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Abstract

Recent advances in deep reinforcement learning (RL) have led to considerable
progress in many 2-player zero-sum games, such as Go, Poker and Starcraft. The
purely adversarial nature of such games allows for conceptually simple and prin-
cipled application of RL methods. However real-world settings are many-agent,
and agent interactions are complex mixtures of common-interest and competitive
aspects. We consider Diplomacy, a 7-player board game designed to accentuate
dilemmas resulting from many-agent interactions. It also features a large com-
binatorial action space and simultaneous moves, which are challenging for RL
algorithms. We propose a simple yet effective approximate best response operator,
designed to handle large combinatorial action spaces and simultaneous moves. We
also introduce a family of policy iteration methods that approximate fictitious play.
With these methods, we successfully apply RL to Diplomacy: we show that our
agents convincingly outperform the previous state-of-the-art, and game theoretic
equilibrium analysis shows that the new process yields consistent improvements.

1 Introduction

Artificial Intelligence methods have achieved exceptionally strong competitive play in board games
such as Go, Chess, Shogi [108, , 20, ], Hex [2], Poker [85, 17] and various video games [63, 84,

, 94, 45, , 55, 14]. Despite the scale, complexity and variety of these domains, a common focus
in multi-agent environments is the class of 2-player (or 2-team) zero-sum games: “1 vs 1” contests.
There are several reasons: they are polynomial-time solvable, and solutions both grant worst-case
guarantees and are interchangeable, so agents can approximately solve them in advance [121, 122].
Further, in this case conceptually simple adaptations of reinforcement learning (RL) algorithms often
have theoretical guarantees. However, most problems of interest are not purely adversarial: e.g. route
planning around congestion, contract negotiations or interacting with clients all involve compromise
and consideration of how preferences of group members coincide and/or conflict. Even when agents
are self-interested, they may gain by coordinating and cooperating, so interacting among diverse
groups of agents requires complex reasoning about others’ goals and motivations.

We study Diplomacy [19], a 7-player board game. The game was specifically designed to emphasize
tensions between competition and cooperation, so it is particularly well-suited to the study of learning
in mixed-motive settings. The game is played on a map of Europe partitioned into provinces. Each
player controls multiple units, and each turn all players move all their units simultaneously. One unit
may support another unit (owned by the same or another player), allowing it to overcome resistance
by other units. Due to the inter-dependencies between units, players must coordinate the moves of
their own units, and stand to gain by coordinating their moves with those of other players. Figure 1
depicts interactions among several players (moving and supporting units to/from provinces); we
explain the basic rules in Section 2.1. The original game allows cheap-talk negotiation between
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players before every turn. In this paper we focus on learning strategic interactions in a many-agent
setting, so we consider the popular No Press variant, where no explicit communication is allowed.

Diplomacy is particularly challenging for RL agents. First, it is a many-
player (n > 2) game, so methods cannot rely on the simplifying properties
of 2-player zero-sum games. Second, it features simultaneous moves, with
a player choosing an action without knowledge of the actions chosen by
others, which highlights reasoning about opponent strategies. Finally,
Diplomacy has a large combinatorial action space, with an estimated
game-tree size of 10%°°, and 102! to 10%* legal joint actions per turn. '

Consequently, although Diplomacy Al has been studied since the 1980s [65,

], until recently progress has relied on handcrafted rule-based systems,
rather than learning. Paquette et al. [90] achieved a major breakthrough:
they collected a dataset of ~ 150,000 human Diplomacy games, and
trained an agent, DipNet, using a graph neural network (GNN) to imitate
the moves in this dataset. This agent defeated previous state-of-the-art
agents conclusively and by a wide margin. This is promising, as imitation
learning can often be a useful starting point for RL methods.

Figure 1: Simple exam-
ple of interactions be-
tween several players’
moves.

However, to date RL has not been successfully applied to Diplomacy. For example, Paquette et al. [90]
used A2C initialised by their imitation learning agent, but this process did not improve performance as
measured by the Trueskill rating system [50]. This is unfortunate, as without agents able to optimise
their incentives, we cannot study the effects of mixed-motives on many-agent learning dynamics, or
how RL agents might account for other agents’ incentives (e.g. with Opponent Shaping [36]).

Our Contribution: We train RL agents to play No-Press Diplomacy, using a policy iteration (PI)
approach. We propose a simple yet scalable improvement operator, Sampled Best Responses (SBR),
which effectively handles Diplomacy’s large combinatorial action space and simultaneous moves.
We introduce versions of PI that approximate iterated best response and fictitious play (FP) [16, 97]
methods. In Diplomacy, we show that our agents outperform the previous state-of-the-art both against
reference populations and head-to-head. A game theoretic equilibrium analysis shows our process
yields consistent improvements. We propose a few-shot exploitability metric, which our RL reduces,
but agents remain fairly exploitable. We perform a case-study of our methods in a simpler game,
Blotto (Appendix A), and prove convergence results on FP in many-player games (Appendix H).

2 Background and Related Work

Game-playing has driven Al research since its inception: work on games delivered progress in search,

RL and computing equilibria [101, 44, 61, 35, 13, 99, s s , 41, 34] leading to prominent
successes in Chess [20], Go [108, ], Poker [85, 17], multi-agent control domains [10, 79, 6, s
] and video games [03, 84, 60]. Recent work has also used deep RL in many-player games.
Some, such as Soccer, Dota and Capture-the-Flag, focus on two teams engaged in a zero-sum game
but are cooperative between members of a team [79, 14, 55]. Others, e.g. Hanabi or Overcooked,
are fully-cooperative [37, 53, 75, 11, 21]. Most relevantly, some work covers mixed-motive social
dilemmas, with both competitive and collaborative elements [81, 74, 76, 24, 36, , 54].

There is little work on large, competitive, many-player settings, known to be harder than their two-
player counterparts [23, 26]. The exception is a remarkable recent success in many-player no-limit
Poker that defeated human experts [18]. However, it uses expert abstractions and end-game solving
to reduce the game tree size. Moreover, in Poker collusion is strictly prohibited and players often fold
early in the game until only two remain, which reduces the effects of many-player interactions in
practice. In contrast, in Diplomacy 2-player situations are rare and alliances are crucial.

Diplomacy AI Research: Diplomacy is a long-standing Al challenge. Even in the simpler No-
Press variant, Als are far weaker than human players. Rule-based Diplomacy agents were proposed
in the 1980s and 1990s [65, 46, 64, 66]. Frameworks such as DAIDE [98] DipGame [31] and
BANDANA [57] promoted development of stronger rule-based agents [56, , 33]. One work
applied TD-learning with pattern weights [ 1 06], but was unable to produce a strong agent. Negotiation

"For comparison, Chess’s game tree size is 10'23, it has 10%7 states, and fewer than 100 legal actions per
turn. Estimates for Diplomacy are based on human data; see Appendix I for details.



for Computer Diplomacy is part of the Automated Negotiating Agents Competition [5, 27]. We
build on DipNet, the recent success in using a graph neural network to imitate human gameplay [90].
DipNet outperformed previous agents, all rule-based systems, by a large margin. However, the
authors found that A2C [83] did not significantly improve DipNet. We replicated this result with our
improved network architecture (see Appendix E).

Related Algorithms: In this work we present PI algorithms that approximate FP. Neural Fictitious
Self-Play (NFSP) [49] and Policy Space Response Oracles (PSRO) [73] are two prior algorithms that
use RL in an ‘inner-loop’ to approximate a BR for FP. NFSP makes use of DQN, which requires a
small actions space, to apply it to Diplomacy would require decomposing the action space, e.g. into
unit actions. PSRO used a version of Actor-Critic, but requires a full RL training run every iteration,
and A2C has previously proven ineffective in Diplomacy. In contrast, we use SBR to search for a BR
in each stage-game without an ‘inner-loop’ RL algorithm.

AlphaZero and Expert Iteration [109, 2] previously applied PI with search in classical board games.
Their success motivates using PI in Diplomacy, but because their MCTS requires sequential moves
and only ~ 100s of actions per turn to be effective, they cannot be directly applied in Diplomacy.

2.1 No-Press Diplomacy: Summary of Game Rules

We provide an intentionally brief overview of the core game mechanics. For a longer introduction,
see [90], and the rulebook [19]. The board is a map of Europe partitioned into provinces; 34 provinces
are supply centers (SCs, dots in PAR, MUN, MAR, and VEN in Figure 1). Each player controls
multiple units of a country. Units capture SCs by occupying the province. Owning more SCs allows
a player to build more units; the game is won by owning a majority of the SCs. Diplomacy has
simultaneous moves: each turn every player writes down orders for all their units, without knowing
what other players will do; players then reveal their moves, which are executed simultaneously. The
next position is fully determined by the moves and game rules, with no chance element (e.g. dice).

Only one unit can occupy a province, and all units have equal strength. A unit may hold (guard its
province) or move to an adjacent province. A unit may also support an adjacent unit to hold or move,
to overcome opposition by enemy units. Using Figure 1 as a running example, suppose France orders
move PAR — BUR; if the unit in MUN holds then the unit in PAR enters BUR, but if Germany
also ordered MUN — BUR, both units ‘bounce’ and neither enters BUR. If France wanted to insist
on entering to BUR, they can order MAR support PAR — BUR, which gives France 2 units versus
Germany'’s 1, so France’s move order would succeed and Germany’s would not. However, MAR’s
support can be cut by Italy moving PIE — MAR, leading to an equal-strength bounce as before.

This example highlights elements that make Diplomacy unique and challenging. Due to simultaneous
move resolution, players must anticipate how others will act and reflect these expectations in their
own actions. Players must also use a stochastic policy (mixed strategy), as otherwise opponents could
exploit their determinism. Finally, cooperation is essential: Germany would not have been able to
prevent France from moving to BUR without Italy’s help. Diplomacy is specifically designed so
that no player can win on their own without help from other players, so players must form alliances
to achieve their ultimate goal. In the No-Press variant, this causes pairwise interactions that differ
substantially from zero-sum, so difficulties associated with mixed-motive games arise in practice.

3 Reinforcement Learning Methods

We adopt a policy iteration (PI) based approach, motivated by successes using PI for perfect informa-
tion, sequential move, 2-player zero-sum board games [2, ]. We maintain a neural network policy
# and a value function V. Each iteration we create a dataset of games, with actions chosen by an
improvement operator which uses a previous policy and value function to find a policy that defeats
the previous policy. We then train our policy and value functions to predict the actions chosen by the
improvement operator and the game results. The initial policy 7#° and value function V0 imitate the
human play dataset, similarly to DipNet [90], providing a stronger starting point for learning.

Section 3.1 describes SBR, our best response approximation method, tailored to handle the simulta-
neous move and combinatorial action space of Diplomacy. Section 3.2 describes versions of PI that
use SBR to approximate iterated best response and fictitious play algorithms. Our neural network
training is an improved version of DipNet, described in Section 3.3 and Appendix C.



3.1 Sampled Best Response (SBR)

Our PI methods use best response (BR) calculations as an improvement operator. Given a policy 7°
defined for all players, the BR for player ¢ is the policy 7} that maximises the expected return for
player i against the opponent policies 7° ;. A best response may not be a good policy to play as it can
be arbitrarily poor against policies other than those it responds to. Nonetheless best responses are a
useful tool, and we address convergence to equilibrium with the way we use BRs in PI (Section 3.2).

Diplomacy is far too large for exact best response calculation, so we propose a tractable approximation,
Sampled Best Response (SBR, Algorithm 1). SBR makes three approximations: (1) we consider
making a single-turn improvement to the policy in each state, rather than a full calculation over
multiple turns of the game. (2) We only consider taking a small set of actions, sampled from a
candidate policy. (3) We use Monte-Carlo estimates over opponent actions for candidate evaluation.

Consider calculating the value of some action a; for player i against an opponent policy 7 ; (hereafter

the base policy). Let T'(s, a) be the transition function of the game and V7™ (s) be the state-value
function for a policy 7. The 1-turn value to player ¢ of action a; in state s is given by:

b b
QF (ails) =Eq_,m Vi (T(s, (a5, 0-4)))
We use the value network V instead of the exact state-value to get an estimated action-value Q”? (ails).

If the action space were small enough, we could exactly calculate arg max,,, Q’T? (a;|s), as a 1-turn
best response. However, there are far too many actions to consider all of them. Instead, we sample a
set of candidate actions A; from a candidate policy 7$(s), and only consider these candidates for our
approximate best response. Now the strength of the SBR policy depends on the candidate policy’s
strength, as we calculate an improvement compared to 77 in optimizing the 1-turn value estimate.
Note we can use a different policy 7 to the policy 7° we are responding to.

The number of strategies available to opponents is also too large, so calculating the 1-turn value of
any candidate is intractable. We therefore use Monte-Carlo sampling. Values are often affected by
the decisions of other players; to reduce variance we use common random numbers when sampling
opponent actions: we evaluate all candidates with the same opponent actions (base profiles). SBR
can be seen as finding a BR to the sampled base profiles, which approximate the opponent policies.

3.2 Best Response Policy Iteration

We present a family of PI approaches tailored to using (approximate) BRs, such as SBR, in a many-
agent game; we refer to them collectively as Best Response Policy Iteration (BRPI) algorithms
(Algorithm 2). SBR depends on the 7°, ¢, v (base policy, candidate policy and value function); we
can use historical network checkpoints (saved previous network parameters) for these. Different
choices give different BRPI algorithms. The simplest version is standard PI with BRs, while others
BRPI variants approximate fictitious play.

In the most basic BRPI approach, every iteration ¢ we apply SBR to the latest policy 7'~ and value
V=1 to obtain an improved policy 7’ (i.e. SBR(x¢ = #t~1, nb = #t~1 v = Vi~1)). We then
sample trajectories of self-play with 7’ to create a dataset, to which we fit a new policy ¢ and value
Vi using the same techniques used to imitate human data (supervised learning with a GNN). We refer
to this as Iterated Best Response (IBR). IBR is akin to applying standard single-agent PI methods in
self-play, a popular approach for perfect information, 2-player zero-sum games [ 113, , , 2]

However, iteration through exact best responses may behave poorly, failing to converge and leading
to cycling among strategies (see Appendix A for an example). Further, in a game with simultaneous
moves, deterministic play is undesirable, and best responses are typically deterministic. As a potential
remedy, we consider PI algorithms based on Fictitious Play (FP) [16, , 77, 48]. In FP, at each
iteration all players best respond to the empirical distribution over historical opponent strategies. In
2-player zero-sum, the time average of players’ strategies converges to a Nash Equilibrium [16, 97].
In Appendix H, we review theory on many-agent FP, and prove that continuous-time FP converges to
a coarse correlated equilibrium in many-agent games. This motivates approximating FP with a BRPI
algorithm. We now provide two versions of Fictitious Play Policy Iteration (FPPI) that do this.

The first method, FPPI-1, is akin to NFSP [49]. At iteration ¢, we aim to train our policy and value
networks 7%, V¢ to approximate the time-average of BRs (rather than the latest BR). With such a



network, to calculate the BR at time ¢, we need an approximate best response to the latest policy
network (which is the time-average policy), so use SBR(7® = #t~1, v = thl). Hence, to train the
network to produce the average of BRs so far, at the start of each game we uniformly sample an
iteration d € {0,1,...,t — 1}; if we sample d = ¢t — 1 we use the latest BR, and if d < ¢ — 1 we
play a game with the historical checkpoints to produce the historical BR policy from iteration d. >

FPPI-1 has some drawbacks. With multiple opponents, the empirical distribution of opponent
strategies does not factorize into the empirical distributions for each player. But a standard policy
network only predicts the per-player marginals, rather than the full joint distribution, which weakens
the connection to FP. Also, our best response operator’s strength is affected by the strength of the
candidate policy and the value function. But FPPI-1 continues to imitate old and possibly weaker
best responses, even after we have trained stronger policies and value functions.

In our second variant, FPPI-2, we train the policy networks to predict only the latest BR, and
explicitly average historical checkpoints to provide the empirical strategy so far. The empirical
opponent strategy up to time ¢ is p! 1= % D odet 7d, to draw from this distribution we first sample
a historical checkpoint d < ¢, and then sample actions for all players using the same checkpoint.
Player ¢’s strategy at time ¢ should be an approximate best response to this strategy, and the next
policy network 7* imitates that best response. In SBR, this means we use 7 = ! as the base policy.

This remedies the drawbacks of the first approach. The correlations in opponent strategies are
preserved because we sample from the same checkpoint for all opponents. More importantly, we
no longer reconstruct any historical BRs, so can use our best networks for the candidate policy and
value function in SBR, independently of which checkpoints are sampled to produce base profiles.
For example, using the latest networks for the candidate policy and value function, while uniformly
sampling checkpoints for base profiles, could find stronger best responses while still approximating FP.
However, FPPI-2’s final time-averaged policy is represented by a mixture over multiple checkpoints.

NN Policies 7 7 .??,'3

IBR
73

FPPI-1
73

FPPI-2

Figure 2: Illustration of Best Response Policy Iteration algorithms. Red lines represent which policies
are being best responded against, green lines represent which best responses the neural network
imitates

These variants suggest a design space of algorithms combining SBR with PI. (1) The base policy can
either be the latest policy (an IBR method), or from a uniformly sampled previous checkpoint (an
FP method). (2) We can also use either the latest or a uniformly sampled previous value function.
(3) The candidate policy both acts as a regulariser on the next policy and drives exploration, so we
consider several options: using the initial (human imitation) policy, using the latest policy, or using a

2A similar effect could be achieved with a DAgger-like procedure [100], or reservoir sampling [49].



Algorithm 1 Sampled Best Response Algorithm 2 Best Response Policy Iteration

Require: Policies °, 7¢, value function v Require: Best Response Operator BR
1: function SBR(s:state, i:player) I: function BRPI(mo(6), vo(0))
2: for j < 1to Bdo fort < 1to N do ) )
: bj ~7°,(s) > Sample Base Profile mm — BR({m; }}2, {v;}520)

3 0
4 for j < 1to C do D + Sample—Trajjectories(ﬂimp)
5: cj ~ m5(s) > Candidate Action

6

7

N s R

7;(0) < Learn-Policy(D)
Qley) & 5 Tiy o(T(s, (e, b))

v;(6) < Learn-Value(D)
return arg maxce .1 Q(c) return Ty, vy
i

uniformly sampled checkpoint; we also consider mixed strategies: taking half the candidates from
initial and half from latest, or taking half from initial and half from a uniformly sampled checkpoint.

Appendix A is a case study analysing how SBR and our BRPI methods perform in a many-agent
version of the Colonel Blotto game [15]. Blotto is small enough that exact BRs can be calculated,
so we can investigate how exact FP and IBR perform in these games, how using SBR with various
parameters affects tabular FP, and how different candidate policy and base policy choices affect a
model of BRPI with function approximation. We find that: (1) exact IBR is ineffective in Blotto; (2)
stochastic best responses in general, and SBR in particular, improve convergence rates for FP; (3)
using SBR dramatically improves the behaviour of IBR methods compared to exact BRs.

3.3 Neural Architecture

Our network is based on the imitation learning of DipNet [20], which uses an encoder GNN to embed
each province, and a LSTM decoder to output unit moves (see DipNet paper for details). We make
several improvements, described briefly here, and fully in Appendix C. (1) We use the board features
of DipNet, but replace the original ‘alliance features’ with the board state at the last moves phase,
combined with learned embeddings of all actions taken since that phase. (2) In the encoder, we
removed the FiLM layer, and added node features to the existing edge features of the GNN. (3) Our
decoder uses a GNN relational order decoder rather than an LSTM. These changes increase prediction
accuracy by 4 — 5% on our validation set (data splits and performance comparison in Appendix C).

4 Evaluation Methods

We analyze our agents through multiple lenses: We measure winrates (1) head-to-head between agents
from different algorithms and (2) against fixed populations of reference agents. (3) We consider
‘meta-games’ between checkpoints of one training run to test for consistent improvement. (4) We
examine the exploitability of agents from different algorithms. Results of each analysis are in the
corresponding part of Section 5.

Head-to-head comparison: We play 1v6 games between final agents of different BRPI variants
and other baselines to directly compare their performance. This comparison also allows us to spot
if interactions between pairs of agents give unusual results. From an evolutionary game theory
perspective, 1v6 winrates indicate whether a population of agents can be ‘invaded’ by a different
agent, and hence whether they constitute Evolutionary Stable Strategies (ESS) [114, 111]. ESS have
been important in the study of cooperation, as a conditionally cooperative strategies such as Tit-for-Tat
can be less prone to invasion than purely co-operative or mostly non-cooperative strategies [4].

Winrate Against a Population: We assess how well an agent performs against a reference population.
An agent to be evaluated plays against 6 players independently drawn from the reference population,
with the country it plays as chosen at random each game. We report the average score of the agent,
and refer to this as a “1v6” match. *> This mirrors how people play the game: each player only ever
represents a single agent, and wants to maximize their score against a population of other people.
We consider two reference populations: (a) only the DipNet agent [90], the previous state-of-the-art

3The score is 1 for a win, % for n players surviving at a timeout of ~ 80 game-years, and 0 otherwise.



method, which imitates and hence is a proxy for human play. (b) a uniform mixture of 15 final RL
agents, each from a different BRPI method (see Appendix B); BRPI agents are substantially stronger
than DipNet, and the mixture promotes opponent diversity.

Policy Transitivity: Policy intransitivity relates to an improvement dynamics that cycles through
policy space, rather than yielding a consistent improvement in the quality of the agents [52, 9], which
can occur because multiple agents all optimize different objectives. We assess policy transitivity with
meta-games between the checkpoints of a training run. In the meta-game, instead of playing yourself,
you elect an ‘Al champion’ to play on your behalf, and achieve the score of your chosen champion.
Each of the seven players may select a champion from among the same set of N pre-trained policies.
We randomize the country each player plays, so the meta-game is a symmetric, zero-sum, 7-player
game. If training is transitive, choosing later policies will perform better in the meta-game.

Game theory recommends selecting a champion by sampling one of the /N champions according
to a Nash equilibrium [87], with bounded rationality modelled by a Quantal Response Equilibrium
(QRE) [82]. Champions can be ranked according to their probability mass in the equilibrium [9]. 4
We calculate a QRE (see Appendix G) of the meta-game consisting of ¢ early checkpoints, and see
how it changes as later checkpoints are added. In transitive runs we expect the distribution of the
equilibrium to be biased towards later checkpoints.

Finding a Nash equilibrium of the meta-game is computationally hard (PPAD-complete) [89], so as
an alternative, we consider a simplified 2-player meta-game, where the row player’s agent plays for
one country, and the other player’s agent plays in the other 6, we call this the ‘/v6 meta-game’. We
report heatmaps of the payoff table, where the row and column strategies are sorted chronologically.
If training is transitive, the row payoff increases as row index increases but decreases as the column
index increases, which is visually distinctive [8].

Exploitability: The exploitability of a policy 7 is the margin by which an adversary (i.e. BR) to
« would defeat a population of agents playing 7; it has been a key metric for Poker agents [78].
As SBR approximates a BR to its base policy, it can be used to lower bound the base policy’s
exploitability, measured by the average score of 1 SBR agent against 6 copies of 7. The strongest
exploit we found mixes the human imitation policy and 7 for candidates, and uses 7’s value function,
ie. SBR(7¢ = 7St 4+ 7, 7® = 7, v = V™). People can exploit previous Diplomacy Als after
only a few games, so few-shot exploitability may measure progress towards human-level No-Press
Diplomacy agents. If we use a ‘neutral’ policy and value function, and only a few base profiles, SBR
acts as a few-shot measure of exploitability. To do this we use the human imitation policy 75" for
candidates, and - because V5! is too weak - a value function from an independent BRPI run VRE,

5 Results

We analyse three BRPI algorithms: IBR, FPPI-1 and FPPI-2, defined in Section 3.2. In FPPI-2 we
use the latest value function. We sample candidates with a mixture taking half the candidates from
the initial policy. The other half for IBR and FPPI-2 is from iteration ¢ — 1; for FPPI-1 it comes from
the uniformly sampled iteration. At test time, we run all networks at a softmax temperature t = 0.1. °

Head-to-head comparison: we compare our methods to the supervised learning (SL) and RL
(A2C) DipNet agents [90]; our SL implementation, with our neural architecture; and Albert [117],
the strongest rule-based Diplomacy Al and prior state-of-the-art (see Appendix B for additional
comparisons). Table 1 shows the average 1v6 score where a single row agent plays against 6 column
agents. For the BRPI methods, these are averaged over 5 seeds of each run. When selecting the
column agent, we always use 6 agents from the same training run. This means that, for example,
the IBR v IBR match is not symmetric: the row agent is playing against agents it did not train with,
whereas the column agents are playing mostly against agents they trained with. This means diagonal
entries between BRPI methods should not necessarily equal %; it tends to give an advantage to column
agents.

All of our learning methods give a large improvement over both supervised learning baselines, and an
even larger winrate over DipNet A2C. BRPI algorithms are initialised by supervised learning on the
same dataset, and begins by calculating a best response, which might have led to a narrow exploit to

A similar analysis called a ‘Nash League’ was used to study Starcraft agents [119].
SWe will open-source these BRPI agents and our SL agent for benchmarking.



the prior SL agents. However, BRPI also shows improved winrates against Albert compared to prior
agents, indicating that this is not the case. Among our learning methods, FPPI-2 achieves the best
winrate in 1v6 against each algorithm, and is also the strategy against which all singleton agents do

the worst.

[[ SL[90] A2C[90] SL (ours) [ FPPI-1 IBR  FPPI-2 | Albert
SL [90] 14.3% 7.9% 16.3% 3.1% 1.9% 1.4% | 42.0%
A2C [90] 15.5% 14.3% 15.5% 3.0% 2.3% 1.3% | 50.9%
SL (ours) 12.4% 8.5% 14.3% 3.9% 2.3% 2.0% | 36.3%
FPPI-1 30.1% 27.3% 289% | 13.4% 7.0% 6.1% | 64.5%
IBR 23.3% 26.8% 241% | 12.6% 13.6% 12.6% | 65.8%
FPPI-2 20.4% 26.4% 247% | 13.5% 153% 13.5% | 68.7%
Albert 2.3% 0.0% 3.1% 0.0% 0.0% 0.0% | 14.3%

Table 1: Average scores for 1 row player vs 6 column players. BRPI methods give an improvement
over A2C or supervised learning. All numbers accurate to a 95% confidence interval of +0.5%,
except those against Albert which are +5%. Bold numbers are the best value for single agents against
a given set of 6 agents, italics are for the best result for a set of 6-agents against each single agent.

Winrate Against a Population: The left of Figure 3 shows the performance of our BRPI methods
against DipNet through training. Solid lines are the winrate of our agents in 1v6 games (1 BRPI
agent vs. 6 DipNet agents), and dashed lines relate to the winrate of DipNet reverse games (1 DipNet
agent vs 6 PI agents). The x-axis shows the number of policy iterations. A dashed black line indicates
a winrate of 1/7th (expected for identical agents as there are 7 players). The figure shows that all
PI methods quickly beat the DipNet baseline before plateauing. Meanwhile, the DipNet winrate
drops close to zero in the reverse games. The figure on the right is identical, except the baseline is
a uniform mixture of our final agents from BRPI methods. Against this population, our algorithms
do not plateau, instead improving steadily through training. The figure shows that FPPI-1 tends to
under-perform against our other BRPI methods (FPPI-2 and IBR). We averaged 5 different runs with
different random seeds, and display 90% confidence intervals with shaded area.

Winrates Against DipNet-SL Winrates Against Final BRPI Agents
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Figure 3: Winrates through training, 1v6 or 6v1 against different reference populations

Policy Transitivity: Figure 4 depicts the Diplomacy meta-game between checkpoints produced in a
single BRPI run. The heatmaps on the left examine a 1v6 meta game, showing the winrate of one row
checkpoint playing against 6 column checkpoints for even numbered checkpoints through the run.
The plots show that nearly every checkpoint beats all the previous checkpoints in terms of 1v6 winrate.
A checkpoint may beat its predecessors in way that’s exploitable by other strategies: checkpoint 4 in
the FPPI-2 run beats the previous checkpoints, but is beaten by all subsequent checkpoints by a larger
margin than previous checkpoints.

The right side of Figure 4 shows the Nash-league of the full meta-game. The i" row shows the
distribution of a QRE in the meta-game over the first ¢ checkpoints analyzed (every row adds the
next checkpoint). We consider checkpoints spaced exponentially through training, as gains to further
training diminish with time. The figure shows that the QRE consistently places most of the mass
on the recent checkpoint, indicating a consistent improvement in the quality of strategies, rather
than cycling between different specialized strategies. This is particularly notable for IBR: every
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Figure 4: Transitivity Meta-Games: Top: IBR, Bottom: FPPI-2. Left: 1v6, Right: QRE in 7-player.

checkpoint is only trained to beat the previous one, yet we still observe transitive improvements
during the run (consistent with our positive findings for IBR in Blotto in Appendix A.5.3).

Exploitability: We find that all our agents are fairly exploitable at the end of training (e.g. the
strongest exploiters achieve a 48% winrate), and the strongest exploit found does not change much
through training, but few-shot exploitability is reduced through training. Agents are more exploitable
at low temperatures, suggesting our agents usefully mix strategies. Final training targets are less
exploitable than final networks, including in IBR, unlike what we’d expect if we used an exact BR
operator, which would yield a highly exploitable deterministic policy. For full details see Appendix B.

6 Conclusion

We proposed a novel approach for training RL agents in Diplomacy with BRPI methods and overcom-
ing the simultaneous moves and large combinatorial action space using our simple yet effective SBR
improvement operator. We set-out a thorough analysis process for Diplomacy agents. Our methods
improve over the state of the art, yielding a consistent improvement of the agent policy.

Our results provide generalisable lessons about learning in many-agent and imperfect information
settings: We show that sampling-heavy best response estimation can be sufficient to drive learning
in a complex many-agent domain. In fact, IBR was surprisingly effective, and we believe this is an
result of the stochasticity from the SBR method. In Blotto, we showed that stochastic best response
approximation was beneficial to BRPI algorithms. Our most successful approach was FPPI-2, we
found this method of averaging policies to be stronger than FPPI-1’s NESP-style method.

Using RL to improve game-play in No-press Diplomacy is a prerequisite for investigating the complex
mixed motives and many-player aspects of this game. Future work can now focus on questions like:
(1) What is needed to achieve human-level No-Press Diplomacy AI? (2) How can the exploitability
of RL agents be reduced? (3) Can we build agents that reason about the incentives of others, for
example behaving in a reciprocal manner [29], or by applying opponent shaping [36]? (4) How can
agents learn to use signalling actions to communicate intentions in No-Press Diplomacy? (5) Finally,
how can agents handle negotiation in Press variants of the game, where communication is allowed?



Broader Impact

We discuss the potential impact of our work, examining possible positive and negative societal impact.

What is special about Diplomacy? Diplomacy [19] has simple rules but high emergent complexity.
It was designed to accentuate dilemmas relating to building alliances, negotiation and teamwork
in the face of uncertainty about other agents. The tactical elements of Diplomacy form a difficult
environment for Al algorithms: the game is played by seven players, it applies simultaneous moves,
and has a very large combinatorial action space.

What societal impact might it have? We distinguish immediate societal impact arising from the
availability of the new training algorithm, and indirect societal impact due to the future work on
many-agent strategic decision making enabled or inspired by this work.

Immediate Impact. Our methods allow training agents in Diplomacy and other temporally extended
environments where players take simultaneous actions, and the action of a player can be decomposed
into multiple sub-actions, in domains that can can be simulated well, but in which learning has been
difficult so far. Beyond the direct impact on Diplomacy, possible applications of our method include
business, economic, and logistics domains, in as far as the scenario can be simulated sufficiently
accurately. Examples include games that require a participant to control multiple units (Starcraft
and Dota [119, 14] have this structure, but there are many more), controlling fleets of cars or
robots [1, 93, ] or sequential resource allocation [95, 91]. However, applications such as in
business or logistics are hard to capture realistically with a simulator, so significant additional work is
needed to apply this technology in real-world domains involving multi-agent learning and planning.

While Diplomacy is themed as a game of strategy where players control armies trying to gain control
of provinces, it is a very abstract game - not unlike Chess or Checkers. It seems unlikely that real-
world scenarios could be successfully reduced to the level of abstraction of a game like Diplomacy.
In particular, our current algorithms assume a known rule set and perfect information between turns,
whereas the real world would require planning algorithms that can manage uncertainty robustly.

Future Impact. In providing the capability of training a tactical baseline agent for Diplomacy or
similar games, this work also paves the way for research into agents that are capable of forming
alliances and use more advanced communication abilities, either with other machines or with humans.
In Diplomacy and related games this may lead to more interesting Al partners to play with. More
generally, this line of work may inspire further work on problems of cooperation. We believe that a
key skill for a Diplomacy player is to ensure that, wherever possible, their pairwise interactions with
other players are positive sum. Als able to play Diplomacy at human level must be able to achieve
this in spite of the incentive to unilaterally exploit trust established with other agents.

More long term, this work may pave the way towards research into agents that play the full version
of the game of Diplomacy, which includes communication. In this version, communication is used
to broker deals and form alliances, but also to misrepresent situations and intentions. For example,
agents may learn to establish trust, but might also exploit that trust to mislead their co-players and
gain the upper hand. In this sense, this work may facilitate the development of manipulative agents
that use false communication as a means to achieve their goals. To mitigate this risk, we propose
using games like Diplomacy to study the emergence and detection of manipulative behaviours in a
sandbox — to make sure that we know how to mitigate such behaviours in real-world applications.

Overall, our work provides an algorithmic building block for finding good strategies in many-agent
systems. While prior work has shown that the default behaviour of independent reinforcement
learning agents can be non-cooperative [74, 36, 54], we believe research on Diplomacy could pave the
way towards creating artificial agents that can successfully cooperate with others, including handling
difficult questions that arise around establishing and maintaining trust and alliances.

Acknowledgements

We thank Julia Cohen, Oliver Smith, Dario de Cesare, Victoria Langston, Tyler Liechty, Amy Merrick
and Elspeth White for supporting the project. We thank Edward Hughes and David Balduzzi for
their advice on the project. We thank Kestas Kuliukas for providing the dataset of human diplomacy
games.

10



Author Contributions

T.A., TE., AT, J K. L.G. and Y.B. designed an implemented the RL algorithm. I.G., T.A., TE., A.T,,
JK.,R.E., R.W. and Y.B. designed and implemented the evaluation methods. A.T., J K., T A., TE.,
I.G. and Y.B. designed and implemented the improvements to the network architecture. T.H. and N.P.
wrote the Diplomacy adjudicator. M.L. and J.P. performed the case-study on Blotto and theoretical
work on FP. T.A., M.L. and Y.B. wrote the paper. S.S. and T.G. advised the project

Funding Statement

Authors are employees of DeepMind.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]

(11]

(12]

[13]

[14]

Noa Agmon, Sarit Kraus, and Gal A Kaminka. Multi-robot perimeter patrol in adversarial
settings. In 2008 IEEE International Conference on Robotics and Automation, pages 2339—
2345. 1IEEE, 2008.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. NIPS, 2017.

Ayala Arad and Ariel Rubinstein. Multi-dimensional iterative reasoning in action: The case
of the Colonel Blotto game. Journal of Economic Behavior & Organization, 84(2):571-585,
2012.

Robert Axelrod and William Donald Hamilton. The evolution of cooperation. Science,
211(4489):1390-1396, 1981.

Tim Baarslag, Koen Hindriks, Catholijn Jonker, Sarit Kraus, and Raz Lin. The first automated
negotiating agents competition (ANAC 2010). In New Trends in Agent-Based Complex
Automated Negotiations, pages 113—135. Springer, 2012.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew,
and Igor Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint
arXiv:1909.07528, 2019.

David Balduzzi, Wojiech M Czarnecki, Thomas W Anthony, lan M Gemp, Edward Hughes,
Joel Z Leibo, Georgios Piliouras, and Thore Graepel. Smooth markets: A basic mechanism
for organizing gradient-based learners. arXiv preprint arXiv:2001.04678, 2020.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max
Jaderberg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. In Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 434-443, Long Beach, California, USA, 09-15 Jun 2019.
PMLR.

David Balduzzi, Karl Tuyls, Julien Perolat, and Thore Graepel. Re-evaluating evaluation. In
Advances in Neural Information Processing Systems, pages 3268-3279, 2018.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent
complexity via multi-agent competition. arXiv preprint arXiv:1710.03748, 2017.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song,
Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The Hanabi
challenge: A new frontier for Al research. Artificial Intelligence, 280:103216, 2020.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

Hans J Berliner. Backgammon computer program beats world champion. Artificial Intelligence,
14(2):205-220, 1980.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw De¢biak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal J6zefowicz, Scott

11



Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning, 2019.

[15] E. Borel. The game theory of play and integral equations with skew symmetric kernels (la
théorie du jeu et les équations intégrales a noyau symétrique). Econometrica, 21:97-100,
1921.

[16] George W Brown. Iterative solution of games by fictitious play. Activity Analysis of Production
and Allocation, 13(1):374-376, 1951.

[17] Noam Brown and Tuomas Sandholm. Superhuman Al for heads-up no-limit poker: Libratus
beats top professionals. Science, 359(6374):418-424, 2018.

[18] Noam Brown and Tuomas Sandholm. Superhuman Al for multiplayer poker. Science,
365(6456):885-890, 2019.

[19] AB Calhamer. Diplomacy. Board Game. Avalon Hill, 1959.

[20] Murray Campbell, A Joseph Hoane Jr, and Feng-Hsiung Hsu. Deep Blue. Artificial Intelligence,
134(1-2):57-83, 2002.

[21] Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-AlI coordination. In Advances in
Neural Information Processing Systems, pages 5175-5186, 2019.

[22] Andrea Celli, Alberto Marchesi, Tommaso Bianchi, and Nicola Gatti. Learning to correlate in
multi-player general-sum sequential games. In Advances in Neural Information Processing
Systems, pages 13055-13065, 2019.

[23] X. Chen and X. Deng. 3-NASH is PPAD-Complete. Technical Report TR05-134, 2005.

[24] Jacob W Crandall, Mayada Oudah, Fatimah Ishowo-Oloko, Sherief Abdallah, Jean-Francois
Bonnefon, Manuel Cebrian, Azim Shariff, Michael A Goodrich, Iyad Rahwan, et al. Cooperat-
ing with machines. Nature Communications, 9(1):1-12, 2018.

[25] Constantinos Daskalakis and Qinxuan Pan. A counter-example to Karlin’s strong conjecture
for fictitious play. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science,
pages 11-20. IEEE, 2014.

[26] Constantinos Daskalakis and Christos H. Papadimitriou. Three-player games are hard. In
Electronic Colloquium on Computational Complexity (ECCC), 2005.

[27] Dave De Jonge, Tim Baarslag, Reyhan Aydogan, Catholijn Jonker, Katsuhide Fujita, and
Takayuki Ito. The challenge of negotiation in the game of Diplomacy. In International
Conference on Agreement Technologies, pages 100-114. Springer, 2018.

[28] Steven De Rooij, Tim Van Erven, Peter D Griinwald, and Wouter M Koolen. Follow the leader
if you can, hedge if you must. The Journal of Machine Learning Research, 15(1):1281-1316,
2014.

[29] Tom Eccles, Edward Hughes, Janos Kramdr, Steven Wheelwright, and Joel Z Leibo. The
imitation game: Learned reciprocity in markov games. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1934-1936. International
Foundation for Autonomous Agents and Multiagent Systems, 2019.

[30] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.
IMPALA: Scalable distributed deep-RL with importance weighted actor-learner architectures.
arXiv preprint arXiv:1802.01561, 2018.

[31] Angela Fabregues and Carles Sierra. A testbed for multiagent systems Technical Report
IITA-TR-2009-09. IlIA: Institut d’Investigaci en Intelligncia Artificial, Barcelona, 2009.

[32] Gabriele Farina, Tommaso Bianchi, and Tuomas Sandholm. Coarse correlation in extensive-
form games. arXiv preprint arXiv:1908.09893, 2019.

[33] André Ferreira, Henrique Lopes Cardoso, and Luis Paulo Reis. DipBlue: A Diplomacy
agent with strategic and trust reasoning. In International Conference on Agents and Artificial
Intelligence, 2015.

12



[34] David A Ferrucci. Introduction to This is Watson. IBM Journal of Research and Development,
56(3.4):1-1, 2012.

[35] Nicholas V Findler. Studies in machine cognition using the game of Poker. Communications
of the ACM, 20(4):230-245, 1977.

[36] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pages 122—130.
International Foundation for Autonomous Agents and Multiagent Systems, 2018.

[37] Jakob N. Foerster, H. Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon
Whiteson, Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep
multi-agent reinforcement learning. CoRR, abs/1811.01458, 2018.

[38] D. Fudenberg and D. M. Kreps. Learning mixed equilibria. Games and Economic Behavior,
5:320-367, 1993.

[39] D. Fudenberg and D. Levine. Learning and equilibrium. Annual Review of Economics, pages
385-419, 2009.

[40] Drew Fudenberg, Fudenberg Drew, David K Levine, and David K Levine. The Theory of
Learning in Games, volume 2. MIT press, 1998.

[41] Michael Genesereth, Nathaniel Love, and Barney Pell. General game playing: Overview of
the AAAI competition. Al magazine, 26(2):62—-62, 2005.

[42] Richard Gibson. Regret minimization in non-zero-sum games with applications to building
champion multiplayer computer poker agents. arXiv preprint arXiv:1305.0034, 2013.

[43] Geoffrey J Gordon, Amy Greenwald, and Casey Marks. No-regret learning in convex games.
In Proceedings of the 25th international conference on Machine learning, pages 360-367,
2008.

[44] Richard D Greenblatt, Donald E Eastlake III, and Stephen D Crocker. The Greenblatt Chess
Program. In Proceedings of the November 14-16, 1967, fall joint computer conference, pages
801-810, 1967.

[45] William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton, Noboru Kuno, Stephanie
Milani, Sharada Mohanty, Diego Perez Liebana, Ruslan Salakhutdinov, Nicholay Topin, et al.
The MineRL competition on sample efficient reinforcement learning using human priors. arXiv
preprint arXiv:1904.10079, 2019.

[46] Michael R Hall and Daniel E Loeb. Thoughts on programming a diplomat. Heuristic
Programming in Artificial Intelligence, 3(9):123-145, 1992.

[47] Christopher Harris. On the rate of convergence of continuous-time fictitious play. Games and
Economic Behavior, 22(2):238-259, 1998.

[48] Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form
games. In International Conference on Machine Learning, pages 805-813, 2015.

[49] Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

[50] Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: a Bayesian skill rating system.
In Advances in neural information processing systems, pages 569-576, 2007.

[51] Josef Hofbauer and William H Sandholm. On the global convergence of stochastic fictitious
play. Econometrica, 70(6):2265-2294, 2002.

[52] Josef Hofbauer and Karl Sigmund. Evolutionary game dynamics. Bulletin of the American
Mathematical Society, 40(4):479-519, 2003.

[53] Hengyuan Hu and Jakob N Foerster. Simplified action decoder for deep multi-agent reinforce-
ment learning, 2019.

[54] Edward Hughes, Thomas W Anthony, Tom Eccles, Joel Z Leibo, David Balduzzi, and Yoram
Bachrach. Learning to resolve alliance dilemmas in many-player zero-sum games. arXiv
preprint arXiv:2003.00799, 2020.

13



[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al.
Human-level performance in 3D multiplayer games with population-based reinforcement
learning. Science, 364(6443):859-865, 2019.

Stefan J Johansson and Fredrik Haard. Tactical coordination in no-press Diplomacy. In Pro-
ceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 423-430, 2005.

Dave de Jonge and Carles Sierra. D-Brane: a Diplomacy playing agent for automated
negotiations research. Applied Intelligence, 47(1):158-177, 2017.

J. S. Jordan. Three problems in learning mixed-strategy Nash equilibria. Games and Economic
Behavior, 5:368-386, 1993.

Samuel Karlin. Mathematical Methods and Theory in Games, Programming and Economics.
Addison-Wesley, 1959.

Michat Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski.
VizDoom: A Doom-based Al research platform for visual reinforcement learning. In /IEEE
Conference on Computational Intelligence and Games (CIG), pages 1-8. IEEE, 2016.

Donald E Knuth and Ronald W Moore. An analysis of Alpha-Beta pruning. Artificial
Intelligence, 6(4):293-326, 1975.

Pushmeet Kohli, Yoram Bachrach, David Stillwell, Michael J. Kearns, Ralf Herbrich, and
Thore Graepel. Colonel Blotto on Facebook: The effect of social relations on strategic
interaction. ACM Web Science, June 2012.

Jan Koutnik, Giuseppe Cuccu, Jiirgen Schmidhuber, and Faustino Gomez. Evolving large-scale
neural networks for vision-based reinforcement learning. In Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, pages 1061-1068, 2013.

Sarit Kraus, Eithan Ephrati, and Daniel Lehmann. Negotiation in a non-cooperative environ-
ment. Journal of Experimental & Theoretical Artificial Intelligence, 3(4):255-281, 1994.

Sarit Kraus and Daniel Lehmann. Diplomat, an agent in a multi agent environment: An
overview. In Seventh Annual International Phoenix Conference on Computers an Communica-
tions. 1988 Conference Proceedings, pages 434—438. IEEE, 1988.

Sarit Kraus and Daniel Lehmann. Designing and building a negotiating automated agent.
Computational Intelligence, 11(1):132-171, 1995.

Sarit Kraus, Daniel Lehmann, and Eithan Ephrati. An automated Diplomacy player. Heuristic
Programming in Artificial Intelligence: The 1st Computer Olympiad, pages 134—153, 1989.

Kalimuthu Krishnamoorthy. Handbook of statistical distributions with applications. CRC
Press, 2016.

Lucas B. Kruijswijk. Diplomacy adjudicator test cases. 2001. http://web.inter.nl.net/
users/L.B.Kruijswijk/, retrieved 2020-06-03.

Lucas B. Kruijswijk. The math of adjudication. The Diplomatic Pouch, Spring Movement 2009,
2009. http://web.inter.nl.net/users/L.B.Kruijswijk/, retrieved 2020-06-03.

Kestas Kuliukas. Diplomacy adjudicator test cases - webdiplomacy. 2009. https://
webdiplomacy.net/datc.php, retrieved 2020-06-03.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, Janos Kramér, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai,
Julian Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis.
OpenSpiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453, 2019.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent
reinforcement learning. In Advances in Neural Information Processing Systems, pages 4190—
4203, 2017.

Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-
agent reinforcement learning in sequential social dilemmas. AAMAS, 2017.

14



[75] Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via search
in cooperative partially observable games. arXiv preprint arXiv:1912.02318, 2019.

[76] Adam Lerer and Alexander Peysakhovich. Maintaining cooperation in complex social dilem-
mas using deep reinforcement learning. arXiv preprint arXiv:1707.01068, 2017.

[77] David S Leslie and Edmund J Collins. Generalised weakened fictitious play. Games and
Economic Behavior, 56(2):285-298, 2006.

[78] Viliam Lisy and Michael Bowling. Equilibrium approximation quality of current no-limit
Poker bots. In Workshops at the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[79] Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and Thore Graepel.
Emergent coordination through competition. /CLR, 2019.

[80] Edward Lockhart, Marc Lanctot, Julien Pérolat, Jean-Baptiste Lespiau, Dustin Morrill, Finbarr
Timbers, and Karl Tuyls. Computing approximate equilibria in sequential adversarial games
by exploitability descent. arXiv preprint arXiv:1903.05614, 2019.

[81] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. In Advances in
Neural Information Processing Systems, pages 6379-6390, 2017.

[82] Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form
games. Games and economic behavior, 10(1):6-38, 1995.

[83] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In International Conference on Machine Learning, pages 1928-1937,
2016.

[84] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

[85] Matej Moravcik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit Poker. Science, 356(6337):508-513, 2017.

[86] Hervé Moulin and J-P Vial. Strategically zero-sum games: the class of games whose completely
mixed equilibria cannot be improved upon. International Journal of Game Theory, 7(3-4):201—
221, 1978.

[87] John F Nash et al. Equilibrium points in n-person games. Proceedings of the National Academy
of Sciences, 36(1):48-49, 1950.

[88] Georg Ostrovski and Sebastian van Strien. Payoff performance of fictitious play. arXiv preprint
arXiv:1308.4049, 2013.

[89] Christos H Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498-532, 1994.

[90] Philip Paquette, Yuchen Lu, Seton Steven Bocco, Max Smith, O-G Satya, Jonathan K Kummer-
feld, Joelle Pineau, Satinder Singh, and Aaron C Courville. No-press Diplomacy: Modeling

multi-agent gameplay. In Advances in Neural Information Processing Systems, pages 4476—
4487, 2019.

[91] Jonghun Park and Spyros A Reveliotis. Deadlock avoidance in sequential resource allocation
systems with multiple resource acquisitions and flexible routings. IEEE Transactions on
Automatic Control, 46(10):1572—-1583, 2001.

[92] Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland,
Pedro Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De Vylder, Georgios
Piliouras, Marc Lanctot, and Karl Tuyls. From Poincaré recurrence to convergence in imperfect
information games: Finding equilibrium via regularization, 2020.

[93] David Portugal and Rui Rocha. A survey on multi-robot patrolling algorithms. In Doctoral
Conference on Computing, Electrical and Industrial Systems, pages 139—146. Springer, 2011.

[94] Cinjon Resnick, Wes Eldridge, David Ha, Denny Britz, Jakob Foerster, Julian Togelius,
Kyunghyun Cho, and Joan Bruna. Pommerman: A multi-agent playground. arXiv preprint
arXiv:1809.07124, 2018.

15



[95]

[96]
[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Spiridon A Reveliotis, Mark A Lawley, and Placid M Ferreira. Polynomial-complexity
deadlock avoidance policies for sequential resource allocation systems. IEEE Transactions on
Automatic Control, 42(10):1344-1357, 1997.

Brian Roberson. The Colonel Blotto game. Economic Theory, 29(1):1-24, 2006.

Julia Robinson. An iterative method of solving a game. Annals of Mathematics, pages 296-301,
1951.

Andrew Rose, David Normal, and Hamish Williams. Diplomacy artificial intelligence devel-
opment environment. DAIDE, 2002. http://www.daide.org.uk.

Paul S Rosenbloom. A world-championship-level Othello program. Artificial Intelligence,
19(3):279-320, 1982.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 627-635, 2011.

Arthur L Samuel. Some studies in machine learning using the game of Checkers. IBM Journal
of Research and Development, 3(3):210-229, 1959.

Jonathan Schaeffer, Joseph Culberson, Norman Treloar, Brent Knight, Paul Lu, and Duane
Szafron. A world championship caliber Checkers program. Artificial Intelligence, 53(2-3):273—
289, 1992.

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu Geist.
Approximate modified policy iteration and its application to the game of Tetris. Journal of
Machine Learning Research, 16(49):1629-1676, 2015.

Nicol N Schraudolph, Peter Dayan, and Terrence J Sejnowski. Temporal difference learning of
position evaluation in the game of Go. In Advances in Neural Information Processing Systems,
pages 817-824, 1994.

Jack Serrino, Max Kleiman-Weiner, David C Parkes, and Josh Tenenbaum. Finding friend

and foe in multi-agent games. In Advances in Neural Information Processing Systems, pages
1249-1259, 2019.

Ari Shapiro, Gil Fuchs, and Robert Levinson. Learning a game strategy using pattern-weights
and self-play. In International Conference on Computers and Games, pages 42—60. Springer,
2002.

H.N. Shapiro. Note on a computation method in the theory of games. In Communications on
Pure and Applied Mathematics, 1958.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that
masters Chess, Shogi, and Go through self-play. Science, 632(6419):1140-1144, 2018.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of Go without human knowledge. Nature, 550(7676):354-359, 2017.

John Maynard Smith. Evolution and the Theory of Games. Cambridge University Plress,
1982.

Yuhang Song, Jianyi Wang, Thomas Lukasiewicz, Zhenghua Xu, Mai Xu, Zihan Ding, and
Lianlong Wu. Arena: A general evaluation platform and building toolkit for multi-agent
intelligence. arXiv preprint arXiv:1905.08085, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press,
2018.

Peter D Taylor and Leo B Jonker. Evolutionary stable strategies and game dynamics. Mathe-
matical Biosciences, 40(1-2):145-156, 1978.

16



[115] Gerald Tesauro. TD-Gammon, a self-teaching Backgammon program, achieves master-level
play. Neural Computation, 6(2):215-219, 1994.

[116] Ben Van der Genugten. A weakened form of fictitious play in two-person zero-sum games.
International Game Theory Review, 2(04):307-328, 2000.

[117] Jason van Hal. Diplomacy Al: Albert. DiplomacyAl, 2010. https://sites.google.com/
site/diplomacyai.

[118] Stijn Vandael, Bert Claessens, Damien Ernst, Tom Holvoet, and Geert Deconinck. Rein-
forcement learning of heuristic ev fleet charging in a day-ahead electricity market. IEEE
Transactions on Smart Grid, 6(4):1795-1805, 2015.

[119] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wo-
jeiech M Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, et al.
Alphastar: Mastering the real-time strategy game Starcraft II. DeepMind blog, page 2, 2019.

[120] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grand-

master level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350—
354, 2019.

[121] J Von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295-320,
1928.

[122] John von Neumann, Oskar Morgenstern, and Harold William Kuhn. Theory of Games and
Economic Behavior (Commemorative Edition). Princeton University Press, 1944.

[123] Jennifer L Waller, Cheryl L Addy, Kirby L Jackson, and Carol Z Garrison. Confidence intervals
for weighted proportions. Statistics in Medicine, 13(10):1071-1082, 1994.

[124] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. POET: open-ended coevolution
of environments and their optimized solutions. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 142—-151, 2019.

[125] Edwin B Wilson. Probable inference, the law of succession, and statistical inference. Journal
of the American Statistical Association, 22(158):209-212, 1927.

17



