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Abstract
Given a partition of a graph into connected components, the membership oracle asserts whether
any two vertices of the graph lie in the same component or not. We prove that for n ≥ k ≥ 2,
learning the components of an n-vertex hidden graph with k components requires at least (k −
1)n−

(
k
2

)
membership queries. Our result improves on the best known information-theoretic bound

of Ω(n log k) queries, and exactly matches the query complexity of the algorithm introduced by
Reyzin and Srivastava (2007) for this problem. Additionally, we introduce an oracle, with access to
which one can learn the number of components of G in asymptotically fewer queries than learning
the full partition, thus answering another question posed by the same authors. Lastly, we introduce
a more applicable version of this oracle, and prove asymptotically tight bounds of Θ̃(m) queries
for both learning and verifying an m-edge hidden graph G using it.
Keywords: graph learning, graph reconstruction, query complexity

1. Introduction

1.1. Background and Applications

A graph G = (V,E) consists of a vertex set V and an edge set E ⊆
(
V
2

)
. The field of graph

learning deals with learning a hidden graph using queries to black-box oracles that reveal partial
information about the graph. In several real world scenarios, learning a full graph by checking
only pairwise adjacency is inefficient, and several oracles can speed up the process of learning by
encoding more information per query. Different oracles could be useful or easier to implement
in different scenarios. For example, in the context of trying to learn a hidden network graph, a
traceroute query between a pair of vertices can give information about a shortest path between the
vertices and their distance in the graph. In the context of bioinformatics, one can model a graph with
vertices corresponding to chemicals, and two vertices are joined by an edge if they react when mixed
together. In such a situation, oracles such as edge-detection and edge-counting can be implemented
by mixing different sets of chemicals and measuring the intensity of reaction. As calling an oracle
incurs cost, researchers try to estimate the query complexity: the least number of queries to the
oracle required to learn a specific graph or graph property.

A separate type of problem that is also widely studied is the problem of graph verification. In
this setting, we have a hidden graph G = (V,E) and a known graph Ĝ = (V, Ê), and an oracle
that reveals information about G. The main task in this area is to verify whether G = Ĝ using as
few oracle queries as possible. In the context of our paper, we assume |Ê| = |E|, as G and Ĝ are
trivially unequal if they do not have the same number of edges. Verification tasks are prevalent in
real networks where it is important to make sure a recent snapshot of a network is accurate.
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Due to their practical and theoretical importance, both graph learning and verification have
garnered a lot of interest in recent years. Perhaps the first problem considered in the literature
was the problem of learning a degree-bounded tree using the shortest path oracle (Hein, 1989;
King et al., 2003). The shortest path oracle and the distance oracle were extensively studied in
(Reyzin and Srivastava, 2007; Kannan et al., 2018; Rong et al., 2021). The current best upper bound
on learning a connected bounded-degree graph on n vertices is due to Mathieu and Zhou (2013),
where they provide a randomized Õ(n3/2)-query algorithm to learn such a graph. Abrahamsen et al.
(2016) prove the exact bound on the query complexity using a weaker oracle called the betweenness
oracle, thus suggesting that the bound of Õ(n3/2) might be not tight. Parallel results in graph
verification have also been obtained for the distance oracle (Kannan et al., 2015) and betweenness
oracle (Janardhanan, 2017). Although there is still a gap between the lower bound of Ω(n) and
upper bound of Õ(n3/2) for learning degree-bounded graphs using distance oracle, the gap was
closed recently for random degree-bounded regular graphs by Mathieu and Zhou (2021).

Another well-studied oracle is the edge-detection oracle, which, given a set of vertices of the
hidden graph G, tells if it is an independent set or not. Results on learning restricted classes of graphs
using this oracle such as matchings (Alon et al., 2004), stars and cliques [Alon and Asodi (2005)],
Hamiltonian cycles (Grebinski and Kucherov, 2000) were succeeded by a very general treatment
by Angluin and Chen (2008). Using a recursive coloring argument, they show that O(m log n)
edge-detection queries are sufficient to learn an arbitrary hidden graph. Reyzin and Srivastava
(2007) consider and compare the shortest path, edge-detection and edge-counting queries and prove
a variety of lower and upper bounds for learning partitions, trees and arbitrary graphs. In other
related work, Beerliova et al. (2006) consider an oracle called the layered-graph oracle.

1.2. Our Results

1.2.1. MEMBERSHIP QUERIES

Every graph G admits a partition of its vertex set into connected components. We say that a learner
learns the components of G if it learns this partition. For an n-vertex hidden graph G with k compo-
nents, one of the problems studied in (Reyzin and Srivastava, 2007) entails learning the components
of G. More precisely, if α denotes the membership query given by

α(u, v) =

{
1, if u and v belong to the same component,
0, otherwise;

then they demonstrate an algorithm to learn the components of G.

Algorithm 1.1 (Reyzin and Srivastava (2007))

• Start with a set S of already classified vertices and a set C of component representatives
which are both initialized to {v0} for some arbitrary v0 ∈ V (G).

• For every unclassified vertex v ∈ V (G) \ S, sequentially query {α(x, v) : x ∈ C}.

• If some query α(x, v) is true, add v to S. Otherwise, the component of v has not been
discovered till now, so add v to both S and C.

• Repeat the procedure until S = V (G).
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It can be seen that when k is small compared to n, Algorithm 1.1 uses O(nk) many α-queries. In
particular, if we consider a graph G which is the union of isolated vertices {1, . . . , k − 1} and a
clique K{k,...,n}, Proposition 2.1 demonstrates that Algorithm 1.1 uses (k−1)n−

(
k
2

)
queries in the

worst case.

However, the best known lower bound for this fundamental problem of learning components
with α was an information-theoretic bound of Ω(n log k) queries. To the knowledge of the authors,
no proof of an Ω(nk) lower bound has been published till date since it was first posed by Reyzin
and Srivastava (2007). Our main theorem is the first exact lower bound of (k − 1)n −

(
k
2

)
queries

to this problem, when k is known to the algorithm.

Theorem 1.2 Given any algorithm A that makes membership queries on a hidden graph G with n
vertices and k components, there is an adversary that can force A to make at least (k − 1)n−

(
k
2

)
queries to learn the partition of G.

We also prove an exact bound if the number of connected components in G is unknown.

Theorem 1.3 Given any algorithm A that makes membership queries on a hidden graph G with
n vertices, there is an adversary that can force A to make at least kn −

(
k+1
2

)
queries to learn the

partition of G, where k is the number of connected components in G.

Remark 1.4 When the number of components k of a hidden graph G is known to an algorithm,
intuitively it should require fewer queries to learn all components of G. This is also reflected in the
fact that our lower bound in Theorem 1.2 is (n − k) lower than the lower bound in Theorem 1.3.
According to Proposition 2.1, the bounds from both Theorems 1.2 and 1.3 are tight.

We make a note here that Theorems 1.2 and 1.3, as well as the membership oracle is applicable
to a much more general discrete setting: learning partitions of any finite n-element set into k parts.
However, the problem of learning partitions is not well-represented in the literature and hence we
use the more familiar and equivalent language of graph learning for presenting Theorems 1.2 and
1.3.

1.2.2. MULTIPLE-MEMBERSHIP QUERIES

Reyzin and Srivastava (2007) also posed a question on whether there is an oracle that has to be
queried fewer times to learn the number of components in an n-vertex hidden graph than learning
the components. For a vertex u and a set S of vertices not containing u, we define the multiple-
membership query

αm(u, S) =

{
1, if u and v belong to the same component for some v ∈ S,
0, otherwise.

Our second result gives a positive answer to their question:

Theorem 1.5 For an n-vertex hidden graph G, learning the number of components of G can
be done using O(n) αm-queries. However, learning all the components requires Θ(n log k) αm-
queries.
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1.2.3. VERTEX-NEIGHBORHOOD DETECTION QUERIES

We modify αm into a query that is more applicable in practical scenarios, which we call the vertex-
neighborhood detection query β given by:

β(u, S) =

{
1, if u and v are adjacent for some v ∈ S,
0, otherwise.

β is useful in the setting of biochemistry where it is easy to detect a reaction between a fixed
reagent and a set of other chemicals, and could be applicable to genome sequencing using poly-
merase chain reaction (PCR) tests [Bouvel et al. (2005); Chang et al. (2011)].

We analyze the problems of graph learning and graph verification using β-queries, and prove
tight bounds for these problems (up to logarithmic factors):

Theorem 1.6 Learning or verifying an n-vertex hidden graph on m edges requires Ω(m) β-
queries. Conversely, learning such a graph can be done in O(m log n) queries, whereas verifying
can be done in O(m+ n) queries.

Remark 1.7 As an immediate consequence to Theorem 1.6, note that all sparse families of graph
which satisfy m = O(n), such as trees, planar graphs and minor-free graphs, can be both learned
and verified using Θ̃(n) queries to β.

This paper is organized as follows. In Section 2, we prove Theorems 1.2, 1.3 and 1.5. Section 3
presents our results on the β oracle, and proves Theorem 1.6. Finally, we make some concluding
remarks in Section 4.

2. Graph partitions and the membership query

In this section, we consider the membership query given by α(u, v) = 1 iff u and v belong to the
same connected component. Our goal in this section is to prove Theorem 1.2.

2.1. Preliminaries

We briefly state some preliminary results before diving into the proof.

2.1.1. UPPER BOUND ON QUERY COMPLEXITY OF ALGORITHM 1.1

First, we give a quick demonstration of the upper bound of (k− 1)n−
(
k
2

)
of the query complexity

of Algorithm 1.1.

Proposition 2.1 Algorithm 1.1 uses at most (k−1)n−
(
k
2

)
queries to learn the graph G consisting

of isolated vertices {1, . . . , k − 1} and a clique K{k,...,n}. If k is not known to the algorithm, it
requires (n− k) additional queries.

Proof Suppose k is known. Without loss of generality assume that the algorithm determines the
components of the k − 1 isolated vertices using 1 + · · · + (k − 2) = 1

2(k − 2)(k − 1) many
membership queries first. Otherwise, if the large component is discovered earlier, our algorithm can
learn G using fewer queries. To classify the remaining (n−k+1) vertices into the k’th component,
we only need to make sure that each of them does not share a component with {1, . . . , k− 1}. This
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requires (k − 1)(n− k + 1) membership queries. Hence, the total number of α-queries required in
this case equals

1

2
(k − 1)(k − 2) + (k − 1)(n− k + 1) = (k − 1)

(
n− k

2

)
= (k − 1)n−

(
k

2

)
,

as desired.
When k is not known, the last (n− k + 1) vertices each require not only (k − 1) queries each,

but the vertices {k + 1, . . . , n} each need one additional query. The total number of queries made
therefore, is (n− k) more, proving the second part of our claim.

2.1.2. UNIQUELY k-COLORABLE GRAPHS

Our proof will be closely related to the following definition in graph theory.
Given a graph G, we say that it is k-colorable if there is a labelling χ : V (G) → {1, . . . , k}

such that the two endpoints of any edge receives distinct labels. Such a χ is also called a proper
k-coloring. G is said to be uniquely k-colorable if it has a unique proper k-coloring χ (up to
permutations of {1, . . . , k}). The following theorem gives a lower bound for the number of edges
in a uniquely k-colorable graph on n vertices.

Theorem 2.2 (Truszczyński (1984); Shaoji (1990)) A uniquely k-colorable graph on n vertices
must have at least (k − 1)n−

(
k
2

)
edges.

For the sake of completeness, we give an outline of the proof. We urge the reader to refer to the
cited sources for further information on uniquely k-colorable graphs.

Proof (Sketch). Suppose G is a uniquely k-colorable graph on n vertices, and its color classes are
I1, . . . , Ik. Each Ii is an independent set, and the edges of G go across these color classes. Let us
fix any pair i ̸= j, and consider the bipartite graph G[Ii ∪ Ij ]. If G[Ii ∪ Ij ] was disconnected, we
could switch around the colors of these connected components to obtain a new proper k-coloring
of G, a contradiction. Thus, G[Ii ∪ Ij ] is a connected bipartite graph, implying there are at least
|Ii|+ |Ij | − 1 edges between components Ii and Ij . It can then be seen that

|E(G)| ≥
∑
i<j

|Ii|+ |Ij | − 1

= (k − 1)(|I1|+ · · ·+ |Ik|)−
(
k

2

)
= (k − 1)n−

(
k

2

)
.

We are ready to present the proofs of Theorems 1.2 and 1.3 in the following two sections.

2.2. Membership query

First we present our proof of Theorem 1.2. Recall that α(u, v) = 1 iff u and v belong to the same
component in an n-vertex hidden graph with k components, and we are aiming to prove a lower
bound of (k − 1)n−

(
k
2

)
queries on learning all its components.
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2.2.1. PROOF OF THEOREM 1.2.

We will use the following definition in our proofs.

Definition 2.3 Suppose that G is a k-colorable graph and i, j ∈ V (G) are distinct vertices that
are not adjacent in G. Then {i, j} is called a k-separable pair if there exists a proper k-coloring
χ : V (G) → [k] of G such that χ(i) ̸= χ(j), and we call such a coloring χ an {i, j}-separating
coloring. Otherwise, we call {i, j} a k-inseparable pair.

For example, the nonadjacent pair in K−
k+1 (the graph obtained from a (k + 1)-clique by removing

one edge) is k-inseparable. The following fact is easy to observe from the definition.

Fact 2.4 Suppose that G is a k-colorable graph and i, j ∈ V (G) are distinct vertices that are not
adjacent in G. Then {i, j} is a k-inseparable pair if and only if the graph G′ obtained from G by
adding the edge {i, j} has chromatic number k + 1.

Now we present our proof of Theorem 1.2. As mentioned earlier, our proof is adversarial.
We (the adversary) start with initializing an empty auxiliary (simple) graph H with |V (H)| =
n, and pick an arbitrary k-coloring χ : V (H) → {1, . . . , k} of H . Let G be the hidden graph
corresponding to H , where each color class corresponds to a partition.

Suppose now that A makes a query α(x, y). We respond to A and update the graph H and its
k-coloring χ according to the following rules:

• If χ(x) ̸= χ(y), we add xy to E(H) and reply “no” to the algorithm.

• If χ(x) = χ(y) and {x, y} is k-separable in H , we add xy to E(H) and modify the coloring
of G to a {x, y}-separating k-coloring, and reply “no”.

• If χ(x) = χ(y) and {x, y} is k-inseparable, then we do not add xy to E(H), and answer
“yes”.

We illustrate some intermediate steps in the evolution of H and χ against a sample algorithm A
in Figure 2.1.

Observe that adding new edges into H does not change the inseparability of a pair {x, y}. There-
fore, all k-inseparable pairs {x, y} of H remain k-inseparable in the evolution of the algorithm.
Further, by construction, every edge of H corresponds to a non-coincidence in G’s components.
Vertex pairs {x, y} of H that have α(x, y) = 1 are k-inseparable, and hence belong to the same
color class for any proper k-coloring of H . Further, χ is always a proper k-coloring of H , and hence
induces a partition of G into k components.

Now, suppose that A learns a unique partition of G into k components. This would mean
that the coloring χ of the graph H must be a unique k-coloring. By Theorem 2.2, H has at least
(k − 1)n−

(
k
2

)
edges, as desired. □

Remark 2.5 We note that our adversary checks over all possible k-colorings of H , and hence
does not have a poly(n, k) runtime. However, a slight modification to the argument above (given
in Appendix A) is able to prove the existence of a poly(n, k)-time adversary that forces at least
1
2(n− k)(k− 1) queries. It might be interesting to analyze the effect of limiting resources available
to the adversary to prove different versions of this theorem.
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Figure 2.1: A sample set of queries and the corresponding evolution of H and the partition of G.
Here n = 6 and k = 3. Our adversary responds “yes” only to α(1, 2), and “no” to all
other α-queries made by A in this example.

2.2.2. PROOF OF THEOREM 1.3

Now we prove Theorem 1.3. Our proof is basically a modification of the proof of Theorem 1.2:
instead of a single auxiliary graph H with |V (H)| = n, now we will maintain two graphs H1 and
H2 on the same vertex set V of size n. We start with the coloring χ : V → {1}, i.e. all vertices of
V receive the color 1.
Suppose an algorithm A makes a query α(x, y). We then respond according to the rules below:

• If χ(x) ̸= χ(y), add xy to E(H1) and reply “no” to the algorithm.

• If χ(x) = χ(y) and {x, y} is k-separable in H1, add xy to E(H1) and modify the coloring
of H1 to a {x, y}-separating coloring, and reply “no”.

• If χ(x) = χ(y) and {x, y} is k-inseparable in H1, add xy to E(H2) and answer “yes”.

Note that similar to before, adding new edges into H1 does not change the inseparability of a pair
{x, y}. Hence, if A learns the hidden graph G when the algorithm stops, the graph H1 must be a
uniquely k-colorable graph. This implies

|E(H1)| ≥ (k − 1)n−
(
k

2

)
.
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Additionally, we claim the following about H2.

Claim 2.6 When A stops, the graph H2 must have at most k connected components.

Proof Let us assume that the unique k-partition corresponding to H1 is Pk = {V1, . . . , Vk}. Sup-
pose on the contrary that H2 has m connected components and m ≥ k + 1, say with vertex sets
C1, . . . , Cm. As every edge of H2 corresponds to an inseparable pair, for every i ∈ [m], there exists
j ∈ [k] such that Ci ⊂ Vj . In other words, the m-partition Pm = {C1, . . . , Cm} is a refinement
of Pk. The contradiction is that A cannot distinguish the m-partition Pm from the k-partition Pk.
Therefore, H2 has at most k connected components.

As an immediate corollary, we obtain |E(H2)| ≥ n − k. Therefore, the algorithm requires at
least

|E(H1)|+ |E(H2)| ≥ (k − 1)n−
(
k

2

)
+ n− k = kn−

(
k + 1

2

)
many queries, completing the proof of Theorem 1.3.

2.3. Multiple-membership query

Now we turn our attention to the problem of learning both k and individual components using
multiple-membership queries.

2.3.1. PROOF OF THEOREM 1.5

Recall that αm(u, S) = 1 if and only if there is a v ∈ S such that u and v belong to the same
component. There are three assertions in Theorem 1.5, and we prove each of them below.

• Part 1. Learning k: First, we demonstrate an algorithm that learns the number of compo-
nents of an n-vertex hidden graph G using O(n) queries to αm. Start with S = V (G). While
there is a vertex v ∈ S such that αm(v, S \ {v}) = 1, we delete v from S. When this algo-
rithm terminates, we end up with an independent set S whose each vertex lies in a different
component. Conversely, as every other vertex v ∈ V (G) lies in the same component as some
vertex in G, |S| will equal the number of components of G. Therefore, the above algorithm
learns k using O(n) many αm-queries. ■

• Part 2. Lower bound on learning components: Next, we claim that learning all compo-
nents of G requires at least Ω(n log k) queries. This proof is information-theoretic. The total
number of partitions of n vertices into k parts is Ω(kn), and hence any algorithm making
αm-queries must have depth Ω(n log k). ■

• Part 3. Upper bound on learning components: Note that the function learnComponentsMMQ
learns the components of the hidden graph G using multiple-membership queries.

The binary search in the else statement works because αm can query vi with a union of
several Cj’s at once. This step requires O(log k) queries, and therefore our algorithm has
query complexity of O(n log k). ■

This completes the proof of Theorem 1.5, and hence αm is an oracle that can learn the number
of components k in a hidden graph with fewer queries than learning the components. □
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Function learnComponentsMMQ
Input : Vertex set V (G) = {v1, . . . , vn}, Oracle αm.
Output: Partition V (G) = C1 ⊔ · · · ⊔ Ck such that each Ci is a connected component.

Initialize C1 = {v1}, k = 1;
for i = 2 to n do

if αm(vi, C1 ∪ · · · ∪ Ck) = 0 then
k += 1 ;
Add vi to Ck;

end
else

Find j such that αm(vi, Cj) = 1 via binary search among {C1, . . . , Ck};
Add vi to its corresponding Cj ;

end
end
return {C1, . . . , Ck}

3. The vertex-neighborhood detection query

For the remainder of the paper, we consider the vertex-neighborhood detection query given by
β(v, S) = 1 iff there is some edge from v to some vertex in S. We now prove tight bounds of Θ̃(m)
for both learning and verifying graphs (with m edges) using β-queries.

3.1. Proof of Theorem 1.6

Now we move onto analyzing the problems of graph learning and verification using the oracle β.
Let us take a hidden graph G on n vertices and m edges. It is clear that β can only detect one
edge at a time, and hence both learning and verifying a hidden graph using β would trivially require
at least Ω(m) queries. Hence, it suffices to prove upper bounds of O(m + n) for verification and
O(m log n) for learning G.

3.1.1. VERIFICATION USING β

For the verification problem, we have a graph Ĝ with V (Ĝ) = V (G) = V that is known to us. We
verify each edge uv ∈ E(Ĝ) individually by checking β(u, {v}) = 1, and this requires m queries.

Next, we verify the non-edges of Ĝ. Fix a vertex v and compute its neighborhood N
Ĝ
(v) =

{u ∈ V : uv ∈ E(Ĝ)}. Note that if Ĝ was the same as G, we would have

β
(
v, V \ (N

Ĝ
(v) ∪ {v})

)
= 0.

Since checking all non-edges through a vertex takes a single β-query, we can verify all non-edges
of Ĝ using n queries. Hence, verifying all edges and non-edges of G using can be done using
O(m+ n) β-queries. ■

9
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3.1.2. LEARNING USING β

Although slightly more involved, our algorithm for learning a hidden graph G is also based on
divide-and-conquer. The main step consists of devising a recursive method (which we call find-
Neighbors) that, for a fixed vertex v ∈ V , learns all neighbors (and non-neighbors) of v.

Function findNeighbors(v, S).
Input : Vertex v, Set S, Hidden graph G, Oracle β.
Result: Mark all neighbors of v in S blue, and non-neighbors red.

if |S| = 1 then
if β(v, S) = 1 then

Mark the vertex of S blue and terminate;
end
else

Mark the vertex of S red and terminate;
end

end
Divide S into two (approximately) equal parts S1 ⊔ S2;
if β(v, S1) = 1 then

findNeighbors(v, S1);
end
else

Mark all vertices of S1 red and terminate;
end
if β(v, S2) = 1 then

findNeighbors(v, S2);
end
else

Mark all vertices of S2 red and terminate;
end

Let us first analyze the query complexity of findNeighbors.

Claim 3.1 Suppose ℓ is the number of neighbors of v in S. Then, findNeighbors(v, S) takes at most
O(ℓ log |S|) queries to mark all neighbors of v in S red and non-neighbors blue.

Proof (Claim 3.1): We take a look at the recursion tree T for findNeighbors(v, S), and color its
nodes red or blue as follows. The root node corresponds to the computation of findNeighbors(v, S),
and so we keep the set S in it. If β(v, S) = 1, we color the root node blue, otherwise we color
it red. In the next level, the node containing S has two children: S1 and S2 corresponding to the
equipartition of S. Let us color S1 blue if β(v, S1) = 1, and red otherwise. Similarly, we color S2,
and continue this coloring scheme down the entire recursion tree. A sample T and its coloring is
depicted in Figure 3.1.

Let Tb be the subtree with blue vertices. It is clear that each leaf of Tb corresponds to a vertex
marked blue by findNeighbors, implying that Tb is a tree with ℓ leaves and depth at most log |S|.
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S

S1

β(v, S1) = 1

S2

A

β(v,A) = 0

β(v, S2) = 1

Figure 3.1: A sample recursion tree T corresponding to findNeighbors(v, S)

Therefore,
|V (Tb)| ≤ O(ℓ log |S|).

Now we take a closer look at the red vertices of T . By construction, each red vertex is a leaf, i.e.
the computation stops at these vertices. This means that the parents of red vertices are always blue.
Further, two red nodes cannot be siblings, as if β(v,A) = β(v,B) = 0, then β(v,A ∪ B) = 0,
implying that the computation would have stopped at the parent of A and B. Thus, every red vertex
has a unique blue parent. This implies that the number of red vertices in T is bounded above by
|V (Tb)|, leading to

|V (T )| ≤ 2|V (Tb)| ≤ O(ℓ log |S|),

completing the proof of Claim 3.1.

Therefore, to learn G, we can run findNeighbors(v, V \ {v}) over all vertices v. Observe that
the total number of queries made is at most∑

v∈V (G)

O(deg(v) log n) = O(m log n),

thus proving the required upper bound. ■

4. Conclusion and future work

In this paper, we demonstrated a fundamental and exact lower bound on the problem of learning
partitions using membership queries (which we called α), filling a long lasting gap in the literature.
We generalized the membership oracle to take subsets of vertices as one of its inputs (which we
called αm), and demonstrated how learning the number of components can be done using fewer αm-
queries than the components themselves. In the second section, we also demonstrated a powerful
oracle (which we called β) that can be used to efficiently learn and verify sparse graphs.

It would be very interesting to see other oracles which can exploit structural properties of sparse
graphs, such as the existence of small separators. Graph families that admit the existence of small
separators include a vast array of graphs such as planar graphs Lipton and Tarjan (1979); Alon
et al. (1994), bounded genus graphs Gilbert et al. (1984), minor-free graphs Reed and Wood (2009);

11
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Wulff-Nilsen (2011), etc. Further, it should be possible to extend these results to learning and ver-
ification of graphs with polynomially bounded expansion Nešetřil and De Mendez (2008); Dvorák
and Norin (2016), and we leave this as a future avenue of investigation.
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Appendix A. Polynomial-time adversary against Algorithm 1.1

Our goal in this section is to prove a slight modification of Theorem 1.2. We prove that by sacrificing
a constant factor of 1

2 , it is possible to demonstrate an adversary that runs in poly(n, k) time:

Proposition A.1 Given any algorithm A that makes membership queries on a hidden graph G with
n vertices and k components, there is a poly(n, k)-time adversary that can force A to make at least
1
2(n− k)(k − 1) α-queries to learn the partition of G.

Proof As in the original proof, we initialize an empty graph H with |V (H)| = n, and pick any
k-coloring χ : V (H) → {1, . . . , k} of H . Let G be the hidden graph corresponding to H , where
each color class corresponds to a partition. For the sake of simplicity, we shall call vertices of H
with degree at least k − 1 big, and those with degree less than k − 1 small.

4

32

1

6 5

G : {1, 2, 3}, {4, 5}, {6}

α(3, 4)
4

32

1

6 5

G : {1, 2, 3}, {4, 5}, {6}

α(2, 3)
4

32

1

6 5

big small

G : {1, 2, 3}, {4, 5}, {6}

4

32

1

6 5

G : {1, 2}, {4, 5}, {3, 6}

α(1, 2)
4

32

1

6 5

big

big

G : {1, 2}, {4, 5}, {3, 6}

α(1, 2)
4

3

1,2

6 5

G : {1, 2}, {3, 5}, {4, 6}

Figure A.1: A sample set of queries and the corresponding evolution of H and the partition of G.
Here n = 6 and k = 3, and vertices of degree at least 2 are “big”. Our adversary
responds “yes” to α(1, 2) and “no” to every other query made by A.

Suppose now that A makes a query α(x, y). We respond to A as follows:

• If χ(x) ̸= χ(y), we add xy to E(H) and reply “no” to the algorithm.

• If χ(x) = χ(y) and either x or y is small, say x, then we note that x has at most k − 2
neighbors and hence two admissible colors. We then modify χ(x) to its other admissible
color different from χ(y), add the edge xy to E(H), and reply “no”.
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• Finally, if χ(x) = χ(y) and both x and y are big, we identify (i.e., contract) vertices x and y.
In terms of G, this would mean x and y belong to the same component.

We illustrate some intermediate steps in the evolution of H and χ in Figure A.1.
Note that χ is always a proper k-coloring of H , and hence induces a partition of G into k

components. Suppose that A learns a unique partition of G into k components. Then, there are two
cases to consider:

• Case 1. The adversary contracts at least n
2 vertices: In this case, as each contracted vertex

has degree at least k − 1, A must have made at least n
2 (k − 1) queries.

• Case 2. The adversary contracts less than n
2 vertices: In this case, A can learn a unique

partition of G iff χ is a unique k-coloring of H . Since H started with n vertices, H is a
graph on at least n

2 vertices which is uniquely k-colorable. By Theorem 2.2, H has at least
n
2 (k − 1)−

(
k
2

)
edges.

In either case, A makes at least n
2 (k − 1)−

(
k
2

)
= 1

2(n− k)(k − 1) queries, as desired.
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