tensors is available. The relation with Noether
currents is to be obtained by arguments parallel to those of §2.8, but with the group
of diffeomorphisms replacing the group of gauge transformations.

Let met(M) — M denote the fiber bundle of Lorentzian metrics on the tan-
gent bundle. Taking the inverse metric, we will view it as an open subbundle of
the bundle of contravariant symmetric 2-tensors g, and identify its relative tan-
gent bundle T'(met(M)/M) with the pull-back from M of the bundle Sym*(T) of
contravariant symmetric 2-tensors. In a Euclidean context, one would rather take
for met(M) the fiber bundle whose sections are the Riemannian structures on M.

In §2.8, we assumed the fiber bundle E over M to be a product con{P) x ps E”.
To similarly assume here that £ = met(M) x s E' is possible only at the cost of
excluding spinor {or Rarita-Schwinger) fields. Indeed, for V' a vector space given
with a symmetric bilinear form g, the corresponding space of spinors depends on g
(and on a lifting of the structural group from an orthogonal to a spin group). When
g varies, the spaces of spinors form a vector bundle on the space of ¢g’s. Because of
this, we will only assume that E is a fiber bundle E — met(M) over met(M).

In §2.8, we assumed that the gauge group acts on F. Here, if among the
fields there is a connection over some principal G-bundle P, it is not convenient
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to assume an action on F of the group of diffeomorphisms. What will act is an
extension of the group of diffeomorphisms by the gauge group: the group of pairs
(f, ) of a diffeomorphism f and of a lifting ¢: P — f*Pof f to P. If P is trivial,
a trivialization of P defines a splitting of this extension. Often, it is more natural to
use that a connection on P provides a lifting to P of infinitesimal diffeomorphisms
(= vector fields on M}, the horizontal lifting. One should however keep in mind
that this horizontal lifting is not compatible with brackets of vector fields.

Because of this, we will at first only assume given a lagrangian density L on
F x M which obeys the weak version of diffeomorphism invariance explained below.
A diffeomorphism of M acts on Met{(M). An infinitesimal diffeomorphism of M,
that is, a vector field £, induces on Met(M) the vector field whose value at a metric
g is — Lie(£)(g¥), for g the inverse metric. One has

(2.171) — Lie(&)(g")* = (V*§)" + (V7§),

where the tensor indices are moved up and down by the metric tensor and its inverse.
At m, this is easily checked in a coordinate system in which the metric g is constant
+0(z?), so that the Christoffel symbols I';, vanish at m. The diffeomorphism
invariance assumption is the following: for any vector field £ on M, there is a local
vector field € on F, projecting to — Lie(£){g*) on Met(M), which is a generalized
symmetry of the lagrangian density L.

For g in Met(M), let F, be the fiber of 7 — Met(M) at g. If E; is the inverse
image of g in E, then F, is the space of sections of the fiber bundle E, over M.
The lagrangian density L induces a lagrangian density Ly on Fy x M.

Suppose that ¢ in Fg is an extremal for L,. The Euler-Lagrange equation

(2.172) DL: ¢*T(E/M)} — densities on M
then vanishes on q{J*T(E/ met(M)), hence factors through
(2.173) D,L: g*T(met(M)/M) — densities on M .

This expresses that if ¢[u] is a deformation with compact supports of ¢, inducing
a deformation g[u] of the metric, then

d
(2.174) f LI au=0
depends only on £ (g[u]) at u = 0, and not on the concomitant variation of the
other fields. This allows to unambiguously attach to ¢ (assumed to be extremal
for L,) a symmetric 2-tensor T, with values in densities on M such that (2.173)
iSlG

(2.176) a — % a* Ty

for a# in g*T(E/M) a symmetric contravariant 2-tensor. In local coordinates {z*}
on M we write the energy-momentum tensor as

(2.177) T, = Tu(9,4) dat @ da” (),

where u, is the canonical density given by the Riemannian metric g.
mte (2.176) as

(2.175) 55(¢) = %fM Tuw () 694,

where S is the action. In our definition we restrict to ¢ which are extremal for Lg.
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Remark 2.178. We have defined T, only on-shell, that is, for ¢ an extremal of
Lg4. This does not provide a unique differential expression in ¢ giving 7},,.. Suppose.
however that we obtained a differential expression # in ¢ which (even locally on M)
gives T, for any extremal. Suppose also that @ depends only on the &-jet of the
section ¢ of E,: @ is a section on J¥(E,/M) of the pull-back of Sym*(T)® densities
on M. Then, if any k-jet is the k-jet of an extremal (the validity of this depends on
which Cauchy data the Euler Lagrange equations for L, require), then # is unique
and defines 7, off-shell.

Proposition 2.179. Under the assumptions above, if ¢ in F, is extremal for L,
the corresponding T,,, obeys the following conservation law: its covariant derivative
Tyip ts such that its contraction T,,.” vanishes.

Proof. Let £ be a vector field with compact support on M. It induces the vector
field — Lie(£)(g") on Met(M) and, by assumption, this vector field can be lifted to
£ on F in such a way that Lie(£)L is an exact differential. It follows that

(2.180) fM (T, - Lie(€)(g")) =0 .

Our computations will be local. Let us choose an orientation of M to identify
densities with forms of maximal degree n. Instead of viewing T as a section of
Q' @ Q! ® Q", one can use g to identify Q! with T, and view T as a section of
0! ® T ® 1, mapped isomorphically by contraction to 2! ® Q2"~!. Raising and
lowering indices by g, — Lie(£)}{g"} similarly corresponds to a symmetrization of V&
in Q' ®T!, and in (2.180), the symbol { ) denotes contraction of Q! with 71 while
simultaneously wedging 2*~! and 2}. One has, for { } denoting only contraction
of Q! and T,

(2.181) V(T §) ={(VT, &) + (T, V§) .

After wedging, V{T, £} becomes d (T, &) and (2.181) gives
(2.182) / (VT wedged ,£) =0 .
M

As this holds for all £, it follows that VT in Q! @ Q! @ 27!, projected to ' ® Q"
by a ® 8@y~ 3 ® (aay), vanishes. This is equivalent to T,.” = 0.

Corollary 2.183. Let us view T as a 1-form with values in (n — 1)-forms (or

better, with values in QUMY If ¢ in F, is extremal for Ly, and if ¢ is a Killing
vector field, i.e., an infinitesimal isometry, then T(() is closed.

Proof. As V{ =0, we have
(2.184) (VT)(() = V(T(¢)}
which, applying A: Q! @ Q7~! — Q" gives

(2.185) 0 = dT(¢) .



CHAPTER 2. LAGRANGIAN THEORY OF CLASSICAL FIELDS 183

We managed to relate the conserved currents in Corollary 2.183 to Noether’s
currents only under the following restrictive assumptions: (a) E is a fiber product
met{M) xp; E', making the space F of fields a product Met(M) x F'; (b) the
Lagrangian density L(g,#'} at m € M depends only on the value of g at m and on
the 1-jet of the section ¢’ of E’ at m; (c) we take for v the canonical choice; {d)
to each vector field ¢ on M is attached, by a local rule, a vector field & on F', so
that (¢, — Lie(¢){g"), &) is a manifest symmetry of L; (e) the map ¢ v~ & is linear
over functions.

Remarks 2.186. (i) (a) is needed to make sense of (b); it fails for spinor fields.
(ii) Condition (d) fails for tensor fields, if ¢ — £ is given by a Lie derivative.
However, it holds for connections on a fixed principal G-bundle P, if £ is defined
as follows. Given a connection V4, use it to lift ¢ to P. The flow exp(t{) generated
by ¢ is then lifted to P, and one takes

(2.187) & = %(exp(—tC)*(VA)) at t=0.

The vector fleld £; is obtained by contracting the curvature 2-form F4 with ¢, and
is hence linear over the functions.

(iii) Condition {a) allows us to define T off-shell as the restriction to the tangent
space to Met(M) of DL (or §L; this amounts to the same by (b)).

Assuming (a) to (e), we now repeat the arguments of §2.8. The manifest
symmetry of L means the vanishing of a Lie derivative of L: at (g, ¢)

(2.188) di(¢)L + DL(~ Lie(¢)g") + 4(&)6L = 0 .

Writing I(¢) for this identity, we now express that I(f{) — fI({) vanishes.
The first term contributes dfac(¢)L. As —Lie({)(g") is V¢, changed to a twice
contravariant tensor and symmettrized and that V(f¢) — fV¢ = df ® (, the second
term contributes (T, grad f ® ¢). As 6L = DL —d~, with DL linear over functions,
and that o(€)dy — de(£€)7, the third term contributes df ac(€¢)y. With the notations
of Corollary 2.183, the contribution of the second term can be written dfaT((),
giving
(2.139) df A (e(C)L + T(C) + e(&¢)y) =0 -

As this holds for all f, we can suppress the dfa. If ¢ is an infinitesimal isometry of
g, then (¢, &) is a manifest infinitesimal symmetry of Ly, and we get

Proposition 2.190. Under the assumptions made, if ¢ is a Killing vector field,
the conserved current T(C) of (3.5) is the opposite of the Noether current of the
corresponding symmetry of L.

§2.10. Finite energy configurations, classical vacua, and solitons

In this section we work in the Hamiltonian framework M = M! x N. Let t be an
affine coordinate on M1 and & the vector field which generates unit time transla-
tion. Recall that a field ¢ is static if

¢

(2.191) = =ué)se=0,
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where ét is the vector field on F induced by the action of ;. Let Fn denote the
space of static fields and 7y the quotient by gauge symmetries. Equation (2.191)
asserts that the vector feld ét vanishes on Fy.

Consider a theory £ = L + v which we assume is manifestly invariant under
time translation.'” The energy density © is minus the canonical Noether current
for &,

(2.192) 0 = —(ue) L)™',

where & = 8; — £,. The energy at time ¢ of a field ¢ is (see (2.169))
(2.193) Bot)= [ 6()
{t}xN

For a static field the energy is constant in time. Let FEn denote the space of
finite energy static fields and FEn the quotient by gauge symmetries. These are
subspaces of F and Fy, respectively. Define My C FEx {and My C ?fN) to
be the space of static classical solutions of finite energy.

The energy density of a static field is simply related Lo the lagrangian density.

Proposition 2.194. (i) We have
(2.195) O =—u,)L on Fn;

(¢8) If & is a critical point of energy on FEy, then ¢ is a solution to the classical
equations, i.e., ¢ € My. Conversely, every element of My is a critical point of
energy.

Proof. By (2.191) we have ¢(¢,)y = 0 on Fyn. Hence on Fn
(2.196) O = —u&) = (AL + (€)y = ~UB,)L,
which is (i). For (i) we first note that on £ ~N we have by (2.191) that

0 = Lie(§)y = de(8,)y + o(8y)dy — 6u(€)y ~ (€6

(2.197)
= du(8)y + 1(8,)d.

Using (2.195) we compute that on Fy

80 = (8,)6L
(2.198) = (O HDLYO — ((8y)dy
= UGHDL)YO + du(8,)y.

This is the integration by parts equation for the functional £ on Fn—analogous
to (2.40) for the functional L—and so the Euler-Lagrange equation for F is

(2.199) HB) (DLl = g,

17T his excludes, for example, the theory of a nonrelativistic particle moving in a time-dependent
potential.
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which is equivalent to the equation of motion (DL)"° = 0.

The global minima of energy are called vacuum solutions. For field theories on
Minkowski spacetime the set of vacuum solutions is referred to as the classical mod-
uli space of vacua. We denote it Myae. A vacuum solution in Minkowski spacetime
is usually assumed to be Poincaré invariant (if the theory is Poincaré invariant).
This means that scalar fields are constant, gauge fields are gauge equivalent to a
trivial connection, spinor fields vanish, and p-form fields (p > 1) are exact. The
classical moduli space is then the space of constant values of the scalar fields. Now
the energy density ©(gg) of a constant scalar field ¢g: M — X satisfies

(2.200) dt A O (o) = V (g0} ldt] |2l

for a potential energy function V: X — R. Assume!® that V > 0. The only finite
energy constant scalar fields have V(¢o) = 0, and so

(2202) Mvac = V_I(O)

is the classical moduli space. If there is also a connection field in the theory with
gauge group G, then G acts on X and V is an invariant function. In that case the
effect of dividing by global gauge transformations is that the classical moduli space
is the quotient

(2203) Muae = V-l(o)/G

Returning for a moment to a general field theory £ = L+ on a manifold M, fix
a field configuration ¢p € F. Then there is a perturbation theory for the fluctuations
around ¢ in which the space of fields is Ty, F and the N'" order perturbative
lagrangian is the N*' order jet of L at ¢o.

On Minkowski spacetime M we often perturb around a vacuum solution.!® Re-
call that at a vacuum all gauge fields Ay are trivial, and we can use them to trivialize
all bundles. Then any scalar ¢g is a constant in a manifold X. In the perturbation
theory the Auctuations of a trivial connection Ag on a principal G-bundle P lie
in },(ad P) = Q3},(g), where we use the trivialization. The fluctuations $ of the
constant scalar ¢q lie in T, X. Spinor fields, Rarita-Schwinger fields, and p-form
fields all vanish at a vacuum configuration and we consider the fields in the original
lagrangian to be fluctuations about zero. Now since we are at a vacuum solution
the perturbative lagrangian starts out with quadratic terms. In the quadratic ap-
proximation ¢ is typically a free scalar field in the Euclidean space Ty, X with
mass?® Hessy, V; there may be higher derivative terms as well. There is a mass
matrix for the spinor fields which also depends on ¢g. The massless fluctuations
of the gauge field lie in },(gy,), where gy, is the Lie algebra of the stabilizer
subgroup Gy, at ¢p of the G action on X. Often Gy, is called the unbroken gauge
group, though this terminology is confusing. Other components of the gauge fluctu-
ations are massive due to the Higgs mechanism, which we illustrate in the following
example.

18In many problems the energy density is nonnegative for all fields: B¢{¢) = 0 for all ¢, where
{2.201) dt A O(d) = O,(p) |dt]||d™ x|

19This is the first step in a perturbative construction of a quantum theory around the chosen
vacuum.
20Free fields and this use of ‘mass’ are discussed in §3.
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Example 2.204. We work on n-dimensional Minkowski spacetime M™. The fields
are a complex scalar field ¢, a real spinor field®! ¢, and a T x T connection A.
As in any gauge theory, we work on the quotient of the space of fields by gauge
transformations. Let T x T act on C by (A, Ag) -z = A1z}, and suppose that ¢ is
a section of the associated hermitian line bundle. The spinor field ¥ is not coupled
to A. Let

(2205) L= (Idad P = 2IEAl” + S (09) — |41 (1 = 61V - ) |d"sl.

The potential energy is

(2.206) V(do) = lieolt (1 = llgol*)®

and V~'(0) consists of the origin and the unit circle. The classical moduli space
is the quotient of V=?(0) by T x T and so consists of two isolated points. They
are the two classical vacua. At the origin the perturbative lagrangian is the same
as (2.205), except that A should now be viewed as a perturbation 4 = Ag+a of a
trivial connection; « is an (iR @ {R)-valued 1-form on M. We use 4y to construct
a trivializing section of the hermitian line bundle, and so view ¢ as a map M — C.
Then the perturbative lagrangian is

1 1 .
(2:207) Lo = (|l dg+a- 9112 = 5 ldaf® + S (wP0) — 1811 (1 = 191%)? = dp ) ld"|.
From the quadratic part of Ly we read off that ¢ is massive (with mass 1), 9 is
massless, and « is massless. The entire gauge group T x T is unbroken.

Now we expand around ¢o = 1, which is most easily accomplished by substi-
tuting ¢ = 1 + ¢ into Lg: ‘

L= (ld§+a (1491 - 5ldaf? + S (wP¥)
— I+ B (1= L+ %)% = (1 + B |d°z
= (14612 - Fldef? + 5 (@Pw) - 4(Re P

— Y+ ||y a2||2) [d"z| + higher order terms.

(2.208)

In the last line we wrote only the quadratic part; it contains the information about
masses. Also, we wrote o = {a;,a2); the last term is the norm square of a -
1 = a1 — 2. The imaginary part of the complex scalar field is gauged away by
constant gauge transformations (which preserve the trivial connection Ag). Thus
the only scalar field is the real scalar field Re ¢ with mass square 4. The spinor ¥
is now massive with mass 2 (and so mass square 4). Set??> v/28 = o) — a2 and
V27 = @y + a5. Then the quadratic part of the lagrangian involving « is

1 1
(2.209) —51481° = Slav” + 2081

21 The precise spinor representation S of Spin(1,n — 1} is not crucial, but we do assume that there
is an invariant skew form A2§ — R so that we can write a mass term.
22Here the massless field «y is canonical, but the massive field 8 is somewhat arbitrary.
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So we see that 3 has mass square 4 and v is massless. Note that + lies in the Lie
algebra of the stabilizer of 1 € C, which is the diagonal T C T x T. This is the
unbroken gauge group. The appearance of a mass for § is an example of the Higgs
mechanisin.

In general, if H is a group of global symmetries of £, then H acts on the space
of static classical solutions Mpy. For ¢ € My we have the subgroup Stab¢ C H
which fixes ¢. We say that ¢ spontaneously brecks H down to Stabg, and that
Stab ¢ is the group of unbroken symmetries. (For example, we asserted above that in
Minkowski spacetime Poincaré symmetry is unbroken at a vacuum solution.} If ¢ is
a vacuum solution, the homogeneous space H/Stab ¢y is embedded in V=10) by
the H action. Then the perturbative scalar fields with values in h/stab gy C TpoX
are massless. These fields are called (classical) Goldstone bosons. They are massless
scalar fields guaranteed by the symmetry. Of course, there may be other massless
scalar fields which are not related to symmetry.

Example 2.210. Consider a theory of a complex scalar ¢: M — C with poten-
tial (2.206). Now there is a global T symmetry and the moduli space consists of
the origin and the unit circle. We do not divide by the global symmetry; rather, at
a classical vacuum on the unit circle there is a single (real) Goldstone boson field
due to the symmetry. At the origin T acts trivially and the entire complex scalar
is massive.

A soliton is a static classical solution whose energy is not a global minimum.
In many examples the space &y of finite energy static fields is not connected,
and a soliton is a minimum energy configuration in a component where the global
minimum is not achieved. For example, consider a scalar field ¢: M 2 - Ron
two-dimensional Minkowski spacetime with lagrangian density

(2211) L= (5ldf - V(9)) ld*al.

Suppose V > 0 and V~1(0) = {a,b}. Then the space of finite energy static fields
has 4 components: A static field ¢(t, z) = ¢(z) depends only on the spatial variable,
and the finite energy condition means lincl>° #(z) and lm ¢(z) lie in V71(0) =
r— T — 00
{a,b}. There are 2 vacuum solutions ¢(z) = a and ¢(x) = b. There are solitons
with lim ¢(z) = a, lim ¢(z) = b and also (anti-)solitons with lim ¢(z) =
T——00 r—oo Tt — 0

b, lim ¢(z) =a.
T—0O0

§2.11. Dimensional reduction

Suppose £ = L+ is a Poincaré invariant field theory on n-dimensional Minkowski
spacetime M™. We obtain a theory on M™ ! as follows. As usual let z0,... 2%}
denote coordinates on M™, and z°,...,z"%"% coordinates on M" !, viewed as the
quotient of M™ by translations in the 2"~ direction. Let {ﬁnﬁl denote the vector
field on F induced by the action of 8,_1, and define

(2.212) Frer = {9 € F: Lie(€n1)o = 0}.

These are the fields which are constant in the ™~ direction. We identify 7,
with a space of fields on M™~1. Then the dimensionally reduced theory is

(2.213) Ln1 =L@y € Q0 (Faor x M™H),
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A scalar field on M™ reduces to a scalar field on M™~1, but for fields of higher
spin the identification of F,, | with fields on M™™! is more complicated. For
example, a 1-form on M™ reduces to a I-form plus a scalar field on M™~1.

More generally, if M — M’ is a fiber bundie with a section of Det T(M/M",
then we can reduce a fleld theory on M to a field theory on M. Instead of restricting
to fields constant along the fibers (dimensional reduction) we can also include fields
which fluctuate along the fibers (compactification); from the point of view of M’
there is an infinite humber of such fields.

Appendix: Takens’® acyclicity theorem

This appendix gives the proof of Theorem 2.16. Our setting is slightly different
from that of Takens, who works on the infinite jet bundle Jgym of E/M. To go
from local to global results, he uses that if 0 — Fy — --- — Fn — Fpy1 is an
exact sequence of sheaves, with F; soft for i < n, the sequence of groups of global
sections is again exact. In order that the space of “local” lagrangian densities, or
forms, be a space of global sections of some sheaf, he is led to define “local” to
mean “depending only on k-jets of fields and their variations, where & is bounded
locally on Jgf'/ m - For us, k is globally bounded, and the sheaf theoretic argument
has to be unraveled, replaced by a direct use of partitions of unity.

We fix a submersion £ — M. For fixed p > 0, we are to prove that the
corresponding complex (" d) is acyclic, except in top degree. It will be more
convenient to prove a more general statement. Fix vector bundles V... ,Vpon E.
Let V be their product. The complex (Q?o’:, d) for V — M is the complex of forms
@ on M depending (locally) on a section ¢ of E/M and on sections &, ... Ep of
¢*V;. For some k, the value of af¢, £, .. -,€p) at m € M should depend only on
the k-jet of ¢ and the k-jet of £, ... »&p at m. We denote Qioc ynutti the subcomplex
consisting of the & depending R-linearly on each of &, ... +&p. The following is a
restatement of Theorem 2.16.

Theorem 2.214. Ifp > 0, the complex ioc,multi 25 acyclic except in top degree.
If we take all V; to be the relative tangent bundle Tg/p;, then (2%, d) is a direct

loc?
factor of Qo muiic it is the antisymmetric part for the action of the symmetric
group S,. The acyclicity of (Qf7,d) for p > 0 (except in top degree) hence follows

loc?
from the theorem.

Proof. For g in E, with image mo in M, one can choose (a) a neighborhood U
of mg, and a local coordinate system z: U — RY, {b) a neighborhood W of e,
a decomposition W = F x U and a local coordinate system F — R/ ,and (¢)
trivializations of the V; on W. In such a local coordinate system, o in Qjge multi can
uniquely be written as a finite sum

(2-215) a(@i€ry &) = oy, ($)IMEL... TG, .
In the formula, each n; is a multi-index (n;y, ..., n;q) and g% := a7t ... 071 is the
corresponding iterated derivative in the coordinate system (z1,...,z4). We define

as usual |n;| = 3~ n;;. For some k each Otny ... n, depends only on the k-jet of ¢ and
takes values in @V," ® Q) it is a section on J*(E/M) of the tensor product of the
inverse images of the V;* and of Q},. We write F. for the increasing filtration by
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5" |n:|. It does not depend on the local coordinate systems used. The differential
d maps Fy to Fyy1.

Replacing in (2.215} each 8™ by its symbol in Sym!™!(Ts;), we obtain the
following deseription of Gr7(Qf _ _.1.;)- It is the inductive limit in & of the space
of sections over Ji ,, of the vector bundle

(2.216) ®vck Sym*(Ths) @ VY @ 2,

with each factor to be replaced by its pull-back to JE M The degree N is the sum

of the symmetric algebra degrees.
The differential d induces Grg (d): Grh (e mus) = CTi1 (U mus)» which

loc,multi
is linear over the functions. It is deduced from a morphism of vector bundles on M

(2.217) (% Sym*(TM)) ® Q0 — (% Sym* (TM)) & QHI

by pull-back and tensorization by ®V*. Locally on M, for {e;} a basis of Ta,
(2.217) is

(2.218) s®@ar— Z ((

P
E 1@ - ® (e at it place)®---®1)'s)®ej/\a.
i

i=1
The crux of the matter is now the following

Lemma 2.219. On M, for each integer N, the complex of vector bundles with
components

(part of degree (N + q) oft%Sym*(TM)) ® %,

and differential the morphisms (2.218) of vector bundles is acyclic, except in top
degree.

Proof. This is to be checked point by point. One then recognizes in the complex
a variant of the Koszul complex, and one can write an explicit homotopy. In more
detail: for T' the tangent space at a point of M, one has to consider a complex with
components

(2.220) (c% Sym® (T)) ® AU(TY) .

One has %Sym*(T) = Sym* %T). If we identify T with its image AT C %T by

the diagonal embedding, and if S is any supplement, we have
(2.221) Sym® (% T) = Sym™(S) ® Sym*(T) ,

and the complex (2.220) becomes the tensor product of Sym*(S) (of cohomological
degree zero) by the complex whose component of degree g is

(2.222) Sym*(T) @ A9T"
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and whose differential is

(2.223) dis®a)= Z(ejs) ® (&) ra)
J

for e; a basis of T and &’ the dual basis of 7.

The complex (2.222) is a version of the Koszul complex. It is multiplicative in
T: for T = T' @ T", it is the tensor product of the similar complexes of 7' and
T". To check its acyclicity except in top degree, it hence suffices to check it for
dim(T") = 1, in which case the complex reduces to

(2.224) R[z] ~= R[z]

in degree 0 and 1. One can also write an explicit homotopy H: for P and a
homogeneous, define H(Pa) to be 0 if P is of degree 0 and a of maximal degree
dim(T). Otherwise

(2.225) H(Pa) = (Z 8. (P)® L(ej)a) /(deg P +dim T — deg )

One checks that dH + Hd is the identity minus the projection to the part of bidegree
0 in P and dim(T'} in a.

Lemma 2.219 implies Theorem 2.214, as the acyclicity (except at the top) of
an associated graded to foc,mu implies the same acyclicity for Sioc,mulei itself.
From the proof of Corollary 2.183 one can in addition deduce a local formula to
attach to o such that da = 0 a § for which o = dB. Indeed, let us cover E by
open sets W, for which one has local coordinates as in (a}, (b), (¢) before (2.215).
On each W, a choice of local coordinates splits the filtration F, and the proof of
Lemma 2.219 gives a homotopy operator H, of filtration —1 such that outside of
top degree Id — (dH; + Hqd) is of filtration —~1, i.e., maps Fiy to Fy_1. Let x; be a
partition of unity subordinate to the covering W, and define H{a) = 3 He(xeo).
We again have Id — (dH + Hd) of filtration —1. If o is in Fiy, and closed,

(2.226) o =a—~(dH + Hd)a = a - d(Ha)

is in Fy_,. One has @ = dHa + o/, o is closed, and repeating the argument for
o, one eventually obtains 3 with a = dg.



CHAPTER 3
Free Field Theories

§3.1. Coordinates on Minkowski spacetime

Let M denote affine n-dimensional Minkowski spacetime. Fix a coordinate sys-
tem z°%, z',..., 2"~ with respect to which the metric is

(3.1) g = (dz®)? — (dz)? — ... = (dz" 12

Note that z° = ct for ¢ the standard time coordinate. The wave operator on
functions is

O=(-1)"""'xd=xd

(3.2) =~
L Rl e
= g""0,0.,
where we use the notation
(3.3) 8, = %.
The canonical density is
(3.4) |d*z| = |dz® Adzt A AdZ™TY.
For a function f we have
(3.5) dxdf =0f |d"z|.

The symbol ‘g’ usually denotes the Minkowski metric, though occasionally it
denctes a general metric as is clear from the context.

Lagrangians in Minkowski spacetime are real (see Chapter 7). Thus equations
involving complex quantities have complex conjugate equations which also hold,
and which we usually omit.

We define global charges by integrating over the spacelike submanifold {z° = 0}
with canonical density

(3.6) |d" x| = |dat A--- Adz™T.
Indices w, v, ... run from 0 to n — 1; indices ¢,7,... run from 1 ton — 1.

191
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§3.2. Real scalar fields

A real scalar field is a map ¢: M — R. The free lagrangian for a field of mass m > 0
is

_Jl 2 m? 2] (g
L={5dgl* - - ¢} |d"a|
2
(3.7) = S dp Aedd — - gl

1 m?
[ N 737 g2 n
— {59 8,0 0,0 — 26"} |d"a.

It is instructive to check the units in the lagrangian. Comparing the two terms we
see that m must have units L™! (to match the units of d). In a relativistic quantum
theory we can replace o by me/h; then m has units of mass. Of course, in that
context we usually work in a natural system of units with ¢ = i = 1. In that case
¢ has mass dimension (n — 2)/2. The differential of L along the space of fields ¢ is

(3.5) §L = —dbg A xdp — m2 ¢ 5 |d"z)
= —6¢ A {d*dp+m°¢|d"z|} — d{6¢ A xdg}.
So from (3.5) the classical field equation is
(3.9) (O+mHp=0
and the variational 1-form is
{3.10) ¥y = A xdep.
The local symplectic form w = §v is
(3.11) w = *d8¢ A 6.
Equation (3.9) is most easily analyzed through the Fourier transform

k) = fv VT 3(z) |dra),

(3.12) (2m)/2
fv_ etV 1kl gk | k.

40) = Gy
Then equation (3.9) transforms to
(3.13) (—Ik[* + m?) (k) = 0.

Thus the Fourier transform ¢ is supported on the mass shell
(3.14) Om = {k € M : [k]* = m?}.

Note that since ¢ is real we have

(3.15) H(~k) = p(k).
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Write k& = (ko,...,kn_1); then k; has units L~! and is called the wave number.
The frequency w = kyc has units 771,
We can formulate the theory for an arbitrary metric g on M as

1 2
(316) Lg - (59‘“" 3,,;(?5 5y¢ - T%'_ ¢2) P'g(x):

where p, is the canonical density associated to the metric g. Now a computation
shows

(3.17) bpig = %g‘l -0g pg = —%59’1 "9 K
where

(3.18) b~ 9= 60" guu.

So the energy-momentum tensor, as defined in (2.176), is
(3.19) Ty=d¢-dd ug — gLy

In local coordinates we write (see (2.177))

12, m o
(3.20) Tur = 0ub O + (=5 1d8)> + —-6%) g

Specialize to Minkowski spacetime. The energy density Tho [d"~'z| is given by
1 1 m?
e 2, 1 82 2
(3.21) Too = (2(300’3) +3 ;_1(31115) + 5 ¢%).

Note that this is nonnegative and only vanishes for ¢ = 0. Minus the momentum
density Ty |d"~'z) is given by

(322) T;'o =8,-¢80¢, = 1,2,...,71— 1.

By Proposition 2.190 this agrees with the energy-momentum tensor (2.160) given

by the canonical Noether currents of translations, as we now verify directly. The
vector field &, induced by 8, is

o(€u)dz” =6,
L(&p)é{b = - p¢-
Then minus the associated Noether current is

()L +7y)=—L xdz” + 0,0 +do
= (_g.uuL + 3ﬁ¢au¢) * dz”,

(3.23)

(3.24)

where g, is the Lorentz metric.
The “trace” of T is

(3.25) T = (1- )9"”’3 $0.9+ —¢2

which vanishes if n = 2 and m = 0. Thus the theory of a massless scalar field is
conformally invariant in 2 dimensions.
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§3.3. Complex scalar fields

Our convention is that if ‘(,-)’ denotes a real bilinear form, then it also denotes
the extension to a bilinear form over the complex numbers. If (-,-) is a real inner
product on a real vector space W, then the associated hermitian norm on the
complexification We is

(3.26) wr— (D, w).
Over the reals or complexes we always use the notation
(3.27) fwl? = {w, w).

A complex scalar field is a map &: M — C. The free lagrangian for a field of
mass m > 0 is

(3.28) = { (d%, d®) —~ m*(T, qa)} d"z].

This theory is equivalent to a theory of two uncoupled free real scalars ¢, ¢o; simply
set

q)=¢‘1+\/—_1¢2
—a

Then (3.28) reduces to the sum of two copies of (3.7). The variation of (3.28) is

(3.29)

(3.30)
6L = {—(d6® A dD) + (d A d6B) — m*6T & — m2F 69} |d"z|
= —60{d*d® + m*®|d"z|} — 6&{d * dF + m?F |d"z]} — dy

for the variational 1-form

(3.31) v = 6P A +dD + 5§D A xdD.
So the equation of motion is

(3.32) O+ mHd =0.

The analysis of (3.32) proceeds as in the real case. Note the significant difference
that there is no reality condition {3.15)} in the Fourier transform.

The circle group T C € operates on ® by scalar multiplication, and this sym-
metry manifestly preserves the lagrangian. (In the language of §2 it is an “internal”
symmetry.} The corresponding infinitesimal symmetry £ is

(3.33) (£)6® = V/—-19.

(Of course, we also have the conjugate equation ¢(£)6® = —y/—1 &.) So the
associated Noether current (see (2.88)) is

je = &)L +)

(3.34) = V=1{® +d® — T * dd).
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The corresponding global charge is

(3.35) Qe = V-1 (BB — 85 ®) |d" x|
{=0=0}

The energy-momentum tensor is

(3.36) T,=d%-d®u,— gL,

or (see {2.177))

m2

(3.37) T, =0,50,8 + (—%(c@, a%) + (%, 9)) g

We evaluate the energy-momentum tensor for a plane wave
(3.38) ®(x) = aet*@),

where k = (ko, - .., kn—1) is in the dual of V, the vector space underlying M., We
restore the constants necessary to treat m as a mass, so replace m by mc/A. Compo-
nents of the wave number (ki,...,kn_1) have units L~! and the frequency w = koc
has units 7—!. The complex constant a has units v/M/TL" 4. By the equation of
motion (3.32), we have

{3.39) 1k|? = m2c®/R%.
Then {3.37) reduces to
(3.40) T, = |al*kyk, .

£3.4. Spinor fields

Let V be the vector space underlying Minkowski spacetime M, and let Spin(V')
denote the Lorentz group. Suppose S is a real spin representation of Spin{V'). This
means that there are symmetric pairings

r.s"es8 —Vv

(3.41) .
rses —V

which satisfy a Clifford relation. Let {e,} be a basis of V and {f°} a basis of S.
We use the dual bases {e#}, {fo} for V*,S*. Write

F(fa: fb) = F{:be#:

(342) F(fe, £4) = Frobey

then the Clifford relation is

(3.43) [rably 4 TvebTE = 25962
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Let IIS denote the odd vector space which is S with odd parity. A spinor fleld
(spin 1/2 fermion) is a map ¢: M — I1S. With respect to the basis we write

(3.44) P(x) = Palx}f*.

A dual spinor field is a map A\: M — IIS*. The analysis of spinor fields below
adapts easily to dual spinor fields.
A mass pairing for spinor fields is a skew-symmetric pairing

(3.45) M: A’S — R

Nonzero pairings need not exist.? If there is a nonzero mass pairing M, then there
exists a normalized skew-symmetric pairing

(3.46) eSS —R;
the normalization condition is
(3.47) f\,uab - Pgrbl Eaa'l ebb;-

For simplicity assume that ¢ is irreducible. Then we can write

(3.48) M = me, meR.
We write
(3.49) PMip = M .,

where the name of a bilinear form is written between the arguments. The kinetic
term in the free lagrangian is the Dirac form

(3.50) YRy = TH(, 8u1p) = D0, 8, 4hs.

Equation (3.50) defines a symmetric (in the graded sense) bilinear form up to
an exact term, so it is exactly symmetric after integrating over M, assuming no
contribution at infinity. The free lagrangian is

(3.51) L= {%wm - %¢M¢} "z,

The variation of L is

(3.52) 5L = {%6¢JD¢+ %w P&y — 5 M)} ldz).
Now

""b Déw = fwab?% apé'lnbb

(3.53) . .
= —I"““ba#?.ba oy + F,uaba# (¢a 61!)5)5

Z3For example, for n = 2 take S to be & half-spinor representation. It is one-dimensional, so

A2S=0.
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and so
(3.54) L = 6¢(p¢ M w) d"z| —

for the variational 1-form

1-
7= 3T, 6) BNl
{(3.55) 1.
= 5(1“““”% 61ps) t(8)|d" x|

Now M determines a map § — S$* and ' a map § — V ® §*, so that both
M and Jp define operators from spinor fields to dual spinor fields. We use the same
letters M, I? to denote these operators. Then the equation of motion is

(3.56) Dy = M.
We analyze (3.56) via the Fourier transform (3.12):
(3.57) V=1 THebk (k) = M®P4y(k)  for all a.

Multiply both sides of (3.57) by V=1T% k,. After some simplification using (3.43),
(3.47), and (3.57) we find

{3.58) k|24 (k) = m24ho(k) for all c.

Thus the Fourier transform of a solution is supported on the mass shell O,,. Fur-
thermore, equation {3.57) defines a subbundle IS’ of the trivial bundle O, x IIS,
and 3 is a section of T1§". The rank of 5’ is?! dim $/2. Again we have a reality
condition (3.15). For m > 0 the subgroup of Spin(V') which stabilizes k € O,,, is
isomorphic to Spin{n—1); the fiber of $' at k is a spin representation of Spin(n—1).
For m = 0 the stabilizer has reductive part isomorphic to Spin(n — 2), and the fiber
of 8’ at k is a spin representation of Spin(n — 2).

In some cases the minimal real spin representation S admits an action of C
or H commuting with Spin(V). Then if T is sesquilinear we have an action of T
or Sp; which preserves the kinetic term ¢ /4. (The mass pairing (3.45) may break
this symmetry.) If there are multiple copies of the spin representation, then there
is a larger compact group of manifest symmetries which rotate the various copies.
Each such symmetry has a Noether current which may be computed from (3.55).

As for the energy-momentum tensor we first compute minus the canonical
Noether current associated to translations, as in (2.160). Translation , induces a
vector field £, with

e da” = 6
(Eu)0Y = =0u¥.
Using (3.51) and (3.55) we compute —u(£,)(L + ) = ©,, * dz”, where

(3.59)

1. 1 1
(3.60) O = ST YaButoguo — (5V P — SPMY)Gs.
This is not symmetric in u, v (as expected).

24There is an exceptional case: For a chiral spinor field in 2 dimensions equation (3.57) says that
the Fourier transform is supported on half of the forward lightcone. In other words, a solution to
the Dirac equation is either left- or right-moving, depending on the chirality. See [[-Supersolu-
tions, §2.6] for the precise formulas.
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§3.5. Abelian gauge fields

We restrict ourselves to the massless case. In 3 dimensions the Chern-Simons
functional serves as a mass term (see Problem FP4 of [I-Homework]). In any
dimension the Higgs mechanism can be used to introduce a mass. For another
discussion of this material, see the solution to Problem FP3 of [I-Homework].

The standard physical interpretation (Maxwell's equations) is discussed in §4.1.
The basics of principal bundles and connections are reviewed in §4.2.

‘We choose as gauge group the circle group T of unit norm complex numbers.
On the Lie algebra Lie(T) = +/=1R we have the positive definite inner product

(3.61) {a,b) = —~ab, a,bev—1R.
The field in a gauge theory is a connection A on M with structure group T, and

we work with fields up to gauge equivalence. The space of equivalence classes is a
real affine space. The lagrangian is

L= —%(FA AxF4)
(3.62) = —% |Fal*1d" 2|
= —H{Fus Fur) 99" d"al,
where the curvature is

1

(3.63) Fa=3

Fudxt Adz”.

Note that since

(3.64) «(dz* Adz*) = g** ¢"" L, V(B )|dx],
we have

1 , '
(3.65) *Fa = 5P g™ g (8 )iy )|d" 2|

Now 8 A is an imaginary l-form on F4 x M, and
(3.66) §F4 = —déA;
the sign comes from commuting § past d. Thus the variation of the lagrangian is

SL = (dSA A *F )

(3.67) = d{6AA*F4) — (AN d* Fa).

Hence the canonical 1-form is

¥=—{6AN*F4)

3.68
(368) =—(6A,, F.s)g"7g"" 1(8,)|d" =
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and the classical equation of motion is

(3.69) dx Fp =0,
or
(3.70) g O, F,, =0 for all v.

This is an affine equation for A, and since gauge transformations act by an affine
action, the moduli space M of classical solutions modulo gauge equivalence is an
affine subspace of the space of fields modulo equivalence. The local symplectic form
is

w={6AA*dbA)

31
(371) = (8,64, — 8,8A,) A 6As) 97 g 1(D,)|d |-

Of course, the detailed analysis involves choosing an origin, so we may as well
from the beginning work with the vector space of translations associated to con-
nections. Hence in this paragraph only we take the field to be a real 1-form a up
to addition of an exact real function. The lagrangian is

1
(3.72) L=~3daAsda = —-;—|da|2 4"z,
and the equation of motion is

(3.73) d*da=0.

As usual, we consider the Fourier transform & = &,dz" on V*. The vector space
of classical solutions is the first cohomology space of the complex

(3.74) QO(M) L QM) 222 0l (M).

On the Fourier transforms we have

(3.75) df (k) = V=1 f(k)k

‘ « d * da(k) = |k[2a(k) = (a(k), k)k.
An easy argument shows that the first cohomology is isomorphic to the collec-
tion of Real functions {&: lightcone — V* ® C} on the lightcone which satisfy
{&(k), k) = 0 modulo the set of functions {&(k) = F(k)k}, where f ranges over the
complex functions on the lightcone. (The Reality condition is that of the Fourier
transform.) The subgroup of Spin(V') which stabilizes £ has reductive part isomor-
phic to Spin(n — 2), and & is a section of a bundle whose fiber at k is the vector
representation of Spin(n — 2).

Return now to the abelian gauge field and lagrangian (3.62) To compute the
energy-momentum tensor, we first compute the Noether current j, of minus trans-
lation by 8, (see (2.160)). Note that 8, induces the vector field é“ on the space F4
of fields defined by (see (4.40))

(3.76) £ A= ~1(B,)Fa.
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Let £, =, +&,. Then

j.u = _"'(8,(4 + é,u)(L + 7)

1
=~ 5O Fs A 3Fs = FANU(8,) x Fa)

(3.77)

We find after some computation that
1
(3.78) Our = ~(Fiups Fuo) 6°° + 51 Fal gy,

where ©,,, is defined in (2.160). Notice that it is symmetric.
We can compute the energy-momentum tensor more directly using the alter-
native definition (2.176). Couple the lagrangian (3.62) to an arbitrary metric g:

1 o
(379) Lg = _§(Fuwchr)g#pgy ”g(z)‘

Using (3.17) and differentiating with respect to ¢~! we find the energy-momentum
tensor to be (see (2.177))

1
(3.80) T_uj/ = —(Fm:,, Fucr)gpo + EIFAPQ,(W’

which agrees with (3.78), as it must by Proposition 2.190. In (4.8) we rewrite (3.80)
in terms of the electric and magnetic components.

For a 1-form field o the energy-momentum tensor computed by differentiating
the metric is again (3.80) (where we interpret F,, = d 0, — 8,0,,). However, the
canonical Noether current j, differs from (3.77) since the induced vector field £,
acts with an additional term over {3.76):

(3.81) ua = - Lie(8, ) = —1(8,)da — de(8,)ar.
Then j,, picks up an extra term
(3.82) —du(8 ) A rda = —d(e(Bu)a - xda) + (O, ) - d * dav.

This is written as the sum of an exact term and a term which vanishes on-shell.
The “trace” of T,

(3.83) ¢ Ty = (g —2)|Fal?,

vanishes when n = 4. This says that the lagrangian (3.62) is conformally invariant
in n = 4 dimensions.



CHAPTER 4
Gauge Theory

§4.1. Classical electromagnetism

As in §3.5 we consider an abelian gauge field on Minkowski space M. To make
contact with the usual formulas of electromagnetism we take the gauge group to be
the multiplicative group R>° rather than the circle group T. (In classical physics
the electric charge is not quantized, so this makes more physical sense.) Thus the
gauge field A is a connection on a principal R>%-bundle. The curvature Fy is a real
2-form. The formulas of §3.5 hold, only now (3.61) is replaced by

(4.1) {a,b) = ab, a,beR.

We work in any dimension n, though of course the electromagnetism of our
world is n = 4. Choose a splitting M = M! x N of Minkowski spacetime into
time x space. For now N can be any Riemannian manifold. Let x0 = ct be the
standard coordinate on M'. Define the electric and magnetic fields

E, c QYN
(4.2) 4 2( )
Ba € Q3(N)
by
{4.3) Fy=Bs—dthEa4.

E,4 and B, depend on time £, but neither contains di:

(4.4) B)E4 = (Bo)Ba = 0.
Let *n be the Hodge star operator for the positive definite metric on N. Then if
* is the Hodge * operator on M! x N (with its usual metric of signature +——---),
we have
1
(45) *FA=E*NEA +Cdt/\*NBA.

So the lagrangian (3.62) is

1/7|Eal?
(4.6) L=§(' c‘;" ~|Bal) ld"),

201
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where the norms of the forms E4, B4 are computed in the positive definite met-
ric on N. A multiplicative constant is usually inserted in L, depending on the
units used; we omit it.2*> The equation of motion (3.69) together with the Bianchi
identity d¥4 = 0 comprise Maxwell’s law in empty space:

B

dBa =0 dE, = ‘33_tA

(@7) SE
d*NEAL‘O Czd*NBA=*N BtA

The initial components of the energy-momentum tensor (3.80) reduce to

_ 1 /|E4)?
Too = 5( 2

(4.8) n—1
~Tio = > _(Ba)ii(Ba)j,
i=1

+1Bal?)

the classical expressions for the energy density and the Poynting vector, while
the space components T;; comprise the Maxwell stress tensor. (Recall that —Tio
integrates to the field momentum.)

We can couple the electromagnetic field to a current J € Q7Y (M). The
lagrangian density is

(4.9) L=—%FA/\*FA+J/\A.

The second term is not well-defined in general, since A is a connection, not a 1-form.
In fact, if J is a conserved current

(4.10) . dJ =0,

then we can write J = dK and so by Stokes’ theorem

(4.11) jJ/\A=—f KAF4
M M

is well-defined, assuming suitable decay at infinity. (We discuss such “topological
terms” in Chapter 6.) A typical conserved current is the Poincaré dual of a closed
curve in M, in which case (4.11) is the holonomy of A around the curve. In
coordinates we write

(4.12) J = JFu(d,)ld" x|,

where JO = ¢pis ¢ times the charge density p and minus the spatial components —J*
comprise the current density j:

{4.13) J=cp|d" x| - cdt A j.

251n the “mks” system of umits, the constant is written egc? = 107 /4.
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We can treat J as an external field, which is fixed, or as a dynamical fieid which
varies. For example, we can take J to be Poincaré dual to the path of a dynamical
moving point charge of rest mass mg and charge ¢. In that case we add the kinetic
term (1.22) for the point particle to the lagrangian. Then the fields are the particle
x: R! — M and the connection A on M. The classical action is

dx Tz 3
— | dr| - / " A —/ =Fa AxFy.
dT‘ ! | 7 g8 M 2 A A

In these formulas we compute the action for the proper time interval [T;,T2] C R.
The second term should be interpreted as a multiple of the logarithmn of the parallel
transport of A along a piece of the path z; see §6.1. It is not a real number, but
rather lives in a real torsor (depending on the endpoints). Note that the path is
oriented.

The equation of motion for the lagrangian (4.9) is

T2
(4.14) S= moc
(3

(4.15) dxFq=J
Rewriting in terms of £ 4, B4, p, 7 we have

din Eq = C2p Idn-11:|

(4.16) OF 4

ot

AdxyBa =%y + 4,
which are two of Maxwell’s equations. (The top two equations in (4.7) remain
unchanged.)

The action (4.14) is invariant under reparametrizations of the path z. We
compute the equation of motion ignoring boundary terms. The equation for 4 is a
special case of (4.16) where the current J is Poincaré dual to ¢ times the path x.
The variation of the first term with respect to the path z—after integration by
parts—leads to a contribution to the equation of motion of (see (1.25})

(4.17) O (2 ),

ot V1—vi/e?

where v is the velocity measured in our fixed system of coordinates. To vary the
second term with respect to x, we use the formula that the variation of the holonomy
is the integral of the curvature evaluated on the variation of the path. Thus the
contribution of this term to the equation of motion is the vector associated via the
metric to the 1-form

(4.18) qu(8/0t +v)Fa = gE4 — qu{v)Ba.

{We omit the dt component of the 1-form.) So the equation for x is

(4.19) %(\/1”1_—"1;_1’2/7) = ¢(Ea — t(v}Ba)",

‘*’ denoting the dual vector. In four dimensions this is the Lorentz force law.
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£4.2. Principal bundles and connections

In this section we establish some notation and review standard notions. Let M be
an arbitrary (super)manifold. All vector fields are even.

Let P — M be a principal bundle with structure group a Lie group G, often
called the gauge group. If M is a supermanifold, then so is P. We take G to act
on the right/.__]::_‘flgments ¢ € g in the Lie algebra of G induce vertical vector fields ¢
on P, and [(1, (2] = [¢1, €2}

Suppose V is a space with a left G action. In many interesting cases V is a
linear space and the action is linear, but it need not be. There is an associated
bundle V7 — M whose sections are equivariant maps f: P — V. So f satisfies

(4.20) flogy=g7"' flp), peP ge€gG,

where ‘-’ denotes the action of G on V. Write g = exp(#{) and differentiate with
respect to ¢ to find

(4.21) (f=-C-f, (eg,

where now ‘-’ denotes the infinitesimal action of g on V.

The bundle associated to the adjoint action of G on g is the adjoint bundle
9 = ad P = P x¢ g. A section of the adjoint bundle is then a map e: P — g with
€(pg) = Ady-1 e(p). Using the infinitesimal g action on P we can identify ¢ with a
G-invariant vertical vector field € on P. Namely, define €, to be the vertical vector
corresponding to the infinitesimal action by e(p). Then by (4.21)

(4.22) é1(e2) = —[e1, €2

and the corresponding vertical vector field is [é1, é2]. The fiber of ad P at m € M
is the Lie algebra of infinitesimal automorphisms of the fiber of P at m. It acts on
the left, which explains the minus in (4.22). Equation (4.22) is a special case of the
following: If f: P — V is a section of an associated bundle, then

(4.23) = —e-f.

{Compare (4.21).)

There is also an adjoint bundle of groups P x G — M. Sections of this bundle
act as automorphisms of P, often called gauge transformations.

A connection on P is a G-invariant distribution on P which projects isomor-
phically onto TM. Thus a vector field 7 on M has a horizontal lift 7 which is a
G-invariant vector field on P. Equivalently, a connection is encoded in a g-valued
1-form A € Q}L(g) which satisfies

U$rA =¢, (ep

(4.24) ’
RA=Ad,-1(4), ge€Qq.

Here R,: P — P is the (right) action of g on P. The curvature F4 € Q%(g) is

(4.25) P}=dA+%MAAL
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It follows from (4.24) that Fa € ¥%,(ad P) is a 2-form on the base M with values
in the adjoint bundle. If 51,7, are vector fields on M, then

(426) - ([ﬁl,ﬁZ] - [7?1}"72])
is a G-invariant vertical vector field on P, and by (4.25) it corresponds to the section

(4.27) Un)dm)Fa = —u([f, 72]) A

of the adjoint bundle.
Let e: P — g be a section of the adjoint bundle and € the associated G-invariant
vertical vector field. Then for any vector field 5 on M,

(4.28) [7, €] = fie.

A connection A on P induces a covariant derivative V on any associated bun-
dle VP = P xc V. For a vector field n on M, and a section f: P — V of VP,

(4.29) Vol =iif.

The covariant derivative may be viewed as an operator da: Q°(VP) — QY(VF),
defined by

(4.30) daf = (d+ A)f.

If G is a linear algebraic group, then we have the Tannakian statement: A connec-
tion on P is equivalent to a system of connections on all associated vector bundles
which is compatible with the tensor product of representations.

Automorphisms of P—gauge transformations—act on connections by pullback.
An automorphism ¢: P — P may be represented by an equivariant map g: P — G,
defined by

(4.31) o(p) =p- 9(p)-

Then if A € 2h(g) is a connection, we have

(4.32) ¢"A=Ad,1 A+g ldg,

where g~ !dg is the pullback by g of the Maurer-Cartan form on G.

The Bianchi identity is simply the Jacobi identity for horizontal vector fields
on P:

(433) [[vm H vﬂz]: v‘i’?s} + [[vm: vﬂa]?vm] + [[vn:nvm]:vnz] = 0
Equivalently,
(4.34) daFa=0,

where da: Q3,(ad P) — Q3,(ad P) is the extension of the differential d using the
connection A.
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The set of all connections on P is an affine space .Ap. One sees this easily
from (4.24), which are affine equations. The associated vector space of translations
is £2},(ad P). The group Gp of gauge transformations acts on Ap on the left using
pullback by the inverse (or pushforward of the associated horizontal distribution).

Let Aut P denote the group of all diffeomorphisms ¢: P — P which commute
with the right G action. Such a ¢ induces a diffeomorphism of Af, and there is an
exact sequence

(4.35) 1—@p — Aut P — Diff M.

The last map may not be onto; the image is the subgroup of Diff M which preserves
the topeological type of P — M. Also, the sequence {4.33) is not usually split.
Infinitesimally—at the level of Lie algebras—we do have a short exact sequence

(4.36) 0 — Lie(Gp) — Lie(Aut P) — X (M) — 0.

Furthermore, a connection A gives a splitting as vector spaces (but not as Lie
algebras): to a vector field n € X(M) we attach its horizontal lift 7.

It is often more geometric (and more physical) not to fix a particular bundle P.
Then instead of a single affine space of connections, we study the category Cp{(G)
of all connections on all principal G-bundles over M. A morphism in Cp(G) is an
isomorphism of principal bundles which preserves the given connections. The set of
equivalence classes Cps(G) may be identified as a disjoint union of spaces Ap/Gp,
where P runs over a set of representatives of topological types of G-bundles on M.
In a lagrangian field theory including connections, the category Cps(G) is part of
the “space” of fields.

Fix a bundle P. On the product bundle

(4.37) P=ApxP—Apx M

there is a universal connection A. Its restriction to {A} x P is A, and its restriction
to Ap x {p} is zero. It is straightforward to compute the curvature of A at (A4, m):
evaluated on 71, m2 € T, M and o), € 03, (ad P) we obtain

t(ne)e{m)Fa = t(m)(m)Fa
(4.38) dn(a)Fa = dn)a
t{an)iflcy ) Ep = 0.

These are equations for elements of the fiber (ad P),,.

The group Aut P acts on P {on the left) by the product of its actions on Ap
and P. The universal connection A is invariant under this action. Lagrangians in
gauge theory are gauge invariant functions {partial densities) on .Ap x M which are
computed from A, and the (Aut P)-invariance of A implies that such lagrangians
are invariant under subgroups of Diff M.

From (4.35) we see that Diff M acts on the space Cas(G) of equivalence classes
of connections. Also, the discussion after (4.36) shows that there is a canonical lift
of X'(M) to vector fields on the universal bundle P. First, if A € Ap is a connection
and 7 a vector field on M, then 1 acts on A using the horizontal lift :

{4.39) Lie(R) A = «(f)dA = (n)Fa.
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Since diffeomorphisms of M act on fields by pullback, the induced vector field é,,
on Ap is

(4.40) c,=—u(n)Fa  at A€ Ap.
Thus
(441) &y =—uMFa+n

is the vector field on Ap x M induced by 7. Its horizontal lift «f,, to P (using
the universal connection A) is the desired induced vector field on P. For vector
fields 11,72 on M, we compute

(4.42) [é’?néﬂz] = é[’?lmzl —da (FA (771:772))
{(4.43) [ﬁl:én'z] = [m,me] — Falm, )

Equation (4.42) asserts that the map 1 — &, is a homomorphism?®® up to infinitesi-
mal gauge transformations, as is evident from the sequence (4.36). Equation (4.43}
implies that if n; and 7, commute, then the symmetry &, commutes with ;1 up to
a gauge transformation. This is used in superspace formulations of supersymmetric
gauge theories, where the symmetry generated by the vector fields ¢, on super-
space commute up to a gauge transformation with the action of vector fields Do
used to build lagrangians.

§4.3. Pure Yang-Mills theory
The data which define a pure gauge theory are:

G Lie group with Lie algebra g

4.44
(4.44) () bi-invariant inner product on g

We work on Minkowski n-space M. The field in the theory is a connection A
on a principal G-bundle over M. As explained in §4.2, the collection of fields is
best regarded as a category. We write lagrangians which are invariant under gauge
transformations.

Recall (4.25) that for a nonabelian group the curvature F4 is a nonlinear func-
tion of the connection A. So nonabelian gauge theories are not free—the lagrangian
is not quadratic in the field A, For perturbation theory one introduces a coupling
constant (or several if G is a product of simpler groups). We simply absorb these
constants in the inner product (-, -}

The pure Yang-Mills lagrangian is given by the same formulas as (3.62):

(4.45) L= —%(FA/\*FA).

25When a Lie algebra acts on a manifold on the left we expect an antthomomorphism. But if
we view the space of vector fields as the Lie algebra of the group of diffeomorphisms, then the
induced bracket is minus the usual Lie bracket of vector fields.
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The manipulations following (3.62) are valid for arbitrary gauge groups, except that
we must replace d by d4 in the nonabelian case. Thus the equation of motion is

{4.46) da*xFy =0,
and the variational 1-form and local symplectic form are

T = —<6AA *F4),

4.47
( ) w= (6AA*dA5A).
Equation (4.46)} is called the Yang-Mills eguation. Of course, the connection A
always satisfies the Bianchi identity (4.34).

The discussion of the energy-momentum tensor carries over without change,
and formula (3.80) holds:

1
(448) T,ur/ = "'(Fy.p, Fua)Qpa + §|F|29#V'

Pure Yang-Mills theory is conformally invariant in 4 dimensions (see (3.83)).
The energy density is

1 2, 1 2
(4.49) Tho = 5 Z |F0,'I + 5 Z |Fij| 5
2 <3
where ¢,j = 1,...,n— | run over spatial indices. Therefore, the field configurations

of minimal energy are flat, and the moduli space of vacua on Minkowski space is a
point—the equivalence class of the trivial connection.

Fundamental lagrangians in physical theories are constrained by renormaliz-
ability. With that criterion there are a few terms one can add to the Yang-Mills
lagrangian (4.45) in dimensions 2, 3, and 4. These terms are topological in nature.
We often refer to them as “O-terms”.

In n = 2 dimensions suppose

{4.50) UY:g—R

is a trace on g, i.e., a linear map for which {{[e,b))) = 0 for all a,b € g. Then an
additional possible term in the lagrangian is

(4.51) Ly= 2—6:;((&))-

We include the constant # € R since this is the form in which this §-term is usually
written. There is a constant @ for each independent trace on g. On a compact
2-manifold M (or on the space of fields with finite action on Minkowski space) the
integral of (4.51) is locally constant on the space of fields. Thus La does not affect
the equations of motion. It does, however, enter into the formula for the variational
1-form. Namely, the variational 1-form for pure Yang-Mills plus Ls is

9
(4.52) = —(ANFa) + —(64).
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The local symplectic form and energy-momentum tensor are unchanged.

In n = 3 dimensions there is a Chern-Simons term; we discuss it in §6.2. It is
different than the f-terms (4.51) and (4.54): the Chern-Simons term is not locally
constant on the space of fields, and so does have a dynamical effect.

In n = 4 dimensions there is a f-term associated to an invariant bilinear form

(4.53) {h:seg —R

(The form need not be an inner product; in particular, it need not be identical
to (4.44).) The 8-term is

e

{4.54) Ly= 1672

{FanFa).

As with La, the integral of Ly is locally constant on the space of fields. The moedified
variational 1-form is

(4.55) v = —{6AN*F,) + a_fﬁ«M A Fa).

§4.4. Electric and magnetic charge

To begin, let spacetime be a product M = M 1« N. For a classical electromag-
netic field A, as in §4.1, the electric charge “enclosed” by a closed codimension 1
submanifold ¥ C N is

(4.56) EA(E)=L*FA =%L*NEA!

and the magnetic charge enclosed by a closed 2-dimensional submanifold & C N is

(4.57) B4(Z) =‘-[£FA=‘/EBA.

In each case & need not be a boundary, hence the quotes around ‘enclosed’. We use
the same terminology for a general! spacetime M, which may also be Euclidean
then only the first equations in {4.56) and (4.57) make sense. For a gauge field with
general gauge group G, electric and magnetic charge are associated to a trace

{4.58) 7:9g—R

on the Lie algebra g:

£x(®) = [ +r(Fa),

(4.59) =

BL(Z) = ] {Fa).
=

Magnetic charge is an example of a topological charge; B} (Z) is a topological in-
variant which depends only on the topological type of the principal bundle under-
lying A. Hence it is a locally constant function on the space of fields—in particular,



210 P. DELIGNE, D. FREED, CLASSICAL FIELD THEORY

the space of classical solutions. It is cenfral in the sense that it Poisson commutes
with any other charge.

Electric charge is not generally conserved in a finite region. For example, in
classical electromagnetism it follows from (4.16) that the time derivative of the
electric charge enclosed by I is proportional to the integral of the spatial current j
through X. Also, if £ = 9Q then the electric charge enclosed by T is proportional
to the integral of the charge deusity p over Q. This is the usual statement of
Gauss' law. We generalize to field theory, where the current J is computed from
matter fields, as follows. We work with a gauge field A for a general gauge group G.
Elements ¢ in the center of g give infinitesimal global gauge transformations € which
act trivially on the space of connections: ds¢ = 0 for all A. From §2.8 it follows that
if L/, is a gauge invariant “matter lagrangian” in which A4 is a fixed background
field and which only depends on the 1-jet of the matter fields ¢, then the Noether
current j. for ¢ in the theory £/, is computed by differentiating L/, with respect
to A (see Proposition 2.149). We now consider A as a dynamical variable by adding
the Yang-Mills lagrangian to L’,. We write the signs for a Lorentz manifold.

Proposition 4.60. Let L',($) be the matier lagrangian described above, and set
1
(461) L(A,$) = —5(Fa A *Ea) + ().

Suppose £ is a spacelike (n — 1)-dimensional region with smooth boundary £. Then
if € is the global gauge transformation corresponding to a central element ¢ € g,
on-shell we have

(4.62) £59(z) = ]Q e

where T(¢) € g* is the trace { — {¢,() on g and j. is the canonical Noether current
for € in the theory L.

Remark 4.63. In Minkowski space we often take Q to be a spacelike hyperplane—
the limit of large balls—in which case I is the sphere at “spatial infinity” —the limit
of large spheres. Then the limit of E;(E) () is the total electric charge in the system.
Proof. There is a canonical variational 1-form - since the lagrangian only depends

on the 1-jet of the fields. Let £ = L+ = Ly + £'; be the total lagrangian. The
equation of motion is

{4.64) (DLy )0 + (DLHYIO = 0,

Evaluate this on ae, where o € 2}, is an arbitrary l-form and ae is viewed as a
tangent to the space of connections. By manipulations as in §3.5 we have

(4.65) {ae DLy p )M = —a A (e, dq % Fiu).
By Proposition 2.149 the second term is j.(«). Since o is arbitrary,
(4.66) Je ={e,dax Fp) = d{e,xF4q).

Equation (4.62) is the integral version of (4.66).

Formula (4.62) is not modified if we add a f-term (4.51) or (4.54) to {(4.G1).
(This has the effect of adding a multiple of F4 to *F4 in (4.65), but that extra
piece vanishes by Bianchi.} However, formula (4.62) is modified in the theory of
monopoles; see [II-Dynamics of QFT, §9.6].



CHAPTER 5
o-Models and Coupled Gauge Theories

§5.1. Nonlinear s-models

We begin with some preliminary remarks. First, if M is a manifold and £ — M
a real or complex vector bundle with connection V, then we form the twisted de
Rham complex

(5.1) 23, () 2==%, 0l (E) 2% 03, (E) <= -

It is not a complex in general, but rather
(5.2) d% = Ry,

where Ry is the curvature of V. Next, if ¢: M — X is a map between manifolds,
then d¢ € Q},(¢*TX). If now TX has a connection V, then

(5.3) dydp = ¢* Ty,

where Ty is the torsion of the connection V. We will apply this to the Levi-Civita
connection of a Riemannian manifeld; its torsion vanishes.
The data which define a nonlinear ¢-model are:

X Riemannian manifold

) V:X —R potential energy function

The feld in the theory is a map ¢: M — X; the space of fields is F = Map(M, X).
Diffeomorphisms of X act on F by composition, and diffeomorphisms of M act
on F using composition by the inverse. In each case the subgroup of isometries
preserves the lagrangian (5.6) below. There is a canonical evaluation map

(5.5) e FxM—X

which is invariant under the product action of Diff M on F x M. Infinitesimal
symmetries act on derivatives of the field ¢ via the Levi-Civita covariant deriva-
tive V. This introduces curvature terms into the bracket of infinitesimal symmetries
in general. Since e is invariant under Diff M, and since the lagrangian (5.6) below
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can be written in terms of e, it is easy to check that isometries of M are manifest
symmetries (as are isometries of X}.
The o-model lagrangian with potential is

L= {319 - 4V} id"al
(5.6)
- %(dq&A +dg) — ¢*V |d ],

Note that |d¢| is computed using both the metric on M and the metric on X. We
carry out the familiar analysis:

0L = (odd A xd) — (64, ¢" grad V) |[d"z|
= —d{ (8¢ A *dg) } — (8¢ A dy * dg) — (64, 9" grad V) [d"z].
Hence the equation of motion is

(5.8) Og¢=—¢" gradV,

(5.7)

where Oy, is the covariant extension of the wave operator (3.2). Despite this no-
tation one shouldn’t lose sight of Newton’s law, which is the special case n = 1 of
equation (5.8). The variational 1-form and local symplectic form are

¥ = (8¢ A xd),

(5:9) w = (xdg b A 6).

It is easy to couple this theory to an arbitrary metric g on M:

(5.10) Lo = (50" 0ub B0t — 8"V) iz,

The computation leading to (3.19) is essentially unchanged, and so the energy-
momentum tensor is

(5.11) T, = {d - dd}ug — 9 L,

or more explicitly (see (2.177))

1
(5.12) Tpu - p¢3V¢ + (_§|d¢]2 + qb*V) Guw-

On Minkowski space the moduli space of vacua—field configurations which minimize
the energy density Tyo—is

(5.13) Myae =V~ 1(0)

assuming that 0 is the minimum value of the potential energy V.
If ¢ is a Killing vector field (infinitesimal isometry) on X, then the associated
Noether current is

(5.14) j = (£, *do).

There are also topological terms one can add to a pure g-model, usually called
Wess-Zumino terms. We describe them in Chapter 6.
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§5.2. Gauge theory with bosonic matter

The theory in this section is the most general bosonic theory without gravity®’
(though we do not include all possible terms—e.g. topological terms—in the la-
grangian). We can also describe it as a gauged nonlinear o-model, or as a gauge
theory with bosonic matter. The data which defines the theory are:

G Lie group with Lie algebra g
o {-,-) bi-invariant scalar product on g
(5.15) X Riemannian manifold on which G acts by isometries

V: X —R potential function invariant under &

The fields are

A connection on some principal G-bundle P — M

(5.16) ¢ section of the associated bundle P xg X — M

It is often convenient to view ¢ as an equivariant map ¢: P — X. The lagrangian
combines (4.45) and (5.6):

— l 2 1 2 * n
(5.17) L= (=5IFal® + 5ldadl® - 'V ) jd"a.
There is a new term

(5.18) {(6A- ¢, xdad)

in §L from the coupling of A and ¢, s0 a new term in the equations of motion. The
variational 1-form is

(5.19) oy = (6 A xdad) — (SA A *F4).

The energy-momentum tensor is

1 1
(5:20) Tu = (0a)ud (Da)ue — (Fup,Fw> g + (§|FA|2 - §|dA¢|2 + ¢*V) Guv
The tnoduli space of vacua is
(5.21) Mue =VH0) /G

assuming that 0 is the minimum value of the potential energy V.
In §2.8 we described a simple example of “gauging a symmetry”.

27By this we mean a theory of scalar and gauge fields only. There are alse models with p-form fields
for p > 2, for example. The lagrangian here covers most fundamental (vs. effective) lagrangians
without gravity.



CHAPTER 6
Topological Terms

We have already introduced “f-terms” in gauge theory in §4.3. These are
a sort of topological term related to primary topological invariants, in this case
characteristic classes of principal bundles. Corresponding terms occur in a g-model
as well. Namely, if ¢: M — X is a field in a o-model defined on an oriented
spacetime M™, and w € 2™(X) is a closed differential form, then we can insert a
term

{6.1) —cd'w

into a lagrangian. (The minus sign indicates that {6.1) is a contribution to the
potential energy.) Here ¢ € R is a constant; if w has periods which are 27A times
intcgers, then only ¢ (mod Z) enters into the quantum theory. In this chapter we
consider a different type of topological term which is related to secondury topo-
logical invariants. For example, in a gauge theory the holonomy of a connection
is a secondary invariant associated to a first Chern class; in three dimensions the
Chern-Simons invariant is associated to a four-dimensional characteristic class. In
o-models we meet Wess-Zumino- Witien terms which are secondary invariants as-
sociated to cohomology classes in the target space X.

To fit such terms into the general theory of Chapter 2, we need local differential-
geometric objects which integrate to these secondary invariants. We indicate an
extension of ordinary calculus to include these objects briefly, though a systematic
development of foundations for this extension is lacking. In the first few sections
we focus instead on examples.

For both #-terms and topological terms we need to work over an oriented space-
time. The orientation allows us to pass from differential forms to densities. Note
that neither #-terms nor topological terms depend on a metric on spacetime.

§6.1. Gauge theory

The simplest example of a topological term was already discussed at the end of §1.1
and in §4.1. Namely, consider a theory on a spacetime M™ which includes a con-
nection A for the group R>’. Suppose z: R — M is a parametrized path which
may be fixed or variable. Then we can introduce a term

{6.2) —qx*A
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into the lagrangian of the theory, where ¢ € R is a constant. Note that (6.2) is meant
to be integrated over R, not over spacetime M. It is unchanged by orientation-
preserving diffeomorphisms of R; in other words, it only depends on the image of
viewed as an oriented submanifold of M.

Now —gz*A is different from other termns in lagrangians we have seen so far.
A connection A on an R>%-bundle P — M is an element of 1(P), and z*4 a
1-form on the pullback z*P. It is nof a 1-form on the base R. To compute the
action we can fix a trivialization of z*P. Taking into account the dependence on
this trivialization, the action over an interval [T7,73] C R is a homomorphism
of R-torsors, the R-torsors being g times the fibers of £*P at T} and T5. In the
lagrangian approach to the quantum theory it is not the action S, but rather the
exponential exp(y/—1 S/A) which enters. Then this term in the action is parallel
transport in the circle bundle associated to P via the homomorphism

]R>0 — T
Tr — (\/--_]_)q"'/‘Fi

For usual kinetic and potential terms, the exponentiated action is an element of T.
This parallel transport is instead a homomorphism of circle torsors.

The equation of motion (Lorentz force law) arising from (6.2) in classical elec-
tromagnetism is discussed at the end of §4.1.

In the quantum theory of electromagnetism the electric charge g is quantized
in suitable units. It makes sense from the beginning to regard the gauge field A
as a connection in a T-bundle (as opposed to an R>%-bundle). More generally, in
quantum Yang-Mills theories the gauge field is a connection for a compact gauge
group G. Then it makes sense to write a term z*7(A) in the lagrangian, where
the trace 7: g — R is 1//—1 times the differential of an abelian character G — T.
This term in the exponentiated action is again interpreted as a homomorphism of
circle torsors.

In three-dimensional gauge theory there is a topological term due to Chern and
Simons. Let M3 be a 3-dimensional oriented spacetime and consider a theory with
gauge field A. If G is the gauge group, and (-, ) an invariant inner product on the
Lie algebra g, then the Chern-Simons term is

(6.3)

(6.4) Los = (AN Fa) ~ %(A/\[A/\A]).

If A is a connection on P, then this term is a 3-form on the total space of P.
Assume for convenience that M® = M! x X2 is the product of time M?! and a
space £2 which is a closed oriented surface. Then once again the exponentiated
action on [T1, T3] x X is best interpreted as a homomorphism between T-torsors 7;
and 75 defined from (6.4) at {71} x ¥ and {T>} x . (For this we need {-,-) to
lie in a distinguished lattice of inner products.) For trivializable bundles P the
torsors are trivialized by a choice of trivialization of P, and may be constructed by
such trivializations. We omit the details. (For nontrivializable bundles we need a
refinement of the inner product (-, -} to an element of H4(BG; Z) in order to define
the torsors and the exponentiated action.)

Locally we can break gauge invariance and fix a trivialization of the bundle
which carries the connection A. Then (6.4) pulls down to a local 3-form on M. We
compute <

(6.5) §Log +dy = (6AN2F,),
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where
(6.6) y={AASA).
So for pure Chern-Simons theory the equation of motion is
(6.7) Fa=0.

For the particular spacetime M*® = M! x £2, the space of solutions M up to gauge
equivalence is the moduli space of flat connections on £. The local symplectic form

(6.8) w = (5AASA)

integrates on ¥ to (twice) the usual symplectic form on M.

The equations of motion (6.7) and the local symplectic form (6.8) are gauge
invariant, whereas the variational 1-form (6.6) is not. This suggests that a Noether
charge is no longer a well-defined real number. Indeed, if € is a central element
of g, interpreted as a constant gauge transformation, then the associated Noether
current from (6.6) is formally

(6.9) d{e A A).

The integral over a region Q € T is minus the logarithm of the holonomy around %
of the bundle associated to the exponential of the trace {e,-) on g. This logarithm
is well-defined only up to integer shifts. (If the Chern-Simons term is added to
the lagrangian of a standard 3-dimensional theory, as in (4.61), then this term
contributes to the electric charge (4.62).)

§6.2. Wess-Zumino-Witten terms

Consider a o-model with field ¢: M — X, where the spacetime M is an oriented n-
manifold. Under the simplifying hypothesis H,_1(X) = Hn(X) = 0, we construct
a term in an action associated to a closed form Q € Q"*!(X) with periods in 2wAZ.
To remove the simplifying topological assumption we need a more precise form
of this data, as we explain in §6.3. For simplicity, consider a product spacetime
M = M! x N™*~1, where we assume space N to be a compact oriented n-manifold.

We first construct a T-torsor 75 = T;(f2) for each map f: N — X as follows.
Since H,_1{X) = 0 there exist extensions F: Y — X to oriented n-chains Y»
with 8F = f. Each such F trivializes T;. If Fi, Fy are two such extensions, then
since H,(X) = 0 we can find an oriented (n + 1)-chain H: Z™"*! — X with 0H =
Fy — Fy. Then the isomorphism from the Fi-trivialization to the Fy-trivialization
is

(6.10) exp[\/?/ZH*Q].

Because of the assumption on the periods of €, this is independent of the choice
of H.

We can allow H,_.1(X) to be torsion in this construction if we specify a coho-
mology class ¢ € H"(X;2rhZ) such that the de Rham class of ( is the image cg
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of ¢ in real cohomology. Then a multiple of f bounds, and we essentially use the
choice of ¢ to divide by that multiple in the abelian group T.
For another perspective, consider the usual diagram

Map(N,X)x N —— X
(6.11) lﬂ
Map(N, X)

Then m,e*§) is a 2-form on Map({N, X) with periods in 27AZ, and m,e*c is a refine-
ment in H?(Map(N, X);27hZ). So there exist principal T-bundles with connec-
tion over Map(N, X) whose curvature is —(v/=1/h)m.e*Q and whose Chern class
is m.e*c/2nh. The construction above gives a particular such T-bundle; it can be
extended to produce a connection as well.

Now if ¢: [Th, T3] x N — X is a field, the exponentiated action exp(v/—18/k)
of ¢ is naturally an element of the circle torsor

-1
(6.12) Top = T¢|{'I'2}xN ' %[{T.}xN'

Namely, if F; is a trivialization of Ty|¢1,) <, then F3 + ¢ — F} bounds an (n + 1)-
chain H: Z"*! — X, and we use formula (6.10) to compute the action in this
trivialization.

We remark that the gauge theory constructions of §6.1 may be understood—at
least heuristically—as special cases in which X = BG is the classifying space of the
gauge group G.

§6.3. Smooth Deligne cohomology

Fix a smooth manifold X and an integer®® n. Let us consider on X the constant
sheaf Z, the constant sheaf R, and the following complex of sheaves, denoted F™(Q2)
{or simply F(§2)): the subcomplex of the de Rham complex given by

0, ifp<mn
P —

{6.13) F(O)P = { . ifp>n,
Both the cohomology of X with coefficients in Z and the hypercohomology of X
with coefficients in F(£2) map to the cohomology of X with coefficients in R. The
first because Z maps to R. The second is just the cohomology of the complex
MX) — Q"H(X) — ... starting in degree n, which is a subcomplex of the
de Rham complex computing the real cohomology. Suppose we have somehow
lifted those maps at the cochain level. In other words, suppose we have found
natural complexes (Cz,dz), (Cpn,dpn) (or simply (Ch,drp)), and (Cg,dg) with
H*(C3) = H*(X,Z), H*(C})} = H*(X,F()), and H*(Cg) = H*(X,R), and
found morphisms of complexes

(6.14) vz,pr: Cz,Chn — Cg
280ur choice of indexing makes the descript.on of products below more natural. However, there is

a shift in the application to lagrangian field theory: it is cocycles for the cohomology group D+l
which enter lagrangians for n-dimensional spacetimes.



CHAPTER 6. TOPOLOGICAL TERMS 219

inducing the maps we described in cohomology. This can be done in many ways—
one way will be described later—but the philosophy of cohomological algebra tells
that they are essentially equivalent.

One can then form a mapping cone (K, d} with

KP:=CEaCheCh!
(6.15) 2®Cr® O
d:=dz +dr —dg + vz — r-

A pcycle ¢ = (cz,cr,cg) of K is the data of p-cycles ¢z and ¢g of Cz and Cr,
and of a homology between their images in Cx. The mapping cone K behaves as if
one had a short exact sequence of complexes 0 = K — Cz @ Cr — Cr — 0. For
instance, one has a long exact sequence of cohomology groups. The smooth Deligne
cohomology group DP" is HP(K). For p < n it is HP"}(X,R/Z). For p>n it is
HP(X,Z). We will be mainly interested in D™ := D™, It sits in an exact sequence
{6.16)

H*Y(X,Z) — H" }{X,R) — D™ — H"(X,Z) & (closed n-forms) — HY(X,R)

and it is an extension of the group of closed n-forms with integral periods by
H Y X,R/Z).

This description of D™ is not the most economical, but it suggests the func-
torial properties to be expected. Products: One has product maps on Z and R,
as well as product maps F™ ® F™ — F™*™_ If the corresponding cup-product in
cohomology is expressed at the cochain level, giving products in Cz, Cr, and Cp
compatible with @z and g, one obtains products DP* @ D™ — Drptantm I
deed, homologies ¢ and ¢’ between the images of cz and cp (resp. ¢z and cf) give
a homology between the images of czcz and cpcl. In fact, there are two naturally
cohomologous homologies: p(cz)c’ + cp(cy) and cp(cy) + (cr)c’. Integration: If
a proper submersion f: X — Y of relative dimension d has oriented fibers, inte-
gration along the fibers f has meaning in integral and real cohomology, as well as
from F™ on X to F* % on Y. Expressed compatibly at the cochain level, it should
provide fx/Y: DP™(X) — DP~47=4(Y), and in particular D*(X) — Dr=4(Y).

One way to find complexes C3, C%, and Cy is to use the Cech method for
computing cohomology. If {U;}:e; is an open covering of X such that the nonempty
intersections Uy, s, := Ui,N---NU,, are contractible, one can use for Cy the Cech
complex

(617) Cp & HF(Uio...ip)Z')s

and for C} and Cp the simple complex associated to the double complex
=[] T(Uig..1,, FIQY)

(6.18) Cp’q=HP(U‘ -, 99)
R ig.tp .

For n > 0 the map Z@® F — ©* of complexes of sheaves on X is injective. If
50 is gz — pp: C} ® Cp — Ci, the mapping cone K has the same cohomology, up
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to a shift of index by 1, as the cokernel of z — pr, a complex whose cohomology
is the hypercohomology of the complex of sheaves

{(6.19) C®(values in R/Z) — Q' —» ... = Q" ! 0.
If we denote by £2* this complex, we have in the Cechist computation
{6.20) coker(pz — wr) = H F(U,-U,‘,ip,ﬂp),

and DP™ is the cohomology group H?~} of the complex.
For n = 1 we find that D! is the group of C* maps from X to the circle R/Z.
For n = 2 elements of D? are represented by cocycles

o — 0

(6.21) |

gij — 0
where the diagram indicates the equations

(6.22) 9ii + Gik = Gik
Qg — ozj = dgij-
The exp(2mv/—1g;;) are the transition functions for a T-bundle, trivialized on
the U;, and the 2mv/=1a;, viewed as local connection 1-forms, provide this T-
bundle with a connection. The group D? is the group of isomorphism classes of
T-bundles with connection. More precisely, a cocycle defines a bundle with connec-
tion and a homology defines an isomorphism between bundles.

In §6.2, what we needed to avoid assumptions on the homology of X is not just
a closed (n + 1)-form with integral periods, but rather a class in D"*1, or rather a
cocycle giving such a class. If H*(X,R/Z)} = 0 (equivalently: H,(X,Z) = 0), one
has

{6.23) D™tV 2, (closed (n + 1)-forms with integral periods).

If H Y X,R/Z) = 0 (equivalently: H,_;(X,Z) = 0}, the ambiguity in the choice
of a cocycle becomes irrelevant: if ¢; and ¢ are two cocycles representing the same
class in D™*!, not only are they homologous, ¢; — ¢ = de, but any two choices ¢/
and ¢’ for ¢ are homologous: ¢’ — ¢ = dé.

If a cocycle ¢ is chosen and if ¢ is a field, i.e., 2 map from M to X, then
¢*c is a cocycle giving a class in D"¥!(M). For N in M a compact subvariety of
dimension n— 1, integration of ¢*c on N should produce a T-principal homogeneous
space—a one-dimensional complex vector space L£(N,¢*c) with metric attached
to N and ¢*c. Indeed, integration on N maps D"t1 (M) to D? of a point. If
N is the boundary of a singular chain S, integration of ¢*c on 5 should produce
a unit vector in L£(N,¢*c). For instance, in a Hamiltonian picture, a space-like
hypersurface N, supposed here compact, would give £{N,¢*c) and the slice S
between two such hypersurfaces N7 and N, would provide an isomorphism (the
action integral) from £(Nj, ¢*c) to L(N2, ¢*c).

A systematic treatment of those expectations has yet to be given.



CHAPTER 7
Wick Rotation: From Minkowski Space to Euclidean Space

A basic constraint on a Minkowski space action is that it be real. An action
Sar is the integral of a lagrangian density Ljs over Minkowski space M:

(7.1) Sy = j L.

M
Choose a time ¢ on M. Then we (Wick) rotate to Euclidean space E by introducing
imaginary tire

(7.2) T =+v-1t

By convention the Euclidean action is 1/v/—1 times the rotated Minkowski action:
1

7.3 —— Sy =58c= / Lg.

( ) \/_——1 M E J E

Note that e¥—15% = ¢=5&, Also, Sg is not real in general.

We describe the continuation to Euclidean space more precisely for a o-model.
The field is a map ¢ : M — X into some Riemannian manifold. The complexifi-
cation of the space of maps M —— X is the space of holomorphic maps M¢ — Xc
between the complexified spaces. The lagrangian extends to a holomorphic func-
tion on this space, and the Euclidean action is the restriction of this continuation
to maps E — X. (Note that Ec = Mc so E C Mc.) There is a similar picture
for other types of fields.

We consider four types of terms which typically occur in an action: kinetic
terms for bosons, potential terms, topological terms (also f-terms), and kinetic
terms for fermions.

In this chapter set the speed of light ¢ = 1. We use the conventions in §3.1 for
Minkowski space M. So the metric is

(7.4) gy =di? — (de'y2 - — (dz™~1)2.

On Euclidean space £ we use the positive definite metric

(7.5) g =dr? + (de') + - + (da"H)%

So as to avoid confusion, we fix the standard orientations t,zl,...,z" lon M
and 7,z!,...,2" ! on E, and we write lagrangians as forms rather than densities,
though we often omit the ‘A’ sign. Let

(7.6) d* 'z =dz' Ao Adz™L
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§7.1. Kinetic terms for bosons

Consider a particle of mass m moving in some Riemannian manifold X. It is
described by a map 2 : M! — X. Then the kinetic energy density is (see {1.13))

2

.

dt

(7.7) Lu=%

The continuation to imaginary time—after dividing by +/—1—is
dz 2
a; dT.

(7.8) Lg= %

In higher dimensions, we consider a real scalar field on Minkowski space, which is
a real function ¢ : M — R. The kinetic lagrangian is

1

(7.9) Lu =3 |dg|3, dt d® lx,

where |- {57 is the norm (7.4) on M. The continuation to E is
1 2 -1

(7.10) Lg = 5 ld|z drd™ 'z,

where | - |g is the Euclidean norm (7.5).
For a gauge field?® A the kinetic term is the Yang-Mills lagrangian

1
(7.11) Ly = —§|FA|§,, dtd" 'z

The continuation to Euclidean space is

(7.12) Lg= %IFAFE drd" 'z

§7.2. Potential terms

For the particle z : R — X, the potential energy is described by a function V :
X — R. The corresponding term in the lagrangian is

(7.13) Ly = = V{(x(t)) dt.
The continuation to imaginary time is
(7.14) Lg =V(z{r))dr.

The extension to higher dimensions is the same: Potential terms appear with a —
sign in Minkowski actions and with a + sign in Fuclidean actions.

29For a concrete example of rotating a gauge field to Euclidean space, see the solution to Prob-
lem 11 of [[I-Dynamics of QFT, Exercises|.
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§7.3. Topological terms and f-terms

Let a be a real 1-form on X and consider the lagrangian (for z: R — X)

(7.15) Ly =—x"a.

The continuation to imaginary time is innocuous except for the conventional divi-
sion by /=L

(7.16) Lg=v-1z"a.

Hence in the Euclidean (imaginary time) lagrangian the topological term is imag-
inary. A similar factor is introduced into the continuation of any topological term
(in the sense of Chapter 6).

The 0-terms in gauge theory (§4.3) behave similarly. For example, the contin-

uation of
g
(7.17) Ly = Q_ﬂ_((FA))
to Euclidean space is
e
(7.18) Lg = —V-15=(Fa)-

§7.4. Kinetic terms for fermions

We begin with the particle z : R — X and add an odd field ¢ which is a section of
#*TIT X, the parity-reversed pullback of the tangent bundle. Then v is real and in
real time its kinetic term in the lagrangian is

m di
. Ly=— —dt.
(7.19) mo=5 (¥ =)d
Rotating to imaginary time and dividing by +/—1, we obtain

m d
. = /1 22, 2N d
(7.20) Lg 5 (b gohdr
Consider now a real spinor field ¢ in n-dimensional Minkowski spacetime. We
retain the notation of §3.4, but we set the mass M = 0. (The mass term is a
potential energy term, so is covered by the discussion of §7.2.) The lagrangian in
Minkowski space is

1
Ly = 5#’@1\41/) dtd™ 'z

(7.21) .
= §(f'rvr)”ab¢a3p¢b dtd™ 'z.

The first observation when rotating to Euclidean space is that a real spin represen-
tation § of Spin(1,n — 1) extends to a complex representation S¢ of the complex
spin group Sping(n), but the restriction to Spin(n) C Sping(n) is not necessarily
real. Thus in the Euclidean theory we take the field

(7.22) ¥ B — TIS¢
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to be a complex spinor field. Again: There are no reality conditions on spinor fields
in FBuclidean space. Define pairings

I'g: S&@Sé—)Vc

(7.23) -
I'eg: Se®85c — V¢

by
(7 24) (FE)gb =—-v-1 (FM)E{,, (f‘E)Oab =-v-l1 (fM)Oab}

' (T)es = =(Taa)ins (F)™ = —(Ta)™,
where i = 1,...,n — 1 runs over the spatial indices. Then I'g,I'g satisfy a Clifford
relation
(7.25) (Ce)***(Te)i. + (Te) " (Te)h, = —29% 62

The Euclidean Dirac form is

(7.26) VP = (Te)***Paduis,

and the factors in (7.24) are chosen so that the lagrangian (7.21) rotates to

(7.27) Lg= %wpgw drd™ 'z

in Euclidean space.
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