
Multitask Spectral Learning of Weighted Automata

Guillaume Rabusseau ∗
McGill University

Borja Balle †
Amazon Research Cambridge

Joelle Pineau‡
McGill University

Abstract

We consider the problem of estimating multiple related functions computed by
weighted automata (WFA). We first present a natural notion of relatedness between
WFAs by considering to which extent several WFAs can share a common underly-
ing representation. We then introduce the novel model of vector-valued WFA which
conveniently helps us formalize this notion of relatedness. Finally, we propose a
spectral learning algorithm for vector-valued WFAs to tackle the multitask learning
problem. By jointly learning multiple tasks in the form of a vector-valued WFA,
our algorithm enforces the discovery of a representation space shared between
tasks. The benefits of the proposed multitask approach are theoretically motivated
and showcased through experiments on both synthetic and real world datasets.

1 Introduction

One common task in machine learning consists in estimating an unknown function f : X → Y from
a training sample of input-output data {(xi, yi)}Ni=1 where each yi ' f(xi) is a (possibly noisy)
estimate of f(xi). In multitask learning, the learner is given several such learning tasks f1, · · · , fm.
It has been shown, both experimentally and theoretically, that learning related tasks simultaneously
can lead to better performances relative to learning each task independently (see e.g. [1, 7], and
references therein). Multitask learning has proven particularly useful when few data points are
available for each task, or when it is difficult or costly to collect data for a target task while much data
is available for related tasks (see e.g. [28] for an example in healthcare). In this paper, we propose a
multitask learning algorithm for the case where the input space X consists of sequence data.

Many tasks in natural language processing, computational biology, or reinforcement learning, rely on
estimating functions mapping sequences of observations to real numbers: e.g. inferring probability
distributions over sentences in language modeling or learning the dynamics of a model of the
environment in reinforcement learning. In this case, the function f to infer from training data is
defined over the set Σ∗ of strings built on a finite alphabet Σ. Weighted finite automata (WFA) are
finite state machines that allow one to succinctly represent such functions. In particular, WFAs
can compute any probability distribution defined by a hidden Markov model (HMM) [13] and can
model the transition and observation behavior of partially observable Markov decision processes [26].
A recent line of work has led to the development of spectral methods for learning HMMs [17],
WFAs [2, 4] and related models, offering an alternative to EM based algorithms with the benefits of
being computationally efficient and providing consistent estimators. Spectral learning algorithms
have led to competitive results in the fields of natural language processing [12, 3] and robotics [8].

We consider the problem of multitask learning for WFAs. As a motivational example, consider
a natural language modeling task where one needs to make predictions in different contexts (e.g.
online chat vs. newspaper articles) and has access to datasets in each of them; it is natural to expect
that basic grammar is shared across the datasets and that one could benefit from simultaneously
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learning these tasks. The notion of relatedness between tasks can be expressed in different ways;
one common assumption in multitask learning is that the multiple tasks share a common underlying
representation [6, 11]. In this paper, we present a natural notion of shared representation between
functions defined over strings and we propose a learning algorithm that encourages the discovery
of this shared representation. Intuitively, our notion of relatedness captures to which extent several
functions can be computed by WFAs sharing a joint forward feature map. In order to formalize
this notion of relatedness, we introduce the novel model of vector-valued WFA (vv-WFA) which
generalizes WFAs to vector-valued functions and offer a natural framework to formalize the multitask
learning problem. Givenm tasks f1, · · · , fm : Σ∗ → R, we consider the function ~f = [f1, · · · , fm] :
Σ∗ → Rm whose output for a given input string x is the m-dimensional vector having entries fi(x)

for i = 1, · · · ,m. We show that the notion of minimal vv-WFA computing ~f exactly captures our
notion of relatedness between tasks and we prove that the dimension of such a minimal representation
is equal to the rank of a flattening of the Hankel tensor of ~f (Theorem 3). Leveraging this result,
we design a spectral learning algorithm for vv-WFAs which constitutes a sound multitask learning
algorithm for WFAs: by learning ~f in the form of a vv-WFA, rather than independently learning a
WFA for each task fi, we implicitly enforce the discovery of a joint feature space shared among all
tasks. After giving a theoretical insight on the benefits of this multitask approach (by leveraging a
recent result on asymmetric bounds for singular subspace estimation [9]), we conclude by showcasing
these benefits with experiments on both synthetic and real world data.

Related work. Multitask learning for sequence data has previously received limited attention. In [16],
mixtures of Markov chains are used to model dynamic user profiles. Tackling the multitask problem
with nonparametric Bayesian methods is investigated in [15] to model related time series with Beta
processes and in [23] to discover relationships between related datasets using nested Dirichlet process
and infinite HMMs. Extending recurrent neural networks to the multitask setting has also recently
received some interest (see e.g. [21, 22]). To the best of our knowledge, this paper constitutes the
first attempt to tackle the multitask problem for the class of functions computed by general WFAs.

2 Preliminaries

We first present notions on weighted automata, spectral learning of weighted automata and tensors.
We start by introducing some notation. We denote by Σ∗ the set of strings on a finite alphabet
Σ. The empty string is denoted by λ and the length of a string x by |x|. For any integer k we let
[k] = {1, 2, · · · , k}. We use lower case bold letters for vectors (e.g. v ∈ Rd1), upper case bold
letters for matrices (e.g. M ∈ Rd1×d2) and bold calligraphic letters for higher order tensors (e.g.
T ∈ Rd1×d2×d3). The ith row (resp. column) of a matrix M will be denoted by Mi,: (resp. M:,i).
This notation is extended to slices of a tensor in the straightforward way. Given a matrix M ∈ Rd1×d2 ,
we denote by M† its Moore-Penrose pseudo-inverse and by vec(M) ∈ Rd1d2 its vectorization.

Weighted finite automaton. A weighted finite automaton (WFA) with n states is a tuple A =
(α, {Aσ}σ∈Σ,ω) where α,ω ∈ Rn are the initial and final weights vectors respectively, and Aσ ∈
Rn×n is the transition matrix for each symbol σ ∈ Σ. A WFA computes a function fA : Σ∗ → R
defined for each word x = x1x2 · · ·xk ∈ Σ∗ by fA(x) = α>Ax1Ax2 · · ·Axkω.

By letting Ax = Ax1Ax2 · · ·Axk for any word x = x1x2 · · ·xk ∈ Σ∗ we will often use the shorter
notation fA(x) = α>Axω. A WFA A with n states is minimal if its number of states is minimal, i.e.
any WFA B such that fA = fB has at least n states. A function f : Σ∗ → R is recognizable if it
can be computed by a WFA. In this case the rank of f is the number of states of a minimal WFA
computing f , if f is not recognizable we let rank(f) =∞.

Hankel matrix. The Hankel matrix Hf ∈ RΣ∗×Σ∗ associated with a function f : Σ∗ → R is the
infinite matrix with entries (Hf )u,v = f(uv) for u, v ∈ Σ∗. The spectral learning algorithm for
WFAs relies on the following fundamental relation between the rank of f and the rank of Hf .

Theorem 1. [10, 14] For any function f : Σ∗ → R, rank(f) = rank(Hf ).

Spectral learning. Showing that the rank of the Hankel matrix is upper bounded by the rank of f is
easy: given a WFA A = (α, {Aσ}σ∈Σ,ω) with n states, we have the rank n factorization Hf = PS

where the matrices P ∈ RΣ∗×n and S ∈ Rn×Σ∗ are defined by Pu,: = α>Au and S:,v = Avω for
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all u, v ∈ Σ∗. The converse is more tedious to show but its proof is constructive, in the sense that it
allows one to build a WFA computing f from any rank n factorization of Hf . This construction is
the cornerstone of the spectral learning algorithm and is given in the following corollary.

Corollary 2. [4, Lemma 4.1] Let f : Σ∗ → R be a recognizable function with rank n, let H ∈
RΣ∗×Σ∗ be its Hankel matrix, and for each σ ∈ Σ let Hσ ∈ RΣ∗×Σ∗ be defined by Hσ

u,v = f(uσv)
for all u, v ∈ Σ∗.

Then, for any P ∈ RΣ∗×n, S ∈ Rn×Σ∗ such that H = PS, the WFA A = (α, {Aσ}σ∈Σ,ω) where
α> = Pλ,:, ω = S:,λ, and Aσ = P†HσS† is a minimal WFA for f .

In practice, finite sub-blocks of the Hankel matrices are used. Given finite sets of prefixes and suffixes
P,S ⊂ Σ∗, let HP,S , {Hσ

P,S}σ∈Σ be the finite sub-blocks of H whose rows (resp. columns) are
indexed by prefixes in P (resp. suffixes in S). One can show that if P and S are such that λ ∈ P ∩ S
and rank(H) = rank(HP,S), then the previous corollary still holds, i.e. a minimal WFA computing
f can be recovered from any rank n factorization of HP,S . The spectral method thus consists in
estimating the matrices HP,S ,H

σ
P,S from training data (using e.g. empirical frequencies if f is

stochastic), finding a low-rank factorization of HP,S (using e.g. SVD) and constructing a WFA
approximating f using Corollary 2.

Tensors. We make a sporadic use of tensors in this paper, we thus introduce the few necessary
definitions and notations; more details can be found in [18]. A 3rd order tensor T ∈ Rd1×d2×d3
can be seen as a multidimensional array (T i1,i2,i3 : i1 ∈ [d1], i2 ∈ [d2], , i3 ∈ [d3]). The mode-n
fibers of T are the vectors obtained by fixing all indices except the nth one, e.g. T :,i2,i3 ∈ Rd1 .
The nth mode flattening of T is the matrix having the mode-n fibers of T for columns and is
denoted by e.g. T (1) ∈ Rd1×d2d3 . The mode-1 matrix product of a tensor T ∈ Rd1×d2×d3 and a
matrix X ∈ Rm×d1 is a tensor of size m× d2 × d3 denoted by T ×1 X and defined by the relation
Y = T ×1 X⇔ Y(1) = XT (1); the mode-n product for n = 2, 3 is defined similarly.

3 Vector-Valued WFAs for Multitask Learning

In this section, we present a notion of relatedness between WFAs that we formalize by introducing the
novel model of vector-valued weighted automaton. We then propose a multitask learning algorithm
for WFAs by designing a spectral learning algorithm for vector-valued WFAs.

A notion of relatedness between WFAs. The basic idea behind our approach emerges from inter-
preting the computation of a WFA as a linear model in some feature space. Indeed, the computation of
a WFA A = (α, {Aσ}σ∈Σ,ω) with n states on a word x ∈ Σ∗ can be seen as first mapping x to an
n-dimensional feature vector through a compositional feature map φ : Σ∗ → Rn, and then applying
a linear form in the feature space to obtain the final value fA(x) = 〈φ(x),ω〉. The feature map is
defined by φ(x)> = α>Ax for all x ∈ Σ∗ and it is compositional in the sense that for any x ∈ Σ∗

and any σ ∈ Σ we have φ(xσ)> = φ(x)>Aσ . We will say that such a feature map is minimal if the
linear space V ⊂ Rn spanned by the vectors {φ(x)}x∈Σ∗ is of dimension n. Theorem 1 implies that
the dimension of V is actually equal to the rank of fA, showing that the notion of minimal feature
map naturally coincides with the notion of minimal WFA.

A notion of relatedness between WFAs naturally arises by considering to which extent two (or
more) WFAs can share a joint feature map φ. More precisely, consider two recognizable functions
f1, f2 : Σ∗ → R of rank n1 and n2 respectively, with corresponding feature maps φ1 : Σ∗ → Rn1

and φ2 : Σ∗ → Rn2 . Then, a joint feature map for f1 and f2 always exists and is obtained by
considering the direct sum φ1 ⊕ φ2 : Σ∗ → Rn1+n2 that simply concatenates the feature vectors
φ1(x) and φ2(x) for any x ∈ Σ∗. However, this feature map may not be minimal, i.e. there may exist
another joint feature map of dimension n < n1 + n2. Intuitively, the smaller this minimal dimension
n is the more related the two tasks are, with the two extremes being on the one hand n = n1 + n2

where the two tasks are independent, and on the other hand e.g. n = n1 where one of the (minimal)
feature maps φ1, φ2 is sufficient to predict both tasks.

Vector-valued WFA. We now introduce a computational model for vector-valued functions on strings
that will help formalize this notion of relatedness between WFAs.
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Definition 1. A d-dimensional vector-valued weighted finite automaton (vv-WFA) with n states is a
tuple A = (α, {Aσ}σ∈Σ,Ω) where α ∈ Rn is the initial weights vector, Ω ∈ Rn×d is the matrix of
final weights, and Aσ ∈ Rn×n is the transition matrix for each symbol σ ∈ Σ. A vv-WFA computes
a function ~fA : Σ∗ → Rd defined by

~fA(x) = α>Ax1Ax2 · · ·AxkΩ
for each word x = x1x2 · · ·xk ∈ Σ∗.

We extend the notions of recognizability, minimality and rank of a WFA in the straightforward way:
a function ~f : Σ∗ → Rd is recognizable if it can be computed by a vv-WFA, a vv-WFA is minimal
if its number of states is minimal, and the rank of ~f is the number of states of a minimal vv-WFA
computing ~f . A d-dimensional vv-WFA can be seen as a collection of d WFAs that all share their
initial vectors and transition matrices but have different final vectors. Alternatively, one could take a
dual approach and define vv-WFAs as a collection of WFAs sharing transitions and final vectors4.

vv-WFAs and relatedness between WFAs. We now show how the vv-WFA model naturally captures
the notion of relatedness presented above. Recall that this notion intends to capture to which extent
two recognizable functions f1, f2 : Σ∗ → R, of ranks n1 and n2 respectively, can share a joint
forward feature map φ : Σ∗ → Rn satisfying f1(x) = 〈φ(x),ω1〉 and f2(x) = 〈φ(x),ω2〉 for all
x ∈ Σ∗, for some ω1,ω2 ∈ Rn. Consider the vector-valued function ~f = [f1, f2] : Σ∗ → R2

defined by ~f(x) = [f1(x), f2(x)] for all x ∈ Σ∗. It can easily be seen that the minimal dimension of
a shared forward feature map between f1 and f2 is exactly the rank of ~f , i.e. the number of states
of a minimal vv-WFA computing ~f . This notion of relatedness can be generalized to more than
two functions by considering ~f = [f1, · · · , fm] for m different recognizable functions f1, · · · , fm
of respective ranks n1, · · · , nm. In this setting, it is easy to check that the rank of ~f lies between
max(n1, · · · , nm) and n1 + · · ·+nm; smaller values of this rank leads to a smaller dimension of the
minimal forward feature map and thus, intuitively, to more closely related tasks. We now formalize
this measure of relatedness between recognizable functions.
Definition 2. Given m recognizable functions f1, · · · , fm, we define their relatedness measure by
τ(f1, · · · , fm) = 1− (rank(~f)−maxi rank(fi))/

∑
i rank(fi) where ~f = [f1, · · · , fm].

One can check that this measure of relatedness takes its values in (0, 1]. We say that tasks are
maximally related when their relatedness measure is 1 and independent when it is minimal. Observe
that the rank R of a vv-WFA does not give enough information to determine whether one set of tasks
is more related than another: the degree of relatedness depends on the relation between R and the
ranks of each individual task. The relatedness parameter τ circumvents this issue by measuring where
R stands between the maximum rank over the different tasks and the sum of their ranks.
Example 1. Let Σ = {a, b, c} and let |x|σ denotes the number of occurrences of σ in x for any
σ ∈ Σ. Consider the functions defined by f1(x) = 0.5|x|a + 0.5|x|b, f2(x) = 0.3|x|b − 0.6|x|c and
f3(x) = |x|c for all x ∈ Σ∗. It is easy to check that rank(f1) = rank(f2) = 4 and rank(f3) = 2.
Moreover, f2 and f3 are maximally related (indeed rank([f2, f3]) = 4 = rank(f2) thus τ(f2, f3) =
1), f1 and f3 are independent (indeed τ(f1, f3) = 2/3 is minimal since rank([f1, f3]) = 6 =
rank(f1) + rank(f3)), and f1 and f2 are related but not maximally related (since 4 = rank(f1) =
rank(f2) < rank([f1, f2]) = 6 < rank(f1) + rank(f2) = 8).

Spectral learning of vv-WFAs. We now design a spectral learning algorithm for vv-WFAs. Given
a function ~f : Σ∗ → Rd, we define its Hankel tensor H ∈ RΣ∗×d×Σ∗ by Hu,:,v = ~f(uv) for all
u, v ∈ Σ∗. We first show in Theorem 3 (whose proof can be found in the supplementary material)
that the fundamental relation between the rank of a function and the rank of its Hankel matrix can
naturally be extended to the vector-valued case. Compared with Theorem 1, the Hankel matrix is now
replaced by the mode-1 flattening H(1) of the Hankel tensor (which can be obtained by concatenating
the matrices H:,i,: along the horizontal axis).

Theorem 3 (Vector-valued Fliess Theorem). Let ~f : Σ∗ → Rd and let H be its Hankel tensor. Then
rank(~f) = rank(H(1)).

4Both definitions performed similarly in multitask experiments on the dataset used in Section 5.2, we thus
chose multiple final vectors as a convention.
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Similarly to the scalar-valued case, this theorem can be leveraged to design a spectral learning
algorithm for vv-WFAs. The following corollary (whose proof can be found in the supplementary
material) shows how a vv-WFA computing a recognizable function ~f : Σ∗ → Rd of rank n can be
recovered from any rank n factorization of its Hankel tensor.

Corollary 4. Let ~f : Σ∗ → Rd be a recognizable function with rank n, let H ∈ RΣ∗×d×Σ∗ be its
Hankel tensor, and for each σ ∈ Σ let Hσ ∈ RΣ∗×d×Σ∗ be defined by Hσ

u,:,v = ~f(uσv) for all
u, v ∈ Σ∗.

Then, for any P ∈ RΣ∗×n and S ∈ Rn×d×Σ∗ such that H = S ×1 P, the vv-WFA A =
(α, {Aσ}σ∈Σ,Ω) defined by α> = Pλ,:, Ω = S :,:,λ, and Aσ = P†Hσ

(1)(S(1))
† is a minimal

vv-WFA computing ~f .

Similarly to the scalar-valued case, one can check that the previous corollary also holds for any
finite sub-tensors HP,S , {Hσ

P,S}σ∈Σ of H indexed by prefixes and suffixes in P,S ⊂ Σ∗, whenever
P and S are such that λ ∈ P ∩ S and rank(H(1)) = rank((HP,S)(1)); we will call such a basis
(P,S) complete. The spectral learning algorithm for vv-WFAs then consists in estimating these
Hankel tensors from training data and using Corollary 4 to recover a vv-WFA approximating the
target function. Of course a noisy estimate of the Hankel tensor Ĥ will not be of low rank and the
factorization Ĥ = S ×1 P should only be performed approximately in order to counter the presence
of noise. In practice a low rank approximation of Ĥ(1) is obtained using truncated SVD.

Multitask learning of WFAs. Let us now go back to the multitask learning problem and let
f1, · · · fm : Σ∗ → R be multiple functions we wish to infer in the form of WFAs. The spectral
learning algorithm for vv-WFAs naturally suggests a way to tackle this multitask problem: by learning
~f = [f1, · · · , fm] in the form of a vv-WFA, rather than independently learning a WFA for each task
fi, we implicitly enforce the discovery of a joint forward feature map shared among all tasks.

We will now see how a further step can be added to this learning scheme to enforce more robustness
to noise. The motivation for this additional step comes from the observation that even though a
d-dimensional vv-WFA A = (α, {Aσ}σ∈Σ,Ω) may be minimal, the corresponding scalar-valued
WFAsAi = 〈α, {Aσ}σ∈Σ,Ω:,i〉 for i ∈ [d] may not be. Suppose for example thatA1 is not minimal.
This implies that some part of its state space does not contribute to the function f1 but comes
from asking for a rich enough state representation that can predict other tasks as well. Moreover,
when one learns a vv-WFA from noisy estimates of the Hankel tensors, the rank R approximation
Ĥ(1) ' PS(1) somehow annihilates the noise contained in the space orthogonal to the top R singular
vectors of Ĥ(1), but when the WFA A1 has rank R1 < R we intuitively see that there is still a
subspace of dimension R−R1 containing only irrelevant features. In order to circumvent this issue,
we would like to project down the (scalar-valued) WFAs Ai down to their true dimensions, intuitively
enforcing each predictor to use as few features as possible for each task, and thus annihilating the
noise lying in the corresponding irrelevant subspaces. To achieve this we will make use of the
following proposition that explicits the projections needed to obtain minimal scalar-valued WFAs
from a given vv-WFA (the proof is given in the supplementary material).

Proposition 1. Let ~f : Σ∗ → Rd be a function computed by a minimal vv-WFA A =

(α, {Aσ}σ∈Σ,Ω) with n states and let P,S ⊆ Σ∗ be a complete basis for ~f . For any i ∈ [d],
let fi : Σ∗ → R be defined by fi(x) = ~f(x)i for all x ∈ Σ∗ and let ni denote the rank of fi.

Let P ∈ RP×n be defined by Px,: = α>Ax for all x ∈ P and, for i ∈ [d], let Hi ∈ RP×S be the
Hankel matrix of fi and let Hi = UiDiV

>
i be its thin SVD (i.e. Di ∈ Rni×ni ).

Then, for any i ∈ [d], the WFA Ai = 〈αi, {Aσ
i }σ∈Σ},ωi〉 defined by

α>i = α>P†Ui, ωi = U>i PΩ:,i and Aσ
i = U>i PAσP†Ui for each σ ∈ Σ,

is a minimal WFA computing fi.

Given noisy estimates Ĥ, {Ĥσ}σ∈Σ of the Hankel tensors of a function ~f and estimates R of
the rank of ~f and Ri of the ranks of the fi’s, the first step of the learning algorithm consists in
applying Corollary 4 to the factorization Ĥ(1) ' U(DV>) obtained by truncated SVD to get a
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vv-WFA A approximating ~f . Then, Proposition 1 can be used to project down each WFA Ai by
estimating Ui with the top Ri left singular vectors of Ĥ:,i,:. The overall procedure for our Multi-Task
Spectral Learning (MT-SL) is summarized in Algorithm 1 where lines 1-3 correspond to the vv-WFA
estimation while lines 4-7 correspond to projecting down the corresponding scalar-valued WFAs. To
further motivate the projection step, let us consider the case when m tasks are completely unrelated,
and each of them requires n states. Single-task learning would lead to a model with O

(
|Σ|mn2

)
parameters, while the multi-task learning approach would return a larger model of sizeO

(
|Σ|(mn)2

)
;

the projection step eliminates such redundancy.

Algorithm 1 MT-SL: Spectral Learning of vector-valued WFA for multitask learning

Input: Empirical Hankel tensors Ĥ, {Ĥσ}σ∈Σ of size P × m × S for the target function ~f =
[f1, · · · , fm] (where P,S are subsets of Σ∗ both containing λ), a common rank R, and task
specific ranks Ri for i ∈ [m].

Output: WFAs Ai approximating fi for each i ∈ [d].
1: Compute the rank R truncated SVD Ĥ(1) ' UDV>.
2: Let A = (α, {Aσ}σ∈Σ,Ω) be the vv-WFA defined by

α> = Uλ,:, ,Ω = U>(Ĥ:,:,λ) and Aσ = U>Ĥσ
(1)(Ĥ(1))

†U for each σ ∈ Σ.

3: for i = 1 to m do
4: Compute the rank Ri truncated SVD Ĥ:,i,: ' UiDiV

>
i .

5: Let Ai = 〈U>i Uα, {U>i UAσU>Ui}σ∈Σ,U
>
i UΩ:,i〉

6: end for
7: return A1, · · · , Am.

4 Theoretical Analysis

Computational complexity. The computational cost of the classical spectral learning algorithm (SL)
is in O

(
N +R|P||S|+R2|P||Σ|

)
where the first term corresponds to estimating the Hankel ma-

trices from a sample of size N , the second one to the rank R truncated SVD, and the third one
to computing the transition matrices Aσ. In comparison, the computational cost of MT-SL is in
O
(
mN + (mR+

∑
iRi)|P||S|+ (mR2 +

∑
iR

2
i )|P||Σ|

)
, showing that the increase in complex-

ity is essentially linear in the number of tasks m.

Robustness in subspace estimation. In order to give some theoretical insights on the potential
benefits of MT-SL, let us consider the simple case where the tasks are maximally related with
common rank R = R1 = · · · = Rm. Let Ĥ1, · · · , Ĥm ∈ RP×S be the empirical Hankel matrices
for the m tasks and let Ei = Ĥi −Hi be the error terms, where Hi is the true Hankel matrix for the
ith task. Then the flattening Ĥ = Ĥ(1) ∈ R|P|×m|S| (resp. H = H(1)) can be obtained by stacking
the matrices Ĥi (resp. Hi) along the horizontal axis. Consider the problem of learning the first task.
One key step of both SL and MT-SL resides in estimating the left singular subspace of H1 and H
respectively from their noisy estimates. When the tasks are maximally related, this space U is the
same for H and H1, · · · ,Hm and we intuitively see that the benefits of MT-SL will stem from the
fact that the SVD of Ĥ should lead to a more accurate estimation of U than the one only relying on
Ĥ1. It is also intuitive to see that since the Hankel matrices Ĥi have been stacked horizontally, the
estimation of the right singular subspace might not benefit from performing SVD on Ĥ. However,
classical results on singular subspace estimation (see e.g. [29, 20]) provide uniform bounds for both
left and right singular subspaces (i.e. bounds on the maximum of the estimation errors for the left and
right spaces). To circumvent this issue, we use a recent result on rate optimal asymmetric perturbation
bounds for left and right singular spaces [9] to obtain the following theorem relating the ratio between
the dimensions of a matrix to the quality of the subspace estimation provided by SVD (the proof can
be found in the supplementary material).

Theorem 5. Let M ∈ Rd1×d2 be of rank R and let M̂ = M + E where E is a random noise term
such that vec(E)

‖E‖F follows a uniform distribution on the unit sphere in Rd1d2 . Let ΠU ,ΠÛ ∈ Rd1×d1
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be the matrices of the orthogonal projections onto the space spanned by the top R left singular
vectors of M and M̂ respectively.

Let δ > 0, let α = sR(M) be the smallest non-zero singular value of M and suppose that ‖E‖F ≤
α/2. Then, with probability at least 1− δ,

‖ΠU −ΠÛ‖F ≤ 4

√ (d1 −R)R+ 2 log(1/δ)

d1d2

‖E‖F
α

+
‖E‖2F
α2

 .

A few remarks on this theorem are in order. First, the Frobenius norm between the projection matrices
measures the distance between the two subspaces (it is in fact proportional to the classical sin-theta
distance between subspaces). Second, the assumption ‖E‖F ≤ α/2 corresponds to the magnitude of
the noise being small compared to the magnitude of M (and in particular it implies ‖E‖Fα < 1); this
is a reasonable and common assumption in subspace identification problems, see e.g. [30]. Lastly,
as d2 grows the first term in the upper bound becomes irrelevant and the error is dominated by the
quadratic term, which decreases with ‖E‖F faster than classical results. Intuitively this tells us that
there is a first regime where growing d2 (i.e. adding more tasks) is beneficial, until the point where
the quadratic term dominates (and where the bound becomes somehow independent of d2).

Going back to the power of MT-SL to leverage information from related tasks, let E ∈ R|P|×m|S| be
the matrix obtained by stacking the noise matrices Ei along the horizontal axis. If we assume that
the entries of the error terms Ei are i.i.d. from e.g. a normal distribution, we can apply the previous
proposition to the left singular subspaces of Ĥ(1) and H(1). One can check that in this case we have
‖E‖2F =

∑m
i=1 ‖Ei‖2F and α2 = sR(H)2 ≥

∑m
i=1 sR(Hi)

2 (since R = R1 = · · · = Rm when
tasks are maximally related). Thus, if the norms of the noise terms Ei are roughly the same, and so
are the smallest non-zero singular values of the matrices Hi, we get ‖E‖Fα ≤ O (‖E1‖F /sR(H1)).
Hence, given enough tasks, the estimation error of the left singular subspace of H1 in the multitask
setting (i.e. by performing SVD on Ĥ(1)) is intuitively in O

(
‖E1‖2F /sR(H1)2

)
while it is only

in O (‖E1‖F /sR(H1)) when relying solely on Ĥ1, which shows the potential benefits of MT-SL.
Indeed, as the amount of training data increases the error in the estimated matrices decreases, thus
T = ‖E1‖F /sR(H1) goes to 0 and an error of order O

(
T 2
)

decays faster than one of order O (T ).

5 Experiments

We evaluate the performance of the proposed multitask learning method (MT-SL) on both synthetic
and real world data. We use two performance metrics: perplexity per character on a test set T , which
is defined by perp(h) = 2−

1
M

∑
x∈T log(h(x)) where M is the number of symbols in the test set and

h is the hypothesis, and word error rate (WER) which measures the proportion of mis-predicted
symbols averaged over all prefixes in the test set (when the most likely symbol is predicted). Both
experiments are in a stochastic setting, i.e. the functions to be learned are probability distributions,
and explore the regime where the learner has access to a small training sample drawn from the target
task, while larger training samples are available for related tasks. We compare MT-SL with the
classical spectral learning method (SL) for WFAs (note that SL has been extensively compared to
EM and n-gram in the literature, see e.g. [4] and [5] and references therein). For both methods the
prefix set P (resp. suffix set S) is chosen by taking the 1, 000 most frequent prefixes (resp. suffixes)
in the training data of the target task, and the values of the ranks are chosen using a validation set.

5.1 Synthetic Data

We first assess the validity of MT-SL on synthetic data. We randomly generated stochastic WFAs
using the process used for the PAutomaC competition [27] with symbol sparsity 0.4 and transition
sparsity 0.15, for an alphabet Σ of size 10. We generated related WFAs5 sharing a joint feature

5More precisely, we first generate a probabilistic automaton (PA) AS = (αS , {Aσ
S}σ∈Σ,ωS) with dS states.

Then, for each task i = 1, · · · ,m we generate a second PA AT = (αT , {Aσ
T }σ∈Σ,ωT ) with dT states and a

random vector ω ∈ [0, 1]dS+dT . Both PAs are generated using the process described in [27]. The task fi is then
obtained as the distribution computed by the stochastic WFA 〈αS ⊕αT , {Aσ

S ⊕Aσ
T }σ∈Σ, ω̃〉 with ω̃ = ω/Z

where the constant Z is chosen such that
∑
x∈Σ∗ fi(x) = 1.
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Figure 1: Comparison (on synthetic data) between the spectral learning algorithm (SL) and our multitask
algorithm (MT-SL) for different numbers of tasks and different degrees of relatedness between the tasks: dS is
the dimension of the space shared by all tasks and dT the one of the task-specific space (see text for details).

space of dimension dS = 10 and each having a task specific feature space of dimension dT , i.e.
for m tasks f1, · · · , fm each WFA computing fi has rank dS + dT and the vv-WFA computing
~f = [f1, · · · , fm] has rank dS + mdT . We generated 3 sets of WFAs for different task specific
dimensions dT = 0, 5, 10. The learner had access to training samples of size 5, 000 drawn from each
related tasks f2, · · · , fm and a training sample of sizes ranging from 50 to 5, 000 drawn from the
target task f1. Results on a test set of size 1, 000 averaged over 10 runs are reported in Figure 1.

For both evaluation measures, when the task specific dimension is small compared to the dimension
of the joint feature space, i.e. dT = 0, 5, MT-SL clearly outperforms SL that only relies on the
target task data. Moreover, increasing the number of related tasks tends to improve the performances
of MT-SL. However, when dS = dT = 10, MT-SL performs similarly in terms of perplexity and
WER, showing that the multitask approach offers no benefits when the tasks are too loosely related.
Additional experimental results for the case of totally unrelated tasks (dS = 0, dT = 10) as well
as comparisons with MT-SL without the projection step (i.e. without lines 4-7 of Algorithm 1) are
presented in the supplementary material.

5.2 Real Data

We evaluate MT-SL on 33 languages from the Universal Dependencies (UNIDEP) 1.4 treebank [24],
using the 17-tag universal Part of Speech (PoS) tagset. This dataset contains sentences from various
languages where each word is annotated with Google universal PoS tags [25], and thus can be seen as
a collection of samples drawn from 33 distributions over strings on an alphabet of size 17. For each
language, the available data is split between a training, a validation and a test set (80%, 10%, 10%).
For each language and for various sizes of training samples, we compare independently learning the
target task with SL against using MT-SL to exploit training data from related tasks. We tested two
ways of selecting the related tasks: (1) all other languages are used and (2) for each language we
selected the 4 closest languages w.r.t. the distance between the subspaces spanned by the top 50 left
singular vectors of their Hankel matrices6.

We compare MT-SL against SL (using only the training data for the target task) and against a
naive baseline where all data from different tasks are bagged together and used as a training set for
SL (SL-bagging). We also include the results obtained using MT-SL without the projection step (MT-
SL-noproj). We report the average relative improvement of MT-SL, SL-bagging and MT-SL-noproj
w.r.t. SL over all languages in Table 1, e.g. for perplexity we report 100 · (psl − pmt)/psl where
psl (resp. pmt) is the perplexity obtained by SL (resp. MT-SL) on the test set. We see that the
multitask approach leads to improved results for both metrics, that the benefits tend to be greater for
small training sizes, and that restricting the number of auxiliary tasks is overall beneficial. To give a

6The common basis (P,S) for these Hankel matrices is chosen by taking the union of the 100 most frequent
prefixes and suffixes in each training sample.
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Table 1: Average relative improvement with respect to single task spectral learning (SL) of the
multitask approach (with and without the projection step: MT-SL and MT-SL-noproj) and the
bagging baseline (SL-bagging) on the UNIDEP dataset.

(a) Perplexity average relative improvement (in %).

Training size 100 500 1000 5000 all available data

Related tasks: all other languages

MT-SL 7.0744 ( ±7.76) 3.6666 ( ±5.22) 3.2879 ( ±5.17) 3.4187 ( ±5.57) 3.1574 ( ±5.48)
MT-SL-noproj 2.9884 ( ±9.82) 2.2469 ( ±7.49) 0.8509 ( ±7.41) 1.1658 ( ±6.59) 0.6958 ( ±6.38)
SL-bagging −19.00 ( ±29.1) −13.32 ( ±22.4) −10.65 ( ±19.7) −5.371 ( ±14.6) −2.630 ( ±13.0)

Related tasks: 4 closest languages

MT-SL 6.0069 ( ±6.76) 4.3670 ( ±5.83) 4.4049 ( ±5.50) 2.9689 ( ±5.87) 2.8229 ( ±5.90)
MT-SL-noproj 4.5732 ( ±8.78) 2.9421 ( ±7.83) 2.4549 ( ±7.15) 2.2166 ( ±6.82) 2.1451 ( ±6.52)
SL-bagging −18.41 ( ±28.4) −12.73 ( ±22.0) −10.34 ( ±20.1) −3.086 ( ±12.7) 0.1926 ( ±10.2)

(b) WER average relative improvement (in %).

Training size 100 500 1000 5000 all available data

Related tasks: all other languages

MT-SL 1.4919 (±2.37) 1.3786 (±2.94) 1.2281 (±2.62) 1.4964 (±2.70) 1.4932 (±2.77)
MT-SL-noproj −5.763 (±6.82) −9.454 (±8.95) −9.197 (±7.25) −9.201 (±6.02) −9.600 (±5.55)
SL-bagging −3.067 (±10.8) −6.998 (±11.6) −7.788 (±9.88) −8.791 (±9.54) −8.611 (±9.74)

Related tasks: 4 closest languages

MT-SL 2.0883 (±3.26) 1.5175 (±2.87) 1.2961 (±2.57) 1.3080 (±2.55) 1.2160 (±2.31)
MT-SL-noproj −4.139 (±5.10) −5.841 (±6.29) −5.399 (±6.26) −5.526 (±4.93) −5.556 (±4.90)
SL-bagging 0.3372 (±7.80) −3.045 (±8.12) −3.822 (±7.33) −4.350 (±6.90) −3.588 (±7.06)

concrete example, on the Basque task with a training set of size 500, the WER was reduced from
∼ 76% for SL to ∼ 70% using all other languages as related tasks, and to ∼ 65% using the 4 closest
tasks (Finnish, Polish, Czech and Indonesian). Overall, both SL-bagging and MT-SL-noproj obtain
worst performance than MT-SL (though MT-SL-noproj still outperforms SL in terms are perplexity
while SL-bagging performs almost always worse than SL). Detailed results on all languages, along
with the list of closest languages used for method (2), are reported in the supplementary material.

6 Conclusion

We introduced the novel model of vector-valued WFA that allowed us to define a notion of relatedness
between recognizable functions and to design a multitask spectral learning algorithm for WFAs (MT-
SL). The benefits of MT-SL have been theoretically motivated and showcased on both synthetic and
real data experiments. In future works, we plan to apply MT-SL in the context of reinforcement
learning and to identify other areas of machine learning where vv-WFAs could prove to be useful. It
would also be interesting to investigate a weighted approach such as the one presented in [19] for
classical spectral learning; this could prove useful to handle the case where the amount of available
training data differs greatly between tasks.
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