A função sigmoide é uma função matemática de amplo uso em campos como a economia e a computação. O nome "sigmoide" vem da forma em S do seu gráfico.[1]

Gráfico da função sigmóide

Ela é definida como: para todo real.

Ela é solução da equação diferencial: com entre 0 e 1.

A função sigmoide pode ser reescrita como:

Computação

editar

Um exemplo de código para Octave, que aplica a função a um escalar ou a alguma matriz:

function f = sigmoid(z)
f=1./(1+exp(-z));
endfunction

No MATLAB a função sigmf possui dois valores de ajustes da sigmoide. O primeiro indica o grau de inclinação da curva, enquanto o segundo indica o ponto médio da curva, ou seja, para que valor de x a sigmoide vai assumir valor 0.5 no eixo y (centro da sigmoide).

Um exemplo de código para o Matlab:

x = 0:0.5:20 //definimos x como um vetor de valores que vai de 0 a 20 em um intervalo de 0.5, ou seja, x = {0 , 0.5, 1, 1.5, … , 19.5, 20}
s1 = sigmf(x,[1 5]) // s1 será uma sigmoide cujo centro é no 5
s2 = sigmf(x,[0.5 5]) // s2 será uma sigmoide cujo centro é no 5, porém com uma inclinação mais suave que anterior
s3 = sigmf(x,[0.5 10]) // s3 será uma sigmoide cujo centro é no 10, com a mesma inclinação que anterior
plot(x,s1)
plot(x,s2)
plot(x,s3)

Ver também

editar

Referências

  1. Han, Jun; Morag, Claudio (1995). «The influence of the sigmoid function parameters on the speed of backpropagation learning». In: Mira, José; Sandoval, Francisco. From Natural to Artificial Neural Computation. Col: Lecture Notes in Computer Science. 930. [S.l.: s.n.] pp. 195–201. ISBN 978-3-540-59497-0. doi:10.1007/3-540-59497-3_175