A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates

Tianbao Yang, Qihang Lin, Lijun Zhang
Proceedings of the 34th International Conference on Machine Learning, PMLR 70:3901-3910, 2017.

Abstract

This paper focuses on convex constrained optimization problems, where the solution is subject to a convex inequality constraint. In particular, we aim at challenging problems for which both projection into the constrained domain and a linear optimization under the inequality constraint are time-consuming, which render both projected gradient methods and conditional gradient methods (a.k.a. the Frank-Wolfe algorithm) expensive. In this paper, we develop projection reduced optimization algorithms for both smooth and non-smooth optimization with improved convergence rates under a certain regularity condition of the constraint function. We first present a general theory of optimization with only one projection. Its application to smooth optimization with only one projection yields $O(1/\epsilon)$ iteration complexity, which improves over the $O(1/\epsilon^2)$ iteration complexity established before for non-smooth optimization and can be further reduced under strong convexity. Then we introduce a local error bound condition and develop faster algorithms for non-strongly convex optimization at the price of a logarithmic number of projections. In particular, we achieve an iteration complexity of $\widetilde O(1/\epsilon^{2(1-\theta)})$ for non-smooth optimization and $\widetilde O(1/\epsilon^{1-\theta})$ for smooth optimization, where $\theta\in(0,1]$ appearing the local error bound condition characterizes the functional local growth rate around the optimal solutions. Novel applications in solving the constrained $\ell_1$ minimization problem and a positive semi-definite constrained distance metric learning problem demonstrate that the proposed algorithms achieve significant speed-up compared with previous algorithms.

Cite this Paper


BibTeX
@InProceedings{pmlr-v70-yang17f, title = {A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates}, author = {Tianbao Yang and Qihang Lin and Lijun Zhang}, booktitle = {Proceedings of the 34th International Conference on Machine Learning}, pages = {3901--3910}, year = {2017}, editor = {Precup, Doina and Teh, Yee Whye}, volume = {70}, series = {Proceedings of Machine Learning Research}, month = {06--11 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v70/yang17f/yang17f.pdf}, url = {https://proceedings.mlr.press/v70/yang17f.html}, abstract = {This paper focuses on convex constrained optimization problems, where the solution is subject to a convex inequality constraint. In particular, we aim at challenging problems for which both projection into the constrained domain and a linear optimization under the inequality constraint are time-consuming, which render both projected gradient methods and conditional gradient methods (a.k.a. the Frank-Wolfe algorithm) expensive. In this paper, we develop projection reduced optimization algorithms for both smooth and non-smooth optimization with improved convergence rates under a certain regularity condition of the constraint function. We first present a general theory of optimization with only one projection. Its application to smooth optimization with only one projection yields $O(1/\epsilon)$ iteration complexity, which improves over the $O(1/\epsilon^2)$ iteration complexity established before for non-smooth optimization and can be further reduced under strong convexity. Then we introduce a local error bound condition and develop faster algorithms for non-strongly convex optimization at the price of a logarithmic number of projections. In particular, we achieve an iteration complexity of $\widetilde O(1/\epsilon^{2(1-\theta)})$ for non-smooth optimization and $\widetilde O(1/\epsilon^{1-\theta})$ for smooth optimization, where $\theta\in(0,1]$ appearing the local error bound condition characterizes the functional local growth rate around the optimal solutions. Novel applications in solving the constrained $\ell_1$ minimization problem and a positive semi-definite constrained distance metric learning problem demonstrate that the proposed algorithms achieve significant speed-up compared with previous algorithms.} }
Endnote
%0 Conference Paper %T A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates %A Tianbao Yang %A Qihang Lin %A Lijun Zhang %B Proceedings of the 34th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2017 %E Doina Precup %E Yee Whye Teh %F pmlr-v70-yang17f %I PMLR %P 3901--3910 %U https://proceedings.mlr.press/v70/yang17f.html %V 70 %X This paper focuses on convex constrained optimization problems, where the solution is subject to a convex inequality constraint. In particular, we aim at challenging problems for which both projection into the constrained domain and a linear optimization under the inequality constraint are time-consuming, which render both projected gradient methods and conditional gradient methods (a.k.a. the Frank-Wolfe algorithm) expensive. In this paper, we develop projection reduced optimization algorithms for both smooth and non-smooth optimization with improved convergence rates under a certain regularity condition of the constraint function. We first present a general theory of optimization with only one projection. Its application to smooth optimization with only one projection yields $O(1/\epsilon)$ iteration complexity, which improves over the $O(1/\epsilon^2)$ iteration complexity established before for non-smooth optimization and can be further reduced under strong convexity. Then we introduce a local error bound condition and develop faster algorithms for non-strongly convex optimization at the price of a logarithmic number of projections. In particular, we achieve an iteration complexity of $\widetilde O(1/\epsilon^{2(1-\theta)})$ for non-smooth optimization and $\widetilde O(1/\epsilon^{1-\theta})$ for smooth optimization, where $\theta\in(0,1]$ appearing the local error bound condition characterizes the functional local growth rate around the optimal solutions. Novel applications in solving the constrained $\ell_1$ minimization problem and a positive semi-definite constrained distance metric learning problem demonstrate that the proposed algorithms achieve significant speed-up compared with previous algorithms.
APA
Yang, T., Lin, Q. & Zhang, L.. (2017). A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates. Proceedings of the 34th International Conference on Machine Learning, in Proceedings of Machine Learning Research 70:3901-3910 Available from https://proceedings.mlr.press/v70/yang17f.html.

Related Material