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Universitat Politècnica de Catalunya BarcelonaTech,
Jordi Girona, 1-3, 08034, Barcelona, Spain

http://imatge.upc.edu

Abstract. This paper addresses the problem of the supervised assessment of hi-
erarchical region-based image representations. Given the large amount of par-
titions represented in such structures, the supervised assessment approaches in
the literature are based on selecting a reduced set of representative partitions and
evaluating their quality. Assessment results, therefore, depend on the partition se-
lection strategy used. Instead, we propose to find the partition in the tree that best
matches the ground-truth partition, that is, the upper-bound partition selection.
We show that different partition selection algorithms can lead to different conclu-
sions regarding the quality of the assessed trees and that the upper-bound partition
selection provides the following advantages: 1) it does not limit the assessment
to a reduced set of partitions, and 2) it better discriminates the random trees from
actual ones, which reflects a better qualitative behavior. We model the problem as
a Linear Fractional Combinatorial Optimization (LFCO) problem, which makes
the upper-bound selection feasible and efficient.

1 Introduction

Region-based hierarchical image representations have proven their applicability in many
fields such as segmentation, filtering, information retrieval [1]; object detection [2–4],
contour detection [5, 6], etc.

Any hierarchy of nested regions based on a set of non-overlapping regions can be
represented by a binary tree of regions (such as Binary Partition Trees (BPT) [1] or
Ultrametric Contour Map (UCM) trees [5]), so although this work is focused on this
type of trees, the results are generalizable to any hierarchy of regions such as quad
trees [7].

A supervised assessment has been the most used to prove the validity of these repre-
sentations, that is, comparing the results to a set of manually-generated partitions known
as ground truth. However, comparing the large collection of partitions represented in a
hierarchy to a non-hierarchical partition is not straightforward.

The approaches found in the literature consist in selecting a set of representative
partitions from the tree and comparing them to the ground-truth partitions. This way,
for each partition of the ground-truth database, there will be a set of values that indicate
the quality of that particular tree.

� This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación,
under project TEC2010-18094 and FPU grant AP2008-01164.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 814–827, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://imatge.upc.edu


Supervised Assessment of Segmentation Hierarchies 815

To average these results on a whole database, the representative partitions of the
tree on each image of the database have to be put in correspondence (align) with the
representative partitions of the trees of the rest of images, that is, there has to be a
common parameter that indexes each set of representative partitions (e.g. their number
of regions). Overall, aggregate results depend on a partition selection algorithm and
an alignment procedure.

For instance, in [8, 9], the set of selected partitions are the ones formed in the merg-
ing sequence, aligned by their number of regions. The latter proposes a second align-
ment based on the accumulated merging cost threshold. In [5], the selected regions are
also the ones in the merging sequence, but the alignment parameter is the confidence
threshold on the ultrametric contour map.

Ideally, assessment results should depend mainly on the trees themselves, otherwise
it is not clear whether the obtained results are due to the tree itself, or to the alignment
and partition selection algorithms. To make results independent of the former, [5] pro-
poses the Optimal Image Scale (OIS) analysis, which averages the best result in the
representative set of each tree.

This paper proposes a technique to make the assessment results independent of the
partition selection algorithm via the upper-bound partition selection, that is, comput-
ing the optimal results that can be achieved by any partition selection procedure.

In the case of the OIS, the maximum performance for each image is searched by brute
force among all possible partitions in the merging sequence [5]. However, exhaustively
searching the upper-bound performance among all possible partitions in a tree to make
results independent of the partition selection algorithm is not computationally feasible.
To overcome this limitation, we propose to model the problem of finding the best par-
tition selection as a Linear Fractional Combinatorial Optimization (LFCO), which can
be efficiently solved by the procedure presented in [10].

We show that the upper-bound partition selection has the following advantages in
the assessment of region-based hierarchies. First, it expands the range of partitions as-
sessed beyond the merging sequence. Note that this is a relevant feature, since there
are image analysis works such as [2, 1] that extract partitions that are not in the merg-
ing sequence, and so such partitions would not be covered by the previous selection
approaches. Second, we demonstrate that the partition selection technique may mis-
lead the assessment of the tree quality, in the sense that the ranking between results
is different from the upper-bound in a significant number of cases of the experiments.
Finally, we show that the upper-bound partition selection has a better discriminative
power between the baseline method of computing the hierarchy randomly and actual
hierarchies.

The remainder of the paper is organized as follows: Section 2 presents the different
trees that are used in this work and Section 3 expounds on the supervised techniques
found in the literature to assess these hierarchies. Then, in Section 4 we present the step-
by-step deduction and motivation of the LFCO model that we propose to find the upper-
bound partition selection. Section 5 presents the experiments performed to evaluate and
compare our algorithm and in Section 6 we draw the conclusions.
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2 Hierarchy Creation Algorithm

In this paper we explore a region-based hierarchical image representation consisting of
a binary tree, where each node represents a region in the image, and the parent node
of a pair of regions represents their merging. This structure is referred to as Binary
Partition Tree (BPT) in [1, 2, 8, 9]. The Ultrametric Contour Map (UCM) [5] hierarchy
of regions is also a binary tree.

The algorithm to build both BPT and UCM is a greedy region merging algorithm
that, starting from an initial partition P0, iteratively merges the most similar pair of
neighboring regions. The concept of region similarity is what makes the difference be-
tween both approaches.

In the case of the BPT, each region is represented by a model such as the color
mean and contour complexity [8] or the color histogram [9], and the region similarity
is obtained comparing their models. The UCM [5], in contrast, defines the dissimilarity
between two neighboring regions as the strength of the Oriented Watershed Transform
(OWT) of the globalized Probability of boundary (gPb) in the common boundary.
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Fig. 1. BPT creation process: Above, the merging sequence partition set where, from left to right,
two neighboring regions are merged at each step. The common boundary between them is high-
lighted. Below, the BPT representation depicted by a tree, where the region formed from the
merging of two segments is represented as the parent of the two respective nodes.

The merging process ends when one single region remains, the whole image, which
is represented by the root of the tree. The set of mergings that create the tree, from the
starting partition to the whole image, is usually referred to as merging sequence and the
set of partitions that are iteratively formed in the process is known as merging-sequence
partition set.

To illustrate the process of creation of the hierarchies, Figure 1 shows the tree and the
partition at each step of the merging sequence. In this example, the merging sequence
is {R1+R2→R5 , R3+R4→R6 , R5+R6→R7}, and the merging-sequence partition
set is formed by the four represented partitions.
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3 Hierarchy Quality Assessment

The quality of a hierarchical region-based image representation is usually assessed in
a supervised environment, that is, comparing how accurate the representation is with
respect to a human-generated ground truth. Given that a hierarchical region-based im-
age representation is a structured set of image partitions from the most detailed ones
(more regions) to the coarsest ones (less regions), an intuitive approach to assess the
representation could be to compare a set of representative partitions selected from the
hierarchy and aligned by an index that represents the level of detail.

This is the approach followed in [8, 9], where the quality of the tree is represented
by the assessment of the set of selected partitions in the so-called merging-sequence
partition set, that is, the partitions formed at each step of the tree merging sequence.
The number of regions is the index that represents the level of detail of the partitions.
In other words, to assess the trees for various ground-truth images, the sets of partitions
are put in correspondence by their number of regions to obtain an average result.

In [5], the same selection approach applies, but in this case the partitions to be as-
sessed are selected via the thresholding of the Ultrametric Contour Map (UCM) at
different levels of confidence. Therefore, the difference here is that the partitions are
aligned with respect to this threshold value.

In other words, the same threshold for two UCM trees can correspond to different
number of regions. This way, the aggregate results on a database will be different de-
pending on the alignment used.

The strategy to average the results aligning them with respect to a certain parameter
is referred to as Optimal Dataset Scale (ODS) in [5]. To avoid the dependence of the
results of an alignment process, the same work proposes the Optimal Image Scale (OIS)
which, in contrast, averages the quality of the best partition in the selected set for each
image. That is, the rationale behind the OIS is to average the upper-bound performance
of the UCM trees, avoiding the use of an alignment.

However, limiting the partitions assessed to those of a reduced set among all found
in a hierarchy is also masking the real upper-bound performance of the technique, since
this approach is not assessing all the partitions represented in the tree.

The proposal of this work is to find the upper-bound performance regardless also of
the representative partition set selection, that is, independently of whether we assess
those partitions from a thresholding of the UCM, those forming the set of merging-
sequence partitions, etc. We will refer to the resulting selection strategies as upper-
bound ODS and upper-bound OIS (ubODS and ubOIS, respectively).

The number of partitions represented in a binary tree, however, grows rapidly with
respect to the number of initial regions, so it would not be feasible to assess all of them
using brute force. To do so, the main objective of this paper is to model the problem as
a Linear Fractional Combinatorial Optimization (LFCO) problem [10], which allows
us to find the partitions that entail the upper-bound quality using a feasible algorithm.

The F measure for boundary detection (Fb) [5] measures the trade-off between
the precision and recall of the matching between the boundary pixels of the ground
truth and the assessed partition. Although this measure was initially designed to assess
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contour detectors, [5] states that: “While the relative ranking of segmentation algo-
rithms remains fairly consistent across different benchmark criteria, the boundary bench-
mark appears most capable of discriminating performance.”

As we will present on the following section, Fb can be written in the fractional form
of an LFCO, and thus fulfills the objective of feasibility. Therefore, adding the good
behavior of this measure perceived by [5], we will base our assessment on the F measure
for boundary detection Fb.

4 Upper-Bound Partition Selection

The computation of Fb is based on a global optimal matching between the set of bound-
ary pixels of the partition to be assessed and those of the ground truth. To avoid per-
forming a matching for each of the partitions represented in a tree, which is computa-
tionally prohibitive, we propose an algorithm that performs a local matching between
the ground truth and each of the pieces of region boundaries of the tree. This allows us
to efficiently find the upper bound of the optimal global matching for any represented
partition.

Formally, let P0 be the partition on which a hierarchy H is built and R1 . . . Rn its
regions. Let {Ri1+Ri2 →Ri3}, i=1 . . . n−1 be the merging sequence that forms H .
We define σi as the common boundary between the regions that are merged at step i of
the merging sequence. (Figure 1 depicts σ1, σ2, and σ3 of the example tree.) Note that
this set of common boundaries is not the full set of common boundaries between pairs
of regions of P0, but only those between regions merged in the hierarchy H .

Let P be the set of all partitions represented in the hierarchyH . Any partitionP ∈ H
can be unequivocally described by the set of σi that forms its boundaries. Let p ∈
{0, 1}n−1 be a binary vector such that pi = 1 if the boundaries of P contain σi. In
Figure 1, for example, the set of merging-sequence partitions can be identified by the
vectors: p = (1, 1, 1), (0, 1, 1), and (0, 0, 1).

This way, one can define a bijection between the set of partitions P and a subset
χ ⊂ {0, 1}n−1. Our approach to find the partition that entails the best matching relies
on modeling the problem as a binary search in χ and solving it using computationally
feasible techniques.

Specifically, we will model the upper-bound partition selection as a Linear Fractional
Combinatorial Optimization (LFCO) problem [10]:

LFCO: maximize
x

t · xT

f · xT
s.t. x∈ χ ⊂{0, 1}n−1 (1)

being f,t∈R
n−1 and all the constraints that define χ linear.

Section 4.1 explores the constraints that have to be put to the vector p in order for the
corresponding partition to be valid within the hierarchy (that is, define χ) and how to
make them linear. Next, Section 4.2 presents how the Fb of a partition with respect to a
ground truth can be obtained from p in the form of an LFCO such as that of Equation 1.
Finally, Section 4.3 adds the needed constraints to be able to find the ubODS.



Supervised Assessment of Segmentation Hierarchies 819

4.1 Forcing the Partition to Be in the Hierarchy

Not all combinations of boundaries σi form a valid partition of the hierarchy and thus
not all p ∈ {0, 1}n−1 correspond to feasible solutions of our problem. Recalling the ex-
ample of Figure 1, for instance, the partition corresponding to [1 0 1] is a valid partition
in the hierarchy, while the ones corresponding to [1 0 0] or [1 1 0] are not.

Let Σi = {ij|j = 1 . . . ni} be the indices of the set of boundaries σij between pairs
of regions among the children of the two regions that define σi. In the example, for σ3,
Σ3 = {1, 2}.

Then, if the two regions that form σi are merged (pi = 0), all the pairs of regions
that form the boundaries indexed by Σi are forced to be also merged (pij =0). Formally
pi = 0 ⇒ pij =0 ∀ ij ∈ Σi, or equivalently the following constraints:

pi = 1 or
∑

ij∈Σi

pij = 0 (2)

In other words, if the boundary between two regions is not in the partition, the bound-
aries between any pair of their children cannot be in the partition either.

The binary search problem we are modeling will be much more efficient to solve if
it is linear. The following linear constraint is equivalent to Equation 2:

∑

ij∈Σi

pij ≤ K pi (3)

where K is a sufficiently large constant, which in our problem can be set to n, the
number of regions.

To conclude, the set of partitions represented in the hierarchy H can be identified
with the set:

χ =

{
p ∈ {0, 1}n−1

∣∣∣∣
∑

ij∈Σi

pij ≤ n pi

}
.

In the sequel, any partition P in the hierarchy H will be identified by its corresponding
binary vector p ∈ χ.

4.2 Upper-Bound Partition Selection as an LFCO

For a given partition P ∈ H (p ∈ χ), let TP be the set of matched boundary pixels
with the boundary pixels of a ground truth partition, i.e. true positives, and FP the false
positives set. We can write that |TP | = ∑n−1

i=1 pi |σm
i |, |FP | = ∑n−1

i=1 pi |σu
i |, where

σi = σm
i ∪ σu

i is a division of the boundary pixels between matched and unmatched,
respectively.

The first approach we propose is to perform a single matching between the boundary
pixels of the original partition P0 and those of the ground-truth partition, and define σm

i

and σu
i as those sets of pixels of σi matched or unmatched, respectively.

If we define σm =
(|σm

1 |, . . . , |σm
n−1|

) ∈ N
n−1, σ = (|σ1|, . . . , |σn−1|) ∈ N

n−1,
the problem of finding the partition in the hierarchy with the best Fb with respect to the
ground truth can be written as:
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F : maximize
p

Fb = 2
(σm,0) · (p,1)T
(σ,|Pgt|) · (p,1)T

, s.t. (3)

This type of problem is referred to as a Linear Fractional Combinatorial Optimization
(LFCO) problem in [10], which also presents an efficient way to solve it. The remainder
of this section is devoted to present the limitation of this approach: the ground-truth
multi-matching and the solution we propose.

Ground-Truth Multi-Matching
The previous matching strategy presents the following problem: the matching is car-
ried out at the level of the original partition P0, assuming it is optimal for all possible
combinations of pieces of boundaries in the hierarchy. More precisely, this approach
assumes that the sets σm

i and σu
i do not depend on the partition p being analyzed; or

in other words, that the optimal matching for any partition p can be obtained from the
initial matching on P0.

In order to illustrate this problem, Figure 2 depicts an example partition (a) and
the correspondent ground truth (b). If pixels are matched globally, as presented in the
previous section, let us assume that all pixels in σ1 are matched to all M ground-truth
pixels. Then, we would have that σm

1 = M and σm
2 = 0, that is, no pixel in σ2 would be

matched at the level of P0. When computing the number of matched ground-truth pixels
for the partition identified by p = (0, 1), we would find that the number of matched
pixels is σm · p = 0, but the right portion of the ground-truth boundary should be
matched to σ2, that is, the correct result should be σm · p = M/2.

σ1

σ2

σm
1

ω1

(a) (b) (c)

Fig. 2. Ground-truth multi-matching representation: (a) Partition being assessed, (b) ground truth,
(c) both partitions overlaid. The points are plotted to highlight the division of the boundary pixels
into sets.

The approach we propose to solve this issue is to perform n−1 matchings between
the pixels of the ground-truth partition and those of each σi, and define σm

i and σu
i as

those sets of pixels locally matched or unmatched, respectively. In other words, some
pixels of the ground truth can be matched with more than one boundary segment, and
thus we call it multi-matching.

Formally, once performed the n − 1 matchings between the ground-truth boundary
pixels and each σi, each boundary pixel of the ground truth may be matched to a bound-
ary pixels of some σi (from 1 to n−1) of the partition. Understanding the set of indices
of each σi involved in the multi matching as a signature of each of the ground-truth
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boundary pixels, we divide these ground-truth boundary pixels into groups of equal
signature.

This way, for instance, we will have a set of unmatched pixels, n− 1 sets of single-
matched pixels which we will denote as σm

i (see Figure 2), and the rest will have more
than one index in the signature. Intuitively, we will count a ground-truth boundary pixel
as matched only if any of the σi in its signature is in the partition but not counting it
more than once.

To do so, and in order to have a compact modeling, let us group the set of ground-
truth boundary pixels with equal signature and define the set as ωj . Moreover, let us
assume we have m different multiple-index sets of pixels ωj with signatures Ωj =

{sj1, . . . , sjk}. For instance, the pixels in the set ω1 of the example of Figure 2 (see
(c)) are each of them multi-matched to pixels in σ1 and σ2, then their signature is
Ωj = {1, 2}. Let q ∈ {0, 1}m be a vector such that qj = 1 if the set of pixels in
ωj should be considered as matched. The value of qj is function of the values in the
signature, that is, qj = 1 if any psji

= 1 and 0 otherwise. Mathematically:

qj = psj1
or psj2 or · · · or psjkj

The equivalent linear constraints that define this equation are:

qj ≤
∑

s∈Ωj

ps (4)

qj ≥ ps ∀ s ∈ Ωj (5)

Let us define σ =
(|σm

1 |, . . . , |σm
n−1|

) ∈ N
n−1 be the vector of single-matched number

of ground-truth boundary pixels for each σi, and ω = (|ω1|, . . . , |ωm|) ∈ N
m the vector

of the number of ground-truth boundary pixels with equal signature. Then, the problem
F can be rewritten as:

F : maximize
p,q

Fb = 2
(σ,ω, 0) · (p,q, 1)T

(σ,0, |Pgt|) · (p,q, 1)T
(6)

subject to (3), (4), (5)

which, as wanted, fulfills the form of an LFCO as in Equation 1, identifying x =
(p,q, 1) as the binary-valued variable of the problem.

4.3 ubODS: Sweeping the Number of Regions

The problem 6 finds the optimal single partition in terms of Fb so, in other words, it
finds the upper-bound Optimal Image Scale (ubOIS) partition. Given that a hierarchy
represents a collection of partitions of varying number of regions, it would also be
desirable to explore the upper-bound Optimal Dataset Scale (ubODS) from sweeping a
varied range of number of regions.
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To do so, we add the following constraint, that forces the result to have a specific
number of regions N :

∑
i pi = N − 1, and sweep all the values of N between 1 and n.

5 Experiments

We compare the upper-bound partition selection technique against the merging-sequence
partition analysis on four different hierarchies. The first one is the Ultrametric Contour
Map (UCM) tree [5]. Then, two different BPT: the Normalized Weighted Euclidean
distance between Models with Contour complexity (NWMC) tree [8], and the Indepen-
dent Identically Distributed - Kullback Leibler (IID-KL) tree [9]. As a baseline we use a
randomly-generated tree (Random), that is, a tree that is formed by iteratively merging
random pairs of neighboring regions.

The trees are built on the 200 test images of the BSDS500 [5]. Each tree is compared
with each of the multiple ground-truth partitions available and the result averaged, as
proposed by [11] to handle multiple-partition ground truths. In order for the compari-
son to be fair, the base partition P0 on which the tree is built is the same for the four
techniques: the one obtained with the UCM with 100 regions.

The upper-bound partition selection algorithm is implemented in MATLAB, publicly
available at https://imatge.upc.edu/web/?q=node/1352. The optimiza-
tion itself of the LFCO is done by the IBM ILOG CPLEX Optimizer (free of charge
for academic use), which is called directly by the MATLAB code. The scripts to fully
reproduce the experiments and figures of this paper are also released.

In turn, the boundary matching code used in all the experiments has been obtained
from [12]. Note that, this original code represents the boundaries of a partition in the
pixel grid, that is, as a mask in which the pixels swept by the boundaries moved half
pixel up and left are activated, which leads to an ambiguous representation. This ambi-
guity can be solved using the contour grid [13], which we use in our code. The numer-
ical impact of this change of representation is not significant but the code obtained is
much simpler and more readable.

5.1 ODS and OIS

Table 1 shows the mean Optimal Dataset Scale (ODS) and Optimal Image Scale (OIS)
Fb values for the 200 image ground-truth pairs, and for the four compared hierarchies.
The two first columns refer to the merging-sequence partition selection technique and
the two last columns show the values for the upper-bound partition selection technique.

Comparing the quality of the hierarchies, the UCM tree presents better results than
the rest of hierarchies. However, the main objective of this paper is not to compare the
hierarchies themselves, but the partition selection techniques on which the assessment
is based.

Regarding the comparison between ODS and OIS, the latter is coherently higher
than the former. An improvement is also observed between the merging-sequence and
the upper-bound techniques, which is, again, coherent with the theory.

Moreover, what really makes the difference between comparison techniques is their
relative values, that is, how well the assessment discriminates the quality between the

https://imatge.upc.edu/web/?q=node/1352
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Table 1. ODS and OIS Fb values for the
merging-sequence and upper-bound partition
selection techniques

Merging sequence Upper bound
ODS OIS ubODS ubOIS

UCM 0.587 0.622 0.669 0.695
NWMC 0.542 0.581 0.658 0.684
IID-KL 0.538 0.571 0.634 0.654
Random 0.523 0.537 0.589 0.603

Table 2. Relative ODS and OIS Fb values for
the merging-sequence and upper-bound parti-
tion selection techniques

Merging sequence Upper bound
ODS OIS ubODS ubOIS

UCM 1 1 1 1
NWMC 0.30 0.51 0.86 0.89
IID-KL 0.23 0.40 0.56 0.56
Random 0 0 0 0

different hierarchies. In particular, good assessment techniques should be able to cor-
rectly discriminate between a random tree and the other techniques. To evaluate this
aspect, Table 2 shows the relative values of ODS and OIS, that is, assigning 0 to the
random tree, 1 to UCM, and scaling the rest of the values accordingly.

If the measurement techniques were equivalent, the relative values should not change,
but there are significant differences in these relative values, meaning that the conclu-
sions extracted from the assessment can vary depending on the criterion used.

As introduced previously, a desirable property of the assessment techniques is a high
discrimination of the random tree. In other words, it is obvious that the random trees
must be far away from any real hierarchy. Under this point of view, the upper-bound
assessment provides much better behavior.

As an example, the IID-KL tree is much closer to the random tree than to the UCM
tree for ODS, while for the upper-bound ODS (ubODS), the IID-KL tree is halfway
between the two, which is qualitatively more accurate.

The improvement obtained in the OIS with respect to the ODS highlights the rele-
vance of the alignment algorithm on the results obtained. The same way, the improve-
ment of the upper-bound analysis ubODS and ubOIS with respect to ODS and OIS is
an indicator of the impact of the partition selection algorithm on the assessment.

Focusing on the sorting of the algorithm quality for the two top-rated hierarchies
(UCM and NWMC), in 529 of the 1800 cases studied (9 parameterizations on 200
images), the ranking provided by the merging sequence analysis is not coherent with the
one provided by the upper-bound. In other words, different partition selection strategies
can lead to different decisions with respect to which is the best hierarchy based on a
supervised assessment.

5.2 Upper-Bound Precision-Recall Curves

A region-based hierarchy is a structured set of image partitions at different scales, and
thus comparing them to non-hierarchical partitions via the OIS and ODS Fb may obvi-
ate the assessment of some parts of the tree. The precision recall curves on boundary
detection, instead, can give us a global picture of the quality of the hierarchy, sweeping
the partitions at different scales.
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Fig. 3. Merging-sequence (left) and upper-bound (right) precision-recall curves

Figure 3 shows the precision-recall curves for the four hierarchies studied. In the
figure of the left, the points have been obtained using the merging-sequence partition
selection whereas, in the figure of the right, the proposed upper-bound partition selec-
tion has been used.

In the range of interest of the hierarchies, that is, the range of better Fb, similarly
to the results of the previous section, the upper-bound precision-recall curves better
discriminate between the random hierarchy and the rest of trees. In the range of higher
number of regions, close to the leaves of the tree, the different curves are much closer
than in the merging sequence, which reflects that, in this range, the original partition
is more influent than the hierarchy itself. Note that, coherently, all curves meet in the
point corresponding to 100 regions, because each tree contains only one partition with
the maximum level of detail: P0.

To better visualize the differences between the precision-recall curves and their upper-
bound equivalents, Figure 4 shows them both in the same axis, leaving the IDD-KL tree
out for the sake of clarity of the plot.

Note that, for each type of hierarchy, both curves start from the same point at high
number of regions and tend to converge for few regions. In the middle range, corre-
sponding also to the better Fb values, the gain obtained with the upper-bound assess-
ment is much more relevant for the NWMC tree than for the rest of trees, which rein-
forces the possibility that different partition selection techniques can lead to discrepant
results.

5.3 Computational Cost

Although a supervised assessment is usually performed offline, a reduced computa-
tional cost is of paramount importance. The faster the method is, the larger the datasets
in which researchers will tune and test their algorithms, which results in a more solid
research. This section compares the computational cost of the proposed evaluation tech-
niques (ubODS and ubOIS) in front of ODS and OIS.

ODS requires computing the boundary matching for k different number of regions,
thus the whole time is k times the cost of a boundary matching, which we will re-
fer to as t(BM ). OIS requires the ODS computation and find the Fb maximum for
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each image, so the cost is also k · t(BM ). The cost of ubODS is one boundary multi-
matching t(BMM ) and k LFCO optimizations t(LFCO). Finally, the cost of ubOIS
is t(BMM ) + t(LFCO), since one single optimization finds the optimal number of
regions, thus not needing the computation of ubODS.

The mean values obtained in the experiments for each of these processes are:
t(BM ) = 0.34 s, t(BMM ) = 0.64 s, and t(LFCO) = 0.21s. Thus, the mean time
spent for each technique is t(ODS )= t(OIS)=k · 0.34 s, t(ubODS)=0.64+k·0.21 s,
and t(ubOIS)=0.85 s. Figure 5 shows the relative cost of the upper-bound techniques
with respect to the cost of the merging-sequence ones. The higher the number of sam-
ples k, the lower the relative cost of the upper-bound techniques. The computation of
ubODS is approximately 25% faster than ODS and OIS, while ubOIS, thanks to the fact
that a single optimization is enough, is considerably faster.

5.4 Worst-Discrepancy Graphical Results

To get a qualitative idea of the type of discrepancies between the region selection tech-
niques, Figure 6 shows the most discrepant example of partition selection on the UCM
tree for 6, 10, and 20 regions selected, that is, the three results whose partition selected
in the merging sequence is more dissimilar with the upper-bound one.

The differences observed between the two strategies are visually relevant. In the first
and second columns (6 and 10 regions), the merging sequence analysis obviates the
main object of interest or part of it, while in the upper-bound partition selection the
object is present in the selected partition. In the last column (20 regions) the upper-
bound selection is capable of highlighting the higher importance of the background
object with respect to the background as in the ground truth.

To sum up, the upper-bound partitions (Figure 6.d) represent the quality of the tree
much better than those of the merging sequence (Figure 6.c), or in other words, the
region selection masks the actual quality of the tree.
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Fig. 6. Worst-case results on UCM trees: (a) images of the BSDS500 test set, (b) their multiple
ground-truth partitions, (c) partitions selected from the merging sequence with 6, 10, and 20
regions, respectively, and (d) the upper-bound partitions with the same number of regions

6 Conclusions

This paper presents the upper-bound partition selection algorithm as a supervised as-
sessment of hierarchical region-based image representations. It consists in finding,
among all possible partitions represented in the hierarchy, the partition that best match
the ground truth, instead of assessing just a reduced set of representative partitions.

The quality assessment measure used is the so-called F measure for boundary de-
tection (Fb), which is known to present a good behavior among the existing measures.
To be able to efficiently analyze all possible partitions in a hierarchy, we model the
problem as a Linear Fractional Combinatorial Optimization (LFCO) problem.

The experiments show that the ubODS and ubOIS assessment techniques better rep-
resent the quality of the tree: 1) they cover partitions that are omitted in the merging
sequence (and are used in image analysis works) and reach much better Fb values, 2)
their performance discrimination between the random and the actual techniques is much
better. Some visual examples corroborate that the merging-sequence selected partitions
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are not good representatives of the quality of the tress. Overall, an assessment based
on the previous techniques in the literature can mislead the conclusions that can be
extracted.

We make the MATLAB code to compute the ubODS and ubOIS publicly available,
as well as all the scripts to fully reproduce the experiments and figures of this paper.
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