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Abstract

Spectral clustering (Ng et al., 2001) and diffusion maps (Coifman and Lafon, 2006) are celebrated
dimensionality reduction algorithms built on eigen-elements related to the diffusive structure of the
data. The core of these procedures is the approximation of a Laplacian through a graph kernel
approach (Hein et al., 2007), however this local average construction is known to be cursed by the
high-dimension d. In this article, we build a different estimator of the Laplacian’s eigenvectors,
via a reproducing kernel Hilbert space method, which adapts naturally to the regularity of the
problem. We provide non-asymptotic statistical rates proving that the kernel estimator we build can
circumvent the curse of dimensionality when the problem is well conditioned. Finally we discuss
techniques (Nystrom subsampling, Fourier features) that enable to reduce the computational cost
of the estimator while not degrading its overall performance.

Keywords: spectral clustering, diffusion maps, graph Laplacians, reproducing kernel Hilbert Spaces,
dimensionality reduction.

1. Introduction

One of the reasons of the success of learning with reproducing kernel Hilbert spaces (RKHS) is that
they naturally select problem-adapted bases of test functions. Even more interestingly, leveraging
the underlying regularity of the target function, RKHSs have the ability to circumvent the curse of
dimensionality. This is exactly where all techniques resting on local averages fail: approximating
a problem will always be cursed by the high-dimension d, because one will need n~/¢ points to
perform well. This main difference echoes in the nature of the kernels: pointwise positive kernels in
the non-parametric estimation literature (Nadaraya, 1964) and positive semi-definite (PSD) kernels
in modern kernel learning (Steinwart and Christmann, 2008; Scholkopf and Smola, 2002).

Solving a problem with PSD kernels that used to be tackled with local techniques is at the
heart of this work. Indeed, we estimate the diffusion operator (or Laplacian) related to a measure
w through its principal eigen-elements. When cast into an unsupervised learning problem, this can
be seen as a dimensionality reduction technique resting on the diffusive nature of the data. This
is the core of the celebrated spectral clustering algorithm (Von Luxburg, 2007) and of diffusion
maps (Coifman and Lafon, 2006) in the context of molecular dynamics. However, as introduced
before, these algorithms are based on graph Laplacians; an intrinsically local construction that scales
poorly with the dimension (Hein et al., 2007) and does not benefit from all the recent works on PSD
kernels that tackle potential high-dimensional settings (Martinsson and Tropp, 2020; Meanti et al.,
2020).
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Let us explain the fundamental difference between the approach of this work and that of graph
Laplacians. When we want to estimate the diffusion operator (or its eigenvectors)

L:=—A+(VV,V"), (1)

one of the difficult aspects is to approximate differential operators. While currently, people use
local kernel smoothing techniques, our approach is different. It leverages the reproducing property
of derivatives in RKHS and the self-adjointness of £ to circumvent this difficulty: this strategy
has shown fruitful results in numerical analysis for partial differential equations, where it is called
meshless methods (Schaback and Wendland, 2006).

In another direction, it is interesting to note that Salinelli (1998) tried to show that considering
the first eigenvectors of £ was the good way of generalizing the principal components analysis
procedure (Pearson, 1901; Hotelling, 1933) in a non-linear fashion. At this time, (i) neither the
theory behind diffusions and weighted Sobolev spaces (ii) nor the theory of RKHS were mature.
Hence, he clearly explained (i) that the theoretical framework of his analysis was limited but could
be extended, and (ii) that at this point solving numerically the problem was impossible in high-
dimension as it necessitates to discretize the Laplacian. Quite surprisingly, the literature on graph
Laplacians seems to have overlooked Salinelli’s seminal contribution. Our work can be considered
as a natural continuation of his: pushing further the theoretical comprehension of this non-linear
principal component analysis with modern tools and giving a way to solve it efficiently.

Note also that this work has been motivated by applications in molecular dynamics where dif-
fusion maps is an important dimensional reduction technique to find reaction coordinates, i.e., the
slow diffusion modes of the high-dimensional dynamics (Coifman et al., 2006). This article can also
be seen as a natural extension of Pillaud-Vivien et al. (2020) whose aim was to estimate the first
non-zero eigenvalue of £ (this is saying, its spectral gap). Besides being more mature, the focus of
this work is quite different: we focus here on the estimation of the whole spectrum of £ and try to be
more precise regarding its convergence properties. Finally remark that the procedure we are going
to describe can be seen as a data estimation of the Koopman generator of the dynamics generated
by £ (Klus et al., 2020), that leverages crucially it self-adjointness property.

2. Diffusion operator

Consider a probability measure dy on R? which has a density with respect to the Lebesgue measure
and can be written under the following form: du(z) = e~ V@) dx, where V is called the potential
function. Consider H'(p1) the subspace of functions of L?(y) (i.e., which are square integrable)
that also have all their first order derivatives in L?, that is, H' (1) = {f € L*(n), [ga [2du +
Jra IV flI?dp < oo}, where V f is the gradient of f and | - || the standard Euclidean norm.

The aim of this work is to estimate the diffusion operator £, associated with measure i, given
access to x1, . . . , T, 1.i.d. samples distributed according to . It is defined by

Lp:=—-Ap+VV - Vo, 2

where ¢ is a smooth enough test function.
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2.1. Langevin diffusion

Let us consider the overdamped Langevin diffusion in RY, that is the solution of the following
stochastic differential equation:

dX; = —VV(X;)dt + V2dB, (3)

where (B¢):>0 is a d-dimensional Brownian motion. It is well-known (Bakry et al., 2014) that the
law of (X});>0 converges to the Gibbs measure dyu and that the Poincaré constant (see Remark 1
below) controls the rate of convergence to equilibrium in L2 (). Let us denote by P;( f) the Marko-
vian semi-group associated with the Langevin diffusion (X;);>. It is defined in the following way:
P(f)(x) = E[f(X¢)|Xo = x]. This semi-group satisfies the dynamics

d
SR = ~LPAf),

where Lo = —A¢ + VV - V¢ is a differential operator called the infinitesimal generator of the
Langevin diffusion (3) (A denotes the standard Laplacian on R?%). Note that by integration by parts,
the semi-group (P, )= is reversible with respect to dy, thatis: [ f(Lg)du = [V f-Vgdp =
[(Lf)g dp. This also shows that £ is a symmetric positive definite operator on H ().

Remark 1 (Link with Poincaré constant) Let us call 7 the orthogonal projector of L?(it) on
constant functions: ©f : x € R — | fdp and define Lg(,u) := Kerm. Under Assumption O (see
below) the first non-zero eigenvalue of L is:

(F L) 2w

Pl= in o
reE wnL3 )Mo} 1172,

4
where P is also known as the Poincaré constant of the distribution dy (Cécile et al., 2000).

2.2. Some useful properties of the diffusion operator

Positive semi-definiteness. The first property that we saw is symmetry and positiveness of £
in H'(y). It comes from the following integration by part identity:

/f(ﬁg) dp = /Vf-nguz /(Ef)gdm ®)

showing that the quadratic form induced by L is also the Dirichlet energy

(L5 D120 = [ IV F1Pd = €05

Link with Schrodinger operator. In the field of partial differential equations (PDEs) we say that
an operator is of Schrodinger type if it is the sum of the Laplacian and a multiplicative operator,
this comes from the fact that this is the type of operator that governs the dynamics of quantum
systems (Helffer and Nier, 2005). Here, let us define the Schrodinger operator L:=-A+V,
where V 1= $AV — 1||VV||2. We can show that £ and £ are conjugate to each other: indeed, a
rapid calculation shows that

L=e¢"?L [evﬂ } .
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As Schrodinger operators are well-studied, we can infer from this fact interesting properties on the
spectrum of L. Indeed,

(X, u) eigen-elements of £ < (), e"/?u) eigen-elements of £,
and we also have the following equality for f smooth enough:

(LF D2 (LF 2w

By e

Spectrum of £. The most important property that we can infer from this is the nature of the
spectrum of £. Indeed, it is well known (Reed and Simon, 2012) that if V is locally integrable,
bounded from below and coercive (V(x) — o0, when |z|| — +o00), then the Schrodinger
operator has a compact resolvent. In particular, we will assume throughout the article the following

Assumption 0 (Spectrum of £) Assume that 1AV (z) — 1||VV||? — +o0, when ||z|| — +oc.

Assumption 0 implies that £ has a compact resolvent. This also implies that £ has a purely discrete
spectrum and a complete set of eigenfunctions. Note that this assumption implies also a spectral gap
for the diffusion operator £ and hence that a Poincaré inequality holds. Throughout this work and
even if not clearly stated, we will assume Assumption 0. For further discussions on the spectrum
of L, we refer to Bakry et al. (2014); Helffer and Nier (2005).

3. Approximation of the diffusion operator in the RKHS
Let (H, (-, )% ) be an RKHS with positive definite kernel K. Let us suppose the following:
Assumption 1 (Universality) 7 is dense in H'(1).

Note that this is the case for most of the usual couples kernels/distribution: Gaussian and exponential
kernels are universal if 1 has compact support or subgaussian tails. Note that universality as depicted
in Micchelli et al. (2006) is related to denseness with respect to the supremum norm (which ensures
denseness in L?(y)). Hence let us precise that for denseness in H'(u), one should also check
universality of the RKHS built upon derivatives, that is, denseness in the C* sense. As the expression
of the diffusion operator in Eq. (2) involves derivatives of test functions, we will also need some
regularity properties of the RKHS. Indeed, to represent V f in our RKHS we leverage crucially the
partial derivative reproducing property of the kernel space. For this, we need:

Assumption 2 (Smoothness) K is a positive definite kernel such that K € C*(R? x R9).

For i € [1,d], denote by 0; = 0, the partial derivative operator with respect to the i-th component
of z. It has been shown (Zhou, 2008) that under Assumption 2, we can define H > 9, K, : y —
0, K (x,y) and that a partial derivative reproducing property holds true: Vf € H and Vo € RY,
0if(z) = (0; Ky, f)n. Hence, thanks to Assumption 2, V f is easily represented in the RKHS. We
also need some boundedness properties of the kernel.

Assumption 3 (boundedness) K is a kernel such that Yz € R?, K(z,z) < K and" |VK,||*> <

Kg, where |VEK,||> := Zf:1<81-Kx, 0;iK,) = Z?:l %(x, x) (see calculations below), x and

y standing respectively for the first and the second variables of (z,y) — K(x,y).

1. The subscript d in KC4 accounts for the fact that this quantity is expected to scale linearly with d (Gaussian kernel).
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The equality in the expression of |V K,||? arises from the following computation: for all z,y €
R, (0, Ky, 0;Ky) = 0, (0iKy(x)) = 0,:0,: K (x,y). Note that, for example, the Gaussian and
exponential kernels satisfy Assumptions 1, 2, 3. Boundedness is stated here for the sake of clarity,
however, up to logarithmic terms, the results of this paper would hold if we let ||Kx |2, |V K x ||?
be subgaussian random variables.

Example 1 (Gaussian kernel) A prototypical example is the Gaussian kernel (or radial basis
function), with bandwidth o > 0, for which we can compute, for i # j,

xr — 2 Ty — Y )\ T5 — Y5
K(w,y)zexp<—u203”>> 8ziayjK(x7y):_( vi)lz; y”)K(:c,y),

i — o — )2
0, K (z,y) = —(lgzyl)K(x,y), 0,0, K (2,y) = < - (04*”)) K(z,y).

3.1. Embedding the diffusion operator in the RKHS

Let us define the following operators from H to H:
Z:E#[Kx(@Kx], L:E“[VKx(@dVKx], (6)

where ® is the standard tensor product: Vf,g,h € H, (f ® g)(h) = (g,h),, [ and ®, is defined
as follows: Vf,g € H%and h € H, (f ®q 9)(h) = Z?:ﬂgi, h),, fi. By the reproducing property
of K, (H, (-,-)3) injects canonically in (L?(u), (-, *)12(y)) through an operator S, together with its
adjoint S* defined from L?(p) to H such that for all z € R%:

VieH, Sf(x) = (f, Ko)n = f(x), Vf e L?(u), Sf(z) = Eu[K(z, X)f(X)].

Note that S*S = ¥. With these definitions, and thanks to the symmetry property of £ derived in
Eq. (5), we can represent the diffusion operator £ in the RKHS.

Proposition 2 (Embedding of £ in the RKHS) Suppose Assumptions 1,2 hold, then
L=S*LS, @)
where the equality stands for the equality between operators of H.

Proof Forz € R, f € H,
(Lf, Ky)n = /Vf(a:) VoK (x, z)dp(x)

/ Af (@)K (2, 2)dp(x / Vf(z) - VV(2)K (. 2)dp(z)
L’Sf SK, >L2(u)
— (S*LST, K.

hence the equality between operators. Note that to go from the first line to the second ones, we used
the symmetry of L. |
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We want to construct an approximation of the eigen-elements of £ with domain HJ () := H(u) N
L2 (1), where we recall that L3 (1) = Ker 7 stands for the space of square integrable functions with-
out the constants. Similarly, let us denote o = (Ker L)*, the subspace of H without the constant
functions. Note that this operator is invertible as a consequence of the spectral gap Assumption O.
In the following we will approximate the eigen-elements of £~!. First we give a representation of
L1 in the RKHS H, then we construct an operator on # that has the same eigen-elements of £7!.
Indeed, if we denote L~! the inverse of L restricted on (KerL)L, we have:

Proposition 3 (Representation of £L~1) Suppose Assumptions 0,1,2 hold, then
£t =sLts (8)
where the equality stands for the equality between operators whose domains are H} (11).

Thanks to Proposition 3, we have a representation of £~! in the RKHS through the embedding S.
But what we really would like is an operator on A that as the same eigen-elements as £~!. Such a
representation allows for numerical computations: this is the purpose of the following proposition.

Theorem 4 (eigen-elements of £ ' as functions in the RKHS) Decompose the inverse of the dif-
fusion operator such that L1 = SL71s* = SL-1/21-1/28% then,

(i) SL=Y2 is a bounded operator from H, to Hi ().
(ii) L7125L"1/2sq self-adjoint compact operator on Hg with the same spectrum as £~
(iii) If X # 0 is an eigenvalue of L=Y/2EL~Y/2 with eigenvector u € Hy, then X is an eigenvalue
of L™ with eigenvector SL™'/?u € HJ ().

This theorem will allow us to approximate the eigen-elements of £~! with the ones of the operator
L=1/2%L=1/2 (that is well-defined only on Hg) with a finite set of samples. Its proof is the conse-
quence of the representation of £~! presented in the previous proposition and a technical lemma on
Hilbert operators proven in Appendix (Lemma 10).

3.2. Definition of the estimator

Empirical operators. We define the empirical counterpart of L and ¥: they are defined by re-
placing expectation with respect to p by expectations with respect to its empirical measure i, =

% Z?:l 0z, where 1, . .., x, are i.i.d. samples distributed according to dpu.
- 1 & ~ 1
i= =

Hence, one could be tempted to define our estimator as L1251z, However, this definition
carries two main problems:

() If f € Ker L, ice., for all i < n, Vf(X;) = 0, then |[L"Y/25L"V/2f|| = 4o0. This is an
overfitting-type issue.

(ii) Another problem is related to the fact that finding the eigen-elements of L=1/2¥L~1/2 is
equivalent to solving the generalized eigenvalue problem: > f = oLf. Such systems are

known to be numerically unstable as mentioned by Crawford (1976). This would be especially
the case when replacing the operators by their empirical counterpart. This is a stability issue.
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Regularization. These two concerns recall the pitfall of overfitting for regression tasks. Hence,
as for kernel ridge regression, a natural idea is to regularize with some parameter A. This leads to
the following definition of our estimator and its empirical counterpart:

Definition 5 (Definition of the estimator) Under Assumptions 0,1,2,3, we define the two estima-
tors of the inverse diffusion operator L1

A)~1/2 (10)
)72 (11)

Biased estimator: (L+ A~V (L

_|_
Empirical estimator: (E + )Y Zf(/l_\ +
In the following, to shorten notations, let us define Ly = L + A and E)\ - L + AI. Obviously,
the main drawback of this regularization is that it induces a bias in our estimation: more precisely
the acute reader will recognize that the bigger the A the closer the problem is to kernel-PCA (Mika
et al., 1999). In other words, the scale of A controls the magnitude of the diffusive information we
want to retrieve from the data (this point of view can be further studied but we leave this for future
work at this point).

When analyzing the performances of our empirical estimator, we will draw a particular attention
to the comparison with the standard algorithm that computes the eigen-elements of the operator:
diffusion maps (Coifman and Lafon, 2006; Hein et al., 2007). We emphasize that the RKHS method
we present allows to benefit from the numerous positive aspects of RKHS methods (Scholkopf and
Smola, 2002): both on the statistical side regarding the dependency on the dimension, the adaptivity
to the regularity of the target (Caponnetto and De Vito, 2007), and on on the computational side
benefiting from the techniques developed in the literature like column subsampling or the use of
random features (Martinsson and Tropp, 2020).

3.3. What quantities are we interested in approximating?

Requirements of the problem. The natural and general goal of the present work is to give an
approximation of the diffusion operator based on i.i.d. samples. However, there are in fact more
precise practical objects that the reader may want to have an approximation of:

* The whole operator. Either its representation in # either in H'(y). This can lead, as re-
called in Subsection 2.2, to the estimation of Schrédinger operators. This can also be used
to regularize a semi-supervised problem with the Dirichlet energy of the unlabeled data to
leverage its structure (Cabannes et al., 2021, 2022).

* The semigroup. In fact, as £ is the infinitesimal generator of the dynamics, we can be
interested in the convergence to the associated semigroups e*“ (Klus et al., 2020).

* Eigenvectors. As one of the main applications of this estimator could be the computation
of a low-dimensional embedding of the data through the eigenvectors of £, we are directly
interested in the approximation of the eigenvectors. Either eigenvector per eigenvector, either
finite dimensional subspaces spanned by few of them. Note that we are mostly interested in
the small eigenvalues of £, corresponding to the large eigenvalues of £~!, because they are
those governing the behaviour of the dynamics (Lelievre, 2013).

* Eigenvalues. As it has already been done in previous work for the top eigenvalue (Pillaud-
Vivien et al., 2020), one would like to approximate a set of eigenvalues. Another application
is the construction of the diffusion distance used for clustering (Coifman and Lafon, 2006).
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Previous results. In previous works, e.g., Hein et al. (2007) and Coifman and Lafon (2006) proved
the convergence of the estimated operator. However, note that the convergence theorems are given
pointwise, for bounded domains and have a bad dependency in the dimension as =Y. We will
try to overpass these three limiting results. Please note that the operator norm convergence to the
diffusion operator implies the convergence of all the quantities mentioned earlier: (i) semigroup at
finite time, thanks to the inequality: ||e® — e?|| < ||B — A|le™>IAILIBI} (i) eigenvectors and
eigenvalues, directly by perturbation theory arguments. Importantly, refined bounds are discussed
if one want to approximate k-dimensional subspaces, similarly to Zwald and Blanchard (2005).

4. Statistical analysis of the estimator

As said earlier, to shorten the notations, let us define for an operator A, the operator Ay := A+ AI.
We will split the problem in two: a bias term and a variance term

HE;1/2§[;1/2 B L_1/22L_1/QH < HE;1/2§E;1/2 B L;l/QZL;mH n H'—XWZLKW B L_1/QZ|_—1/2H

variance bias

The variance term corresponds to the statistical error coming from the fact that we have only ac-
cess to a finite set of n samples of the distribution p. The bias comes from the introduction of a
regularization of the operator L scaled by A. We first derive bounds for the variance term.

4.1. Variance analysis

Proposition 6 (Analysis of the statistical error) Suppose Assumptions 0,1,2,3, hold true. For any
5 €(0,1/3), 0 < A < ||L|| and any integer n > 15% log 4AT§L, with probability at least 1 — 20,

~o1/287-1/2 —1/2y —1/2 8K 1
[EEE - L HgA\/ﬁ W)
Note that the analysis behind the proof of Proposition 6 is not completely new: in Pillaud-Vivien
et al. (2020), the convergence of the largest eigenvalue was studied using similar tools, the main
difference being that in Eq. (12), the bound is in operator norm. Note also that for the sake of
clarity, we only emphasized the inequality in the regime where A\\/n is large but an explicit non-
asymptotic bound is given in Lemmas 14 of the Appendix. Finally we emphasize that: (i) the bound
is dimension-free, (ii) the bound is in operator norm which is a strong bound for the operator
convergence as it implies many others: eigenvalue and eigenvector convergence by perturbation
theory results, bound on the associated semi-group, pointwise convergence or other forms of weak
convergence for operators in infinite dimension; (iii) we could have derived refined bounds based
on additional assumption on the capacity of the RKHS (i.e. through the eigenvalue decay of L), but,
for the sake of clarity, we decided to present less general but more interpretable bounds.

log(2/0) + o ( (12)

4.2. Bias analysis

The bias analysis is harder although all objects are now deterministic. We know that L;l/ QZL;U %is

a compact operator (X is compact and L;l/ 2 bounded) so that its spectrum is discrete and is formed
by isolated points except from 0. On the same manner (Reed and Simon, 2012, Theorem XIII1.67)
the inverse of the diffusion operator £~! is compact so that we can talk of the approximation of
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the k-th eigen-element of £~! by the one of L;1/2ZL;1/2

eigenvalues are not isolated).

as A\ goes to O (or eigenspaces if the

Consistency of the estimator. First, if we are only interested in consistency of the estimator and
not on rates of convergence we have the following consistency result:

Proposition 7 (Convergence of the bias) Under Assumptions 0,1,2,3, we have the following con-
vergence in operator norm:

e e e e L 13

H A A A—=0 (13)

This results crucially relies on the fact that the operator L~/2¥L~1/2 is compact (shown in Theo-
rem 4), combined with some algebraic manipulations.

Fast rates for smooth eigenfunctions. Without more a priori knowledge on the distribution u
(and the RKHS), it is hard to derive universal rates of convergence of the bias with respect to the
regularization parameter A. In fact, even deriving quantitative perturbation results solely on the first
eigenvalue, ||| L;l/QZL;1/2 || — IL=*/2XL=/2]||, which corresponds to the Poincaré constant of the
distribution, is known to be a difficult problem (Cécile et al., 2000). This is out of the scope of this
paper. However, eigenfunctions of these elliptic operators are known to be smooth under standard
assumptions on the distribution (typically, smoothness of the Gibbs potential and fast decay of
tails (Bogachev et al., 2022)). Hence, similarly to what is done in non-parametric regression, we
can exploit this and quantify the difficulty of the problem (Caponnetto and De Vito, 2007) by under-
standing how smooth (w.r.t. the RKHS) the target function is. This is what is often referred to as a
source condition in this literature (Dieuleuveut, 2017). Here, for most of the applications (Coifman
and Lafon, 2006), we want to approximate the p-eigen-elements corresponding to the largest eigen-
values of £~! (smallest eigenvalues of £) for some p € N*. Let us make here a natural assumption
on their smoothness.

Assumption 4 (Regularity of the problem) The p first eigenvectors of L belongs to H.

An prototypical example of when it happens for any p € N* is if we consider a distribution with
compact support €2, density . = e~V € C*°(Q), and the Gaussian kernel. Note that for the eigen-
vectors to belong to the RKHS, they need to be at least d/2-differentiable: hence this assumption
reveals an a priori hypothesis on the target. However, eigenvectors of £ are known to be infinitely
smooth by elliptic theory of PDEs (Evans, 2022) so that this a priori relatively natural.

Let us denote 11P : H{ — H the spectral projector onto the span of the p largest eigenvectors of
L=1/2¥L=1/2, Technically speaking, Assumption 4 implies that for all v € span II?,

IL™20]l3 < oo,

or equivalently in terms of operators: ||II’L~/2II?|| < oco. Indeed, thanks to Theorem 4-(iii), for
suchav € H, SL=1/2y € #, so that, by isometry this means that ||(SS*)~Y/2SL=1/2y]| 2 < +o0,
which is equivalent to the conditions above.

Proposition 8 (Fast rates under source condition) Under Assumptions 0,1,2,3,4, we have the fol-
lowing bound in operator norm:

HHP (L;”QZL;W - L—I/QZL—I/Q) HPH < \P|IPL= Y21, (14)

9
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This proposition means that, under the source condition, the bias in the first p eigenvectors depends
linearly on A. Furthermore, this is remarkable that the two crucial regularity assumptions appear in
this bound: (i) the measure of complexity of the measure p, through its Poincaré constant P, (ii) the
smooth a priori on the target eigenvectors we want to approximate. Here we decided to showcase,
for the sake of clarity, the case where the target belongs to the RKHS, but remark that refined bounds
could be easily adapted from this results under more precise (and technical) source assumptions.

4.3. Consistency and convergence rates under source assumption

To summarize the results and the discussion of the two previous sections, let us state here the overall
consistency of the estimator as well a final bound on the empirical estimator with respect to the data.

Theorem 9 (Consistency and convergence rates) Under Assumptions 0,1,2,3, forany § € (0,1/2)
and any integer n > Klog %, with K depending on IC, K4 with probability at least 1 — 20, take a
sequence of regularizers such that \,, — 0 and \,\/n — +00, then our estimator is consistent

LIPS — 212, (15)

)‘” An poo

where the convergence holds in operator norm. Furthermore, assume 4, then, if A\ = Kn=1/ 4

Hﬂp ( 1/2>:L 1/2 L—1/22|_—1/2) HpH < 8 +2K PQEZL 1/2HP|| (n_1/4) ’ (16)

where, Vp € N*, TIP is the spectral projector over the largest p eigenvectors of L=1/2¥L=1/2,

The theorem quantifies the statistical performance of the built estimator: we emphasize that, under
the smoothness Assumption 4, the rate of convergence to any estimated eigenfunction of L does
not depend on the dimension. This contrasts with the n~1/¢ rates of graph Laplacian/diffusion
maps. This difference echoes the more general and intrinsic difference between local approximation
techniques and kernel methods, which adapt to the underlying regularity of the problem.

5. Numerical construction of the estimator

Beyond their statistical performance, kernel methods also enjoy good numerical strategies to reduce
their computational cost while keeping their overall precision (Martinsson and Tropp, 2020, Section
19). We discuss informally how to apply them in our context.

We note that if the reader wants to apply concretely the developed method, and go deeper on
this Laplacian’s eigenvector representation, Vivien Cabannes has developed in Cabannes (2023) a
very nice perspective around this spectral embedding, as well as a package available on its GitHub
page: https://github.com/VivienCabannes/, in the kernel laplacian repository (‘“klap”
package available via $ pip install klap).

Computing the estimator: naive approach. To compute the estimator L v 2ZL 1/2 , one needs
to be able to represent the operators
R 1 n R 1 n d
zznle%@K%, L:n; 1(9ij1®6sz2,
1= =1 )=

10
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whose expressions are recalled here for the sake of clarity. In fact, it suffices to represent them on
Span{ K, }i<n + Span{0d; Ky, }i<n, j<d. Once such matrices (X, L) € R(ntnd)x(ntnd)s gre pujlt,
an efficient way to compute the operator is by solving the generalized eigenvalue problem: i.e.,
find all (Y, i) € R4 x R, for k € [1,n + nd] such that

Yobg = prp Ly, (17

then we can write thanks the eigenvalue decomposition /I_\;l/ fogl/ 2o yrtnd  fe @ fr, with

n n d
Fo =D UklilKe, + > )tk +i5]0; Ko,
=1

i=1 j=1

Obviously, one of the bottleneck is to build the large matrices X and L that have approximately n?d?
coefficients, and then solve their related generalized eigenvalue problem. Hence, this procedure
becomes intractable if n or d is too large. Fortunately, there is a pass forward: to implement the
kernel method we need only an approximation of the kernels matrices. We propose below two
well-developed method used to reduce the computations.

Nystrom approximation/column subsampling. The idea of this method is to build low-rank ap-
proximations of 3, L by selecting only p € N* columns among them. Note that, in favorable cases,
p can be chosen as low as log(n) without hurting the statistical performances (Rudi et al., 2015). Let
us choose only the p columns that refer to the elements (K, )i<,. The algorithm below, presented
for other purposes in Cabannes et al. (2021), returns the eigenvectors we want to approximate:

Algorithm 1 Compute the eigenvectors by Nystrom method

Data: (z;);<y, a kernel k, and a regularizer \

Compute S, = (k(z, 21))i<n,i<p € R™P

Compute D,, = (8173-]@(901, xl))(ign,jgd),lgp S Rndxp

Build ¥, = 5, S, € RP*P and L, = D) D), € RP*P

Get (1y, i) k<p the generalized eigen-elements of (X, L, + AI,,)

At the end of Algorithm 1, for £ < p the k-th approximated eigenvalue is uy, and its associated
eigenfunction writes fi(z) = >0, Wi[i] K (z;,x), where ¥}, = (L, + A,)~ /¢y In terms of
numerical complexity, the main costs are due to building L, in O(p*nd) and finding the generalized
eigen-elements in O(p3). In the course of the algorithm we used the notation 01 jk(z;, z;) to stress
that the derivative should apply to the first variable.

Random features. Random features (Rahimi and Recht, 2008) is another way to circumvent the
problem by building explicitly features that approximate any translation invariant kernel k(z,y) =
k(x—vy). More precisely, let p € N* be the number of random features, (w;);<;, be random variables
of R? independently and identically distributed according to P(dw) = Jra e WK (0)dd dw and
(b1)1<p be independently and identically distributed according to the uniform law on [0, 27|, then the

feature vector ¢p(z) = \/% (cos(w{ z +b1),...,cos(wyz + bM))T € RM satisfies K (z, ') ~

(¢p(z), pp(2’))2. Therefore, random features allow to approximate > and L by p x p matrices.

11
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Figure 1: Estimation of the first five eigenfunctions of the Ornstein Uhlenbeck operator: the Her-
mite polynomials.

Algorithm 2 Compute the eigenvectors with random features

Data: (x;);<y and a regularizer \

Compute S, = (cos(w; x; + b;))i<ni<p € RW*P

Compute D}, = (—wy[J] sin(w; T; + b)) i<ni<p € RWP, forall j < d
Build D, = Y°7_, D} € R"™P

Build ¥, = 5, S, € RP*P and L, = D) D), € RP*P

Get (¥, ik ) k<p the generalized eigen-elements of (X, L, + AI},)

At the end of Algorithm 2, for £ < p the k-th approximated eigenvalue is uy, and its associated
eigenfunction writes fy, () = (U, ¢,(x)), where Uy, = (L, +AI,)~'/2¢)y.. Similarly as before, the
main costs are due to building L, in O(p?nd) and finding the generalized eigen-elements in O(p?).

Hermite polynomials. To conclude this numerical section, and illustrate the results, we exhibit a
prototypical example where the eigenfunctions of £ are known; and we estimate them. Indeed, take
w(x) = ¢~°/2_ the one dimensional Gaussian. Then £f = f" — zf' is the Ornstein-Uhlenbeck
operator and it is known that its eigenfunctions are the Hermite polynomials (Bakry et al., 2014).
We estimate the first five Hermite polynomials with our method, thanks to Algorithm 1, with n =
p = 30, regularization parameter A = 0.1 and the Gaussian kernel. The result is displayed in
Figure 1. The data points are displayed with dots and the built eigenfunctions are plotted with plain
lines. Note that the approximation is only valid on H* (6*9”2/ 2), hence the estimated eigenfunctions
behave poorly outside of the dataset: a striking example of this fact is the behavior of h1, that is a
linear function on the dataset interval but diverges from it rapidly when there are no data.

6. Conclusion and further thoughts

Comparison to graph Laplacians. In this work, we proved that we could estimate the eigen-
elements of the diffusion operator. This construction relies on PSD kernel methods, whereas pre-
vious rely on local averaging techniques. This leads to efficient estimations in high dimension in
comparison to graph Laplacians (Hein et al., 2007). More precisely, under smoothness of the tar-
geted eigenvectors, we showed that the statistical rates of the RKHS estimator does not depend on

12
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the dimension. We finally discuss computationally efficient ways to construct these eigen-elements
resting on Nystrom approximation (Williams and Seeger, 2000) or Fourier Feautures (Rahimi and
Recht, 2008). Yet, this article focuses on the mathematical foundation of the estimator and its sta-
tistical performances: a precise computational and experimental comparison with graph Laplacians,
diffusion maps and spectral clustering, as they are currently used, is left for a future work.

The kernel choice. Another discussion that we only sketched is the choice of the kernel. In fact,
when it comes to specific applications, the art of kernel engineering is a central question. For this
problem, as emphasized by the source condition, the RKHS should be chosen to approximate well
the eigenfunctions of the diffusion operator in H' (). Generally speaking, the interplay between
H' (1) and H is a fundamental question at the core of RKHS approximation theory, and understand-
ing this link should enable dimensionless approach in most of the cases.

Markov chains. A recent literature in applied probability aims at estimating the spectral gaps of
Markov chain given the first n iterates of it (Hsu et al., 2015). The first eigenvalue of the estimator
seems to do exactly the same, and understanding the difference between our algorithm and theirs
is something worth of exploration. This will require to adapt a bit our algorithm and change our
i.i.d. assumption on the samples to a Markovian one.

13
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Appendix

Note that is all the appendix, to avoid cumbersome notations we will make no distinctions between
Ho and H and Hg (1) and H'(p) unless it is strictly necessary.

Appendix A. Proof on the embedding of the diffusion operator and its inverse

A.1. Proof of Proposition 3

We want to show that on H} (u1), £71 = SL=1S*.

Proof [of Proposition 3] Let g € Ran S, there exists f € H such that g = Sf. Let us calculate:
SL71S*Lg =SLIS*LSf =SL7Lf =Sf =g.

Moreover, as £ is invertible on Ran S N H'(u) N L3(p), the left and right inverse are the same.
Hence, £~! and SL~!S* are equal on Ran S. Furthermore we can notice that £~! and SL~!S* are
bounded on L?(y1). Indeed,

P = sup M > sup <L_1/2f,S*SL_1/2f>7_[ _ <f7 L_l/QS*SL_1/2f>fH
reer)t (F L1 “regenys (LV2LLLTY2 )9 peart) s I1£113
= ||L=Y/25*SL=12|,

= [SL™"S* (| £2(0-

As £ and SL~!S* are equal and continuous on Ran S, they are also equal on its closure. |

A.2. Proof of Theorem 4 through a technical result on operators between Hilbert spaces

The lemma below gives the proof of Theorem 4 considering A = SL=/2, H; = Ho and Hy =
Hy ().

Lemma 10 (Link between A*A and AA* in the compact case.) Let H1 and Hs two Hilbert spaces.
Let A be an operator from H, to Ha such that A*A is a self-adjoint compact operator on H,. Then,

(i) Ais a bounded operator from H; to Ho.
(ii) AA* is a self-adjoint compact operator on Ha with the same spectrum as AA*.

(iii) If A # 0 is an eigenvalue of A*A with eigenvector u € Hi, then X is an eigenvalue of AA*
with eigenvector Au € Ha.

Proof First let us notice that A is necessarily bounded. Indeed, let u € H;,

1Aul3,, = (Au, Au)yy, = (A" Au,u)yy, <A Aullyy, llully, < IATA] Jlully, -
Hence, ||A]| < +/||A*A].
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Second, as A*A is self-adjoint and compact on H1, there exists (¢); );en an orthonormal basis H;
and a sequence of reals (\;);cn such that:

AA =" Nt @b,
120

where the infinite sum stands for the strong convergence of operators. Now, by composing on the
left side by A* and on the right side by A*, we get:

i
VN

(AA%)? = AATAA* =~ Xi(Agh) ® (Agy) = > AF(A Vi

)@ (A
i>0 i>0 VA

).

Hence, AA* = Y., )\Z(A\‘/@%) ® (qu/#;?) and is a compact operator. We can of course check

2 ; : . s ¥j — OuN"L2 L A*A) —
that (A\//\T_)ZEN is an orthonormal basis of Hs: <A\//\7,A\/f\>j> = (Ni)j) /2 (s, A Ayj) =

\/%WM@ = 0ij. =

Appendix B. Bound on the variance term

We begin first to recall usual concentration inequalities that will help handling the variance term.

B.1. Concentration inequalities

We first begin by recalling some concentration inequalities for sums of random vectors and opera-
tors.

Proposition 11 (Bernstein’s inequality for sums of random vectors) Let 21, ..., 2, be a sequence
of independent identically and distributed random elements of a separable Hilbert space H. Assume
that E||z1|| < +o00 and note jn = Ezy. Let o, L > 0 such that,

1 _
Vp > 2, E|lz1 — /LH% < §p!02Lp 2,

Then, for any 6 € (0,1],

1< 2L 1og(2/6 202 log(2/6
*Zzi—,u« <M+ ﬂj (18)
n 4 n n
=1 H
with probability at least 1 — 9.
Proof This is a restatement of Theorem 3.3.4 of Yurinsky (1995). |
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Proposition 12 (Bernstein’s inequality for sums of random operators) Let H be a separable
Hilbert space and let X1, ..., X, be a sequence of independent and identically distributed self-
adjoint random operators on H. Assume that B(X;) = 0 and that there exist T > 0 and S a posi-
tive trace-class operator such that || X;|| < T almost surely and EX? < S foranyi € {1,...,n}.
Then, for any ¢ € (0, 1], the following inequality holds:

Z X;
2TrS

with probability at least 1 — § and where § = log ISIER

ZTB 2||5]18

n

5 (19)

Proof The theorem is a restatement of Theorem 7.3.1 of Tropp (2012) generalized to the separable
Hilbert space case by means of the technique in Section 4 of Stanislav (2017). |

B.2. Operator bounds

Lemma 13 Under Assumptions 2 and 3, ¥, and L are trace-class operators.

Proof We only prove the result for L, the proof for X being similar. Consider an orthonormal basis
(¢i)ien of H. Then, as L is a positive self adjoint operator,

9] d o d
L= o0 = S Ea | 00| =B | 3200
i=1 =1 =1 =1 j=1
Z 10; K[|
Hence, L is a trace-class operator. |

B.3. Proof of Proposition 6: the variance bound

We recall here the expression of the variance of our estimator we want to control:
Variance := |[T3 250,12 - L 2wl

[oV2sy-1/2 _ {125 o1)2 T—1/2<7—1/2 —1/2¢; —1/2
PSR+ e - e

E;1/2(f — %) E71/2H 4 th/zztfl/z - L71/2ZE71/2H i HL71/22E71/2 - I_;1/28_;1/2“
E;l/Q(f—Z 1/2H+H -1/2 1/2)2L 1/2H+HL 1/2 > (L )\1/2 L;UQ)H'

Lemma 15 Lemma 16 Lemma 16 as well

NN

The following quantities are useful for the estimates in this section:

No(N) = sup HL_l/2 .

xEsupp

2
,and Fo(A) = sup HL;l/2
H zesupp(u)
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Note that under Assumption 3, Noo(\) < % and Foo(A) < % Note also that under refined
assumptions on the spectrum of L, we could have a better dependence of the latter bounds with
respect to A\. We first state the overall result before showing all the auxiliary lemmas below:

Lemma 14 Forany 0 < X < ||L|, n > 15F()\) log 132- and any § € (0,1/2],

3n n

1/2
H —1/2¢: 1/2 L;1/2ZL;1/2H < 4./\/'00()\)10g27’/\%‘1"Z N [273./\/'00( )log‘”)Trz]

AP =)

1/2 [ 4F () log =55~ 4Tr" N 2 Foo(A) log 55 4Tr"
3n n

with probability at least 1 — 20.

B.3.1. BOUND ON THE FIRST TERM

Lemma 15 Forany A > 0, and any 6 € (0, 1],

B . 3 4N A1 2’PTr):
HLAl/Q(Z_Z)LAqu < ( )3og N 7
n

n

2P Noo(N) log 4PTr):] 12

with probability at least 1 — .

1/2fL;1/2 whose

Proof [of Lemma 15] We apply some concentration inequality to the operator L,

mean is exactly L;l/QZL;1/2

HL;UQ@ _ Z)L;l/zu _ HL;1/2§L)—\1/2 _ L;1/2ZL;1/2H

. The calculation is the following:

_ 1} j [(L;”QK%) ® (L) K,,) — L;WzL;”Q}
n
=1

2 n HL;UQZL;UzH

We use Proposition 12. To do this, we bound for i € [1,n] :

H(L)_\l/QK%) 2 (L;1/2Kxi) B L;1/2ZL;1/2H < HL;1/2K:E¢
< 2N (N),

and, for the second order moment,
—1/2 —1/2 —1/2<, —1/2)2
E((L12R) @ (L 7K, - 120 2)

- [HL;I/zK

< N, P22

212 ~1/2 S1/2¢y 1y —1/2
L (K @ (L Kxi)]—L/\ YL'EL,
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2Tr(¥XLy )

m. To do this, we
A A

We conclude the proof by some estimation of the constant 5 = log

remark that, thanks to Proposition 16 of Pillaud-Vivien (2020),
e = e s 2,

and using Tr¥L," < A~'TrY, it holds 8 < log 25X, Therefore,

2 PA Nio(M) log ‘”’gf] 1/2

IS [ R @ (5 R -
=1

2’PTr):
< AN (A) log N
3n

n

This concludes the proof of Lemma 15. |

B.3.2. BOUND ON THE SECOND TERM

2

Here, we want to bound the term H Y L;l/ 2)Z/L\Xl/ 2 H Let us work on it a little bit more.

H(E;m B L;”Q)ZE;”ZH = oz - L)—\I)Liﬂzt)—\l/?H

= [ - o e
E—1/2L1/2L—1/2(E L )L_1/221/221/2L_1/2Ll/QE_l/QH

IN

IN

P I [T 22| 2 — Lo

Lemma 18 Lemma 17

Hence, we can formulate the principal result of this subsection:

€ (0,1), andn > 15F 5 (\) log 4;}“", it holds with probability

at least 1 — o:

4F (M) log =5 4TrL N \/2 Foo(N) log = 4Tr"

|2 - < 2Py 2 .

n

with probability at least 1 — 9.
And now we prove the auxiliary lemmas.

Lemma 17 Forany 0 < A < ||L|| and any § € (0, 1],

)

V2T o2 < AFo(N) log 25E 2 Foo(A) log L35
A ( ) A = 3n * n

with probability at least 1 — 0.
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Proof [Proof of Lemma 17]
As in the proof of Lemma 15, we want to apply some concentration inequality to the operator

L;lﬂﬁL;l/Z, whose mean is exactly L;l/zALgl/Q. The proof is almost the same as Lemma 15.
We start by writing

2
L71/2LL71/2H
H+ H A A

HL;1/2(E_ L)L;l/QH _ HL;”?EL;W _ L;l/zLL;1/2H

LT, - - _ -
= (L3 PV @ (L 2V, - Ly PAL
=1

In order to use Proposition 12, we bound for i € 1, n],

(32K @ (ARG, - LG < LAV E,,
< 2F50(A),

and, for the second order moment,
~1/2 ~1/2 —1/2,, —1/2\2
B (98 o (V) - 1)
2
H
< Foo (WL PLLS2,

-F [HL; VK| (VR @ <L;”QVK%>] -4

-1
e conclude by some estimation of 8 = log 5— <. Since Tr(LL} ") < A7 TrL and for A <
We conclude by imation of 8 = 1 Q‘E(Lb”; Since Tr(LL;") < A~TrL and for A
A
IIL]l, HL;lLH > 1/2, it follows that 5 < log %. The conclusion then follows from (19). [ |
4TrL

Lemma 18 (Bounding operators) For any A > 0, 0 € (0,1), and n > 15F () log *55=, it
holds with probability at least 1 — 6:

~_1/2,1/2]|?
[Eres <,

The proof of this result relies on the following lemma (see proof by Rudi and Rosasco (2017,
Proposition 8)).

Lemma 19 Let H be a separable Hilbert space, A and B two bounded self-adjoint positive linear
operators on H and A\ > 0. Then

H(A—i-)\l)*lm(B_i_)\I)l/QH < —5)71/2,

with 8 = Amax ((B + N)~V2(B - A)(B+ )\I)*l/Q) < 1, where A\pax(O) is the largest eigen-
value of the self-adjoint operator O.
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We can now write the proof of Lemma 18.
Proof [Proof of Lemma 18] Thanks to Lemma 19, we see that

H —1/2) 1/2H (1 . (L;”Q(E* L)L;1/2>)*1,

- L)L, UQH < 1, we have:

i s (- o)

and as HL 1/2

. . . 4F oo (N) log £TL
We can then apply the bound of Lemma 17 to obtain that, if A is such that —=—"—=235

4TrL ~ 2
2]'—00(/\)10g < 1 then HL_1/2L§/2H

< 2 with probability 1 — §. The condition on A is

satisfied whenn 15F o (A) lo 4§§L. [ |

B.3.3. BOUND ON THE THIRD AND LAST TERM

Here, we want to bound the term H L;l/ ZZ(/L\;U 2 L;l/ 2) H Let us apply the same tricks as previ-
ously.

HL;1/2Z(E;1/2 _ I_;1/2)H _ HL;I/ZZL;1/2(L L —1/2H
< (P HZ||)1/2 HE;UQL}\/QH HL,(I/Z(E,\ B LA)L;UQH .

Hence, the same bound as Lemma 16 applies!

Appendix C. The bias term
C.1. Proof of the consistency: Proposition 7
To prove Proposition 7, we first need a general result on operator norm convergence.

Lemma 20 Let H be a Hilbert space and suppose that (A, )n>o is a family of bounded operators
n—oo .
nf —— Af. Suppose also that B is a compact

operator. Then, in operator norm,
A, BA: "2 ABA*.

Proof Let e > 0. As B is compact, it can be approximated by a finite rank operator B, =
Yo, bi( fi, -)gi, where (f;); and (g;); are orthonormal bases, and (b;); is a sequence of nonnegatlve
numbers with limit zero (singular values of the operator). More precisely, n. is chosen so that
€
1B =B, <
Moreover, ¢ being fixed, A, B, Ay = > bi(Anfi, ) Angi — Z?slb(Afi, Ag; = AB,_A*
noo
—AB, _A*|| < §.

in operator norm, so that, for n > N, with N > n. sufficiently large,
Finally, as ||A|| < 1, it holds, forn > N,

[AnB, Ay — ABA™| < [|[AnB,_A; — AB, A™|| + [|A(B,, — B)A™||

< |
< ||AnB, A, — AB,_A*||+||B,. — Bl <¢
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This proves the convergence in operator norm of A, BA} to ABA* when n goes to infinity. |

We can now prove Proposition 7.

Proof [of Proposition 7] Denoting by B = L~1/2¥L~1/2 and by A, = L;l/QLl/2 both defined on
Ho, we have L;1/2ZL;1/2 = A)\BA} with B compact and || A, || < 1. Furthermore, let (¢;);cn be
an orthonormal family of eigenvectors of the compact operator L associated to eigenvalues (v;);en.
Then we can write, for any f € H,,

A =LA f = Z (F.dim i = f.

)\—i—z

Hence by applying Lemma 20, we have the convergence in operator norm of L;l/ 2ZL;l/ % to

L-1/2y—1/2, [

C.2. Fast rates under source condition: Proposition 8

Proof [of Proposition 8] To show Proposition 8, we simply bound the bias term according to the
following inequalities.

e (L2 M2 - e | < e (L2 - 2 s e

IN

IN

<2p HHPL—WHPH ,
which finally proves Proposition 8. |
Of course, under refined a priori on how smooth are the eigenvectors of £, i.e., on control like

|[TIPL=0T1P||, for € [0, 1] that generalize the source conditions we used, we could get finer-grained
rates (Pillaud-Vivien et al., 2018; Berthier et al., 2020; Varre et al., 2021).
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