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Abstract

Off-Policy Evaluation (OPE) serves as one of the
cornerstones in Reinforcement Learning (RL). Fit-
ted Q Evaluation (FQE) with various function ap-
proximators, especially deep neural networks, has
gained practical success. While statistical analy-
sis has proved FQE to be minimax-optimal with
tabular, linear and several nonparametric function
families, its practical performance with more gen-
eral function approximator is less theoretically
understood. We focus on FQE with general differ-
entiable function approximators, making our the-
ory applicable to neural function approximations.
We approach this problem using the Z-estimation
theory and establish the following results: The
FQE estimation error is asymptotically normal
with explicit variance determined jointly by the
tangent space of the function class at the ground
truth, the reward structure, and the distribution
shift due to off-policy learning; The finite-sample
FQE error bound is dominated by the same vari-
ance term, and it can also be bounded by function
class-dependent divergence, which measures how
the off-policy distribution shift intertwines with
the function approximator. In addition, we study
bootstrapping FQE estimators for error distribu-
tion inference and estimating confidence intervals,
accompanied by a Cramer-Rao lower bound that
matches our upper bounds. The Z-estimation anal-
ysis provides a generalizable theoretical frame-
work for studying off-policy estimation in RL and
provides sharp statistical theory for FQE with dif-
ferentiable function approximators.
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1. Introduction
Off-Policy Evaluation (OPE) studies the problem where
one aims to estimate the expected cumulative rewards of a
target policy in a Markov decision process, by using only
off-policy data, e.g. data generated from some possibly
unknown behavior policy different from the one to be evalu-
ated. OPE plays a central role in sample-efficient reinforce-
ment learning, both in online RL where it helps off-policy
algorithms achieve superior sample efficiency through data
reuse, and in offline RL such as medical applications where
online experimentation becomes prohibited.

Among various approaches to OPE (more discussed in Sec-
tion 2), we focus on a specific family of algorithms known
as Fitted Q-Evaluation (FQE), that performs iterative re-
gressions to estimate the Q function of the target policy
(Munos & Szepesvári, 2008; Le et al., 2019). Q or value
function approximation is widely used in RL practice in
conjunction with neural networks, and has been a key com-
ponent in many empirically successful RL algorithms, such
as the Deep-Q-Network (DQN) and its variants (Mnih et al.,
2013), and Actor-Critic and its variants (Mnih et al., 2016).
For neural networks, their differentiability is arguably a
most important feature that contributes to its generalizabil-
ity, computation efficiency, and versatility. While most sta-
tistical analyses for OPE or FQE focus on specific tabular,
parametric (linear, finite) or non-parametric (kernel, Hölder)
function classes, we wish to establish theories that are flex-
ible enough to capture most commonly used differential
function approximators, including neural networks.

Statistical theory of OPE is nontrivial due to the distribution
shift from off-policy data to the target policy’s unknown
state-action occupancy measures. When a function approxi-
mator is employed, the effect of distribution shift becomes
more subtle.

In this paper we adopt a substantially more powerful theoret-
ical tool, i.e. the Z-estimation theory, to analyze statistical
properties of FQE with general differentiable function class.
Roughly speaking, we can view the FQE estimator as the
root to a system of equations (i.e. Karush–Kuhn–Tucker
conditions for least-square regression), whose parameters
come from an empirical process. We study the statistical
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properties of such root and for more information about the
background of Z-estimation theory please see Section 6 and
subsequently in Appendix A.1.1.

Contributions of this paper are three folds:

1. We show that the FQE estimation error is asymptotically
normal and give its variance σ2 in a closed form. The
variance σ2 is determined jointly by the tangent plane of
the function class F at the ground truth, the reward and
the distribution shift.

2. We established an O(σK−1/2) high-probability finite-
sample error bound for FQE. This σ can be further re-
laxed to a restricted χ2

F -divergence between the behavior
policy’s and the target policy’s occupancy measures. For
any two probability measure p1 and p2, we define

χ2
F (p1, p2) := sup

g∈F

[Ep1g(x)]
2

Ep2
[g2(x)]

− 1. (1)

It is a function class-dependent divergence between two
distributions, and it measures the partial distribution
shift with respect to F .

3. For statistical inference, we consider bootstrapping the
FQE estimator and show that the bootstrap estimators are
distributionally consistent. Lastly we provide a Cramer-
Rao lower bound that matches the error upper bounds,
showing that differentiable FQE is statistical-optimal.

These results generalize prior minimax-optimal OPE theory
for tabular and linear MDP. They apply to a substantially
broader family of common function approximators. See
Section 6.4 for a detailed discussion.

2. Related Work
Off Policy Evaluation Off policy evaluation(OPE) is a fun-
damental problem in batch RL. One classic family of OPE
methods estimates the value function in an iterative fashion,
including Fitted Q Evaluation(FQE) (Munos & Szepesvári,
2008; Le et al., 2019) and its variant Lasso FQE (Hao et al.,
2021a). Another family of methods uses importance sam-
pling to address the distribution mismatch and get unbi-
ased estimation for policy value(Precup, 2000). Vanilla
Importance sampling is known to suffer from large vari-
ance that in the worst case can scale exponentially with
horizon length(Yin & Wang, 2020; Jiang & Li, 2016). This
drawback was improved by several variance reduction tech-
niques, including doubly robust estimation (Jiang & Li,
2016) and marginal importance ratio estimation (Xie et al.,
2019). Numerous empirical studies have shown their effec-
tiveness for variance reduction and compare their strength
and weakness(Thomas & Brunskill, 2016; Li et al., 2015).
For tabular MDP with full data coverage, (Yin & Wang,

2020) showed that marginal importance sampling(MIS) es-
timator is asymptotic optimal with mean square error bound
matching the Cramer Rao lower bound in (Jiang & Li, 2016).
Other methods include Hybrid Value Estimation and so on
(Jin et al., 2022).

OPE with Linear Function Approximation A variety of
literature focused on linear function approximator under
Bellman completeness, i.e, the Bellman operator maps to
state-action value functions that are linear combination of
given features (Hao et al., 2021b; Duan et al., 2020; Wang
et al., 2019). (Duan et al., 2020) provided a minimax lower
bound for FQE with linear function approximation, and
showed that it matches the upper bound. They also re-
vealed that the dominating term of this minimax lower
bound mainly depends on a χ2-divergence term, which
measures the distribution mismatch, in the feature space,
between the data distribution and the occupancy measure
of the policy to be evaluated. (Hao et al., 2021b) further
combines bootstrapping with linear FQE and show that the
bootstrap estimator is asymptotically efficient. (Min et al.,
2021) further provided a tighter upper bound with smaller
instance-dependent constants. Recently, (Perdomo et al.,
2022) provided an instant-dependent sharper characteriza-
tion for intrinsic complexity of FQE and LSTD with linear
function approximation.

OPE with Nonparametric Approximation Many efforts
have studied the use of nonparametric or seminonparametric
function approximators. (Kallus & Uehara, 2020) proposed
a Double Reinforcement Learning(DRL) estimator using
properly estimated Q-functions and marginal density ratios,
and proved DRL estimator matches a semiparametric effi-
ciency limit for OPE. (Uehara et al., 2020) proved another
two estimators based on MIS achieve this efficiency limit.
Moreover, (Shi et al., 2021; Uehara et al., 2021) proposed
their estimators for Q-functions derived the L2-norm con-
vergence rate. (Chen & Qi, 2022) provided minimax optimal
convergence rate under weaker condition via reformulating
Q-function estimation as non-parametric instrumental vari-
ables estimation problem. (Ji et al., 2022) explored deep
FQE with Holder function class via low-dimension manifold
structure and provided a sharp finite sample upper bound.

Other Works with Function Approximation Function ap-
proximation has many applications in different methods of
RL, such as Fitted Q Iteration(FQI) and Policy Optimiza-
tion(Munos & Szepesvári, 2008; Farahmand et al., 2016).
(Duan et al., 2021) studied on-policy evaluation, and pro-
vided non-asymptotic error bound of kernel Least Square
Temporal Difference(LSTD) estimator. Apart from linear
function approximation(Cai et al., 2020; Jin et al., 2019;
Zhou et al., 2021), (Chen & Jiang, 2019) provided analysis
for FQI with general but finite function class, while (Le
et al., 2019) focused on function class with finite pseudo-
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Work Method Para? Function
Class Key Assumption Result

(Xie et al.,
2019)(Yin &
Wang, 2020)

MIS Yes Tabular Concentrability |vπ − v̂π| ≤ Cµ,µ̄√
N

+ o( 1√
N

), Cramer-Rao
Lower Bound and Locally Minimax

(Uehara et al.,
2020)

MWL
/ MQL No General

Concentrability and
Stronger

Realizability

|v̂π − vπ| ≤ C√
N

+ εapprox,

Semi-parametric Asymptotic Lower Bound

(Duan et al.,
2020) FQE Yes Linear Completeness

Minimax Optimal, |v̂π − vπ| ≤
CH2
√
N

[∑H
h=1

√
1 + χ2

Q(µh, µ̄)
]

+O( 1
N ).

(Hao et al.,
2021b) FQE Yes Linear Completeness Asymptotic Normality, Cramer-Rao Lower

Bound and Distributional Consistency

(Kallus &
Uehara, 2020) DRL No General

Concentratability and
Proper rate of

Nuisance Estimator

Semi-Efficiency, |v̂π − vπ| ≤√
2 log(14/δ) Effbd(M2)

K +O( 1
K ).

(Ji et al.,
2022) FQE No Holder Completeness

E |vπ − v̂π| ≤
CH2κ

(
K−

α
2α+d +

√
D/K

)
log

3
2 K.

Our Work FQE Yes General and
Differentiable Completeness

|v̂π − vπ| ≤
CH2
√
N

[∑H
h=1

√
1 + χ2

Gh(µ, µ̄)
]

+O( 1
N ),

Asymptotic Normality, Cramer-Rao Lower
Bound and Distributional Consistency

Table 1. Comparison on Different Function Approximators: Para: Parametric; MIS: Marginal Importance Sampling; MWL: Minimax
Weight Learning; MQL: Minimax Q-Function Learning; FQE: Fitted Q-Evaluation; DRL: Double Reinforcement Learning.

dimension. Recently, FQI with more general function class,
such as two-layer neural networks(Long et al., 2021) and
deep ReLU networks (Fan et al., 2020; Nguyen-Tang et al.,
2021) have been studied.

Comparison of OPE theories Due to space limit, we post-
pone more discussions to Appendix F. See Table 1 for a list
of directly comparable results including this paper.

3. Preliminaries
Markov Decision Process We consider the finite-horizon
time-homogeneous Markov Decision Process denoted by
MDP (S,A,P, π, r, ξ,H), where S and A are the state
space and the action space and their joint space is denoted
by X = S × A. Denote r ∈ RX as the reward func-
tion, where r(s, a) ∈ [0, 1] for all s ∈ S and a ∈ A.
The transition probability is determined by p (· | s, a) , and
policy π(· | s) gives the probability distribution on A
conditional on current state s. Throughout our paper we
use π to denote the target policy to evaluate. ξ is the
initial distribution and H is horizon length. We denote
τ = (s1, a1, s2, a2, ..., sH , aH , sH+1) as a random trajec-
tory in the data. The state-action value function (Q function)
is Qh(s, a) := Eπ

[∑H
h′=h r(sh′ , ah′) | sh = s, ah = a

]
,

for h ∈ [H], where Eπ denotes expectation over random tra-

jectories generated by the target policy π. The target value
function is Vh(s) := Eπ

[∑H
h′=h r(sh′ , ah′) | sh = s

]
.

Off-Policy Policy Evaluation (OPE) Our goal is to esti-
mate the cumulative reward of target policy π from an
initial distribution ξ(·), which is a scalar value defined as
vπ := Eπ

[∑H
h=1 r(sh, ah) | s1 ∼ ξ(·)

]
. We focus on the

off-policy learning problem, where logged experiences were
pre-collected according to some (possibly unknown) behav-
ior policy and no more interaction with the MDP environ-
ment is allowed. Specifically, suppose we have K episodes
of data {τk}Kk=1 , which are i.i.d sampled using the behavior
policy π̄. We sometimes use D = {(sn, an, rn)}n∈[N ] ={(
skh, a

k
h, r

k
h

)}
h∈[H],k∈[K]

to denote our batch samples
where N = KH is the total number of state transitions.

We denote µ as the state-action occupation measure gen-
erated by policy π from the initial distribution. Also we
denote µ̄ as the population distribution, i.e., the state-action
measure generated by behaviour policy π̄.

4. Fitted Q Evaluation (FQE) with
Differential Function Approximation

While there exist a variety of OPE algorithms, fitted Q
evaluation is most popular in practice. Popularity of such
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value-based methods is related to their compatibility with
deep learning, where training and function fitting is most
convenient when minimizing squared losses.

4.1. FQE Algorithm

Fitted Q Evaluation exploits iterative regression to approx-
imate Q functions and eventually estimates target policy
value by integrating estimator of Q function (Le et al., 2019;
Fonteneau et al., 2013).

LetF be a class of function approximators. FQE framework
can be summarized as follows: We let Q̂H+1 = 0 and for
h = H,H − 1, ..., 1, we iteratively solve

Q̂h = arg min
f∈F

{
1

N

N∑
n=1

[f(sn, an)− yn]
2

+ λρ(f)

}
.

(2)
where yn = r(sn, an) +

∫
A Q̂h+1(sn+1, a)π(a | sn+1)da,

λ > 0 and ρ(·) is a proper regularizer. The full algorithm is
given below.

Algorithm 1 Framework for Fitted Q Evaluation
1: Input: Target policy π, initial distribution ξ, dataset
D = {(skh, akh, skh+1, r

k
h)}h∈[H],k∈[K], function class F

2: Initialize Q̂H+1(s, a) = 0,∀(s, a) ∈ X .
3: for h = H,H − 1, . . . , 1 do
4: Solve (2)
5: end for
6: Return v̂π =

∫
S×A Q̂1(s, a)π(a|s)ξ(s)dads.

4.2. FQE with a Differentiable Function Class

Let there be a feature map φ(·) : S ×A → Ψ ⊂ Rm, where
Ψ is the space of state-action feature vectors. We consider
function approximators that take φ(s, a) as input and output
an estimated value. For simplicity, previous theory often
confined F to some linear function class (Hao et al., 2021b;
Duan et al., 2020). Note this contains the tabular case by
letting φ(s, a)’s be one-hot features.

We consider almost arbitrarily parametrized F with mild
smoothness condition, i.e.,

F := {fθ(φ(·)) : S ×A → R, fθ : Rm → R, θ ∈ Θ} ,

where Θ is the parameter space. We make no distinction
between fθ(φ) and f(θ, φ). Without loss of generosity, we
assume 0 ∈ Θ and f(0, φ(s, a)) = 0 for any (s, a) ∈
S×A.We use∇θf(θ, φ) to denote its partial derivative with
respect to θ, and use ∇2

θf(θ, φ) to denote Hessian matrix.
By parametrization the recursive minimization in FQE can
be turned into least square optimization in θ. We assume
the regularization on function f is actually on parameter

θ ∈ Θ, hence we make no distinction between ρ(f) and
ρ(θ). We denote Q̂h = f(θ̂h, φ) and we use φn for short of
φ(sn, an), then (2) is equivalent to

θ̂h = arg min
θ∈Θ

{
1

2N

N∑
n=1

[
f(θ, φn)− yn(θ̂h+1)

]2
+ λρ(θ)

}
,

(3)
where yn(θ′) = r(sn, an) +

∫
A f(θ′, φ(sn+1, a))π(a |

sn+1)da. Then, the final FQE estimator becomes v̂π =∫
S×A f(θ̂1, φ(s, a))π(a | s)ξ(s)dads. We denote by θ∗ =

(θ∗1 , . . . , θ
∗
H) the ground truth parameter, which are solu-

tions to (3) when there is no regularizer and the empirical
sum is replaced with expectation over the population distri-
bution.

5. Assumptions
In this section, we summarize main assumptions for statisti-
cal theory of differentiable FQE.
Assumption 5.1 (Compactness). Θ ⊂ Rd and Ψ ⊂ Rm
are compact. We denote int(Θ) as its interior. We assume
θ̂h ∈ int(Θ) for h ∈ [H].

Compactness of state-action space is a natural assumption
and was also assumed in (Hao et al., 2021b; Duan et al.,
2020; Hao et al., 2021a) and (Yang et al., 2020). Without
loss of generality, we assume that the ground truth belongs
to the interior of Θ, i.e.,

{
θ : ‖θ − θ∗h‖2 ≤ 1

}
⊂ int(Θ) for

all h.
Assumption 5.2 (Differentiability). For any f ∈ F , f(θ, φ)
is third-time continuously differentiable in Θ×Ψ with re-
spect to θ and φ. The regularizer function ρ(θ) is differen-
tiable with bounded gradient in Θ.

This assumption requires only sufficient smoothness of f .
It does not require f to take any specific parametric form or
belong to certain kernel space. This smooth function class is
actually much more expressive than linear function approxi-
mators. For example, most differentiable neural networks
satisfy our assumptions. Other examples include spline func-
tion class widely used in statistical learning, or Gaussian
processes. While linear predictors are sometimes enough in
the rare cases where high quality hand-crafted features are
available, in most modern machine learning applications,
especially in those where deep learning thrives, high quality
features are often not available and high nonlinear functions
of raw features need to be learned.
Assumption 5.3 (Policy Completeness). For any function
f, we define the operator P : RX → RX , such that for any
(s, a) ∈ X ,

(Pf) (s, a) = Eπ
[
r(s, a) +

∫
A
f(s′, a′)π(a′ | s′)da′

∣∣∣∣∣s, a
]
.

(4)
We assume r ∈ F and for any f ∈ F , we have Pf ∈ F .
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Remark on policy completeness assumption This as-
sumption requires sufficient expressiveness of F . It implies
the realizability forQ functions, i.e., the groundtruth θ∗ fully
recovers the Q functions f(θ∗h, φ) = Qh(s, a). It is a rather
crucial assumption for RL with function approximation, and
commonly used in OPE literatures (Hao et al., 2021b; Duan
et al., 2020; Le et al., 2019; Hao et al., 2021a; Fan et al.,
2020). (Chen & Jiang, 2019) conjectured the realizability
alone is not enough for sample-efficient offline RL. Later
(Wang et al., 2020) verified that only assuming realizability
without policy completeness can lead to exponential sample
complexity, unless one assumes a strong concentrability con-
dition such that the distribution shift be uniformly bounded
across state-action space (sups,a

µ(s,a)
µ̄(s,a) < C) (Munos &

Szepesvári, 2008; Farahmand et al., 2016; Le et al., 2019).

The concentrability condition is rather restrictive and re-
quires that the target and behavior policies be extremely
close. However, for a simple linear Gaussian system, even if
µ, µ̄ are two close Gaussian distributions, a small mean dif-
ference easily leads to sups,a

µ(s,a)
µ̄(s,a) =∞. An exception is

the work of Uehara et al. (2020), which proposed a minimax
approach for OPE requiring only realizability, albeit on both
the Q function and the density function µ using two function
classes. However, minimax optimization is computationally
harder to implement than least-square regression.

Simply put, concentrability and completeness are about
the different aspect of the problem. Concentrability de-
scribes the level of distribution shift, while completeness
describes the expressivity of function class. Neither implies
the other. Our goal is to handle the case with relatively
large distribution shift. When huge distribution shift breaks
the concentrability, policy completeness is the least require-
ment that had been found to guarantee sample efficiency.
Whether there exists weaker assumption than completeness
that allows for sample efficient OPE is still an open problem.
Note that even if the completeness fails to hold and there
exists a nonzero approximation error, our results still apply
to bounding the statistical error of θ̂ and the approximation
error can be handled by classic results on approximate value
iteration (Szepesvári & Munos, 2005).

In what follows, we will explicate the dependency of error
upper bound on the distribution shift and F . We will show
that FQE can be efficient without strong concentrability.

Notation Let θ1, θ2, ..., θH ∈ Rd be variables and define
θ> = (θ>1 , θ

>
2 , ..., θ

>
H) ∈ RHd as the variable stacked by

θh h ∈ [H]. Denote θ∗> = (θ∗>1 , θ∗>2 , ..., θ∗>H ) ∈ RHd,
and denote the FQE estimator as θ̂> = (θ̂>1 , θ̂

>
2 , ..., θ̂

>
H).

For any matrix E ∈ Rd1×d2 (including scalars and vec-
tors as special cases), we define ∂

∂θEθ = ∇θEθ =
(∇1

θEθ,∇2
θEθ, . . . ,∇mθ Eθ) ∈ Rd1×md2 . We denote Eτ or

E as the expectation over the population distribution gen-

erated by behavior policy, and Eπ as the expectation over
target policy. For any matrix E, we denote ‖E‖ as its oper-
ator norm, i.e. its maximal singular value. We use φh and
rh for short of φ(sh, ah) and r(sh, ah).

6. Z-Estimation Theory for Differentiable
FQE Estimators

In this section, we study statistical properties of the differ-
entiable FQE estimator. The challenge with such general
function approximation is the lack of analytical expressions
for ground true and estimated parameters. We adopt the
Z-Estimator theory as a central tool and all the proof will be
deferred to Appendix.

6.1. FQE as a Z Estimator

First we show that the FQE can be written as a Z-Estimator,
which means the estimator takes the form of the root of
some systems. From the optimality condition of (3) for
interior solutions, we know

∇θ

{
1

2N

N∑
n=1

[
f(θ̂h, φn)− yn(θ̂h+1)

]2
+ λρ(θ̂)

}
= 0.

For any sample path τ = (s1, a1, ..., sH , aH) and any θ =
(θ>1 , θ

>
2 , ..., θ

>
H)> ∈ ΘH and θH+1 = 0, we define the z(h)

function as

z(h)(θ, τ ) =

H∑
j=1

(
f(θh, φj)−rj−yj(θh+1)

)
·∇>θ f(θh, φj),

where yj(θ) :=
∫
A f(θ, φ(sj+1, a

′))π(a′ | sj+1)da′. De-
note

z(θ, τ )> = (z>(1)(θ, τ ), z>(2)(θ, τ ), ..., z>(H)(θ, τ )) ∈ RHd

and its expectation Z(θ) := Eτ {z(θ, τ )} . The groundtruth
θ∗ is the root of the expected Z function, i.e.,

Z(θ∗) = 0. (5)

Define the empirical Z function as

ZK (θ) :=
1

K

K∑
k=1

z(θ, τk)

and denote R(θ) := (∇θρ(θ1),∇θρ(θ2), . . . ,∇θρ(θH))>.
Then we have

ZK(θ̂) + λR(θ̂) = 0. (6)

Therefore θ̂ is the root of above equation and thus is
a Z-Estimator. We use θ̂ interchangeably with θ̂K =

(θ̂>K,1, ..., θ̂
>
K,H)> to explicate its dependence on K.
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Define the Z function class as

Z :=

H⋃
h=1

d⋃
i=1

{
zh,i(θ, ·) : θ ∈ ΘH ⊂ RHd

}
,

where zh,i denotes the i-th entey of z(h)(θ, τ ). The complex-
ity ofZ , which comes from the complexity ofF , determines
the statistical efficiency of FQE. We analyze the estimation
error via Tarlor expansions, concentration inequalities and
bounding the complexity of Z using its bracketing integral
(Kosorok, 2008).

6.2. Asymptotic Normality and Variance

Theorem 6.1 (Asymptotic Normality). Under assumption
5.1, 5.2 and 5.3, if θ∗ is the unique root of Z(θ) in ΘH and
the Jacobian matrix of Z(θ) at θ∗ is non-singular. Then,
when K →∞ and λ = o(K−1/2), we have

√
K (v̂π − vπ)

d−→ N (0, σ2).

The asymptotic variance is given by

σ2 =
1

H

H∑
h1,h2=1

ν>h1
Σ−1
h1

Ωh1,h2
Σ−1
h2
νh2

. (7)

where for h, i, j ∈ [H],

Σh = E

[
1

H

H∑
j=1

(∇θhf (θ∗h, φj))
>

(∇θhf (θ∗h, φj))

]
;

ν>h = Eπ [∇θhf (θ∗h, φ (sh, ah)) | s1 ∼ ξ(·)] ;

Ωi,j = E

[
1

H

H∑
h=1

(
∇>θif (θ∗i , φh)

) (
∇θjf

(
θ∗j , φh

))
εi,hεj,h

]
;

εj,h = f
(
θ∗j , φh

)
− rh − Eπ

[
f(θ∗j+1, φh+1)

∣∣∣∣sh+1

]
.

Remark 6.2. In linear case, this expression for variance is
exactly the same as in (Hao et al., 2021b). In that case, all
Σh become to the dataset’s covariance matrix, νh becomes
the state feature expectation φ(sh, ah) under target policy.
They become both independent of θ∗h. In tabular case with
time-inhomogeneous MDP and one-hot feature, all Σh be-
come diagonal and the asymptotic variance matches the
result in Remark 3.2 in (Yin & Wang, 2020).

Proof of Theorem 6.1 Our proof technique is highly non-
trivial since with non-linear function class we can no longer
obtain closed-form solution as in linear case. The central
tool for the proof is Z-Estimator Master Theorem (Kosorok,
2008). To use this theorem, we need to verify the function
class comprising all entries of z(ξ, τ ) indexed by θ ∈ ΘH is
both Glivenko-Cantelli and Donsker. Glivenko-Cantelli and
Donsker are properties of a function class that measure its

complexity. Z-Estimator theory mainly tells us that, with a
function class not too complex, asymptotic normality holds.
For our differentiable F , we will construct ε-brackets to
bound the bracketing integral, which is a relatively complex
approach in high-dimension statistics. A gentle introduc-
tion to these tools can be found in Appendix Section A.1.1.
Asymptotic normality implies the following corollary, which
implies that the convergence rate of |v̂π − vπ| is O( 1√

K
).

Corollary 6.3. For any δ > 0, there exists a constant
B(δ) > 0 such that

sup
K∈N

P
(∥∥∥√K (θ̂K − θ∗)∥∥∥

2
> B(δ)

)
≤ δ.

6.3. Finite Sample Error Upper Bound

Next we will show finite-sample error bound for FQE. In
addition to the O( 1√

K
) rate, we will show that the leading

order term in FQE error largely depends on the variance
σ2. We also provide a reward-free error bound that depends
on a function class-dependent divergence, which measures
the partial mismatch between µ and µ̄ with respect to the F
space. Our results strictly generalize the minmax-optimal
error bounds for linear FQE (Hao et al., 2021b; Duan et al.,
2020; Agarwal et al., 2019).

Assumption 6.4 (Data Coverage). Let C2 be a positive
constant. We assume for any (s, a) ∈ S ×A and h ∈ [H],

∇θf(θ∗h, φ(s, a))Σ−1
h ∇

>
θ f(θ∗h, φ(s, a)) ≤ C2d.

To interpret this assumption, consider the case where
f is linear. In this case, the assumption reduces to
φ(s, a)>Σ−1φ(s, a) ≤ C2d. It holds as long as the data has
a non-singular covariance Σ. Even if sups,a

µ(s,a)
µ̄(s,a) = ∞,

data can still be well-conditioned and cover every dimen-
sion of ∇θf(θ∗, φ), thus satisfying Assumption 6.4. Such
coverage can be achieved with as small as O(Hd) sam-
ple transitions, while full data coverage requires Ω(SA)
samples. It is a much weaker assumption than assuming
sups,a

µ(s,a)
µ̄(s,a) < C or assuming mins,a µ(s, a) > c.

For h ∈ [H], we define

Gh :=
{

(∇θf (θ∗h, φ(·)))µ : µ ∈ Rd
}
. (8)

We denote α = (α1, α2, ..., αd) as a multi-index, and the
order of α is |α| = α1 + α2 + · · · + αn. We denote
∂αθ f(θ, φ) = ∂α1

θ1
∂α2

θ2
· · · ∂αdθd f = ∂|α|f

∂θ
α1
1 ∂θ

α2
2 ···∂θ

αd
d

, and for
l = 1, 2, 3, we define

κl := sup
θ∈Θ,φ∈Ψ

sup
|α|=l

|∂αθ f(θ, φ)| <∞.

Our main result on finite sample upper bound is given below.
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Theorem 6.5 (Finite Sample Upper Bound). Under the as-
sumptions of Theorem 6.1 and Assumption 6.4, let λ = 0, for
every fixed K ≥ max

{
2(C2d+1)2

C2d
log
(

12dH
δ

)
, B(δ/3)2

}
,

and every δ > 0, with probability at least 1− δ, we have

(i) Variance-aware error bound:

|v̂π − vπ| ≤
√

2 log(6/δ)σ2

K

+
1

K

[
2

3
ln

(
6

δ

)√
C2d

H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh + C

]
,

(9)

(ii) Reward-free error bound:

|v̂π − vπ| ≤

[
H∑
h=1

(H − h+ 1)
√

1 + χ2
Gh(µ, µ̄)

]

·

[√
log(12/δ)

2KH
+

4 ln(12dH/δ)

3K

√
C2dH

]
+
C

K
. (10)

where

C = B(δ/3)
[
H2 1

2 dκ2
1B0 + 2H

3
2 dκ2B0 + 4d

3
2 κ1κ2B0

]
+B(δ/3)2

[
B0H

3d
[
κ3H + 3κ1κ2 + 2

√
dκ1κ3

]]
is a constant, where B0 := maxh∈[H]

√
ν>h Σ−2

h νh, D is a
constant dependent on H and d only and χ2

Gh is restricted
χ2-divergence defined as (1).

Proof pf Theorem 6.5 We decompose v̂π−vπ into a sum
of a first order term and higher order terms by using Taylor
expansion. We bound the first order term with Freedman’s
Inequality (lemma E.2). To give a reward-free characteriza-
tion for distribution shift, we used concentration inequalities
to do more precise analysis. The higher order term is much
more complex than that of linear case. We use upper bound
for supremum norm of empirical process to bound them con-
ditional on the event

{∥∥∥θ̂K − θ∗∥∥∥ ≤ B(δ)√
K

}
for any fixed

K instead of directly bounding it via Bernstein Inequality in
linear case. Exact characterization of B(δ) is not possible
without more specific assumptions on F , which is an open
problem in empirical process theory and beyond our scope.
Historically, we are the first to apply Z-estimation theory
to RL and proved it to be useful, since they have long been
thought not to be strongly related.
Remark 6.6. The error bound (i) is variance-aware and the
tightest in the sense that σ2 equals to the asymptotic variance
given by Theorem 6.1. The error bound (ii) is reward-free
in the sense that it does not involve the reward function r
at all. It is a worst-case error bound that determined solely
by the distribution shift of off-policy learning, measured by

√
1 + χ2

Gh(µ, µ̄). In this linear function case, 1+χ2
Gh(µ, µ̄)

can be bounded by the relative condition number between
the two distributions’ covariance matrices. Even without
function approximation, if µ, µ̄ are two Gaussians with the
same variance and different means, we have sups,a

µ(s,a)
µ̄(s,a) =

∞, but their chi-square divergence is finite.
Remark 6.7. Analysis of Z estimator is in essence analy-
sis of empirical process and Taylor expansion and is much
more complex than classical Central Limit Theorem(CLT).
Classical CLT applies to the i.i.d. random variables, but
state transitions from a single trajectory are highly depen-
dent, so vanilla CLT analysis does not directly apply. In
addition, combining CLT and Taylor expansion can only
give asymptotic rates and cannot give finite sample bound
as we obtained using Z estimator.

6.4. Special Cases

Next we show that our results match the best known error
bounds for FQE in the tabular case and in the case of linear
function approximation.

Tabular Case In tabular case, there are finite states and
finite actions in the MDP we consider, and we can always
represent all Q-functions in tables. We denote

µ̃ :=
2

H(H + 1)
Eπ
[
H∑
h=1

(H − h+ 1)1(sh = s, ah = a)

]
,

(11)
Then Corollary 1 in (Duan et al., 2020) provided the upper

bound in tabular case as

|v̂π − v| ≤ CH2
√

1 + χ2(µ̃, µ̄)

√
log(12/δ)

2KH
+O(

1

K
),

where C is a constant and χ2 is standard χ2 divergence. We
give a outline sketch in the Appendix. Further (Duan et al.,
2020) proved the upper bound in time inhomogeneous MDP
matches the upper bound in Theorem 3.1 in (Yin & Wang,
2020). The same result can be derived as a special case of
our theorem.

Linear Case In case of linear function class, since
all Σh are the same, we can bound the dominant er-
ror term in another sharper way. In linear case, θ∗h
and φ(s, a) will have the same dimension, and all Gh
will be G =

{
µ>φ(·) | µ ∈ Rd

}
. Under the assumption

φ>(s, a)Σ−1φ(s′, a′) ≥ 0, thee upper bound can be im-
proved to

|v̂π − v| ≤
H(H + 1)

2

√
log(12/δ)

2KH

√
1 + χ2

G(µ̃, µ̄) +O(
1

K
).

This matches the minimax lower bound in (Duan et al.,
2020) and shows that in linear case this upper bound is
nearly optimal. Another special case with stronger assump-
tion for data coverage is discussed in Appendix C.1.
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7. Bootstrapping FQE and Distributional
Consistency

FQE provides a point estimator. In order to quantify its
uncertainty in practice, there is need to infer the estimator’s
distribution and to compute confidence intervals(Feng et al.,
2020; Hao et al., 2021b).

7.1. Bootstrapping General FQE Estimator

We consider using bootstrap for statstical inference of FQE
(Efron, 1982). These bootstrap estimators allow us to esti-
mate the error distribution and perform downstream infer-
ence tasks such as confidence intervals, variance estimation
(Hao et al., 2021b). We will bootstrap by episodes, instead
of by transitions as in some previous research (Kostrikov &
Nachum, 2020). It was shown in (Hao et al., 2021b) that
bootstrapping by transitions, which are dependent, for FQE
might lead to inconsistency.

DenoteW ◦ = (W1,W2, ...,WK)> as the bootstrap weights
sampled according to certain distribution. In bootstrapping
general FQE, we use Q̂◦h to denote bootstrapping estimator
of Q functions. We let Q̂◦H+1(s, a) = 0 and (2) is turned
into

Q̂◦h = arg min
f∈F

{
1

2N

K∑
k=1

Wk

H∑
h=1

[
f(skh, a

k
h)− yk◦h

]2
+λρ(f)

}
.

(12)
where yk◦h = r

(
skh, a

k
h

)
+
∫
A Q̂

◦
h+1

(
skh+1, a

)
π
(
a | skh+1

)
da.

Similar to Section 4, under assumption of parameteric func-
tion space, we turn this problem into a minimization in
parameter space and we denote Q̂◦h = f(θ̂◦h, φ). Then (12)
can be turned into

θ̂◦h = arg min
θ∈Θ

{ K∑
k=1

Wk

2N

H∑
h=1

[
f
(
θ, φkh

)
− yk◦h

(
θ̂k◦h+1

)]2
+λρ(θ)

}
.

(13)
where ykh

(
θ̂◦h+1

)
:=
∫
A f

(
θ̂◦h+1, φ

(
skh+1, a

′
))

π
(
a′ | skh+1

)
da′.

Then the general bootstrapping FQE estimator can be writ-
ten as

v̂◦π =

∫
S×A

f(θ̂◦1 , φ(s, a))π(a | s)ξ(s)dads. (14)

For θ ∈ ΘH , we denote Z◦K(θ) := 1
K

∑K
k=1Wkz (θ, τk) .

From the perspective of Z-Estimator, if we assume θ̂◦h ∈
int(Θ) and write θ̂◦K,h = θ̂◦h to explicate its dependency on
K, then we have when θ̂◦K = (θ̂◦>K,1, ..., θ̂

◦>
K,H)>,

Z◦K

(
θ̂◦K

)
+ λR(θ̂◦K) = 0,

which implies θ̂◦K is a bootstrapping Z-estimator. Next we
consider standard bootstrap and one of its simple alterna-
tives. Both bootstrapping FQE estimator have nice asymp-
totic properties and can be exploited to estimate variance
and confidence interval.

Vanilla Bootstrap When W ◦ follows multinomial distri-
bution with probability (1/K, 1/K, ..., 1/K), (14) leads to
vanilla bootstrapping FQE estimator. In other words, it
amounts to resampling K episodes τ ◦1 , τ

◦
2 , ..., τ

◦
K indepen-

dently with replacement from the data {τk}Kk=1, and solv-
ing (2) iteratively using resampled data. (Hao et al., 2021b)
used vanilla bootstrapping strategy to construct asymptotic
confidence interval of policy value, and proved that boot-
strapping error has the same asymptotic distribution with
standard FQE error.

Multiplier Bootstrap Suppose U is a non-constant non-
negative random variable with finite mean m > 0 and vari-
ance 0 < η2 <∞, and U satisfies∫ ∞

0

√
P (|U | > x)dx <∞. (15)

This is slightly stronger than assuming a bounded second
order moment, but is weaker than boundedness of 2 + ε
order moment for any ε > 0. We let u1, u2, ..., uK , .. are an
infinite series of i.i.d. samples from the distribution of U
and independent of all trajectories and ūK = 1

K

∑K
k=1 uk.

Setting Wk = uk/ūK in (12) and (14) gives multiplier
bootstrapping FQE estimator. For example, when U follows
standard exponential distribution, W ◦ is called Dirichlet
weights and the resulting multiplier bootstrap is Bayesian
bootstrap(Rubin, 1981).

Algorithm 2 Bootstrapping General FQE
1: Input: Target policy π, initial state distribution ξ,

dataset D = {(skh, akh, skh+1, r
k
h)}h∈[H],k∈[K]. If mul-

tiplier bootstrap used, input random vector U which
satisfied (15).

2: if Vanilla bootstrap then
3: Sample (W1, ...,WK) ∼ multinomial distribution

with probability (1/K, ..., 1/K).
4: else if Multiplier Bootstrap then
5: Sample uk ∼ U,Wk = Kuk∑K

k=1 uk
.

6: end if
7: Initialize θ̂◦H+1 = 0.
8: for h = H,H − 1, . . . , 1 do
9: Solve (13)

10: end for
11: Return v̂◦π =

∫
S×A f

(
θ̂◦1 , φ(s, a)

)
π(a | s)ξ(s)dads.

7.2. Distributional Consistency

We show that bootstrapping FQE with differential function
approximator is distributionally consistent, i.e. the limit
distribution of bootstrapping error θ̂◦K − θ̂K conditional on
batch data is that of standard FQE error θ̂K − θ∗ established
in Theorem 6.1 or a multiplication of it.
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Theorem 7.1 (Distributional Consistency). Under the as-
sumptions of Theorem 6.1, when K → ∞ and λ =
o(K−1/2), conditional on {τk}Kk=1, we have

√
K (v̂◦π − v̂π)

d−→ N (0, k0σ
2).

for the same σ as defined in Eq. (7). For vanilla bootstrap-
ping FQE estimator, k0 = 1. For multiplier bootstrapping
FQE estimator, k0 = η2

m2 .

This distribution consistency certifies that we may use the
bootstrapping FQE to approximate the estimation error dis-
tributions and inference tasks. For example, we may es-
timate the confidence interval (CI) of the FQE by taking
quantiles; see Algorithm 3. Suppose our batch dataD is gen-
erated from a probability space

(
XH ,Σ

(
XH

)
,PD

)
, and

the bootstrap weight W ◦ is from an independent probabil-
ity space (W,Ω,PW ). Their joint probability measure is
PDW◦ . Let PW◦|D denote the conditional distribution once
the data D is given. Next corollary shows consistency of the
CI estimate.

Corollary 7.2. Denote the lower δ-th quantile of bootstrap-
ping error distribution

qπδ = inf
{
t : PW◦|D (v̂◦π − v̂π ≤ t) ≥ δ

}
.

We construct the 1−δ confidence interval of the policy value
by: CI(δ) =

[
v̂π − 1√

k0
qπ1−δ/2, v̂π −

1√
k0
qπδ/2

]
. Then we

have when K →∞,

PDW◦ (vπ ∈ CI(δ))→ 1− δ.

This gives a convenient and provable way to construct confi-
dence interval for OPE.

Algorithm 3 Bootstrapping Confidence Interval
1: Input: Target policy π, initial state distribution ξ,

dataset D = {(skh, akh, skh+1, r
k
h)}h∈[H],k∈[K], confi-

dence level δ, number of bootstrap B. If multiplier
bootstrap used, input random vector U which satisfied
(15).

2: Compute standard FQE estimator v̂(D).
3: for b = 1, 2, . . . , B do
4: Sample a bootstrapping weight W ◦b according to

multinomial distribution or random variable U.
5: Compute v̂ (D;W ◦b ) .
6: end for
7: Compute errors εb := v̂ (D;W ◦b )− v̂(D) for b ∈ [B].
8: Compute δ/2 and 1 − δ/2 empirical quantile of
{ε1, ..., εB} , denoted as q̂πδ/2 and q̂π1−δ/2.

9: Return
[
v̂ (D)− q̂π1−δ/2, v̂ (D)− q̂πδ/2

]
.

8. Information-Theoretic Lower Bound
An estimator is called asymptotic efficient if its variance
is minimal among all unbiased estimators. Cramer-Rao
lower bound is a theoretical lower bound for variance of all
unbiased estimators. We will show that the general FQE
estimator can achieve Cramer-Rao lower bound for variance
and is therefore asymptotically efficient.

Theorem 8.1 (Cramer Rao Lower Bound). Under assump-
tions of Theorem 6.1, the variance of any unbiased estimator
of vπ is lower bounded by σ2 in (7).

Proof of Theorem 8.1 We prove the Cramer-Rao lower
bound via the standard Influence Function method, which is
a common technique in proving Cramer-Rao lower bounds.
But our proof is much more technical than that in (Hao et al.,
2021b), since we handle non-linear smooth f .

To our knowledge, (Jiang & Li, 2015) established the first
Cramer-Rao lower bound for off policy evaluation in tabu-
lar MDP. (Hao et al., 2021b) established the lower bound
and proved asymptotic efficiency for using linear function
approximation. Our lower bound generalize these previous
results.

9. Summary and Discussion
This paper studies statistical properties of fitted Q evaluation
using compact, differentiable function approximators. It
establishes a set of statistical results including asymptotic
normality, finite-sample error bounds, characterization of
distribution shift and Cramer-Rao lower bound.

Apart from Z estimator, M estimator is another powerful tool
to analysis both asymptotic and non-asymptotic properties
of FQE estimators. However, directly applying M estima-
tion theory is not as straightforward as expected. Specifi-
cally, FQE is not exactly an M estimator due to the iterative
minimization structure, which is not equivalent to minimiz-
ing a single loss function. In contrast, FQE is naturally a
single Z estimator.

In this paper, we focus on differentiable FQE. Analysis
via M estimator is more applied in non-smooth function
clas, which is beyond our scope and requires a completely
different analysis framework. In particular, when f is non-
smooth, there will be no Taylor expansion and hence, no
asymptotic normality and no finite sample upper bound. In
conclusion, although M estimator will probably not yield
results of equal strength as what we have obtained, we can
expect its potential application on analysis for non-smooth
estimators.
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A. Proof of Asymptotic Normality and Distributional Consistency
A.1. Proof of Theorem 6.1 and Theorem 7.1

Since Theorem 6.1 and Theorem 7.1 are proven by the same technique, we will prove them simultaneously.

A.1.1. PRELIMINARIES ON GLIVENKO CANTELLI AND DONSKER FUNCTION CLASS

Before we present our main result, we prove some basic properties of the following function class. Below zh,i(θ, ·) is the
i−th entry of z(h)(θ, ·) for i ∈ [d].

Z :=

H⋃
h=1

d⋃
i=1

{
zh,i (θ, ·) : θ ∈ ΘH ⊂ RHd

}
. (16)

We remark that each function in Z is a map from (S × A)H to R and is indexed by θ ∈ ΘH . We present the standard
definition of P-Glivenko Cantelli and P-Donsker in asymptotic statistics as follows. In the definition and following proof, we
denote P as a random probability measure and Pn as its empirical measure. We further denote Gn(·) :=

√
n (Pn(·)− P(·))

as empirical process.

Definition A.1 (P-Glivenko-Cantelli and P-Donsker(Van der Vaart, 2000)). Suppose U is a measurable function class.
We denote l∞(U) as the set of all bounded functions on U . We call U is (P-)Glivenko-Cantelli (or equivalently, strong
Glivenko-Cantelli), if

‖Pnu− Pu‖U := sup
u∈U
|Pnu− Pu| a.s.−→ 0; (17)

We call a U of measurable functions is (P-)Donsker, if the sequence of processes {Gnu : u ∈ U} converges in distribution to
a tight limit process G in l∞(U). By converging in distribution in l∞ (U), we mean for every bounded, continuous function
g : l∞(U)→ R, it always holds that E[g(Gnu)]→ E[g(G)] when n tends to infinity. When there is only one probability
measure P, we omit the prefix P- in front of Glivenko-Cantelli or Donsker. We define a class U of vector-valued functions
u : x→ Rk to be Glivenko-Cantelli or Donsker if the union of the k coordinate classes is Glivenko-Cantelli or Donsker.

Glivenko-Cantelli and Donsker function classes are difficult to verify by definition. A usual sufficient condition involves the
concept of bracketing number and bracketing integral.

Definition A.2 (Bracketing Number and Bracketng Integral). For a function u ∈ U , we define its Lr(P)-norm as ‖u‖P,r =

(P |u|r)1/r. Given two functions l and h with finite Lr(P)-norm (need not to be in U), we define the bracket [l, h] as all
functions f with l ≤ f ≤ h in the whole domain. An ε-bracket in Lr(P) is a bracket [l, h] with P|h− l|r < εr. We define
the bracketing number N[](ε,U , Lr(P)) as the minimal number of ε- brackets needed to cover U , i.e. each function u ∈ U
is contained in a ε- bracket. The speed of growth of bracketing number are described using the bracketing integral.

J[] (δ,U , Lr(P)) =

∫ δ

0

√
logN[] (ε,U , Lr(P))dε. (18)

Next two propositions give us sufficient conditions for a measurable function class to be Glivenko-Cantelli or Donsker.

Proposition A.3 (Glivenko-Cantelli (Van Der Vaart et al., 1996)). Every function class U of measurable functions such that
for any ε > 0,

N[](ε,U , L1(P)) <∞

is P-Glivenko-Cantelli.

Proposition A.4 (Donsker(Van Der Vaart et al., 1996)). Every function class U of measurable functions with

J[] (1,U , L2(P)) <∞

is P-Donsker.

It is obvious that Glivenko Cantellli and Donsker function class has the following relation.

Proposition A.5. Every Donsker function class is Glivenko Cantelli.
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A.1.2. Z-ESTIMATOR MASTER THEOREM

Our central tool will be the following Z-Estimator Master Theorem. It provides sufficient condition for asymptotic normality
of Z-estimators and bootstrapping Z-estimators. We use this lemma to prove both asymptotic normality and distributional
consistency.

Lemma A.6 (Z-Estimator Master Theorem(Kosorok, 2008)). Let u(θ, τ ) : XH → RHd be a Borel-measurable function
with τ ∈ XH . Let

U(θ) = Eτu(θ, τ ), UK(θ) =
1

K

K∑
k=1

u(θ, τk), U◦K(θ) =
1

K

K∑
k=1

Wku(θ, τk),

where W ◦ = (W1,W2, ...,WK)
> is either vanilla bootstrapping weights or multiplier bootstrapping weights. When W ◦ is

vanilla bootstrapping weights, W ◦ follows multinomial distribution with parameter (1/K, 1/K, ..., 1/K) . When W ◦ is
multiplier bootstrapping weights, we have Wk = Kuk

ūK
, where uk are i.i.d samples from distribution of random vector U

which satisfies (15).

Let Θ ⊂ Rd be compact, and assume θ∗ ∈ int(ΘH) satisfies U (θ∗) = 0. Assume the following:

• (i) For any sequence
{
θl
}
∈ int ΘH , U

(
θl
)
→ 0 implies

∥∥θl − θ∗∥∥→ 0;

• (ii) The class U =
{
u(θ, τ ) : θ ∈ ΘH

}
is P-Glivenko-Cantelli;

• (iii) For some δ > 0, the class Uδ :=
{
u(θ, τ ) : θ ∈ ΘH , ‖θ − θ∗‖ ≤ δ

}
is P -Donsker

• (iv) E ‖u(θ, τ )− u(θ∗, τ )‖2 → 0 as ‖θ − θ∗‖ → 0.

• (v) E ‖u(θ∗, τ )‖2 <∞, and U(θ) is differentiable at θ∗ with non-singular Jacobian matrix V (θ∗).

• (vi) UK(θ̂K) = o(K−1/2) and U◦K(θ̂◦K) = o(K−1/2).

Then, we have √
K
(
θ̂K − θ∗

)
d→ N

(
0, V (θ∗)−1E

[
u(θ∗, τ )u(θ∗, τ )>

] [
V (θ∗)−1

]>)
and √

K
(
θ̂◦K − θ̂K

)
d→ N

(
0, k0V (θ∗)−1E

[
u(θ∗, τ )u(θ∗, τ )>

] [
V (θ∗)−1

]>)
.

conditionally on τ1, ..., τK . When we use vanilla bootstrap, k0 = 1; when we use multiplier bootstrap, k0 = η2

m2 , where m
and η2 are population mean and variance of distribution of bootstrapping weights.

A.1.3. COMPLETION OF THE PROOF OF ASYMPTOTIC NORMALITY

All we need to do is to verify that function classZ satisfies all conditions in Z-Estimator Master Theorem. From compactness
of Θ and the uniqueness of root of Z(θ) in the assumption of Theorem 6.1, (i) and (v) is verified. By continuity of z(θ, τ )
with respect to θ, (iv) holds. (vi) holds by letting λ = o(K−1/2).

Next we will prove (ii) and (iii). Since every Donsker function class is Glivenko-Cantelli, we only need to prove (iii) for
any δ > 0. Then (ii) can be proven by letting δ = diam(Θ). Since f(θ, φ) is third times continuously differentiable in a
compact set Θ×Ψ, f(θ, φ) has continuous derivatives up to third order. We denote α = (α1, α2, ..., αd) as a multi-index.
We define the order of α or the degree of α as

|α| = α1 + α2 + · · ·+ αn

and

∂αθ f(θ, φ) = ∂α1

θ1
∂α2

θ2
· · · ∂αdθd f =

∂|α|f

∂θα1
1 ∂θα2

2 · · · ∂θ
αd
d

(19)

We denote for l = 1, 2, 3,
κl := sup

θ∈Θ,φ∈[0,1]m
sup
|α|=l

|∂αθ f(θ, φ)| <∞. (20)
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Then
sup

θ∈Θ,φ∈[0,1]m
‖∇θf(θ, φ)‖2 ≤

√
dκ1,

and
sup

θ∈Θ,φ∈[0,1]m

∥∥∇2
θf(θ, φ)

∥∥
2
≤ sup
θ∈Θ,φ∈[0,1]m

∥∥∇2
θf(θ, φ)

∥∥
F
≤ dκ2.

where ‖·‖F is Frobenius norm. This implies ‖f(θ, φ)− f(θ′, φ)‖2 ≤
√
dκ1 ‖θ − θ′‖2 and ‖∇θf(θ, φ)−∇θf(θ′, φ)‖2 ≤

dκ2 ‖θ − θ′‖2 for every θ, θ′ ∈ Θ and φ ∈ Ψ. In the following proof, we denote θi = (θi>1 , θi>2 , ..., θi>H )> ∈ ΘH for
i = 1, 2 and θiH+1 = 0. We use τ to represent a random trajectory. We define

εj,h := f
(
θ∗j , φ(sh, ah)

)
− r (sh, ah)−

∫
A
f
(
θ∗j+1, φ(sh+1, a

′)
)
π (a′ | sh+1) da′,

then since for any (s, a) ∈ S×A, r(s, a) ∈ [0, 1],we haveQh(s, a) = f(θ∗h, φ(s, a)) ∈ [0, H−h+1] and |εj,h| ≤ H−h+1
for h, j ∈ [H]. Further for i = 1, 2 we define

Y ij,h := f
(
θij , φ(sh, ah)

)
− r (sh, ah)−

∫
A
f
(
θij+1, φ(sh+1, a)

)
π (a | sh+1) da

Therefore, we have∣∣z (θ1, τ
)
− z

(
θ2, τ

)∣∣2
≤

H∑
j=1

∣∣∣∣∣
H∑
h=1

Y 1
j,h · ∇θf

(
θ1
j , φ(sh, ah)

)
− Y 2

j,h · ∇θf
(
θ2
j , φ(sh, ah)

)∣∣∣∣∣
2

≤2

H∑
j=1

∣∣∣∣∣
H∑
h=1

Y 1
j,h

[
∇θf

(
θ1
j , φ(sh, ah)

)
−∇θf

(
θ2
j , φ(sh, ah)

)]∣∣∣∣∣
2

+ 2

H∑
j=1

∣∣∣∣∣
H∑
h=1

(
Y 1
j,h − Y 2

j,h

)
∇θf

(
θ2
j , φ(sh, ah)

)∣∣∣∣∣
2

≤2d2κ2
2

H∑
j=1

(
H∑
h=1

∣∣Y 1
j,h

∣∣ · ∣∣θ1
j − θ2

j

∣∣)2

+ 2dκ2
1

H∑
j=1

(
H∑
h=1

∣∣Y 1
j,h − Y 2

j,h

∣∣)2

.

Next we bound Y ij,h. Since∣∣Y 1
j,h

∣∣ ≤ |εj,h|+ ∣∣εj,h − Y 1
j,h

∣∣
≤ (H − h+ 1) + κ1

√
d
[∣∣θ∗j − θ1

j

∣∣+
∣∣θ∗j+1 − θ1

j+1

∣∣] ≤ H + 2κ1

√
dδ.

and ∣∣Y 1
j,h − Y 2

j,h

∣∣ ≤ κ1

√
d
[∣∣θ1

j − θ2
j

∣∣+
∣∣θ1
j+1 − θ2

j+1

∣∣] ,
we have ∣∣z (θ1, τ

)
− z

(
θ2, τ

)∣∣2
≤2d2κ2

2

H∑
j=1

[(
H2 + 2κ1δH

)2( H∑
h=1

∣∣θ1
j − θ2

j

∣∣2)]+ 2κ4
1H

2

 H∑
j=1

∣∣θ1
j − θ2

j

∣∣+
∣∣θ1
j+1 − θ2

j+1

∣∣2

≤
[
2κ2

2

(
H2 + 2κ1

√
dδH

)2

H + 8d2κ4
1H

3

] ∥∥θ1 − θ2
∥∥2

2
.

We denote C1 > 0 as where

C2
1 = 2d2κ2

2

(
H2 + 2κ1

√
dδH

)2

H + 8d2κ4
1H

3. (21)

Then
∣∣z (θ1, τ

)
− z

(
θ2, τ

)∣∣ ≤ C1

∥∥θ1 − θ2
∥∥

2
. Therefore, for every ‖θ − θ∗‖ ≤ δ, we consider the high-dimensional

bracket
[z(θ, τ )− C1

√
Hdε, z(θ, τ ) + C1

√
Hdε],
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where ε is the Hd-dimension vector with every entry being ε. Since the brackets we consider are one-dimensional, these
brackets have L2(P)-size of 2C1

√
Hdε. If

∥∥θ1 − θ2
∥∥
∞ ≤ ε, then

∣∣z (θ1, τ
)
− z

(
θ2, τ

)∣∣ ≤ √HdC1ε, which implies
z(θ2, τ ) ∈ [z(θ1, τ )−C1

√
Hdε, z(θ1, τ ) +C1

√
Hdε], and every dimension of z(θ2, τ ) is contained in the corresponding

one-dimensional bracket. And since every dimension of θ1 − θ2 spans within a distance no more than 2δ, we can partition
every dimension of ‖θ − θ∗‖ ≤ δ into grids with meshwidth being 2ε. By dividing like this, we will get no more than ( δε )Hd

hypercubes. For every ‖θ − θ∗‖ ≤ δ, there exists one hypercube whose center θc satisfies ‖θ − θc‖∞ ≤ ε. Then we have
z(θ, τ ) ∈ [z(θc, τ )− C1

√
Hdε, z(θc, τ ) + C1

√
Hdε], and every component of z(θ, τ ) is contained in the corresponding

one-dimensional bracket. Therefore, every function of Zδ is contained in a bracket. Summing over all brackets, we have

N[]

(
2C1

√
Hdε,Zδ, Lr(P)

)
≤ Hd

(
δ

ε

)Hd
.

This implies

N[] (ε,Zδ, Lr(P)) ≤ Hd

(
2C1

√
Hdδ

ε

)Hd
. (22)

Because that the bracketing number is a decreasing function of ε, whether the bracketing integral converges or not depends
on the asymptotic behavior of bracketing number for ε→ 0. From the estimation above,

√
logN[](ε,Zδ, L2(P)) is of order

O(
√

log( 1
ε )), the integral of which converges. By Glibenko-Cantelli’s Theorem and Donsker’s Theorem, we know Z is

both Glivenko Cantelli and Donsker. In this way, we verify all conditions of Z-Estimator Master Theorem and we have

√
K
(
θ̂K − θ∗

)
d−→ N

(
0,

1

H
Σ−1
∗ ΩΣ−>∗

)
; (23)

and conditioned on τ1, τ2, ..., τK ,

√
K
(
θ̂◦K − θ̂K

)
d−→ N

(
0,
k0

H
Σ−1
∗ ΩΣ−>∗

)
; (24)

where

Σ∗ =
1

H

∂

∂ξ
Z (ξ)

∣∣∣∣
ξ=θ∗

and Ω =
1

H
Eτ

[
z(ξ, τ )z(ξ, τ )>

]∣∣
ξ=θ∗

. (25)

When we adopt vanilla bootstrap strategy, k0 = 1, when we adopt multiplier bootstrap, k0 = η2

m2 . Finally we compute the
covariance matrix in the asymptotic variance. Below, we write out Σ∗ as a partitioned matrix:

Σ∗ =


Σ1 −A1 0 . . . 0
0 Σ2 −A2 . . . 0
0 0 Σ3 . . . 0
...

...
...

...
...

0 0 0 . . . ΣH


where for h ∈ [H],

Σh =
1

H
Eτ

{
H∑
h′=1

(
f(θ∗h, φ(sh′ , ah′))− r(sh′ , ah′)−

∫
A
f(θ∗h+1, φ(sh′+1, a))π(a | sh′+1)da

)
∇2
θθf(θ∗h, φ(sh′ , ah′))

+

H∑
h′=1

(
∇θf(θ∗h, φ(sh′ , ah′))

)>(
∇θf(θ∗h, φ(sh′ , ah′))

)}
.

Since

Eτ

{
f(θ∗h, φ(sh′ , ah′))− r(sh′ , ah′)−

∫
A
f(θ∗h+1, φ(sh′+1, a))π(a | sh′+1)da

∣∣∣∣sh′ , ah′} = 0,

by taking conditional expectation we find the first term in the expectation vanishes and

Σh =
1

H
Eτ

{
H∑
h′=1

(
∇θf(θ∗h, φ(sh′ , ah′))

)>(
∇θf(θ∗h, φ(sh′ , ah′))

)}
. (26)
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For h ∈ [H − 1],

Ah = − 1

H
∇βEτ

{
H∑
h′=1

(
f(α, φ(sh′ , ah′))− r(sh′ , ah′)−

∫
A
f(β, φ(sh′+1, a))π(a | sh′+1)da

)
∇θf(α, φ(sh′ , ah′))

}∣∣∣∣
α=θ∗h,β=θ∗h+1

.

Here the gradient means partial derivatives with respect to β and take α = θ∗h, β = θ∗h+1. Therefore, the inverse of Σ∗ can
be expressed as

Σ−1
∗ =


Σ−1

1 Σ−1
1 A1Σ−1

2 Σ−1
1 A1Σ−1

2 A2Σ−1
3 . . . Σ−1

1 A1Σ−1
2 ...AH−1Σ−1

H

0 Σ−1
2 Σ−1

2 A2Σ−1
3 . . . Σ−1

2 A2Σ−1
3 ...AH−1Σ−1

H

0 0 Σ−1
3 . . . Σ−1

3 A3Σ−1
4 ...AH−1Σ−1

H
...

...
...

. . .
...

0 0 0 . . . Σ−1
H

 .

Moreover we express Ω as (Ωi,j)i,j∈[H] where Ωi,j ∈ Rd×d is

Ωi,j =
1

H

H∑
h1=1

H∑
h2=1

E

[(
∇θf (θ∗i , φ(sh1

, ah1
))

)>(
∇θf

(
θ∗j , φ(sh2

, ah2
)
))

εi,h1
εj,h2

]
∈ Rd×d

where εj,h is defined in Theorem 6.1. We take the conditional expectation to find that the cross terms vanish. Therefore the
expression of Ωij can be simplified as

Ωi,j = E

[
1

H

H∑
h=1

(
∇θf (θ∗i , φ(sh, ah))

)>(
∇θf

(
θ∗j , φ(sh, ah)

))
εi,hεj,h

]
∈ Rd×d. (27)

Therefore, we have the following convergence(the second one is conditional on the original data).

√
K
(
θ̂1 − θ1

)
,
√
K
(
θ̂◦1 − θ̂1

)
d−→ N

0,
1

H

H∑
h1=1

H∑
h2=1

(
h1−1∏
i=1

Σ−1
i Ai

)
Σ−1
h1

Ωh1,h2Σ−1
h2

h2−1∏
j=1

Σ−1
j Aj

>
 ;

(28)
Finally we use multivariate delta method and eventually get

√
K (v̂π − vπ) ,

√
K (v̂◦π − v̂π)

d−→ N(0, σ2), (29)

where

σ2 : =

H∑
h1=1

H∑
h2=1

(∫
S×A

∇θf(θ∗1 , φ(s, a))π(a | s)ξ(s)dads
)

·

(
h1−1∏
i=1

Σ−1
i Ai

)
Σ−1
h1

Ωh1,h2
Σ−1
h2

h2−1∏
j=1

Σ−1
j Aj

>(∫
S×A

∇θf(θ∗1 , φ(s, a))π(a | s)ξ(s)dads
)>

.

To simplify expressions for Σh and Ah we define

F (α, β) :=
1

2
∇αEµ̄

{[
f(α, φ(s, a))− r(s, a) +

∫
A
f(β, φ(s′, a′))π(a′ | s′)da′

]2
}

for α, β ∈ Θ. We notice that

Σh = ∇>αF
∣∣
α=θ∗h,β=θ∗h+1

and Ah = ∇>β F
∣∣
α=θ∗h,β=θ∗h+1

.
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Here we define another operator T to simplify the expression for σ2. Policy completeness under parameterized F can induce
a mapping on Θ, which is defined as

fTθ(s, a) = (Pfθ) (s, a)? (30)

That is, Tθ is the corresponding parameter of Pf . Note that F (θ∗h, θ
∗
h+1) = 0 and F (·, ·) is continuously differentiable

in Θ × Θ. Since the Jacobian matrix of Z(θ) at θ∗ is non-singular and is partitioned diagonal matrix with Σh on its
diagonal, we have Σh is non-singular for h ∈ [H]. Therefore, we apply the theorem of implicit function and get that,
for any h ∈ [H], there exists unique vector-valued function Gh defined on a neighbourhood of θ∗h+1 inside Θ such that
F (Gh(θ∗h+1), θ∗h+1) = 0. By definition of the operator T, without loss of generality we let each Gh be a confinement of T.
That is, T is actually the operator defined on every neighbourhood of θ∗h which satisfies (30). We denote the Jacobian matrix
of T at θ as DT(θ). From theorem of implicit functions we know T has continuous Jacobian matrix on neighborhood of any
θ∗h. If we use DT(·) to denote its Jacobian matrix, then

DT(θ∗h+1) = Σ−1
h Ah.

Therefore, (∫
S×A

∇θ∗1 f(θ∗1 , φ(s, a))π(a | s)ξ(s)dads
)(h−1∏

i=1

Σ−1
i Ai

)

=

(∫
S×A

∇θ∗1 f(θ∗1 , φ(s, a))π(a | s)ξ(s)dads
)(h−1∏

i=1

DT(θi+1)

)

=E
[
∇θ∗hf

(
Th−1 (θ∗h) , φ(s1, a1)

) ∣∣∣∣s1 ∼ ξ(·), a1 ∼ π(· | s1)

]
.

This expectation is actually dependent on transition probability and independent of policy, hence we can transform it to
expectation over population generated by target policy π.(∫

S×A
∇θ∗1 f(θ∗1 , φ(s, a))π(a | s)ξ(s)dads

)(h−1∏
i=1

Σ−1
i Ai

)

=Eπ
[
∇θ∗hf

(
Th−1 (θ∗h) , φ(s1, a1)

) ∣∣∣∣s1 ∼ ξ(·), a1 ∼ π(· | s1)

]
=Eπ

[
∇θ∗h

∫
S×A

f(Th−2 (θ∗h) , φ(s2, a2))π(a2 | s2)p(s2 | s1, a1)da2ds1

∣∣∣∣s1 ∼ ξ(·), a1 ∼ π(· | s1)

]
=Eπ

[
∇θ∗hf(Th−2 (θ∗h) , φ(s2, a2))

∣∣∣∣s1 ∼ ξ(·), a1 ∼ π(· | s1)

]
= . . .

=Eπ
[
∇θ∗hf (θ∗h, φ(sh, ah))

∣∣∣∣s1 ∼ ξ(·), a1 ∼ π(· | s1)

]
= ν>h . (31)

The last equation is due to the definition of ν>h in Theorem 6.1. Then we have

σ2 =
1

H

H∑
h1,h2=1

ν>h1
Σ−1
h1

Ωh1,h2Σ−1
h2
νh2 . (32)

This finishes our proof for asymptotic normality.

A.2. Proof of Corollary 6.3

This corollary can be derived directly from the following lemma.
Lemma A.7 (Prohorov’s Theorem, Theorem 2.4 in (Van der Vaart, 2000)). Let Xn be random variables in Rk and
Xn

d−→ X for some X, then {Xn : n ∈ N} is uniformly tight, i.e. for every δ > 0, there exists a constant B, such that

sup
n∈N

P (‖Xn‖2 > B) < δ.
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A.3. Proof of Corollary 7.2

We define Φ(t) := P
(
N(0, k0σ

2) ≤ t
)
, where σ2 is defined as (7) and N(0, σ2) represents a random variable which

follows this distribution. From the asymptotic normality and distributional consistency, we have when K →∞,

PD
(√

K (v̂π − vπ) ≤ t
)
→ P

(
N(0, k0σ

2) ≤
√
k0t
)

= Φ(
√
k0t), PW◦|D

(√
K (v̂◦π − v̂π) ≤ t

)
→ Φ (t) .

According to lemma 21.2 in (Van der Vaart, 2000), denote the cumulative distribution functions of
√
K (v̂◦π − v̂π) as ΦK ,

then ΦK
d−→ Φ implies Φ−1

K
d−→ Φ−1. Therefore,

√
Kqπδ = Φ−1

K (δ)→ Φ−1 (δ) . Therefore,

PDW◦
(
v̂π − vπ ≥

1√
k0

qπδ
2

)
= PDW◦

(
√
K (v̂π − vπ) ≥

√
K

k0
qπδ

2

)
→ PDW◦

(
N
(
0, σ2

)
≥ 1√

k0

Φ−1

(
δ

2

))
= 1−δ

2
.

We can bound PDW◦
(
v̂π − vπ ≤ − 1√

k0
qπ
1− δ2

)
similarly, and by an argument of union bound we can get the result for

asymptotic confidence interval.

B. Proof of Theorem 6.5
We are going to decompose FQE error v̂π − vπ into first order term and higher order term. Since we let λ = 0, we do not
have bias term containing λ. Since we have

v̂π − vπ =

∫
S×A

[
f(θ̂1, φ(s, a))− f(θ∗1 , φ(s, a))

]
π(a | s)ξ(s)dads,

the first order term will be ∫
S×A

[
∇θf(θ∗1 , φ(s, a)) ·

(
θ̂1 − θ∗1

)]
π(a | s)ξ(s)dads.

Next we expand θ̂1 − θ1. From multivariate Taylor expansion we have
√
K
[
Z(θ̂K)− Z(θ∗)

]
=
√
KHΣ∗(θ̂K − θ∗) +

√
KRK . (33)

where RK is Taylor remainder and Σ∗ is defined in (A.1.3). Notice that Z(θ∗) = ZK(θ̂K) = 0, we have

√
K
(
θ̂K − θ∗

)
=

√
K

H
Σ−1
∗

(
Z(θ̂K)− Z(θ∗)

)
−
√
K

H
Σ−1
∗ RK

= − 1√
KH

Σ−1
∗

K∑
k=1

z (θ∗, τk) +
Σ−1
∗
H

(
√
KEτ z(θ̂K , τ ) +

1√
K

K∑
k=1

z(θ∗, τk)

)
−
√
K

H
Σ−1
∗ RK .

(34)

Since the true value function is explicitly dependent only on θ∗1 , we take the first d entries of this decomposition. We denote
RK,h as the vector comprising (h− 1)d+ i-th to hd-th entry of RK , hence

θ̂1 − θ∗1 = − 1

KH

H∑
h=1

(
h−1∏
i=1

Σ−1
i Ai

)
Σ−1
h

(
K∑
k=1

z(h)(θ
∗, τk)

)

+
1

H

H∑
h=1

(
h−1∏
i=1

Σ−1
i Ai

)
Σ−1
h

(
Eτ z(h)(θ̂K , τ ) +

1

K

K∑
k=1

z(h)(θ
∗, τk)

)
− 1

H

H∑
h=1

(
h−1∏
i=1

Σ−1
i Ai

)
Σ−1
h RK,h.

Therefore, the first order term of total error is

I1 := − 1

KH

∫
S×A

[
∇θf(θ∗1 , φ(s, a)) ·

H∑
h=1

(
h−1∏
i=1

Σ−1
i Ai

)
Σ−1
h

(
K∑
k=1

z(h)(θ
∗, τk)

)]
π(a | s)ξ(s)dads, (35)

and the remaining part will be the higher order term.

I2 := v̂π − vπ − I1. (36)
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B.1. First Order Term

The only difference between Variance aware error bound (9) and Reward-free error bound (10) is the contraction technique
for the first order term. We deal with them separately.

B.1.1. VARIANCE AWARE ERROR BOUND

We first bound I1 using Bernstein’s Inequality (lemma E.1). From this upper bound we see the dependency of its dominant
term on asymptotic variance σ2 in Theorem 6.1. By the same argument of (31), we have(∫

S×A
∇θ∗1 f (θ∗1 , φ(s, a))π(a | s)ξ(s)dads

)(h−1∏
i=1

Σ−1
i Ai

)
= ν>h .

We define

ek := − 1

H

∫
S×A

[
∇θf(θ1, φ(s, a)) ·

H∑
h=1

(
h−1∏
i=1

Σ−1
i Ai

)
Σ−1
h · z(h)(θ

∗, τk)

]
π(a | s)ξ(s)dads.

Then by the derivation in (31), we have

ek = − 1

H

H∑
h=1

ν>h Σ−1
h z(h)(θ

∗, τk)

= − 1

H

H∑
h=1

H∑
j=1

ν>h Σ−1
h

[
∇>θ f(θ∗h, φ(skj , a

k
j ))

]
εkh,j ;

The first order term will be independent sum of ek,

I1 =
1

K

K∑
k=1

ek.

From assumption 6.4 and because of
∣∣∣εkh,j∣∣∣ ≤ H − h+ 1, we can bound ek by

|ek| ≤
1

H

H∑
h=1

H∑
j=1

∥∥∥ν>h Σ
− 1

2

h

∥∥∥
2

∥∥∥Σ
− 1

2

h · ∇>θ f(θh, φ(skj , a
k
j ))
∥∥∥

2

∣∣εkh,j∣∣
≤
√
C2d

H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh.

Then we calculate the variance for ek. By definition of θ∗h, we have

E
[[
∇>θ f(θ∗h, φ(skj , a

k
j ))

]
εkh,j

]
= 0,

hence E [ek] = 0 and Var [ek] = E
[
e2
k

]
for k ∈ [K]. We have

E
[
e2
k

]
=

1

H2

H∑
h1=1

H∑
h2=1

H∑
j=1

H∑
l=1

[
ν>h1

Σ−1
h1

E
[(
∇>θ f(θ∗h1

, φ(skj , a
k
j ))

)(
∇θf(θ∗h2

, φ(skl , a
k
l ))

)
εkh1,jε

k
h2,l

]
Σ−1
h2
νh2

]
.

By conditional expectation, when j < l, we have

E
[(
∇>θ f(θ∗h1

, φ(skj , a
k
j ))

)(
∇θf(θ∗h2

, φ(skl , a
k
l ))

)
εkh1,jε

k
h2,l

]
=E

{
E
[(
∇>θ f(θ∗h1

, φ(skj , a
k
j ))

)(
∇θf(θ∗h2

, φ(skl , a
k
l ))

)
εkh1,jε

k
h2,l

∣∣∣∣skj , akj ]} = 0,
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hence all cross term vanish and

E
[
e2
k

]
=

1

H2

H∑
h1=1

H∑
h2=1

H∑
j=1

[
ν>h1

Σ−1
h1

E
[(
∇>θ f(θ∗h1

, φ(skj , a
k
j ))

)(
∇θf(θ∗h2

, φ(skj , a
k
j ))

)
εkh1,jε

k
h2,j

]
Σ−1
h2
νh2

]

=
1

H

H∑
h1=1

H∑
h2=1

H∑
j=1

[
ν>h1

Σ−1
h1

Ωh1,h2
Σ−1
h2
νh2

]
= σ2,

where Ωh1,h2
and σ2 are defined as in Theorem 6.1. We use lemma E.1, then we have for any ε > 0,

P

(∥∥∥∥∥
K∑
k=1

ek

∥∥∥∥∥ ≥ ε
)
≤ 2 exp

− ε2/2

Kσ2 + ε
√
C2d

∑H
h=1(H − h+ 1)

√
ν>h Σ−1

h νh/3


We choose

ε := ln

(
2

δ

)[√
2Kσ +

2

3

√
C2d

H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

]
,

then RHS is bounded by δ > 0. Therefore, with probability at least 1− δ,

|I1| ≤ ln

(
2

δ

)[√
2σ2

K
+

2

3K

√
C2d

H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

]
.

This gives one upper bound for the first order term. Notice that this bound depends on asymptotic variance σ2. When we
apply this bound into final upper bound, we get variance-aware error bound (9).

B.1.2. REWARD-FREE ERROR BOUND

Next, we are going to replace this dependence on σ2 with a dependence on a reward-free χ2 divergence, with which we give
an upper bound for the worst instance of reward. The main difference is that we use another decomposition of the first order
term and use Freedman’s Inequality as our central tool. We can simplify the expression for I1 as

I1 = − 1

KH

K∑
k=1

H∑
h=1

H∑
j=1

ν>h Σ−1
h

[
∇>θ f

(
θ∗h, φ

(
skj , a

k
j

))]
εkh,j ,

where
εkh,j = f

(
θ∗h, φ

(
skj , a

k
j

))
− r

(
skj , a

k
j

)
−
∫
A
f(θ∗h+1, φ(skj+1, a

′))π(a′ | skj+1)da′.

Below we can decompose I1 into N = KH items.We denote εh,n = εkh,j and (sn, an) = (skj , a
k
j ) if n = (h− 1)K + k.

Then if we define

un := −
H∑
h=1

ν>h Σ−1
h

[
∇>θ f (θ∗h, φ (sn, an))

]
εh,n,

then

I1 =
1

N

N∑
n=1

un.

Define Fn as the σ field generated by s1, a1, ...., sn, an, then {Fn}Nn=1 is a filtration. Since

E
[
∇>θ f (θ∗h, φ (sn, an))

[
f (θ∗h, φ (sn, an))− r (sn, an)−

∫
A
f
(
θ∗h+1, φ (sn+1, a

′)
)
π (a′ | sn+1) da′

] ∣∣∣∣sn, an]
=∇>θ E

[[
f (θ, φ (sn, an))− r (sn, an)−

∫
A
f
(
θ∗h+1, φ (sn+1, a

′)
)
π (a′ | sn+1) da′

]2 ∣∣∣∣sn, an
] ∣∣∣∣

θ=θ∗h

= 0,
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we have E [un | Fn] = 0, and {un}Nn=1 is a martingale difference sequence. We use Freedman’s Inequality (lemma E.2) to
analyze I1. Under data coverage assumption (Assumption 6.4), we have

|un| ≤
H∑
h=1

∥∥∥ν>h Σ
− 1

2

h

∥∥∥∥∥∥Σ
− 1

2

h ∇
>
θ f
(
θ∗h, φ

(
skj , a

k
j

))∥∥∥ |εh,n|
≤
√
C2d

H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh.

Next we estimate the conditional variance Var [un | Fn] .

Var [un | Fn] = E

( H∑
h=1

ν>h Σ−1
h

[
∇>θ f (θ∗h, φ (sn, an))

]
εh,n

)2 ∣∣∣∣Fn


≤

 H∑
h=1

√
ν>h Σ−1

h νh

H − h+ 1
Var

(
r (sn, an) +

∫
A
f (θ∗h, φ (sn+1, a

′))π (a′ | sn+1) da′
∣∣∣∣Fn)


·

 H∑
h=1

H − h+ 1√
ν>h Σ−1

h νh

(
ν>h Σ−1

h

[
∇>θ f (θ∗h, φ (sn, an))

])2 (Cauchy-Schwarz)

Since r (sn, an) +
∫
A f (θ∗h, φ (sn+1, a

′))π (a′ | sn+1) da′ ∈ [0, H − h+ 1], we have

Var

(
r (sn, an) +

∫
A
f (θ∗h, φ (sn+1, a

′))π (a′ | sn+1) da′
)
≤ 1

4
(H − h+ 1)2,

then

Var [un | Fn] ≤ 1

4

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

)
·

 H∑
h=1

H − h+ 1√
ν>h Σ−1

h νh

(
ν>h Σ−1

h

[
∇>θ f (θ∗h, φ (sn, an))

])2 ,

and

N∑
n=1

Var [un | Fn]

≤N
4

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

) H∑
h=1

H − h+ 1√
ν>h Σ−1

h νh

ν>h Σ−1
h

[
1

N

N∑
n=1

∇>θ f (θ∗h, φ (sn, an))∇θf (θ∗h, φ (sn, an))

]
Σ−1
h νh


≤N

4

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

)(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

∥∥∥∥∥Σ
− 1

2

h

[
1

N

N∑
n=1

∇>θ f (θ∗h, φ (sn, an))∇θf (θ∗h, φ (sn, an))

]
Σ
− 1

2

h

∥∥∥∥∥
)
.

where we use µ>Σ−1XΣ−1µ ≤ µ>Σ−1µ ·
∥∥Σ−1/2XΣ−1/2

∥∥
2

for any µ ∈ Rd, X ∈ Rd×d. We use a special case of
lemma C.1 when h1 = h2 = h and we have with probability at least 1− δ

2H ,∥∥∥∥∥Σ
− 1

2

h

[
1

N

N∑
n=1

∇>θ f (θ∗h, φ (sn, an))∇θf (θ∗h, φ (sn, an))

]
Σ
− 1

2

h

∥∥∥∥∥ ≤ 1+

√
2C2d

K
log

(
4dH

δ

)
+

2 (C2d+ 1)

3K
log

(
4dH

δ

)
.

By union bound, we have with probability at least 1− δ
2 , for all h ∈ [H], the bounds above hold simultaneously and hence

N∑
n=1

Var [un | Fn] ≤ N

4

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

)2(
1 +

√
2C2d

K
log

(
4dH

δ

)
+

2 (C2d+ 1)

3K
log

(
4dH

δ

))
.
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We take σ2
0 equals the right hand side of inequality above, then

P

(
N∑
n=1

Var [un | Fn] ≥ σ2
0

)
≤ δ

2
.

Freedman’s Inequality implies that for any ε > 0, we have

P

(∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≥ ε,
N∑
n=1

Var [un | Fn] ≤ σ2
0

)
≤ 2 exp

− ε2/2

σ2
0 + ε

√
C2d

∑H
h=1(H − h+ 1)

√
ν>h Σ−1

h νh/3

 .

We take

ε :=

√
2 log

(
4

δ

)
σ0 + log

(
4

δ

) 2
√
C2d

∑H
h=1(H − h+ 1)

√
ν>h Σ−1

h νh

3
,

then

P

(∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≥ ε
)
≤ P

(
N∑
n=1

Var [un | Fn] ≥ σ2
0

)
+ P

(∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≥ ε,
N∑
n=1

Var [un | Fn] ≤ σ2
0

)
≤ δ

2
+
δ

2
= δ

Eventually we use
√

1 + x ≤ 1 + x
2 for any x ≥ 0 to get with probability at least 1− δ,

|I1| ≤
√

log(4/δ)

2KH

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

)
+ ∆I1,

where

∆I1 =

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

)[
7

6K

√
C2d

H
log

(
4dH

δ

)
+

C2d+ 1

3
√

2HK
3
2

log

(
4dH

δ

) 3
2

]

We define the function classes
Gh =

{
(∇θf (θ∗h, φ(s, a))) · µ : µ ∈ Rd

}
(37)

Notice that by Cauchy-Schwarz Inequality, we have√
ν>h Σ−1

h νh = sup
µ∈Rd

µ>νh√
µ>Σhµ

.

For µ ∈ Rd, we take g ∈ Gh such that g(s, a) = (∇θf (θ∗h, φ(s, a))) · µ for any (s, a) ∈ S ×A. Then

µ>νh = Eπ [g(sh, ah) | s1 ∼ ξ(·)] .

Additionally, we have

µ>Σhµ = Eτ

 1

H

H∑
j=1

[(
∇θf (θ∗h, φ(sj , aj))

)
· µ
]2
 = Eτ

{
1

H

H∑
h=1

g2 (sh, ah)

}

Then, √
ν>h Σ−1

h νh = sup
µ∈Rd

µ>νh√
µ>Σhµ

= sup
g∈Gh

Eπ [g (sh, ah) | s1 ∼ ξ(·)]√
E
[

1
H

∑H
h=1 g

2 (sh, ah)
] .

We substitute this supremum into upper bound and this concludes the proof for the first order term.
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B.2. Higher Order Term

The higheer order term comprises three parts: one part comes from higher order term of f(θ̂1, φ)− f(θ∗1 , φ), the other two
parts come from higher order term and Taylor remainder of θ̂1 − θ∗1 . We denote respectively as

I21 :=

∫
S×A

[
f
(
θ̂1, φ(s, a)

)
− f (θ∗1 , φ(s, a))−∇θf (θ∗1 , φ(s, a)) ·

(
θ̂1 − θ1

)]
π(a | s)ξ(s)dads;

I22 :=
1

H

∫
S×A

[
∇θf (θ∗1 , φ(s, a))

H∑
h=1

(
h−1∏
i=1

Σ−1
i Ai

)
Σ−1
h

(
Eτz(h)

(
θ̂K , τ

)
+

1

K

K∑
k=1

z(h) (θ∗, τk)

)]
π(a | s)ξ(s)dads;

I23 := − 1

H

∫
S×A

[
∇θf (θ∗1 , φ(s, a))

H∑
h=1

(
h−1∏
i=1

Σ−1
i Ai

)
Σ−1
h RK,h

]
π(a | s)ξ(s)dads.

We bound them separately. We keep the notation in (19) and use α = (α1, α2, ..., αd) as multi-index. If x = (x1, x2, ..., xd)

is a vector of same dimension, we denote xα := xα1
1 xα2

2 ...xαdd . Denote ∆θ∗1 := θ̂1 − θ∗1 , from Taylor’s Theorem, we have

f
(
θ̂1, φ(s, a)

)
− f (θ∗1 , φ(s, a))−∇θf (θ∗1 , φ(s, a)) ·

(
θ̂1 − θ∗1

)
=
∑
|α|=2

(∆θ∗1)
α

2
∂αf(θ∗1 + c∆θ∗1)

for some c ∈ (0, 1).
∑
|α|=2 denotes summation over all second order derivatives. We recall the definition of κl, l = 1, 2, 3,

κl := sup
θ∈Θ,φ∈Ψ|α|=l

sup |∂αθ f(θ, φ)| <∞,

where α = (α1, α2, . . . , αd) is a multi-index with order |α| = α1 + α2 + · · ·+ αn, and ∂αθ f(θ, φ) = ∂α1

θ1
∂α2

θ2
· · · ∂αdθd f =

∂|α|f

∂θ
α1
1 ∂θ

α2
2 ···∂θ

αd
d

.s Hence we have

|I21| ≤
κ2

2

∫
S×A

∣∣∣∣∣∣
∑
|α|=2

(∆θ∗1)
α

∣∣∣∣∣∣π(a | s)ξ(s)dads ≤ κ2

2
‖∆θ∗1‖

2
1 ≤

κ2d

2
‖∆θ∗1‖

2
2

From Corrollary 6.3, we have for every fixed K, with probability at least 1− δ, the event EK happens, where

EK :=

{∥∥∥θ̂K − θ∗∥∥∥
2
≤ B(δ)√

K

}
.

Under EK , we have ‖∆θ∗1‖
2
2 ≤

B(δ)2

K , hence

|I21| ≤
κ2dB(δ)2

2K
.

Next we bound I22. From (31) and definition of θ̂K , we have

I22 =
1

H

H∑
h=1

ν>h Σ−1
h

(
Eτ z(h)

(
θ̂K , τ

)
− Eτ z(h) (θ∗, τ ) +

1

K

K∑
k=1

z(h) (θ∗, τk)− 1

K

K∑
k=1

z(h)

(
θ̂K , τk

))
.

We use GK :=
√
K (PK − P) to denote empirical measure and we have

I22 =
1

H
√
K

GK

[
H∑
h=1

ν>h Σ−1
h

(
z(h)

(
θ̂K , τ

)
− z(h) (θ∗, τ )

)]
.

To bound this empirical process, we use lemma E.4. We define the following function class.

M :=

{
m(ξ, ·) = C3

H∑
h=1

ν>h Σ−1
h

(
z(h) (θ, τ )− z(h) (θ∗, τ )

)
+

1

2

∣∣∣∣ ‖θ − θ∗‖ ≤ B(δ)√
K

}
(38)



Off-Policy Fitted Q-Evaluation with Differentiable Function Approximators: Z-Estimation and Inference Theory

Since lemma E.4 requires all function in a certain class take values in [0, 1], the constant C3 and 1
2 in the expression make

each function inM satisfy this requirement and 1
2 will not influence bracketing number of this function class. Each function

inM is indexed by θ ∈ ΘH and is from (S ×A)
H to [0, 1]. We denote

B0 := sup
h∈[H]

√
ν>h Σ−2

h νh. (39)

Notice that here the K is fixed, hence without loss of generosity we let K ≥ B(δ)2. Then for every θ1, θ2 ∈ ΘH such that∥∥θi − θ∗∥∥ ≤ B(δ)√
K
≤ 1, we have∣∣ν>h Σ−1

h

(
z(h)

(
θ1, τ

)
− z(h)

(
θ2, τ

))∣∣
≤

H∑
j=1

∣∣∣∣ν>h Σ−1
h

(
f(θ1

h, φj)− f(θ2
h, φj) +

∫
A
f
(
θ2
h+1, φj+1

)
π (a′, sj+1) da′ −

∫
A
f
(
θ1
h+1, φj+1

)
π (a′, sj+1) da′

)
· ∇>θ f(θ1

h, φj)

∣∣∣∣
+

H∑
j=1

∣∣∣∣ν>h Σ−1
h

(
f(θ2

h, φj)− rj −
∫
A
f
(
θ2
h+1, φj+1

)
π (a′, sj+1) da′

)(
∇>θ f(θ1

h, φj)−∇>θ f(θ2
h, φj)

)∣∣∣∣
≤

H∑
j=1

√
ν>h Σ−2

h νh
√
dκ1

[ ∥∥θ1
h − θ2

h

∥∥+
∥∥θ1
h+1 − θ2

h+1

∥∥ ] ∥∥∇>θ f(θ1
h, φj)

∥∥
+

H∑
j=1

√
ν>h Σ−2

h νhdκ2

∥∥θ1
h − θ2

h

∥∥ ∣∣∣∣(f(θ2
h, φj)− rj −

∫
A
f
(
θ2
h+1, φj+1

)
π (a′, sj+1) da′

)∣∣∣∣
≤Hdκ2

1B0

[ ∥∥θ1
h − θ2

h

∥∥+
∥∥θ1
h+1 − θ2

h+1

∥∥ ]
+Hdκ2B0

∥∥θ1
h − θ2

h

∥∥ [(f(θ∗h, φj)− rj −
∫
A
f
(
θ∗h+1, φj+1

)
π (a′, sj+1) da′

)
+
√
dκ1

[ ∥∥θ∗h − θ2
h

∥∥+
∥∥θ∗h+1 − θ2

h+1

∥∥ ]] .
Therefore,∣∣∣∣∣

H∑
h=1

ν>h Σ−1
h

(
z(h)

(
θ1, τ

)
− z(h)

(
θ2, τ

))∣∣∣∣∣
≤H 3

2 dκ2
1B0

∥∥θ1 − θ2
∥∥+Hdκ2B0

H∑
h=1

(H − h+ 1)
∥∥θ1
h − θ2

h

∥∥+Hd
3
2κ1κ2B0

H∑
h=1

∥∥θ1
h − θ2

h

∥∥ [ ∥∥θ∗h − θ2
h

∥∥+
∥∥θ∗h+1 − θ2

h+1

∥∥ ]
≤
[
H

3
2 dκ2

1B0 +H
5
2 dκ2B0 + 2Hd

3
2κ1κ2B0

∥∥θ∗ − θ2
∥∥ ] ∥∥θ1 − θ2

∥∥
≤
[
H

3
2 dκ2

1B0 +H
5
2 dκ2B0 + 2Hd

3
2κ1κ2B0

] ∥∥θ1 − θ2
∥∥

A special case to the bound above is when θ1 = θ and θ2 = θ∗, this implies for arbitrary trajectory τ and θ such that
‖θ − θ∗‖ ≤ B(δ)√

K
≤ 1, we have∣∣∣∣∣

H∑
h=1

ν>h Σ−1
h

(
z(h) (θ, τ )− z(h) (θ∗, τ )

)∣∣∣∣∣ ≤
[
H

3
2 dκ2

1B0 +H
5
2 dκ2B0 + 2Hd

3
2κ1κ2B0

]
B(δ)√
K
.

Therefore, we take

C3 :=

[
H

3
2 dκ2

1B0 +H
5
2 dκ2B0 + 2Hd

3
2κ1κ2B0

]−1 √
K

2B(δ)
,

then each function inM takes value in [0, 1]. Notice that all functions inM are Lipschitz continuous, we can give an upper
bound for its Lipschitz norm and similar to proof of Theorem 6.1 we can bound the bracketing number. The definition of C3
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and the bound for Lipschitz norm of functions inM imply that the difference of any two functions inM can be bounded by

∣∣m(θ1, τ )−m(θ2, τ )
∣∣ ≤ √

K

2B(δ)

∥∥θ1 − θ2
∥∥ .

Similar to the calculation in the proof of Theorem 6.1, we have

N[] (ε,M, L2(P)) ≤

2
√
Hd

√
K

2B(δ)
B(δ)√
K

ε

Hd

=

(√
Hd

ε

)Hd

We take V = Hd and U =
√
Hd, then using lemma E.4, we have

P (‖GK‖M > t) ≤
(

Dt√
Hd

)Hd
exp(−2t2) ≤

(
D√
Hd

)Hd
exp(−2t2 +Hdt).

where D > 0 is a constant dependent on U only. If we take

t = ln

(
1

δ

)
+Hd ln

(
e+

D√
Hd

)
,

then conditional on EK , with probability at least 1− δ, we have

‖GK‖M ≤ ln

(
1

δ

)
+Hd ln

(
e+

D√
Hd

)
.

Therefore when K ≥ B(δ)2, under EK , with probability at least 1− δ,

|I22| ≤
1

C3H
√
K
‖GK‖M

≤ 2B(δ)

HK

[
H

3
2 dκ2

1B0 +H
5
2 dκ2B0 + 2Hd

3
2κ1κ2B0

] [
ln

(
1

δ

)
+Hd ln

(
e+

D√
Hd

)]
.

Finally we give an high-probability upper bound for I23. We have

I23 = − 1

H

H∑
h=1

ν>h Σ−1
h RK,h.

whereRK,h = (R1
K,h, R

2
K,h, ...R

d
K.h)> is the Taylor remainder of Ez(h)(θ, τ ) at θ∗.Note that Ez(h)(θ, τ ) is only dependent

on θh, θh+1. If we denote ∆θh := ((θ̂K,h − θ∗h)>, (θ̂K,h+1 − θ∗h+1)>)>, By Taylor Theorem, we have for some c ∈ (0, 1),

RiK,h =
∑
|α|=2

(∆θh)
2

α
E
[
∂αθh,θh+1

zi(h)

(
θ∗ + c

(
θ̂K − θ∗

)
, τ
)]
.

where the notation keeps the same as (19) and ∂αθh,θh+1
means the α order derivatives with respect to θh, θh+1 only.

Remember for θ = (θ1
1, θ

2
1, ..., θ

d
1 , θ

1
2, ..., θ

d
H)> and θh = (θ1

h, ..., θ
d
h)> we have

zi(h)(θ, τ ) =

H∑
j=1

(
f (θh, φj)− rj −

∫
A
f (θh+1, φ (sj+1, a

′))π (a′ | sj+1) da′
)
· ∇iθhf (θh, φj) .

We can compute the upper bound for partial derivatives of zi(h). We have under EK , for any trajectory τ ,∣∣∣∣(f (θh, φn)− rn −
∫
A
f (θh+1, φ (sn+1, a

′))π (a′ | sn+1) da′
)∣∣∣∣ ≤ D0 := (H − h+ 1) + 2

√
dκ1

B(δ)√
K
.
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Therefore we have for i,∈ [d],∣∣∣∣∣ ∂2

∂θih∂θ
j
h

zi(h) (θ, τ )

∣∣∣∣∣ ≤ H (κ3D0 + 3κ1κ2) ,

∣∣∣∣∣ ∂2

∂θih∂θ
j
h+1

zi(h) (θ, τ )

∣∣∣∣∣ ≤ Hκ1κ2,

∣∣∣∣∣ ∂2

∂θih+1∂θ
j
h+1

zi(h) (θ, τ )

∣∣∣∣∣ ≤ Hκ1κ2,

Therefore, we have∣∣RiK,h∣∣ ≤ H(κ3D0 + 3κ1κ2)

2

∑
|α|=2

|(∆θh)
α| ≤ H(κ3D0 + 3κ1κ2)

2

[∥∥∥θ̂K,h − θ∗h∥∥∥
1

+
∥∥∥θ̂K,h+1 − θ∗h+1

∥∥∥
1

]2
≤ H2(κ3D0 + 3κ1κ2)

[∥∥∥θ̂K,h − θ∗h∥∥∥2

2
+
∥∥∥θ̂K,h+1 − θ∗h+1

∥∥∥2

2

]
.

Hence under EK ,

‖RK,h‖2 ≤ ‖RK,h‖1 ≤ H
2d(κ3D0 + 3κ1κ2)

B(δ)2

K
Therefore, we have

|I23| ≤ B0H
3d

[
κ3H + 3κ1κ2 + 2

√
dκ1κ3

B(δ)√
K

]
B(δ)2

K
.

B.3. Completion of the proof

We combine the bound for first order and higher order term and formalize the final upper bound. We only prove for
reward-free error bound (10). For variance-aware error bound, the proof is almost the same, except that we use the other
bound for first order term. For now, we fix a K such that

K ≥ max

{
2(C2d+ 1)2

C2d
log

(
12dH

δ

)
, B(δ/3)2

}
,

then with probability at least 1− δ
3 ,

|I1| ≤
√

log(12/δ)

2KH

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

)
+

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

)[
4

3K

√
C2dH log

(
12dH

δ

)]
.

At the same time, with probability at least 1− δ
3 ,∥∥∥θ̂K − θ∗∥∥∥

2
≤ B(δ/3)√

K
. (40)

Under (40), we have

|I21| ≤
κ2dB(δ/3)2

2K
;

|I23| ≤ B0H
3d

[
κ3H + 3κ1κ2 + 2

√
dκ1κ3

B(δ/3)√
K

]
B(δ/3)2

K
.

and with probability at least 1− δ
3 ,

|I22| ≤
2B(δ)

HK

[
H

3
2 dκ2

1B0 +H
5
2 dκ2B0 + 2Hd

3
2κ1κ2B0

] [
ln

(
3

δ

)
+Hd ln

(
e+

D√
Hd

)]
By union bound, we have when K ≥ B(δ/3)2, with probability at least 1− δ,

|v̂π − vπ| ≤
√

log(12/δ)

2KH

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

)
+

(
H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

)[
4

3K

√
C2dH log

(
12dH

δ

)]
+
B(δ/3)

K

[
H2 1

2 dκ2
1B0 + 2H

3
2 dκ2B0 + 4d

3
2κ1κ2B0

]
+
B(δ/3)2

K

[
B0H

3d
[
κ3H + 3κ1κ2 + 2

√
dκ1κ3

]]
,

which implies the upper bound in Theorem 6.5. Here D is a constant dependent only on H and d.
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C. Proof and Discussion for Special Cases
C.1. Special Case: With Positivity Condition

We first provide a stronger assumption for data coverage, under which we can get a sharper error bound. Other than
assumption 6.4, we further assume for any (s, a), (s′, a′) ∈ S ×A and h ∈ [H],

∇θf(θ∗h, φ(s, a))Σ−1
h ∇

>
θ f(θ∗h, φ(s′, a′)) ≥ 0,

then with probability at least 1− δ,

|v̂π − vπ| ≤

 H∑
h1=1

H∑
h2=1

(H − h1 + 1) (H − h2 + 1)

·
√
ν>h1

Σ−1
h1
νh1

√
ν>h2

Σ−1
h2
νh2σh1,h2

] 1
2

√
log(12/δ)

2HK
+O(

1

K
).

where σh1,h2 :=
∥∥∥Σ
− 1

2

h1
Σh1,h2Σ

− 1
2

h2

∥∥∥
2

and

Σh1,h2 := E

 1

H

H∑
j=1

∇>θ f (θh1 , φj)∇θf (θh2 , φj)

 .
Since σh1,h2 ≤ 1, this bound is sharper than (10). When all covariance matrices are zero, all cross terms vanish and this
bound is much better than (10).

The only difference brought about by additional positivity condition will be on the bound for the first order term. Since

I1 = − 1

KH

K∑
k=1

H∑
h=1

H∑
j=1

ν>h Σ−1
h

[
∇>θ f

(
θ∗h, φ

(
skj , a

k
j

))]
εkh,j ,

Similarly we denote εh,n = εkh,j and (sn, an) = (skj , a
k
j ) if n = (j − 1)K + k, and we define

un := −
H∑
h=1

ν>h Σ−1
h

[
∇>θ f (θ∗h, φ (sn, an))

]
εh,n,

then

I1 =
1

N

N∑
n=1

un.

Define Fn is the σ field generated by s1, a1, ...., sn, an, then {Fn}Nn=1 is a filtration. Since E [un | Fn] = 0, we have
{un}Nn=1 is a martingale difference sequence. We use the following E.2 to analyze I1. Parallel to the previus analysis, it is
easy to see that

|un| ≤
√
C2d

H∑
h=1

(H − h+ 1)
√
ν>h Σ−1

h νh

The main difference with Theorem 6.5 is the estimate of variance Var [un | Fn] . We expand this conditional variance into

Var [un | Fn] = E

( H∑
h=1

ν>h Σ−1
h

[
∇>θ f (θ∗h, φ (sn, an))

]
εh,n

)2 ∣∣∣∣Fn


=

H∑
h1=1

H∑
h2=1

(
ν>h1

Σ−1
h1
∇>θ f

(
θ∗h1

, φ (sn, an)
))(

ν>h2
Σ−1
h2
∇>θ f

(
θ∗h2

, φ (sn, an)
))

E
[
εh1,nεh2,n

∣∣∣∣Fn] .
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By definition of εh,n, we have

E
[
εh1,nεh2,n

∣∣∣∣Fn] = Cov

[
r (sn, an) +

∫
A
f
(
θ∗h1+1, φ (sn+1, a

′)
)
π (a′ | sn+1) da′,

r (sn, an) +

∫
A
f
(
θ∗h2+1, φ (sn+1, a

′)
)
π (a′ | sn+1) da′

∣∣∣∣Fn]
≤
[
Var

(
r (sn, an) +

∫
A
f
(
θ∗h1+1, φ (sn+1, a

′)
)
π (a′ | sn+1) da′

∣∣∣∣Fn)
Var

(
r (sn, an) +

∫
A
f
(
θ∗h2+1, φ (sn+1, a

′)
)
π (a′ | sn+1) da′

∣∣∣∣Fn)] 1
2

(Cauchy-Schwarz)

≤ 1

4
(H − h1 + 1) (H − h2 + 1) .

The last inequality comes from r (sn, an) +
∫
A f

(
θ∗h+1, φ (sn+1, a

′)
)
π (a′ | sn+1) da′ ∈ [0, H − h + 1]. Under the

condition of ∇θf(θ∗h, φ(s, a))Σ−1
h ∇>θ f(θ∗h, φ(s′, a′)) ≥ 0 for any (s, a), (s′, a′) ∈ S ×A, we have

Var [un | Fn] ≤ 1

4

H∑
h1=1

H∑
h2=1

(
ν>h1

Σ−1
h1
∇>θ f

(
θ∗h1

, φ (sn, an)
))(

ν>h2
Σ−1
h2
∇>θ f

(
θ∗h2

, φ (sn, an)
))

(H − h1 + 1)(H − h2 + 1)

=

(
1

2

H∑
h=1

(H − h+ 1)ν>h Σ−1
h ∇

>
θ f (θ∗h, φ (sn, an))

)2

.

Therefore,

N∑
n=1

Var [un | Fn] ≤ 1

4

H∑
h1=1

H∑
h2=1

(H − h1 + 1)(H − h2 + 1)ν>h1
Σ−1
h1

(
N∑
n=1

∇>θ f
(
θ∗h1

, φ (sn, an)
)
∇θf

(
θ∗h2

, φ (sn, an)
))

Σ−1
h2
νh2

(41)

We use lemma C.1 to bound∥∥∥∥∥Σ
− 1

2

h1

(
N∑
n=1

∇>θ f
(
θ∗h1

, φ (sn, an)
)
∇θf

(
θ∗h2

, φ (sn, an)
))

Σ
− 1

2

h2

∥∥∥∥∥ .
Lemma C.1. Under the assumption that for any h ∈ [H],

∇θf(θ∗h, φ(s, a))Σ−1
h ∇

>
θ f(θ∗h, φ(s, a)) ≤ C2d,

with probability at least 1− δ,∥∥∥∥∥Σ
− 1

2

h1

(
N∑
n=1

∇>θ f
(
θ∗h1

, φ (sn, an)
)
∇θf

(
θ∗h2

, φ (sn, an)
))

Σ
− 1

2

h2

∥∥∥∥∥
≤N

(
σh1,h2

+

√
2C2d

K
log

(
2d

δ

)
+

2 (C2d+ σh1,h2
)

3K
log

(
2d

δ

))
,

where σh1,h2 :=
∥∥∥Σ
− 1

2

h1
Σh1,h2Σ

− 1
2

h2

∥∥∥
2

and

Σh1,h2 := E

 1

H

H∑
j=1

∇>θ f
(
θ∗h1

, φ (sj , aj)
)
· ∇θf

(
θ∗h2

, φ (sj , aj)
) .
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The proof of lemma C.1 is deferred to C.4. By this lemma we have with fixed h1, h2 and with probability at least 1− δ
H2 ,∥∥∥∥∥Σ

− 1
2

h1

(
N∑
n=1

∇>θ f (θh1
, φ (sn, an))∇θf (θh2

, φ (sn, an))

)
Σ
− 1

2

h2

∥∥∥∥∥
≤N

(
σh1,h2

+

√
2C2d

K
log

(
2dH2

δ

)
+

2 (C2d+ σh1,h2)

3K
log

(
2dH2

δ

))
. (42)

By union bound we have with probability at least 1− δ, (42) holds for every h1, h2 ∈ [H]. This gives with probability at
least 1− δ,

N∑
n=1

Var [un | Fn] ≤1

4

H∑
h1=1

H∑
h2=1

(H − h1 + 1) (H − h2 + 1)

≤KH
4

H∑
h1=1

H∑
h2=1

(H − h1 + 1) (H − h2 + 1)
√
ν>h1

Σ−1
h1
νh1

√
ν>h2

Σ−1
h2
νh2

·

(
σh1,h2

+

√
2C2d

K
log

(
2dH2

δ

)
+

2 (C2d+ σh1,h2)

3K
log

(
2dH2

δ

))
.

We take

σ2
0 :=

KH

4

H∑
h1=1

H∑
h2=1

(H − h1 + 1) (H − h2 + 1)
√
ν>h1

Σ−1
h1
νh1

√
ν>h2

Σ−1
h2
νh2

·

(
σh1,h2

+

√
2C2d

K
log

(
4dH2

δ

)
+

2 (C2d+ σh1,h2)

3K
log

(
4dH2

δ

))
,

then

P

(
N∑
n=1

Var [un | Fn] ≥ σ2
0

)
≤ δ

2
.

Freedman’s Inequality implies that for any ε > 0, we have

P

(∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≥ ε,
N∑
n=1

Var [un | Fn] ≤ σ2
0

)
≤ 2 exp

− ε2/2

σ2
0 + ε

√
C2d

∑H
h=1(H − h+ 1)

√
ν>h Σ−1

h νh/3

 .

We take

ε :=

√
2 log

(
4

δ

)
σ0 + log

(
4

δ

) 2
√
C2d

∑H
h=1(H − h+ 1)

√
ν>h Σ−1

h νh

3
,

then

P

(∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≥ ε
)
≤ P

(
N∑
n=1

Var [un | Fn] ≥ σ2
0

)
+ P

(∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≥ ε,
N∑
n=1

Var [un | Fn] ≤ σ2
0

)
≤ δ

2
+
δ

2
= δ.

Notice that

ε

N
=

√
log(4/δ)

2HK
·

√√√√ H∑
h1=1

H∑
h2=1

(H − h1 + 1) (H − h2 + 1)
√
ν>h1

Σ−1
h1
νh1

√
ν>h2

Σ−1
h2
νh2σh1,h2 +O(

1

K
),

we insert this into the first order term and hence finish the proof.
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C.2. Special Case: Linear Function Class

Before we provide the result in linear function case, we briefly describe the simplest case with linear function approximation
f(θ, φ) := θ>φ(s, a) (Hao et al., 2021b). Assumption 5.3 for policy completeness here is equivalent to that there exists
M ∈ Rd×d such that

φ(s, a)>M = E

[(∫
A
φ(s′, a′)π(a′ | s′)

)> ∣∣∣∣s, a
]
.

This implies that for h ∈ [H], we have θ∗h = Mθ∗h+1 + θ∗r and θ∗H = θ∗r for some θ∗r ∈ Θ. θ∗r is the parameter of reward
function r(s, a). In linear setting, (2) has following explicit expression.

θ̂h = M̂ θ̂h+1 + R̂. (43)

where

M̂ = Σ̂−1
N∑
n=1

φ (sn, an)

(∫
A
φ(sn+1, a

′)π(a′ | sn+1)

)>
, R̂ = Σ̂−1

N∑
n=1

rnφ (sn, an) , Σ̂ =

N∑
n=1

φ (sn, an)φ (sn, an)
>

+λId

(Hao et al., 2021b) showed that, the limit distribution of
√
N (v̂π − vπ) is N(0, σ2), where

σ2 =

H∑
h1=1

H∑
h2=1

(νh1
)
>

Σ−1Ωh1,h2
Σ−1νh2

, (44)

where

νh = Eπ [φ (sh, ah) | s1 ∼ ξ(·)] ; Σ = E

[
1

H

H∑
h=1

φ (sh, ah)φ (sh, ah)
>

]
;

Ωh1,h2
= E

[
1

H

H∑
h′=1

φ (sh′ , ah′)φ (sh′ , ah′)
>
εh1,h′εh2,h′

]
; εh1,h′ = Qh1

(sh′ , ah′)− (rh′ + Vh1+1 (sh′+1)) . (45)

Further, they showed that FQE with linear function approximation achieves Cramer Rao lower bound for variance, and
bootstrapping error with linear function approximation has the same limit distribution as standard FQE error. Actually, this
expression can be immediately derived using our results. In linear case, we can provide a sharper bound for the dominant term
in v̂π − vπ, which comes from a different variance calculation in Freeman’s Inequality. Here, our data coverage assumption
will be φ>(s, a)Σ−1φ(s, a) ≤ C2d and the positivity condition will be φ>(s, a)Σ−1φ(s′, a′) ≥ 0. Similar to the derivation
before, we have I1 = 1

N

∑N
n=1 un, where un := −

∑H
h=1 ν

>
h Σ−1 [φ (sn, an)] εh,n. Define Fn is the σ field generated by

s1, a1, . . . , sn, an, then {un}Nn=1 is a martingale difference sequence and |un| ≤
√
C2d

∑H
h=1(H − h+ 1)

√
ν>h Σ−1

h νh.

In this case, (41) becomes

N∑
n=1

Var [un | Fn] ≤ 1

4

H∑
h1=1

H∑
h2=1

(H − h1 + 1) (H − h2 + 1) ν>h1
Σ−1

(
N∑
n=1

φ (sn, an)φ> (sn, an)

)
Σ−1νh2

≤ 1

4

(
H∑
h=1

(H − h+ 1)νh

)>
Σ−1

(
N∑
n=1

φ (sn, an)φ (sn, an)
>

)
Σ−1

(
H∑
h=1

(H − h+ 1)νh

)

≤ 1

4

(
H∑
h=1

(H − h+ 1)νh

)>
Σ−1

(
H∑
h=1

(H − h+ 1)νh

)∥∥∥∥∥Σ−
1
2

(
N∑
n=1

φ (sn, an)φ (sn, an)
>

)
Σ−

1
2

∥∥∥∥∥ .
When we take f as linear, lemma C.1 shows that with probability at least 1− δ,∥∥∥∥∥Σ−

1
2

(
N∑
n=1

φ (sn, an)φ (sn, an)
>

)
Σ−

1
2

∥∥∥∥∥ ≤ N
(

1 +

√
2C2d

K
log

(
2d

δ

)
+

2 (C2d+ 1)

3K
log

(
2d

δ

))
,



Off-Policy Fitted Q-Evaluation with Differentiable Function Approximators: Z-Estimation and Inference Theory

We take

σ2 :=
N

4

(
H∑
h=1

(H − h+ 1)νh

)>
Σ−1

(
H∑
h=1

(H − h+ 1)νh

)(
1 +

√
2C2d

K
log

(
2d

δ

)
+

2 (C2d+ 1)

3K
log

(
2d

δ

))
,

and

ε :=

√
2 log

(
4

δ

)
σ + log

(
4

δ

) 2
√
C2d

∑H
h=1(H − h+ 1)

√
ν>h Σ−1

h νh

3
.

By Freeman’s Inequality, for any ε > 0,

P

(∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≥ ε,
N∑
n=1

Var [un | Fn] ≤ σ2

)
≤ 2 exp

− ε2/2

σ2 + ε
√
C2d

∑H
h=1(H − h+ 1)

√
ν>h Σ−1

h νh/3

 ,

then

P

(∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≥ ε
)
≤ P

(
N∑
n=1

Var [un | Fn] ≥ σ2

)
+ P

(∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≥ ε,
N∑
n=1

Var [un | Fn] ≤ σ2

)
≤ δ

2
+
δ

2
= δ.

Hence the upper bound for the first order term can be improved to

|I1| ≤

√√√√( H∑
h=1

(H − h+ 1)νh

)>
Σ−1

(
H∑
h=1

(H − h+ 1)νh

)
·
√

ln(4/δ)

2KH
+O(

1

K
).

By Cauchy-Schwarz Inequality, we have√√√√( H∑
h=1

(H − h+ 1)νh

)>
Σ−1

(
H∑
h=1

(H − h+ 1)νh

)
= sup
µ∈Rd

µ>
(∑H

h=1(H − h+ 1)νh

)
√
µ>Σµ

.

For µ ∈ Rd, we take g ∈ G such that g(s, a) = φ>(s, a)µ for any (s, a) ∈ S × A. Then µ>
(∑H

h=1(H − h+ 1)νh

)
=

Eπ [(H − h+ 1)g(sh, ah) | s1 ∼ ξ(·)] . Additionally, we have

µ>Σµ = Eτ

 1

H

H∑
j=1

[
φ>(sj , aj) · µ

]2 = Eτ

{
1

H

H∑
h=1

g2 (sh, ah)

}

Then, √√√√( H∑
h=1

(H − h+ 1)νh

)>
Σ−1

(
H∑
h=1

(H − h+ 1)νh

)
= sup

g∈G

Eπ [(H − h+ 1)g (sh, ah) | s1 ∼ ξ(·)]√
E
[

1
H

∑H
h=1 g

2 (sh, ah)
]

=
H(H + 1)

2

√
1 + χ2

G(µ̃, µ̄).

We replace δ with δ/3, bound the higher order term as section B.2, and substitute this supremum into upper bound. This
implies the result in linear function case.

C.3. Special Case: Tabular Case

This part is proven in (Duan et al., 2020), but for completeness, we briefly sketch the outline. In tabular case, the MDP
we consider has finite state space and action space. We denote their cardinality as |S| and |A| . Intrinsically, we can
always parametrize tabular MDP in a linear way, hence tabular case is a special case of linear case. Our feature map
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is an |S| × |A|- dimensional indicator vector φ(s, a) = 1s,a, where the (s, a)−th entry is 1 and other entries are 0.
Covariance martrix Σ is diagonal with non-negative entries, hence positivity condition holds naturally. By the definition
of νh and Σ, we have νh((s, a)) = Pπ [sh = s, ah = a | s1 ∼ ξ(·)] and Σ((s, a), (s, a)) = µ̄(s, a). Further we have∑H
h=1(H − h+ 1)νh((s, a)) = 1

2H(H + 1)µ̃(s, a), where µ̃ is defined as (11). Therefore, the coefficient in the dominant
term will become√√√√( H∑

h=1

(H − h+ 1)νh

)>
Σ−1

(
H∑
h=1

(H − h+ 1)νh

)
=

H∑
h=1

(H−h+1)

√√√√ ∑
s∈S,a∈A

µ̃((s, a))2

µ̄(s, a)
=
H(H + 1)

2

√
1 + χ2 (µ̃, µ̄).

This matches the result optimal result in (Yin & Wang, 2020).

C.4. Proof of Lemma C.1

We fix a pair of h1, h2 and we denote

Σh1,h2
:= E

 1

H

H∑
j=1

∇>θ f
(
θ∗h1

, φ (sj , aj)
)
· ∇θf

(
θ∗h2

, φ (sj , aj)
) ,

and

Xk :=
1

H

H∑
h=1

Σ
− 1

2

h1
∇>θ f

(
θ∗h1

, φ
(
skj , a

k
j

))
∇θf

(
θ∗h2

, φ
(
skj , a

k
j

))
Σ
− 1

2

h2
,

then X1, X2, .., XK are independent with E [Xk] = Σ
− 1

2

h1
Σh1,h2

Σ
− 1

2

h2
. Below we use matrix E.3 to bound 1

K

∑K
k=1Xk. If

we denote

Φh,k :=
(
∇>θ f

(
θ∗h, φ

(
sk1 , a

k
1

))
,∇>θ f

(
θ∗h, φ

(
sk2 , a

k
2

))
, ...,∇>θ f

(
θ∗h, φ

(
skH , a

k
H

)))
∈ Rd×H ,

then Xk = 1
HΣ
− 1

2

h1
Φh1,kΦ>h2,k

Σ
− 1

2

h2
. For any vector µ ∈ Rd, we have

µ>E
[
X2
k

]
µ = E

[
‖Xkµ‖22

]
=

1

H2
E
[∥∥∥Σ

− 1
2

h1
Φh1,kΦ>h2,kΣ

− 1
2

h2
µ
∥∥∥2

2

]
≤ 1

H2
E
[∥∥∥Σ

− 1
2

h1
Φh1,k

∥∥∥2

2

∥∥∥Φ>h2,kΣ
− 1

2

h2
µ
∥∥∥2

2

]

From assumption 6.4, we have
∣∣∣∣(Φ>h1,k

Σ−1
h1

Φh1,k

)
ij

∣∣∣∣ ≤ C2d for any i, j ∈ [H], we have

∥∥∥Σ
− 1

2

h1
Φh1,k

∥∥∥2

2
=
∥∥Φ>h1,kΣ−1

h1
Φh1,k

∥∥
2
≤
∥∥Φ>h1,kΣ−1

h1
Φh1,k

∥∥
F
≤ C2dH.

Therefore,

µ>E
[
X2
k

]
µ ≤ C2d

H
E
[∥∥∥Φ>h2,kΣ

− 1
2

h2
µ
∥∥∥2

2

]
=
C2d

H
µ>E

[
Σ
− 1

2

h2
Φh2,kΦ>h2,kΣ

− 1
2

h2

]
µ = C2d ‖µ‖22 .

because 1
HE

[
Σ
− 1

2

h2
Φ>h2,k

Φh2,kΣ
− 1

2

h2

]
= Id by definition. Therefore,

Var [Xk] � E
[
X2
k

]
� C2dId.

and if we denote σh1,h2
:=
∥∥∥Σ
− 1

2

h1
Σh1,h2

Σ
− 1

2

h2

∥∥∥
2
, then

∥∥∥Xk − Σ
− 1

2

h1
Σh1,h2

Σ
− 1

2

h2

∥∥∥
2
≤ ‖Xk‖2 +

∥∥∥Σ
− 1

2

h1
Σh1,h2

Σ
− 1

2

h2

∥∥∥
2
≤ 1

H

∥∥∥Σ
− 1

2

h1
Φh1,k

∥∥∥2

2

∥∥∥Σ
− 1

2

h2
Φh2,k

∥∥∥2

2
+ σh1,h2

≤ C2d+ σh1,h2
.
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Therefore, by matrix Bernstein inequality, we have for ε > 0,

P

(∥∥∥∥∥
K∑
k=1

(
Xk − Σ

− 1
2

h1
Σh1,h2

Σ
− 1

2

h2

)∥∥∥∥∥
2

≥ ε

)
≤ 2d exp

(
− ε2/2

C2dK + (C2d+ σh1,h2
) ε/3

)
.

Therefore, with probability at least 1− δ,∥∥∥∥∥ 1

K

K∑
k=1

(
Xk − Σ

− 1
2

h1
Σh1,h2

Σ
− 1

2

h2

)∥∥∥∥∥
2

≤

√
2C2d

K
log

(
2d

δ

)
+

2 (C2d+ σh1,h2
)

3K
log

(
2d

δ

)
.

D. Proof of Information-Theoretic Lower Bound
We first compute the influence function of vπ and show that the expectation of squared influence function meets the variance
term in (7). We denote

pη(s′ | s, a) = p(s′ | s, a) + η∆p(s′, s, a).

where ∆p is arbitrary probability shift. When η = 0, this notation is same as our original transition probability p0(s′ |
s, a) = p(s′ | s, a). Suppose ∆p satisfies (∆p)F ⊂ F . We denote Qh,η(s, a) and Vh,η(s) as the Q function and state value
function with transition probability being pη(s′ | s, a), and Qh,0(s, a) = Qh(s, a), Vh,0(s) = Vh(s). θ∗h will be dependent
on η, hence we write θ∗h,η to explicate this dependency. When η = 0, we let θ∗h,0 = θ∗h. We emphasize again that Eπ denotes
expectation over population generated by target policy, and E or Eτ denotes that by behavior policy. Let µ̄ be the occupancy
measure of state action pair generated by behavior policy. We define the score function as

lη(s′ | s, a) :=
∂

∂η
log pη(s′ | s, a) and lη(τ ) :=

H∑
h=1

lη(sh+1 | sh, ah).

When η vanishes, we have l(s′ | s, a) := ∂
∂η log pη(s′ | s, a)

∣∣∣
η=0

and l(τ ) :=
∑H
h=1 l(sh+1 | sh, ah). Our objective

function is

vπ,η := Eπ
[

H∑
h=1

r(sh, ah)

∣∣∣∣∣ s1 ∼ ξ(·), pη

]
.

We take its derivatives and then let η = 0 to compute the influence function.

∂

∂η
vπ,η

∣∣∣∣
η=0

=
∂

∂η

[
H∑
h=1

∫
(S×A)h

r(sh, ah)ξ(s1)

h−1∏
h′=1

pη(sh′+1 | sh′ , ah′)
h∏

h′=1

π(ah′ | sh′)dτh

]∣∣∣∣∣
η=0

=

H∑
h=1

∫
(S×A)h

r(sh, ah)ξ(s1)

h−1∑
h′=1

lη(sh′+1 | sh′ , ah′)
h−1∏
h′=1

pη(sh′+1 | sh′ , ah′)
h∏

h′=1

π(ah′ | sh′)dτh

∣∣∣∣∣
η=0

=

∫
(S×A)H

[
H−1∑
h=1

lη(sh+1 | sh, ah)

H∑
h′=h+1

r(sh′ , ah′)

]
ξ(s1)

H∏
j=1

pη(sj+1 | sj , aj)π(aj | sj)dτ

∣∣∣∣∣∣
η=0

= Eπ
[
H−1∑
h=1

lη(sh+1 | sh, ah)

H∑
h′=h+1

r(sh′ , ah′)

∣∣∣∣∣ s1 ∼ ξ, pη

]∣∣∣∣∣
η=0

= Eπ
[

H∑
h=1

Eπ
[
lη(sh+1 | sh, ah)Vh+1,η(sh+1)| sh, ah

]∣∣∣∣∣ s1 ∼ ξ, pη

]∣∣∣∣∣
η=0

.

Since

Eπ [lη(s′ | s, a)Vh+1,η(s′) | s, a] =

∫
S×A

∂

∂η
f(θ∗h+1,η, φ(s, a))pη(s′ | s, a)π(a′ | s′)ds′da′ =

∂

∂η
f(θ∗h,η, φ(s, a)),
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we have

∂

∂η
vπ,η

∣∣∣∣
η=0

= Eπ
[
H∑
h=1

∂

∂η
f(θ∗h,η, φ(sh, ah))

∣∣∣∣
η=0

∣∣∣∣∣ s1 ∼ ξ, p

]

= Eπ
[
H∑
h=1

(
∇θhf(θ∗h, φ(sh, ah))

)
Σ−1
h Σh

∂θh,η
∂η

∣∣∣∣
η=0

∣∣∣∣∣ s1 ∼ ξ, p

]
.

Notice that

Σh =
1

H
Eτ

{
H∑
h′=1

(
∇θhf (θ∗h, φ(sh′ , ah′))

)>(
∇θhf (θ∗h, φ(sh′ , ah′))

)}

= E(s,a)∼µ̄

[(
∇θhf (θ∗h, φ(s, a))

)>(
∇θhf (θ∗h, φ(s, a))

)]
,

then

∂

∂η
vπ,η

∣∣∣∣
η=0

=Eπ
 H∑
h=1

(
∇θhf(θ∗h, φ(sh, ah))

)
Σ−1
h E(s,a)∼µ̄

[(
∇θhf (θ∗h, φ(s, a))

)>(
∇θhf (θ∗h, φ(s, a))

)
∂θh,η
∂η

∣∣∣∣∣
η=0

∣∣∣∣∣∣ s1 ∼ ξ, p


=Eπ

 H∑
h=1

(
∇θhf(θ∗h, φ(sh, ah))

)
Σ−1
h E(s,a)∼µ̄

[(
∇θhf (θ∗h, φ(s, a))

)>
∂

∂η
f(θ∗h,η, φ(s, a))

∣∣∣∣∣
η=0

∣∣∣∣∣∣ s1 ∼ ξ, p


=E(s,a)∼µ̄

{
H∑
h=1

Eπ
[
∇θhf(θ∗h, φ(sh, ah))

∣∣∣∣s1 ∼ ξ, p
]

Σ−1
h

(
∇θhf (θ∗h, φ(s, a))

)>
l(s′ | s, a)Vh+1(s′)

}
.

We define

wh(s, a) := Eπ
[
∇θhf (θ∗h, φ(sh, ah)) | s1 ∼ ξ, p

]
Σ−1
h

(
∇θhf (θ∗h, φ(s, a))

)>
∈ R,

and use E [l(s′|s, a)|s, a] = 0 to get

∂

∂η
vπ,η

∣∣∣∣
η=0

= E(s,a)∼µ̄

{
H∑
h=1

wh(s, a)l(s′ | s, a)Vh+1(s′)

}

= E(s,a)∼µ̄

{
H∑
h=1

wh(s, a)l(s′ | s, a)

[
Vh+1(s′)− E [Vh+1(s′)|s, a]

]}

=
1

H
E


H∑
j=1

H∑
h=1

wh(sj , aj)l(sj+1 | sj , aj)
[
Vh+1(sj+1)− E [Vh+1(sj+1)|sj , aj ]

]
=

1

H
E

l(τ )

H∑
j=1

H∑
h=1

wh(sj , aj)

[
Vh+1(sj+1)− E [Vh+1(sj+1)|sj , aj ]

] .

This give us the influence function of our objective function. If we denote

q(s, a, s′) :=

H∑
h=1

wh(s, a)

[
Vh+1(s′)− E [Vh+1(s′)|s, a]

]
,

then the influence function can be written as

Ip(τ ) :=
1

H

H∑
j=1

H∑
h=1

wh(sj , aj)

[
Vh+1(sj+1)− E [Vh+1(sj+1)|sj , aj ]

]
=

1

H

H∑
h=1

q(sh, ah, sh+1). (46)
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Next, we square the influence function and take expectation with it. Then we use E [q(s, a, s′) | s, a] = 0 to make cross
terms vanish.

E
{
Ip(τ )2

}
=

1

H2
E

{
H∑
h=1

q(sh, ah, sh+1)

}2

=
1

H2

H∑
h=1

E
{
q(sh, ah, sh+1)2

}
=

1

H2

H∑
h=1

H∑
h1=1

H∑
h2=1

E
{
wh1

(sh, ah)wh2
(sh, ah)εh1,hεh2,h

}
.

where for j, h ∈ [H],

εj,h := f
(
θ∗j , φh

)
− rh −

∫
A
f
(
θ∗j+1, φh+1

)
π (ah+1 | sh+1) dah+1 ∈ R.

Then we have

E
{
Ip(τ )2

}
=

1

H2

H∑
h1=1

H∑
h2=1

Eπ
[
∇θh1

f
(
θ∗h1

, φ(sh1 , ah1)
)
| s1 ∼ ξ, p

]
Σ−1
h1
· E

[
H∑
h=1

(
∇θh1

f(θh1 , φ(sh, ah))

)>
(
∇θh2

f(θ∗h2
, φ(sh, ah))

)
εh1,hεh2,h

]
Σ−1
h2

Eπ
[
∇θh2

f
(
θ∗h2

, φ(sh2
, ah2

)
)
| s1 ∼ ξ, p

]>
=

1

H

H∑
h1=1

H∑
h2=1

ν>h1
Σ−1
h1

Ωh1,h2Σ−1
h2
νh2

where νh,Σh,Ωh1,h2
are defined in Theorem 6.1. In conclusion, the expression above implies that

E
{
Ip(τ )2

}
= σ2.

where σ2 is defined as (7), and this proves the Cramer Rao lower bound for variance.

E. Technical Lemmas for Contraction
Lemma E.1 (Bernstein’s Inequality). Let X1, . . . , XN be independent mean-zero random variables such that |Xi| ≤ K all
i. Then, for every t ≥ 0, we have

P

{∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
Here σ2 =

∑N
i=1 EX2

i is the variance of the sum.

Lemma E.2 (Freedman’s Inequality). Consider a real-valued martingale {Yk : k = 0, 1, 2, . . .} with difference sequence
{Xk : k = 1, 2, 3, . . .}. Assume that the difference sequence is uniformly bounded:

Xk ≤ R almost surely for k = 1, 2, 3, . . .

Define the predictable quadratic variation process of the martingale:

Wk :=

k∑
j=1

Ej−1

(
X2
j

)
for k = 1, 2, 3, . . .

Then, for all t ≥ 0 and σ2 > 0,

P
{
∃k ≥ 0 : Yk ≥ t and Wk ≤ σ2

}
≤ exp

{
− t2/2

σ2 +Rt/3

}
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Lemma E.3 (Matrix Bernstein inequality). Let X1, . . . , XN be independent mean-zero n× n symmetric random matrices,
such that ‖Xi‖ ≤ K almost surely for all i. Then, for every t ≥ 0, we have

P

{∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t
}
≤ 2n exp

(
− t2/2

σ2 +Kt/3

)

Here σ2 =
∥∥∥∑N

i=1 EX2
i

∥∥∥ is the norm of the matrix variance of the sum.

Lemma E.4 (Theorem 2.14.9 of (Van Der Vaart et al., 1996)). LetH be a class of measurable functions g : X 7→ [0, 1] that
satisfies

N[] (ε,H, L2(P)) ≤
(
U

ε

)V
, for every 0 < ε < U.

We denote the empirical process:
Gn(·) =

√
n(Pn(·)− P(·))

For any function classH, we define the supremum norm

‖Gn‖H := sup
g∈H

{√
n(Png − Pg)

}
Then, for every t > 0,

P (‖Gn‖H > t) ≤
(
Dt√
V

)V
e−2t2

for a constant D that depends on U only.

F. A Brief Comparison to Related Works
We compare our setting and results with some related works. Here we focus on works which dealt with policy evalua-
tion. Researches on policy optimization(Jin et al., 2019; Cai et al., 2020) or Fitted Q Iteration (Long et al., 2021; Fan
et al., 2020) approximated by linear, kernel function, or neural networks are not directly related and not included in this
comparison. (Yin & Wang, 2020) used marginal importance sampling to set up asymptotic efficiency in batch tabular RL.
Since MIS is not an iterative method, they don’t need to approximate Q-functions explicitly. But they assume stronger
concentrability(Discussion after Assumption 2.2 and Assumption 2.3). These two assumptions imply µ(s,a)

µ̄(s,a) ≤ C in (Chen
& Jiang, 2019). Their main result (Theorem 3.1) is about Eµ̄ [v̂π − vπ] , but using Chebyshev’s Inequality we can soon
get a high probability bound for |v̂π − vπ| . Roughly speaking, this high probability upper bound is |v̂π − vπ| ≤ Cµ,µ̄√

N
,

where Cµ,µ̄ = C

√∑H
h=1

∑
sh,ah

dπh(sh)2

dπ̄h(sh)
π(ah|sh)2

π̄(ah|sh) Var
[(
Vh+1

(
s1
h+1

)
+ r1

h

)
| s1
h = sh, a1

h = ah
]

is a constant capturing

distribution mismatch. This constant is similar to a χ2-divergence.

Our work is mostly related to (Hao et al., 2021b) and (Duan et al., 2020). They considered linear function approximation
with possibly infinite state-action space. Under policy completeness, (Duan et al., 2020) showed that |v̂π − vπ| ≤
C√
N

[∑H
h=1(H − h+ 1)

√
1 + χ2

Q(µh, µ̄)
]

+O( 1
N ), where µh is marginal distribution of (sh, ah) generated under target

policy, Q is linear function class spanned by feature map φ(s, a), and is also the space where all Q-functions lie in. This
χ2-divergence is a special case of ours. (Hao et al., 2021b) established asymptotic results under the same setting, including
asymptotic normality(equivalent to asymptotic upper bound), and asymptotic lower bound. The asymptotic variance meets
Remark 3.2 in (Yin & Wang, 2020) in tabular case. Moreover they consider standard bootstrap, while we consider one of its
alternatives to get a more general asymptotic confidence interval.

(Uehara et al., 2020) does not assume completeness, but it assumes stronger realizability, not only for Q-functions but
for density ratio as well. Although two realizability are not necessary for their finite upper bound, they still need certain
assumption stronger than realizability for Q-functions only. Their concentrability condition(Assumption 2) is the same as
that in (Chen & Jiang, 2019). They proved the sample complexity of MWL / MQL estimators and provided semi-parametric
efficiency. Another example of non-parametric OPE is (Kallus & Uehara, 2020), which matches the semi-parametric lower
bound fr variance as well. Assumption 1 in (Kallus & Uehara, 2020) assumes a full data coverage and bounded density ratio,
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which is stronger than that in (Chen & Jiang, 2019). They further assume proper rates of estimators of Q-functions and
density ratios, but they do not focus on estimators of both nuisance. Under these assumptions, they get an O( 1√

K
) error rate,

and the dominating term depends on effective bound of MDP Effbd (M2) which captures the distribution mismatch(See
equation (4) in their paper). (Duan et al., 2021) considered online policy evaluation, hence neither concentratability nor
completeness is needed. They consider a uniformly bounded kernel function class, which is intrinsically non-parametric
when there are infinite eigenvalues for kernel operator. Their result is based on L2(ξπ)-norm of statistical error of value
function approximator, and R in their result captures the structual property of the projected fixed point(In case of no
approximation error, this is just policy value). In linear kernel setting, this reduces into linear LSTD estimation and has an
error rate of order O( 1√

N
). In another case, where the eigenvalues for kernel functions decay with α-polynomial rate, they

derive the dependency of the norm of error on both sample size and effective horizon.


