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Abstract

Solving partially observable Markov decision processes (POMDPs) is critical when applying re-
inforcement learning to real-world problems, where agents have an incomplete view of the world.
Recurrent neural networks (RNNs) are the defacto approach for solving POMDPs in reinforcement
learning (RL). Although they perform well in supervised learning, noisy gradients reduce their ca-
pabilities in RL. This leads researchers to hand-design task-specific memory models to stabilize
learning, based on their prior knowledge of the task at hand. In this paper, we present graph con-
volutional memory (GCM)!, the first RL memory framework with swappable task-specific priors,
enabling users to inject expertise into their models. GCM uses human-defined topological priors
to form graph neighborhoods, combining them into a larger network topology. We query the graph
using graph convolution, coalescing relevant memories into a context-dependent summary of the
past. Results demonstrate that GCM outperforms state of the art methods on control, memorization,
and navigation tasks while using fewer parameters.

Keywords: Reinforcement learning, POMDP, memory, graph neural networks

1. Introduction

RL is designed to solve fully observable Markov decision processes (MDPs) (Sutton and Barto,
2018, Chapter 3), where an agent knows its true state — a property that rarely holds in the real world.
Problems where agent state is ambiguous, incomplete, noisy, or unknown violate the Markov prop-
erty of MDPs (Russell and Norvig, 2010, Chapter 2.3.2), but can be modeled as POMDPs (Kaelbling
et al., 1998). Recent literature even suggests that test-time domain shifts (e.g. simulation to reality)
induce partial observability in otherwise fully observable domains (Ghosh et al., 2021). Operat-
ing on partially observable states strips optimal policy convergence guarantees from traditional RL
methods like Q-learning or value iteration (Cassandra et al., 1994). By conditioning decisions on the
trajectory, everything the agent has seen and done, we can restore the Markov property and conver-
gence guarantees (Sutton and Barto, 2018, Chapter 17.3). The summarization of the ever-growing
trajectory into a fixed-sized Markov state is known as memory.

1. Source code available at https://github.com/proroklab/graph-conv-memory
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Figure 1: GCM flowchart for an incoming observation o;. GCM places o; as a node in a graph, and computes its neigh-
borhood N (o), and then updates the edge set. Task-specific topological priors are represented via the neighborhood. A
convolutional GNN queries the graph for summary 3:. A policy 7 uses the summary for decision making. Compared to
modern memory models, GCM is conceptually simple.

In RL, memory-based models are either general or task-specific. Rooted in sequence learning,
general memory consists of RNNSs, transformers, or memory augmented neural networks (MANNS).
Such models learn associations between observations and can be applied to any POMDP. Their
drawback is longer training times, further exacerbated by the noisy learning signal in RL.

The substantial cost of training general memory drives many to design task-specific memory,
like Chaplot et al. (2020); Parisotto and Salakhutdinov (2017); Gupta et al. (2017); Lenton et al.
(2021) which build maps for navigation, or Li et al. (2018a) which utilizes past dosing informa-
tion for hospital treatment. Other applications of task-specific memory include behavioral ecology,
policy-making, questionnaire design (Cassandra, 1997), and robotics (Morad et al., 2021). Such
memory is implemented from the ground up for each specific task, because there is no general mem-
ory framework to build upon. This puts task-specific memory out of reach of most non-experts. Our
framework allows practitioners to create memory tailored to their specific task in just a few lines of
code (see Example Prior in Sec. 3.2).

In this paper, we propose Graph Convolutional Memory (GCM), a general approach to lever-
aging task-specific prior knowledge for any partially observable task. The user embeds their task-
specific knowledge into topological priors, which serve to accelerate and stabilize learning. GCM
builds a graph and defines local neighborhoods using said priors, resulting in an expressive graph
topology. Unlike past graph-based memory representations, we leverage the computational effi-
ciency and representational power of graph neural networks (GNNs) to extract contextualized tra-
jectory summaries from the graph. In our experiments, we show that with human-defined priors,
GCM reliably solves tasks that RNNs, MANNS, and transformers cannot, while using significantly
fewer parameters.

1.1. Contributions

* We propose the first task-agnostic, GNN-based memory architecture to solve partially observ-
able RL tasks

* We are the first to suggest the use of swappable, human-designed memory priors in partially
observable RL

* We explore the effect of memory priors, demonstrating the importance of selecting suitable
priors for the task at hand

2. Related Work

General Memory in Reinforcement Learning We classify RNNs, MANNS, transformers, and
related memory models as general memory. RNN-based architectures, such as long short-term
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memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the gated recurrent unit (GRU) (Chung
et al., 2014) are used heavily in RL to solve POMDP tasks (Oh et al., 2016; Mnih et al., 2016;
Mirowski et al., 2017). RNNs update a recurrent state by combining an incoming observation
with the previous recurrent state. Compared to transformers and similar methods, RNNs fail to
retain information over longer episodes due to vanishing gradients (Li et al., 2018b). By connecting
relevant experiences directly and aggregating memories in a single forward pass, GCM sidesteps
the vanishing gradient issue.

MANNS address limited temporal range of RNNs (Graves et al., 2014). Unlike RNNs, MANNSs
have addressable external memory. The differentiable neural computer (Graves et al., 2016) (DNC)
is a fully-differentiable general-purpose computer that coined the term MANN. In the DNC, an
RNN-based memory controller uses content-based addressing to read and write to specific memory
addresses. The MERLIN MANN (Wayne et al., 2018) outperformed DNCs on navigation tasks. The
implementations of the MANNS are much more complex than RNNs. In contrast to transformers or
RNNs, MANNs are much slower to train, and benefit from more compute.

The transformer is the most ubiquitous implementation of self-attention (Vaswani et al., 2017).
Until the gated transformer XL (GTrXL), transformers had mixed results in RL due to their brittle
training requirements (Mishra et al., 2018). The GTrXL outperforms MERLIN, and by extension,
DNC:s in Parisotto et al. (2019). We can approximate the self-attention module in a transformer
using a single graph attention layer over a fully-connected graph (Joshi, 2020). Unlike self-attention
in transformers, GCM connectivity is discrete, sparse, and hierarchical.

Similar to our work, Savinov et al. (2018) build an observation graph, but specifically for navi-
gation tasks, and do not use GNNs. Wu et al. (2019) use a probabilistic graphical model to represent
spatial locations during indoor navigation. Eysenbach et al. (2019); Emmons et al. (2020) build a
state-transition graph similar to our memory graph for model-based RL, but use A* to evaluate the
graph. Unlike these methods, we evaluate the memory graph using GNNs, which are more efficient.

Graph Neural Networks GNNs are most easily understood using a message-passing scheme
(Gilmer et al., 2017), where each vertex in a graph sends and receives latent messages from its
neighborhood. Each layer in the GNN learns to aggregate incoming messages into a hidden rep-
resentation, which is then shared with the neighborhood. Convolutional graph neural networks
(Kipf and Welling, 2017) are a subcategory of GNNs and a generalization of convolutional neural
networks (CNNs) to the graph domain. Convolutional GNNs tend to be efficient in both the com-
putational and parameter sense due to their use of sliding filters and reliance on GPU-optimized
instructions like batched sums and matrix multiplies.

Graph RNNs (Ruiz et al., 2020) are a generalization of RNNs to graph inputs with a fixed
number of time-varying vertices, and tackle an entirely different problem than GCM. Chen et al.
(2019); Li et al. (2019); Chen et al. (2020) apply GNNs to RL for task-specific problems. Beck
et al. (2020) implement feature aggregation for RL in a similar fashion to GNNs. Zweig et al. (2020)
combines a GNN with an RNN to tackle tasks with graph-based observations using reinforcement
learning. To date, GCM is the only task-agnostic RL memory model to utilize GNNS.

3. Graph Convolutional Memory

We model a POMDP following Kaelbling et al. (1998) with tuple (S, 4,7, R,Q,O). At time ¢
we enter hidden state s; € S and receive observation o, ~ O(s;) : S — €. We sample action
a; € A from policy 7 and follow transition probabilities 7 (s¢, a;) : S x A — S to the next state
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St+1, receiving reward R(sg,a;) : S x A — R. We learn 7 to maximize the expected cumulative
discounted reward subject to discount factor v: E [Zio V' R(st, at)] . In an MDP, the policy uses
the true state 7(s;) : S — A, but in a POMDP we are not given s;. Rather, we must construct an
approximation $; from the trajectory 7 = o1, ... 04, and train some policy 7(8;) : S — A.

Our goal in this paper is summarize 7 into $;. Note that o; contains previous action a;_; when
necessary. Reasoning over all observations at each timestep is intractable, so we define a recurrent
memory function M with the help of memory state m;

(8¢,me) = M(o¢, mp—1). (D

3.1. Model Description

We implement GCM following Eq. 1 using Alg. 1. GCM stores a collection of experiences over an
episode, with each experience represented by an observation vertex o and associated neighborhood
N (0). We query the set of experiences using a graph neural network (GNN) to produce a context-
dependent summary 8 |oy.

In detail, at time ¢, we insert vertex o

Algorithm 1 Graph Convolutional Memory

into the graph, producing m; = (V;, E}) 1: procedure M(o;, m¢—1)
where V; = (01,...0;) and E; : 2" 2 V,E < my_1 R > Unpz}ck memorﬂ
We determine the neighborhood N (o;) 3 VeVUo > Add observation to grap
. locical priors defined in Sec. 3.2 4 E < EU{(0t,0i) }ien(or) > Add obs edges
using topological priors de ned in Sec. 3.2, . Z « GNNy(V, E) > Get embedding
and update the edges following: 6 4+ Z[1] b At current vertex
Ey=E; 1 U{(01,0;) | i € N(0p)} 7 my <V, E > Pack into memory
8: return 5, my > Summary and memory
2 .
9: end procedure

We query the graph for context-dependent
information using a GNN with layers h € {1...¢}. We convolve over o1, . ..o, to produce hid-
den representations Z{L, ... 2} for each hidden layer, propagating information from the h"-degree
neighbors of o; into zth. After collecting and integrating data across the /"-degree neighborhood,
we output z/ as the summary §;. This provides a mechanism for fast and relevant feature aggre-
gation over memory graphs, depicted in Fig. 2. As an example, let us consider some control task
where the observation is agent pose, and the neighborhood consists of the previous observation
N(o;) = {t — 1}. Then, the first GNN layer combines agent poses o1, 02 and 02, 03 to estimate
velocities 23 and z3 respectively. The second GNN layer combines velocities 23, 23 to output accel-
eration 23 as the summary.

We found the 1-GNN defined in Morris et al. (2019) empirically outperformed graph isomor-
phism networks (Xu et al., 2019) and the original graph convolutional network (Kipf and Welling,
2017). GCM can utilize any GNN, but our GNNs are built from the 1-GNN convolutional layer
defined as:

2= W 40 + Whagg ({zzh_lh' € N(ot)})] 3)

with o representing a nonlinearity and z = o, z? = o; for the base case. At each layer h, weights
and biases Wlh, b" produce a root vertex embedding while WQh generates a neighborhood embed-
ding using vertex aggregation function agg. Separate weights allow the 1-GNN to independently
weigh each h™-degree neighborhood’s contribution to the summary, ignoring the neighborhood and

2. For an episode one thousand timesteps long, an adjacency matrix would use 1000? - 4B = 4MB, while an edgelist
representation with a neighborhood size of 10 would use 1000 - 10 - 2 - 4B = 160kB. Using observations of 128
dimensions, the vertex matrix V' in both cases would be 1000 - 128 - 4B = 512kB

4
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Graph Layer 1 Graph Layer 2

Figure 2: The two-layer 1-GNN used in all our experiments. Colors denote mixing of vertex information and dashed lines
denote directed edges, forming neighborhoods N (o), N(0;). The current observation o; and aggregated neighboring
observations o;, 0; pass through fully-connected layers (W7, '), (W3) before summation and nonlinearity &, resulting
in the first hidden state z; (Eq. 3). We repeat this process at 0;, ok, 0; to form hidden states zjl-, 2z}, . The second layer
combines embeddings of the first layer and the second-layer hidden state z7 is output as the summary §;. Additional
layers increase the GNN receptive field.

decomposing into an MLP for empty or uninformative neighborhoods. The root and neighborhood
embeddings are combined to produce the layer embedding 2 (Fig. 2). Notice, the weights VVlh7 b
in Eq. 3 form an MLP, so GCM does not require an MLP preprocessor like other memory models
(Mnih et al., 2016).

3.2. Topological Priors

Topological priors determine the neighborhood at each specific vertex, which in turn determines the
underlying graph connectivity. More formally, topological priors are a mapping from a vertex to a
neighborhood. We use shorthand N (o) to define the open neighborhood of o; over vertices V4, in
edge-list format. We compute N (o;) using the union of & topological priors ®; : Qf — 2V+-1 as in

k
N(oy): V =2V 1= 2i(V). (4)
i=1
Breaking down the graph connectivity problem into easier neighborhood-forming subtasks is remi-
niscent of dynamic programming. Tasks may require different priors — associating memories tem-
porally is useful in control tasks, but spatial associations are more powerful in navigation tasks. We
have implemented spatial, temporal, latent similarity, and other topological priors in Tab. 1.

Topological Prior Description ® (V%) Definition

0 S)
{1,2,...t—1} (©6)

Empty: o, has no neighbors and GCM decomposes into an MLP.

Dense: Connects o; to all other observations o1 . ..0¢—1.
Temporal: Similar to the temporal prior of an LSTM, where each observation o is {t — ¢} @)
linked to some previous ¢ — c observation.

Spatial: Connects observations taken within ¢ meters of each other, useful for prob- {z ‘ ||p(0;r)l d_0p<(0§ )QQtS ¢ }
lems like navigation. Let p(-) extract the position from an observation. 8)
Latent Similarity: Links observations in a non-human readable latent space (e.g. au- { i ‘ d(e(0s),e(or)) <c }
toencoders). Various measures like cosine or Lo distance may be used depending on and 0 <7 <t

the space. e is an encoder function, d is a distance measure, and c is user-defined. ©)
Identity: Connects observations where two values are identical, useful in discrete {z ‘ a(zin) d_O b<(0;)<:t 0 }
domains where inputs are related. a, b are indexing functions (a = b may hold). (10)

Table 1: Knowledge-based priors for GCM
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Figure 3: Visualizations of our experiments. (a) The classic cartpole control problem, but where 7, 0 are hidden. (b) An
example state from the long-term non-sequential recall environment with six cards. The observation space o contains
the value and index of pointer card p and last flipped card f, as well as previous action a¢—1. (c) The top-down view of
the 3D scene used in our navigation experiment.

Example Prior To demonstrate how easy it is to write task-specific topological priors, we provide
an example in Pytorch. Assume we are learning a satellite control policy for collision avoidance
in Low Earth Orbit. Each time we detect a new piece of space debris, we receive an observation
containing the estimated orbital parameters of said debris, and may act to perturb our orbit.

1 import torch

2 class OrbitalPrior (torch.nn.Module) :

3 tolerable_risk = le-4 # Probability of collision

4

5 def forward(self, V, =*args, =*xkwargs):

6 coll_probs = self.compute_collision_risk (V)

7 risky_debris = coll_probs > self.tolerable_risk
8 neighborhood = risky_debris.nonzero () .squeeze ()
9 return neighborhood

10

11 gcm.edge_selectors = OrbitalPrior ()

We omit the batch dimension for clarity. Line 6 computes future orbits and returns collision proba-
bilities with each piece of tracked debris (each row in V). Line 7 determines pieces of debris outside
the acceptable collision risk — these are the objects we want to focus on. Line 8 returns the indices
of these risky object in V', which serve as the neighborhood (Eq. 4). Line 11 adds our custom prior
to GCM. The ESA estimates there are 36,500 pieces of orbital debris bigger than 10cm, making
naive memory approaches intractable. We can inject our knowledge of orbital mechanics into GCM
in just a few lines of code, drastically reducing the search space.

4. Experiments

We evaluate GCM on control, card games, and indoor navigation. We run three trials for each
memory model across all experiments and report reward mean and standard deviation per train
batch. We test five contrasting models, and base our evaluation on the hidden size of the memory
models, denoted as |z| in Fig. 4. Nearly all hyperparameters are Ray RLIib defaults, tuned for
RLIib’s built-in models (Tab. 2).3 Tab. 2 contains all training hyperparameters.

3. The MLP, LSTM, DNC, and GTrXL are standard Ray RLIib (Liang et al., 2018) implementations written in Pytorch
(Paszke et al., 2019). We implement GCM using Pytorch Geometric (Fey and Lenssen, 2019), and integrate it into
RLIib.
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We compare GCM to an MLP and three alternative memory models in all our experiments. The
MLP model is a two-layer feed-forward neural network using tanh activation. It has no memory,
and forms a performance lower bound for the memory models. The LSTM memory model is a MLP
followed by an LSTM cell, the standard model for solving POMDPs (Mnih et al., 2016). GTrXL is
a MLP followed by a single-head GRU-gated transformer XL. The DNC is an MLP followed by a
neural computer with an LSTM-based memory controller. Our memory model, GCM, uses a two-
layer 1-GNN using tanh activation with sum (cartpole and concentration) and mean (navigation)
neighborhood aggregation.

Partially Observable Cartpole Our first experiment evalu-
ates memory in the control domain. We use a partially observ-
able form of cartpole-v0 (Barto et al., 1983; Brockman et al.,
2016), where the velocities are hidden and only positions are
visible (Fig. 3a). We optimize our policy using proximal policy
optimization (PPO) Schulman et al. (2017). The equations of
motion for the cartpole system are a set of second-order differ-

Num. Trainable Params

0K

ential equations containing the position, velocity, and acceler-
ation of the system (Barto et al., 1983). Using this information,
we use GCM with temporal priors, i.e., N(o;) = {t —1,t—2}
(Tab. 1) and present results in Fig. 5a.

Concentration Card Game Our next experiment evaluates
non-sequential and long-term recall with the concentration
card game.* Unlike reactionary cartpole, this experiment tests
memorization and recall over longer time periods. The agent
is given n/2 pairs of shuffled face-down cards, and must flip
two cards face up. If the cards match, they remain face up,
otherwise they are turned back over again. Once the player
has matched all the cards, the game ends. We model the game

(@)
Model Meaning of |z|

MLP Layer size

LSTM Size of hidden and cell states

GTrXL Size of the K, Q,V MLPs

DNC LSTM size, word width, and
number of memory cells

GCM  Size of the graph layers

(b)

Figure 4: (a) The number of trainable pa-
rameters per memory model, based on the
hidden size |z|. (b) The meaning of |z|
with respect to each memory model, as

of memory using a pointer, which the player moves to read used in all our experiments.

and flip cards (Fig. 3b). The observation space consists of the

pointer (card index and card value), the last flipped (if any) face-up card, and the previous action.
Cards are represented as one-hot vectors. The agent receives a reward for each pair it matches, with
a cumulative reward of one for matching all the cards. We vary the number of cards n € {8,10, 12}
with episodes lengths of 50, 75, 100 respectively. All models have |z| = 32 and train using PPO.
We use GCM with temporal priors for short-term memory and an additional value identity prior
between the face-up card and the card at the pointer, using function v : 2 — N:

N(og) ={t—1,t =2} U {i| v(or) = v(0;)}. (11)

We present the results in Fig. 5b.

Navigation The final experiment evaluates spatial reasoning with a navigation task. We use the
Habitat 3D simulator with the validation scene from the 2020 Habitat Challenge (Fig. 3c). The
observation space consists of an autoencoded depth image, agent coordinates and angle relative to

4. Rules for concentration are available at: https://en.wikipedia.org/wiki/Concentration_ (card_
game)
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(a) Partially observable cartpole. The red line denotes OpenAl’s success criteria for cartpole-v0.
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(b) Concentration card game. n is the number of cards and |z| = 32 for all three plots.

|2l =8 |2| = 16 |2 = 32

Memory Module
— MLP
LSTM
GTiXL
e DNC
—GCM

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Training Timestep X107 Training Timestep x107 Training Timestep X107

(c) 3D navigation

Figure 5: Comparison of GCM to other memory models across three different environments. |z| denotes the hidden size
used across all models. Lines represent the mean and shaded areas represent one standard deviation over three trials.

start, and the previous action. We train for 10M timesteps using IMPALA (Espeholt et al., 2018),
examining z € {8,16,32} across all models. Fig. 6 is a GCM ablation study across multiple
topological priors. We evaluate the effectiveness of empty, dense, temporal, spatial, and learned
priors (formally defined in Tab. 1). We also examine whether we k™ order neighbors are helpful
using the FlatSpatial entry. FlatSpatial is the spatial prior, but with the second graph layer replaced
with a fully-connected layer of equal size. This helps us determine whether GCM benefits from the
broader graph topology or just relies on local neighborhoods.

5. Discussion

The versatility of GCM compared to other models stems from its representation of experiences as a
graph. This allows it to access specific observations from the past, bypassing the limited temporal
range of LSTM. By using a multilayer GNN to reason over this graph of experiences, GCM can
build embeddings hierarchically, unlike transformers. The importance of hierarchical reasoning is
demonstrated experimentally in Fig. 6, where the GCM outperforms the FlatSpatial GCM, which
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Figure 6: We compare various GCM priors across hidden sizes |z| for the navigation problem. Since navigation is a
spatial problem, the spatial prior performs best. This shows the importance of selecting good priors. The solid lines
denote the mean reward per batch and the shaded regions represent the standard deviation.

Table 2: Hyperparameters for the experiments and their RLI1ib defaults. Non-default values are underlined.

Term IMPALA Default Navigation PPO Default Cartpole Concentration
Decay factor 0.99 0.99 0.99 0.99 0.99
Value fn. loss coef. 0.5 0.5 1.0 le-5 1.0
Entropy loss coef. 0.01 0.001 0.0 0.0 0.0
Gradient clipping 40.0 40.0 - - -
Value function clipping - - 10 10 10
Learning rate 0.005 0.005 5e-5 5e-5 3e-4
Num. SGD iters 1.0 1.0 30 30 30
Exp. replay ratio 0:1 1:1 - - -
Batch size 500 1024 4000 4000 4000
Minibatch size - - 128 128 4000
GAE )\ 1.0 1.0 1.0 1.0 1.0
V-trace p 1.0 1.0 - - -
KL target - - 0.01 0.01 0.01
KL coefficient - - 0.2 0.2 0.2
PPO clipping - - 0.3 0.3 0.3
Value clipping - - 0.3 0.3 0.3

only utilizes the first degree neighborhood from the spatial prior. This implies the second-order
neighbors meaningfully contribute to the summary.

Like Beck et al. (2020), we find sequence learning is much harder in RL than supervised learn-
ing. This is particularly clear in Fig. 5b, where introducing one more pair of cards significantly
decreases reward. Although general memory models can learn optimal policies in theory, this was
not the case given our timescales. The LSTM performs well but does not reliably solve (i.e. reach
195 reward) stateless cartpole, even with small 2-dimensional observation and action spaces, and a
large number of inner and outer PPO iterations (Heess et al. (2015), Fig. 5a). Even though trans-
formers significantly outperform LSTMs in supervised learning (Vaswani et al., 2017), their added
complexity seems to hinder them in RL, at least at single-GPU scales. The memory search space
over all past observations is huge, and determining which observations are useful greatly reduces
what the memory model must learn.

GCM'’s graph structure can utilize external information about which experiences are relevant,
greatly reducing the search space. Human intuition is an incredibly useful tool that cannot be easily
leveraged by transformers, RNNs, or MANNSs. This is the key contribution of our work — a prior



MODELING PARTIALLY OBSERVABLE SYSTEMS USING GRAPH-BASED MEMORY

defined by a few lines of code can accelerate and stabilize learning. GCM provides an easy way to
embed this intuition, using more general priors (Tab. 1) or task-specific priors (Sec. 3.2).

In our experiments, we use simple environments to demonstrate how model-dependent memory
connectivity affects performance. Models like LSTM work nearly as well as GCM on problems
like cartpole where a temporal prior makes sense (Fig. 5Sa), but the gap widens on the concentration
environment where non-temporal priors are more suitable (Fig. 5b). The navigation ablation study
(Fig. 6) demonstrates how using a suboptimal topological prior can negatively impact performance
— the dense prior (a fully-connected graph) performs nearly as poorly as the empty prior (no edges
at all) in Fig. 6.

A drawback of our approach compared to general models is that it requires human input in form
of a topological prior. However, the temporal prior in Fig. 6 performs similarly to LSTM in Fig. 5c
across all hidden sizes on the navigation task, even though navigation is primarily a spatial task.
This suggests that we could apply the temporal GCM to arbitrary sequential decision making tasks
without having prior knowledge, similar to LSTM. In the future, we plan to learn topological priors
from data — a relatively difficult task due to the large space of possible edges and their discrete,
non-differentiable nature.

GCM is significantly more interpretable than RNNs, transformers, or MANNs. RNNs mu-
tate a hidden state over time, making it unclear which observations contribute to the hidden state.
MANNS, which utilize an RNN in the memory controller as well as external latent memory, are
even more opaque. In transformers, the softmaxed attention weights mean all past observations
contribute a non-zero amount to the current decision. Slight perturbations of attention weights pro-
duce completely different results (Wiegreffe and Pinter, 2020). The graph structure of GCM makes
interpretability simple. The observations which contribute to a specific decision are precisely the /-
degree neighborhood of vertex o;. The observations V' are not modified, so we are left with a small
subgraph of unmodified observations at each timestep directly responsible for the current decision.

Across all experiments, GCM with human expertise received significantly more reward than
all tested models. We believe that this is remarkable, considering that GCM uses notably fewer
parameters than the other models (Fig. 4). Caveat emptor: we tackled simple tasks using smaller
models, due to our limited computational capacity. These conclusions might not hold for those who
train markedly larger models for billions of timesteps.

6. Conclusion

In this paper, we introduced GCM - the first general, GNN-based memory architecture for RL.
GCM provides a framework to easily embed task-specific priors into memory in just a few lines
of code. Surprisingly, we found that the transformer, DNC, and LSTM struggle to learn effective
memory representations even in simple tasks, such as the concentration card game. We empirically
demonstrated the importance of selecting good priors, with unsuitable memory priors performing
similarly to memory-free models. We also found that the hierarchical properties of multilayer GNNs
were a significant contributor to model performance. When little is known about the task at hand,
general memory models like RNNs are a good choice. But when even basic domain knowledge is
available (e.g., when the problem is spatial, or when it follows Newton’s laws) GCM outperforms
transformers, LSTM, and DNCs, while using significantly fewer parameters.
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