(Non-)Convergence Results for
Predictive Coding Networks

Simon Frieder '

Abstract

Predictive coding networks (PCNs) are (un)super-
vised learning models, coming from neuroscience,
that approximate how the brain works. One major
open problem around PCNs is their convergence
behavior. In this paper, we use dynamical systems
theory to formally investigate the convergence of
PCNs as they are used in machine learning. Doing
so, we put their theory on a firm, rigorous basis,
by developing a precise mathematical framework
for PCN and show that for sufficiently small
weights and initializations, PCNs converge for
any input. Thereby, we provide the theoretical
assurance that previous implementations, whose
convergence was assessed solely by numerical
experiments, can indeed capture the correct
behavior of PCNs. Outside of the identified
regime of small weights and small initializations,
we show via a counterexample that PCNs can
diverge, countering common beliefs held in the
community. This is achieved by identifying a
Neimark-Sacker bifurcation in a PCN of small
size, which gives rise to an unstable fixed point
and an invariant curve around it.

1. Introduction

Predictive coding networks (PCNs) (Rao & Ballard, 1999;
Friston, 2003) have been proposed as unsupervised learning
models, approximating to how the brain works. Recent
interest in these models has led to an increased number
of publications, which can be split into two main lines
of investigation: One line is concerned with neuroscience
aspects and variations of PCN models, and how they can be
embedded in a unified “theory of the brain”, e.g., (Kadmon
et al., 2020; Friston, 2018; 2010); the other line is concerned

"Department of Computer Science, University of Oxford,
UK. ’Institute of Logic and Computation, TU Wien, Austria.
Correspondence to: Simon Frieder <simon.frieder@cs.ac.ox.uk>.

Proceedings of the 39" International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022.

Copyright 2022 by the author(s).

Thomas Lukasiewicz 2!

with integrating PCNs tightly into mainstream machine
learning by building models that can be trained and used
in practice; see, e.g., (Bartunov et al., 2018; Kriegeskorte,
2015; Hassabis et al., 2017; Song et al., 2020).

Within this latter context, supervised learning variants of
PCN models have been proposed recently whose training
is closely aligned with that of fully-connected feedforward
networks (FCFNs), which use stochastic gradient descent
(SGD) and backpropagation (Whittington & Bogacz, 2017;
Bogacz, 2017; Song et al., 2020; Salvatori et al., 2021b).
The PCN models outlined in these articles are our objects
of study. They are, similarly to FCFNs, specified by a fully-
connected architecture with weights but, crucially, their
training (learning) stage as well as their prediction stage,
uses a gradient-based iteration procedure. By prediction
stage, we mean those computational steps that need to be
performed to obtain an output for a network whose weights
are (e.g., by training) already fixed; see Figure 4. For
(trained) FCFNs, in contrast, one obtains the output after a
finite number of steps.

While the PCNs outlined in the four articles referenced
above are conceptually highly similar, they are not identical
on a formal level, and multiple variants of PCNs are
discussed in (Song et al., 2020). Appendix B contains
a short comparison of the models across these articles.
Because most of the differences between the models pertain
to their training stage, and our results that are focused on
the prediction stage the persist across all model variations.
To have a fixed reference, we describe a specific PCN
(Sections 2 and Appendix B, respectively) relative to which
we prove our results of (non-)convergence; our description
of PCNs is different from the referenced articles, as we
introduce new mathematical objects and new notation for
various parts of PCNs to achieve a fully rigorous setup that
is also notationally easier to handle.

PCNs can be trained in a way that not only approximates
backpropagation but provides an exact realization of
it (Lillicrap et al., 2020; Whittington & Bogacz, 2017; Song
et al., 2020). This has the advantage that certain biological
principles of how the brain works are satisfied during the
training of PCNs—unlike for FCFNs trained with SGD and
backpropagation. For example, PCNs (even beyond the

(Non-)Convergence Results for Predictive Coding Networks

particular sense in which we consider them) are deemed to
respect local plasticity (Lillicrap et al., 2020; Whittington
& Bogacz, 2019): During training, the rule to update the
weights of a node only uses, in one time step, the weights
of those nodes that are adjacent to it.

This, together with the fact that their performance has been
reported to match FCFNs (Song et al., 2020; Salvatori et al.,
2021a), makes them interesting in their own right.

We motivate our main question regarding the (non-)con-
vergence of PCNs by noting that the version of
PCNs under consideration is derived by a forward
Euler discretization procedure of a system of ordinary
differential equations (Whittington & Bogacz, 2017;
Bogacz, 2017). Such discretization procedures are not
generally asymptotically faithful to the original system;
cf. (Fiedler & Scheurle, 1996), Chapter 1: “Over fixed finite
time intervals, the analogy [between discrete and continuous
time dynamical systems] is well understood in terms
of discretization errors and sophisticated discretization
schemes. Over large or infinite time intervals, this analogy
is not so clear, because discretization errors tend to
accumulate exponentially with time”.

One could alternatively see that convergence might be
problematic by noting the connection to gradient descent,
for which it should be clear that convergence cannot be
assumed from the beginning, in particular, when time steps
are constant: For an arbitrary, sufficiently smooth function h,
discretizing the initial value problem

{5@ = —Vh(x),
z(0) ==

leads to standard gradient descent

Tip1 = ¢ — YVh(zy), zo:=2z, >0,
which, if h represents a PCN, coincides with the definition

of its computation rule (see Definition B.3).

Hence, summarizing, even if the original (continuous)
system has special structure that may give the hope that
convergence is possible, the long-term dynamics of its
discretized version have to be analyzed on a case-by-case
basis; and it will indeed turn out that convergence is not
always possible (see Section 5).

In this regard, one important issue in the context of PCNs
is the fixed prediction assumption. This expression has
been coined by (Rosenbaum, 2021), though only for the
training stage of PCNs, and is used implicitly in (Song
et al., 2020; Whittington & Bogacz, 2017), in both stages.
It means, in dynamical system terminology, that in both the
prediction and the training regime, there exists a fixed point
to which the iterations of the PCN converge; more precisely,

it means that the fixed point is asymptotically stable, and
all w-limit sets are singletons (we uncover the dynamical
systems nature of PCNs in Section 2 and Appendix B; see
Appendix A for a short introduction to dynamical systems).

There is reason to be skeptical about the general validity of
the fixed prediction assumption: PCNs are gradient systems,
but there are examples of gradient systems, even with
continuous time, whose orbits have a non-trivial behavior,
where the w-limit set of certain points is not a singleton,
but the unit sphere S! (Palis & De Melo, 2012). The
potential for failure of convergence for PCNs has been noted
by (Rosenbaum, 2021), though no concrete example is given
and no in-depth analysis of failure modes is carried out. We
note that that article is solely concerned with the training
stage and different training methodologies, whereas our
convergence results pertain to the prediction stage (which
is independent of any training methodology) as well as the
training stage (for a specific example); the non-convergence
results pertains only to the prediction stage.

Concluding, the main contributions of this paper are to:

e carry out the first mathematically rigorous treatment
of PCNss in the context of supervised machine learning
methods. In this regard, we emphasize the close
relationship between PCNs and discrete dynamical
systems, which has so far not been explored in
the literature. We provide an explicit example of
how convergence can fail (which shows that forward
Euler discretization can lead to a problematic long-
term behavior, even if the original system has a
special structure). Such negative examples have not
been reported yet for the type of PCNs that we
are investigating; furthermore, empirical results have
rather suggested the opposite, that convergence is
mostly possible; see, e.g., (Song et al., 2020);

* develop a unified mathematical framework for pre-
diction-stage PCNs from the viewpoint of machine
learning and dynamical systems, within which the
aforementioned results can be placed. New propo-
sitions (e.g., Proposition B.8) are proved along the
way, and known results (e.g., Proposition C.5) are
recapitulated and presented in a unified manner;

 prove general convergence theorems for the prediction
that provide sufficient conditions when the fixed
prediction assumption is fulfilled, i.e., when the model
converges. For the training stage, whose formal
setup parallels the prediction stage, we have omitted
a general exposition in the appendices and directly
proved a convergence theorem for the specific, running
example from the main body of this paper. These
results partially vindicate why previous experimental
results have worked.

(Non-)Convergence Results for Predictive Coding Networks

v
4

w
O O O

Figure 1. The simplest possible PCN that is not yet trivial. Re-
moving the intermediate node would reduce the PCN to a linear
system, when formulated as a discrete dynamical system, which
would make it trivial.

Because fully formalizing PCNs leads to complex mathema-
tical objects with difficult notation that potentially obscures
the exposition, we have structured the article in such a way
that all general results and definitions are relegated to the
appendices. This also keeps the exposition short.

Thus, in the main body of this paper in Sections 2 to 5, a
concrete example is used to illustrate the general results
and proofs from the appendices in a simple and easy-
to-read manner; then, a counterexample to the claim
of unconditional convergence is provided (Section 5).
Corresponding to Sections 2 and 3, which treat the concrete
case of the prediction stage, are Appendices B and C,
where the general theory in the prediction stage is presented.
While the main body of this paper is self-contained, we
have carefully outlined in Sections 2 and 3 how each
of the concrete prediction-stage results generalize to the
corresponding results from the appendices. Section 4 and 5
have no corresponding section in the appendices. The main
part of the paper is written in an informal style, while the
appendices are written in a definition-theorem-proof style,
in order to support distinguishing different mathematical
objects necessary to formalize PCNs.

2. Dynamical Systems Perspective

In this section, we illustrate via a concrete example how
to interpret PCNs as dynamical systems. For the general
case, see Appendix B. We focus on the prediction stage first;
information about notation is given in Appendix A.

PCNs resemble FCFNSs; see Figure 1. To obtain an output
(on a PCN with given weights, obtained, e.g., by training),
an infinite sequence of gradient-based computation steps is
carried out during which the values of non-input nodes are
successively computed. We consider here the simplest PCN
that is not yet completely trivial, namely, one that consists
of the nodes as in Figure 1.

At the end of this section, we provide an explanation how
this formal model can be interpreted from a neuroscience
point of view. The architecture of the PCN is completely
determined by this diagram, but several components to
complete the formalization are still missing: Let f : R — R
be a (typically nonlinear) activation function, and o, 5 € R
be fixed weights. Suppose that s € R is some input, and
7,1 € R are some initializations (which we also call seeds).

Adapting the general equations from (Song et al., 2020) to
this example, consider the following system of recurrence
equations, where at time ¢t = 0, we set

o =S
vg =1 (D
wo =1

andforallt =1,2,..., witht € N, we set

Ti41 = Tt
Vt4+1 = Vg —’}/alF(Ut,’LUt,Oé,ﬁ) (2)
W41 = Wt — 782F(Ut7wt,a75)a

where F : R? x R?2 — R,

Ry, .67) = 5y — EF()) + (2~ /()"

System (2) determines a sequence of tuples (v¢, wt):>0;
the sequence (x¢);>¢ is constant and equals the input s.
Determining the convergence behavior of (v, wy);>0 is
what is sought. If this system converges, we call

(U(XM woo) = tliz{.lo(vt? wt)

the output of the PCN. (The general definition of a PCN is
given in Definitions B.1 to B.3 in Appendix B.)

Notice that a simpler PCN than the above one consisting
of only of two nodes is trivial, because such a system
essentially consists of a single sequence analogous to the
sequence (w;)¢>0, and this equation can be explicitly solved,
as it is a linear recurrence equation.

It is worthwhile to interpret the sequence (v¢, wi)¢>0 as a
(two-dimensional) discrete dynamical system on the phase
space R2. Thus, we introduce the following notation. Let

\Ijs,a,ﬁ(ya Z) = (y*’Y alF(ya Z, Q, ﬂ)a = 82F(y7 zZ, Q, B))a

which we call a PCN map. Thus, obviously,

(ve, we)ez1 = (Y o 5(1, 7)1, 3)

where (vg, w)i>0 is determined by (1) and (2). (Defini-
tion B.5 indicates how an analogous operator needs to be
defined for a general PCN, and Proposition B.8 shows that
an analogous statement holds, indicating how a general PCN
can be represented as discrete dynamical system.)

Computing the derivatives of F', we explicitly obtain:

81F(y7 27577—) =Y - Ef(s) - f/(y)T[Z - Tf(y)]v
82F(y,2,€,7') =z Tf(y)

(Non-)Convergence Results for Predictive Coding Networks

Thus, the sequences (v, w;);>o from system (2) are
determined by the equations

{vt+1=vt7{vtaf(8)f’(vt)ﬂ[wtﬂf(vt)]}, @
wyp1=wy — y{w, — Bf(ve)},
with, by (3),
Vsap(y,2) = (y—{y—af(s)—f(y)Blz—Bf(y)]},
z—=y{z—Bf(W)}) 5)

(The general formula for the derivative is provided in
Proposition B.9, and Remark B.10 shows what the
analogous general form of (2) as well as of ¥ ,, 5 is.)
Remark 2.1. Because the gradient of F is essential for
defining the dynamics of a PCN, it is helpful to introduce
a number of further mathematical objects that make up F,
in order to be able to relate the gradient dynamics to what
happens in the network.

Thus, we define the belief functions

iy, z,€,7) =& f(s),

and error functions

iy, 2, & 7)=7f(y)

é(ya 2, 51 T) =Y — ﬂ(y, 2, 57 T)a
€(y, 2,6 7)=2— iy, 2,§,7).
With these, let

By, 26)= 5y — ply, .6,7)’

_ &y, 26 1)°
B 2
_ 1 B
F(ya 2, 53 T) = 5(2 - ,U,(y7 2, 57 T))Qa
_ E(yv Z, 57 T)2
D —
so F' can be written as F(y,z,{,7) = F(y,z,g,T) +
F(y,z,&,7). In Appendix B, Definition B.2, the abstract
formulation of these objects is given.

(6)

Using these objects, the interpretation of F is the following:
After each non-input node (i.e., hidden node or output
node) is initialized, the PCN sequences (fi(z;)):>0 and
(f1(zy))>0 are thought to represent an initial guess that
the network makes about the node values; this can be
represented as the secondary “belief node”, i.e., the value
of an original node as given by the belief function. In
time, these guesses are updated until an equilibrium is
reached. To contrast the belief nodes from other nodes,
we call the original nodes s, v¢, w; “value nodes”. A new
representation of the network that accounts for these nodes
looks as in Figure 2. Thus, these newly introduced objects,
while not strictly necessary for the derivation of our results,
are important in order attain an intuitive understanding of
PCNgs, as it was layed out in (Whittington & Bogacz, 2017;
Bogacz, 2017; Song et al., 2020; Salvatori et al., 2021b).

Figure 2. An illustration of how the value nodes (circles), the
belief nodes (triangles), and the errors (in blue) change with time,
via (4). While the input s stays fixed, the other nodes move
around with time. We used the short-hand notation iz = fi(v¢, we,
o, B), it = plvg,we, o, B), ¢ = E(ve,we, . B), and & =
&(ve, we, o, B). Notice that €; and &, denote signed differences.

3. Phase Space Analysis and Convergence for
Prediction

In this section, we prove sufficient conditions for conver-
gence of the concrete example exhibited before. For the
general case, we refer to Appendix C.

The dynamical system (¥ , 5, R?) that determines the
iterations (4) has a single (unique) fixed point

v* = af(5)7
{w* — B1(*) = BF(af(5)). @

Thus, if f is C1, i.e., continuously differentiable, and
therefore ¥, 3 a continuous map, the output of the
PCN, (Voo, Weo), if it exists, must be equal to the fixed
point (v*,w*). (This is a standard textbook argument.
We include it here nonetheless for a general audience
not accustomed to dynamical systems: If (vg,w:)i>o0
has the limit (Voo, Woo), then (U o 5(ve, wi))i>0 has the
limit ¥, o g(Voo, Weo) by the continuity of U, , g; but
(ve, we)e>0 and (¥ o g(ve, we))e>o differ by a single shift,
so must have the same limit. Hence, ¥ o (oo, Woo) =
(Voo Woo)s 184y (Voo Weo) = (v*,w*), as the fixed
point (v*,w*) is unique. For the general version see
Proposition C.2.)

Therefore, our qualitative understanding of PCNs at this
point is described by Figure 3. We depicted the fixed point
to be stable in this figure, but this does not need to be
the case. Furthermore, other objects, that are not locally
visible neighborhoods of the fixed point may exist; Section 5
exhibits an example were both of these situations occur
simultaneously. Though the absence of further fixed points
limits the complexity of the phase portrait to some degree.

Consider now an FCFN consisting of the same data (archi-
tecture, activation function, and weights—initializations
and step size are not needed), i.e., an FCFN that is also
represented by the diagram from Figure 1. For the same
input s € R, the output of such an FCEN is given by the
formula Bf(af(s)), obtained by successively following

(Non-)Convergence Results for Predictive Coding Networks

R2 e

Figure 3. A hypothetical local phase portrait, around the fixed point
(v*, w*) of the discrete dynamical system (U, ., 5, R?), indicated
by the red dot. This figure is purely illustrative. The dashed circle
represent a neighborhood around the fixed point. The dotted lines

indicate a few representative orbits that converge to the fixed point.

Note that it is not always the case for the orbits to converge to the
fixed point, i.e., it is not always the case for the fixed point to be
stable, as highlighted in Section 5. Furthermore, even if the fixed
point is stable, there are other types of stability than the radial
stability depicted here.

how the input s changes layer by layer.

Thus, if the PCN converges, its value is given by the
corresponding FCFN made up of the same data. (Notice that
we assume that FCFNs do not apply the activation function
after the last layer, which in some parts of the literature is
done. The general definition of an FCEN is recapitulated
in Definition C.3, while Proposition C.5 states in general
that the fixed point of a PCN is equal to the output of the
corresponding FCFN.)

A comparison between FCFNs and PCNs in terms of their
evolution in time can be seen in Figure 4. We chose
a different example for this illustration than our running
example from Figure 1, to better indicate the complicated
dependencies that can arise in time. For the running example
the dependencies would be almost trivial (yet it still has
interesting dynamics, illustrating the complexity of these
models). This particular example is subsumed by the general
setup of PCNs from Appendix A.

From the perspective of statistical learning theory, there
is therefore no need to leave the hypothesis class of
FCFNs, since PCNs do not increase this space; rather,
their importance lies in their biological faithfulness, in
particular, their training procedure and its connections to
backpropagation, which, as mentioned in the introduction,
has already been analyzed to a certain degree.

FCFEN —no time dependence!

nd=2 n?=3 n'=2 n’ =3

>)
r T
1 1

nd =2 n?=3 n'=2 n’=3
2 "
i Tt

Figure 4. A comparison between the dynamics of a FCFN vs. a
PCN in the prediction stage. The input is on the left and the output
is on the right For a PCN three timesteps are depicted. The gray
arrows indicate the dependencies of each node on the nodes from
the previous time step. If a PCN converges to an output it means
that right-most nodes do not change significantly anymore between
different “time-slices” for a sufficiently large values of ¢.

(Non-)Convergence Results for Predictive Coding Networks

This issue has a further dramatic consequence: If one
starts the iteration on the fixed point, one (obviously)
has convergence; but in that case, there is no point in
using PCNs, as the computations are identical to the ones
produced by an FCFN, so one looses biological faithfulness
in this case.

If f is furthermore C?, so that ¥, 5 is C' by (5),
one can apply a non-bifurcation theorem to ¥, , g (see
Theorem D.1), which gives conditions when fixed points
of a discrete dynamical system, as well as their stability,
persist under small perturbation of parameters of the system.
The proof idea is to notice that for a good choice of
weights (which are the parameters in the sense of the
mentioned theorem) the system becomes linear, where it
can be fully understood; the above theorem then show
that the results persist under small perturbations of the
parameters. (A general version of this theorem is formulated
in Theorem C.7).

Theorem 3.1 (Prediction-stage convergence criteria for a
PCN). If f is C? and 1, 1, o, and f3 are sufficiently small,
and the step size is iny € (0,1), then the iterations of (2)
converge (to the fixed point that coincides with the output of
the corresponding FCFN as shown previously).

Proof. By (3), we consider ¥ g9, ie., a0 =0, =0. It
follows from (5) that U ¢ ¢ is a linear map, U, ¢ o(7,7) =
((1 =)7, (1 —~)n), and the system has a (unique) fixed
point (0,0) € R2. Furthermore it has a single eigenvalue
1 — =, which lies in the interval (0, 1). Hence for any initial
value, all trajectories converge to the fixed point (0,0),
which is asymptotically stable. Since f is C2 and thus the
PCN map is C, we apply the non-bifurcation Theorem D.1
to h(a, 5,7,1) = Vs 0.3(7,7) (thusp = 2and n = 2 in
Theorem D.1) to conclude the proof. O

4. Training stage

We first fix a training regime: For PCNs, multiple possibi-
lities are mentioned in (Song et al., 2020), with varying
degrees of biological faithfulness. We use a generalization
(allowing arbitrary initializations and step sizes) of the
training procedure that is called Fa-Z-IL (fully autonomous
zero inference learning) in (Song et al., 2020), because it is
the most biologically faithful among the presented variants,
while still recovering backpropagation exactly.

The development parallels the previous two sections:
First, a general gradient system is considered, then its
dynamical systems nature is discussed, and convergence is
established. Thus, we proceed at a faster pace in this section.
Furthermore, it is possible to generalize these results as well,
but we have omitted such an undertaking. For simplicity,
convergence for a dataset consisting of a single training
example is discussed.

To train such a PCN via Fa-Z-IL, all the mathematical
objects from the prediction stage are employed, except the
initializations 7 for the node w, as this node is constant to
the output ¢ € R in this stage. Additionally, a second step
size 4 > 0 is given, and instead of fixed weights «, 5, we
now have entire sequences of weights (a):>0, (5¢)e>0 as
well as weight initializations p, p € R in addition to the
node initialization. Thus, at time ¢ = 0, we set

Tog=S
vo =1,
wo =¢ (8)
Qg =p
Bo=p
and forallt =1,2,..., we set
Tt+1 = Tt
Vi1 = vg — 7y O F (v, we, o, By),
W41 = W,)
apy1 = o — 5 O3F (ve, wy, oy, Br),

Bet1 = By — 7 0aF (v, wy, o, Br).

Obviously, one can eliminate the constant sequence (z):>0
like before to arrive at a dynamical system W ,, : R? — R3,
which now has both input and output as parameters, whereas
weights are allowed to vary; though for brevity we skip the
discussion of a PCN map for the training stage entirely in
this section. Computing the derivatives of F also for the
weights, one obtains explicitly:

Vt41 =Vt — 7 {Ut - atf(s) - f/(Ut)ﬁt [q - Btf(vt)]})
a1 = +7f(8) (v — ar f(5)), (10)
Bir1 = B +7f(ve)(q — Bef(ve)),

which determines a sequence (v¢, a, Bt)¢>0-

If the sequence (v, o, B¢)i>0 converges to some fixed
point, then, by definition, the pair (s, ¢) has been learned.
This definition is meaningful, because (as it will turn out a
few paragraphs later) the weights set in his way lead to an
FCFN that outputs ¢ when given s as input.

In contrast to (4), there is no single expression anymore of
the fixed point (v*, a*, 3*) € R? of (10), as to solve

0
f(s)w" —a™f(s)) =0, (1)
0

we have to make a case distinction whether f(s), f(v*) are
Z€ero or not:

(Non-)Convergence Results for Predictive Coding Networks

o If f(s) # 0, f(v*) # 0, then the fixed point fulfills the
equations

v = ot f(5) 12

and is analogous to the fixed points of the system (2),
given in (7) (with w* denoted by ¢, and the weights
starred).

{q:ﬁv@wx

o If f(s) # 0, f(v*) = 0, then the fixed point elements
fulfill the equations

v = a*f(s)
f/(v*)ﬁ*q — 0.

o If f(s) =0, f(v*) # 0, then the fixed point fulfills the

equations
v* =0
q=pB"f(v*).

o If f(s) =0, f(v*) = 0, then the fixed point fulfills the
equation

If the learning process converges such that f(v*) # 0 and
f(s) # 0 hold, then we are in the case of (12). This then
implies that if the network converges in the prediction stage,
for an input s, we obtain an output q. This shows why
assuming convergence of (10) is the correct concept for
training for PCNs and extends the understanding of fixed
points from (Whittington & Bogacz, 2017; Song et al., 2020;
Rosenbaum, 2021).

Analogously, we can prove that convergence is possible in
the training stage as well, by again appealing to the non-
bifurcation Theorem D.1, as long as the initializations are
sufficiently small.

Theorem 4.1 (Training-stage convergence criteria for a
PCN). If f is C? and %, 7, p, and p are sufficiently small,
the step sizes are in~y,5 € (0,1), and the conditions for the
correct fixed-point case are met, then the iterations of (9)
converge (to the fixed point (12)).

5. Non-Convergence

While the results from the previous sections (in particular
pertaining to the training stage) were also true for PCNs
defined on arbitrary architectures, as we indicated by
giving pointers to the general theorem from the appendices,
in this section, we continue with a refined analysis for
the prediction stage of the example that we have so far

considered. We highlight parameter regimes and show
the existence of step sizes where convergence cannot be
obtained.

The fixed points whose eigenvalues do not lie on the
unit circle, i.e., for which the previous non-bifurcation
Theorem D.1 holds, are called hyperbolic. This is a term
from dynamical system theory to denote fixed points with
convenient theoretical properties: The local behavior around
hyperbolic fixed points can be well described by general
theorems, as no center manifolds exist, which potentially
complicate the analysis.

Since we already showed in the previous section that, at
least for sufficiently small weights and initializations, all
trajectories converge to the fixed point, in this section,
we must obviously investigate how hyperbolicity can be
violated if we seek to exhibit a pathological behavior.

Suppose that the activation function f is C2. Then, the
linearization J = D(¥, , 3)(v*,w*) at the fixed point
(v*,w*) € R? exists and is given by:

g A ABf(v)
VBf () 1—n

where
A=1—~(1+28w* = B2[f"(v*) f(v*) — £ (v*)?]).

Notice that the linearization depends only implicitly on the
weight a and the input s, as the values of the fixed points are
determined by these. We can thus (from a bifurcation point
of view) consider 3 (on which w* also depends) and -y to be
the only parameters. We now investigate these bifurcations;
these are parameter region which, when the parameter varies
within them, induce qualitative changes in the phase portrait.

If 5 = 0, we obtain a double eigenvalue 1 — ~. Thus, if
v € (0,2), the system converges to the fixed point, since
the (absolute value of the real part of the) eigenvalue is less
than 1. For v = 0 and v = 2, one obtains (double) unital
eigenvalues, and the fixed point become non-hyperbolic.
These are called fold and period-doubling bifurcations,
respectively. Though we do not pursue those bifurcation
points in more detail here.

If 3 # 0, one can similarly find a pair (5,) of parameters
and values for the fixed point, such that we obtain a complex
conjugated pair of unital eigenvalues, and the fixed point
again becomes non-hyperbolic.

These situations are the only ones that can occur generically,
see Figure 6. (The term “generic” has a well-defined formal
meaning within the context of dynamical systems theory; we
refer the reader to (Ruelle, 1989), Chapter 8.7, for a detailed
discussion of the topological aspects, as well as how this
concept interacts with probabilistic meanings. Informally, it
can be thought to mean “typically”.)

(Non-)Convergence Results for Predictive Coding Networks

We now consider B to be fixed, so that we have a
single parameter -y left that is allowed to vary and induce
bifurcations. Because the fixed point is now non-hyperbolic,
and thus the non-bifurcation theorem mentioned above
breaks down, bifurcations can appear. Informally, this
means that, as the parameters change, the phase portrait
can radically change (and, in particular, the stability of
the fixed point to which the trajectory must converge, if
they converge at all, can change and become unstable).
Bifurcations of the type identified in this case are called
(generic) Neimark-Sacker bifurcations. Note that because
this type of bifurcation requires a complex conjugated pair
of unital eigenvalues, it can only appear in phase spaces of
dimension at least 2. Specific known behavior is associated
with any type of Neimark-Sacker bifurcation points:

Theorem 5.1 (System behavior at a Neimark-Sacker
bifurcation). For any generic two-dimensional, one-
parameter system (v,w) + h(v,w,v), having at
parameter v* a fixed point (v*,w*) with complex
conjugated unital eigenvalues e*%*, there is a neighborhood
of (v*,w*) in which a unique closed invariant curve
bifurcates from (v*, w*) as 7y passes through 7.

A statement and proof can be found in, e.g., (Kuznetsov,
2013), Theorem 4.6. We now prove one of the main
theorems of this article:

Theorem 5.2 (System behavior at a Neimark-Sacker
bifurcation). There exist PCNs (and PCN maps) that have
points in their phase space that do not converge, as the fixed
point is not stable and there exists a closed invariant curve
around the fixed point, containing no recurrent points.

Proof. Having found an input, weights, and step sizes such
that the Jacobian has a unital pair of eigenvalues, we apply
the theorem above, where everything is fixed except the step
size. The existence of an invariant curve precludes global
stability of the fixed point: If one would start the iterations
outside the invariant curve, there is no possibility anymore
to reach the fixed point. This establishes non-convergence.
(Another line of arguing would be to assume that we start on
the curve itself. Because it is invariant, we can not escape it
and hence also not converge.)

To see that orbits on the curve have a more complicated
behavior, i.e., are non-recurrent, we use topological methods
and theorems from (Hale, 2004), Section 6. By direct
computation (or by Remark B.6), one can see that system (5)
is itself a gradient system. Because it has a single fixed
point, it is a strongly gradient system, which means the set
of recurrent points equals the set of its fixed points. But
since there is just one fixed point, which does not lie on the
curve, this means that the curve contains only non-recurrent
points. (This also shows that finding an initial value that lies
on the curve and tracking it with finite numerical precision

Figure 5. Various trajectories in R? of ¥, o5 for s = 1, o =
—10,8=0.2,y = 1.2, and f(z) == 2% In the diagram above,
all initial values lie within the region enclosed by the invariant
curve and have been chosen close to the unstable fixed point, which
appears as a small white point in the center. The direction of the
trajectories is not immediately clear from the finished diagram, but
plotting it step-by-step indicates that the trajectories move away
from the fixed point. In the diagram below, all initial values lie
outside the invariant curve, approaching it as time increases.

might be a very difficult task, which makes it unsuitable for
an explicit non-convergence example). O

In fact, it is possible to explicitly find examples of non-
convergence, even beyond the discussed setting. Let, e.g.,
s=1,a=-10,8=0.2,7 = 1.2,and f(z) := 22, which
is C?, and consider the trajectories for various initializations
of the PCN, i.e., the initial value of ¥, , g. We can see in
Figure 5 that the iterations approach a curve, both when
starting within the region that the curve encloses, as well
as when starting outside. Theorem 5.2 provides the formal
underpinning of this theorem. In particular, because ¥, g
is injective and continuous, it follows that the iterations
cannot “jump” over the invariant curve and are forever
confined within it.

6. Conclusion

The overarching take-away message for this investigation
is that while neuroscience can offer important impetus, it is

(Non-)Convergence Results for Predictive Coding Networks

B+40,v#0

Figure 6. The possible unital eigenvalues of the linearization of
W, «,p at the fixed point. The violet dots indicate a family of
pairs of complex conjugated eigenvalues, one for each fixed .
Cf. (Kuznetsov, 2013).

equally important to be aware of mathematical properties
and pathologies that can arise within the proposed models
and that may invalidate some of the aspirations that these
models are deemed to fulfill.

The fixed prediction assumption, implicitly used in the
previous works on PCNs, is an example of this, as we
have shown that specific instances of PCNs exist that
have a pathological non-convergence behavior for certain
parameter regimes.

Could such counterexamples be found for other, more
complicated architectures? By having a single parameter -y
that we allow to vary in the discussed counterexample, we
are in the case of a co-dimension 1 bifurcation. Informally,
this is the number of independent conditions determining
the bifurcation, see (Kuznetsov, 2013), Chapter 2.3. As
the parameters increase, the co-dimensions increases,
and it becomes increasingly harder and more technically
involved to carry out a bifurcation analysis; problems of
co-dimension 3 and higher are currently still open problems,
see (Kuznetsov, 2013), Chapter 2.4. This precludes doing
the same analysis as in this section for PCNs with larger
architecture, as we would encounter such bifurcations
of higher co-dimension, whose behavior is not yet fully
understood. For other counterexamples, it is therefore likely
that other techniques need to be employed, which call for
an analysis of other bifurcation points.

The existence of a counterexample to convergence triggers
the necessity of providing theoretical guarantees for
convergence, as one can not take the fixed prediction
assumption for granted. Employing a novel view on PCNs
by casting them as dynamical systems, we have provided

basic conditions that are sufficient for convergence (see the
appendices for general formulations of such theorems), both
in the prediction and the training stage. These also provide
a justification why some of the observed experiments in the
literature can be expected to succeed from an optimization
point of view: If the weights and the initial values are small
enough, everything works out. Intriguingly, the regimes for
which convergence is proved assume that the step size is
less than 1, which is consistent with what one would expect
for an Euler discretization to converge by keeping local
errors small. Yet, equivalence to backpropagation assumes
a step size of exactly 1, see (Song et al., 2020). Further
investigation is necessary to reconcile these findings.

Furthermore, the negative example concerning non-
convergence can be extended to larger PCNs with more
nodes. We hypothesize that it is possible to prove the
existence of similar examples for the training stage as well.
The general setup that we developed for the prediction stage
can be carried out for the training stage as well, including
a generalization of Theorem 4.1. It is possible to use
quantitative versions of the implicit function theorem to
obtain explicit guarantees on the sizes of the weight and
initializations the are sufficient for convergence. This is
ongoing work.

Acknowledgements

We thank the anonymous reviewers for helpful suggestions.
This work was partially supported by the Alan Turing
Institute under the EPSRC grant EP/N510129/1, the AXA
Research Fund, and the EPSRC grant EP/R013667/1.

References

Bartunov, S., Santoro, A., Richards, B., Marris, L., Hinton,
G. E., and Lillicrap, T. Assessing the scalability of
biologically-motivated deep learning algorithms and
architectures. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Bogacz, R. A tutorial on the free-energy framework
for modelling perception and learning. Journal of
Mathematical Psychology, 76:198-211, 2017.

Broer, H. and Takens, F. Dynamical Systems and Chaos,
volume 172. Springer Science & Business Media, 2010.

Fiedler, B. and Scheurle, J. Discretization of Homoclinic
Orbits, Rapid Forcing and "Invisible” Chaos, volume 570.
American Mathematical Society, 1996.

Friston, K. Learning and inference in the brain. Neural
Networks, 16(9):1325-1352, 2003.

Friston, K. The free-energy principle: A unified brain

(Non-)Convergence Results for Predictive Coding Networks

theory? Nature Reviews Neuroscience, 11(2):127-138,
2010.

Friston, K. Does predictive coding have a future? Nature
Neuroscience, 21(8):1019-1021, 2018.

Hale, J. K. Stability and gradient dynamical systems.
Revista Matemdtica Complutense, 17(1):7-57, 2004.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick,
M. Neuroscience-inspired artificial intelligence. Neuron,
95(2):245-258, 2017.

Kadmon, J., Timcheck, J., and Ganguli, S. Predictive coding
in balanced neural networks with noise, chaos and delays.

In Advances in Neural Information Processing Systems,
volume 33, pp. 16677-16688, 2020.

Krabs, W. Dynamical Systems: Stability, Controllability and
Chaotic Behavior. Springer Science & Business Media,
2010.

Kriegeskorte, N. Deep neural networks: A new framework
for modeling biological vision and brain information
processing. Annual Review of Vision Science, 1:417-446,
2015.

Kuznetsov, Y. A. Elements of Applied Bifurcation Theory,
volume 112. Springer Science & Business Media, 2013.

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J.,
and Hinton, G. Backpropagation and the brain. Nature
Reviews Neuroscience, 21(6):335-346, 2020.

Liverani, C. Implicit function theorem (a quantitative
version), accessed 20 December 2021. [https://www.
mat.uniromaZ2.it/~liverani/Calcolo1-2016/implicit.pdf].

Palis, J. J. and De Melo, W. Geometric Theory of Dynamical
Systems: An Introduction. Springer Science & Business
Media, 2012.

Rao, R. P. N. and Ballard, D. H. Predictive coding in the
visual cortex: A functional interpretation of some extra-
classical receptive-field effects. Nature Neuroscience, 2
(1):79-87, 1999.

Rosenbaum, R. On the relationship between predictive
coding and backpropagation. arXiv preprint
arXiv:2106.13082, 2021.

Ruelle, D. Elements of Differentiable Dynamics and
Bifurcation Theory. Academic Press, 1989.

Salvatori, T., Song, Y., Hong, Y., Sha, L., Frieder, S., Xu, Z.,
Bogacz, R., and Lukasiewicz, T. Associative memories
via predictive coding. In Advances in Neural Information
Processing Systems, volume 34, 2021a.

Salvatori, T., Song, Y., Lukasiewicz, T., Bogacz, R., and
Xu, Z. Predictive coding can do exact backpropagation
on convolutional and recurrent neural networks. arXiv
preprint arXiv:2103.03725, 2021b.

Song, Y., Lukasiewicz, T., Xu, Z., and Bogacz, R. Can
the brain do backpropagation?—Exact implementation
of backpropagation in predictive coding networks. In
Advances in Neural Information Processing Systems,

volume 33, pp. 22566-22579, 2020.

Whittington, J. C. R. and Bogacz, R. An approximation
of the error backpropagation algorithm in a predictive
coding network with local Hebbian synaptic plasticity.
Neural Computation, 29(5):1229-1262, 2017.

Whittington, J. C. R. and Bogacz, R. Theories of error back-
propagation in the brain. Trends in Cognitive Sciences,
23(3):235-250, 2019.

https://www.mat.uniroma2.it/~liverani/Calcolo1-2016/implicit.pdf
https://www.mat.uniroma2.it/~liverani/Calcolo1-2016/implicit.pdf

(Non-)Convergence Results for Predictive Coding Networks

Appendices

A. Notation and Dynamical Systems
Terminology

In our general setup of PCNs, we often use two and three
indices to index vectors, where one index counts the layers,
and the other one the nodes (within a certain layer) or a
pair of nodes, respectively. We call a multi-indexed vector a
family of vectors, since it generalizes notation for matrices
(two indices with the same number of nodes in each layer)
or finite sequences of matrices (three indices), respectively.
Thus, such families of vectors offer a unified way to handle
various multi-indexed vectors.

The notation that we employ for a family of vectors, of
length ¢ == |Q|, with two indices is of the form (2%)(j,) c 0.
Here, @ is a finite set of index tuples, which is not
necessarily of “rectangular” form, since (2%)(.n)eg in
general is not a matrix. Because we do not use any of the
matrix operations on such families of vectors, we treat them
throughout the text simply as vectors, e.g. (2%)(.n)co €
R?, where the (implicit) ordering on () determines the
ordering of (2%)j,) eg as a vector in RY. For three indices,
(Z?n’m))(k7n7m)ep, everything is analogous. An example of
a family of vectors (with three indices) is, e.g., (14).

An (infinite) sequence of a family of vectors is denoted
by ((Zfz,t)(k,n)EQ)teN7 where N := {0, 1,2,...}. Further-
more, let N> := {1,2,...}, and [m] := {1,...,m} for
some m € N>;. The symbol “:=", as used just now, means
definitional equality.

We next review basic notation from the theory of discrete
dynamical systems. Within our context, a discrete
dynamical systems is a tuple (R?, ©), where ¢ : R? — RY
is a continuous map. The dynamics that this tuple generates
consists of the sequence

(zo,(x0), ¥ (z0), .. .) (13)

for some starting value ro € R?, which is captured by
the equations ¢,+1 = ¢(z,), n € N. This sequence is
called orbit through xy. Understanding and classifying
the behavior of (13) for n — oo, as xq takes different
values, is what is sought. For g € R9, the w-limit set is
denoted by w(x() and consists of all accumulation points
of the sequence (13). An accumulation point is a point
y € R? such that there exists a subsequence of (13) that
converges to y as n — oo. A fixed point £ is a point
such that (%) = %, i.e., a point such that if it appears in
sequence (13), the sequence is constant equal to it. A fixed
point & is asymptotically stable, if there exists an open set
O C R? containing Z, such that lim,, ., ¢(x) = & for any
x € O. The phase space is the domain R that consists of

the objects of interest, e.g., points that are asymptotically
stable fixed points, or invariant sets, i.e., subsets M C R4
such that (M) C M. A point z is recurrent if there
exists an m > 1 such that 9™ (z) = z and ¢"(z) # z for
n=1,...,m—1lincase m > 2,.

B. The General Dynamical Systems
Perspective

Here, we show in full generality how one arrives at a
dynamical system, given a PCN with fixed weights (i.e.,
no training is involved) as introduced in (Song et al.,
2020). Because we need to reason about PCNs as being
mathematical objects in their own right, we formalize them
below, by collecting in a tuple the formal pieces of data that
make up a PCN and specifying the rules of computation.

The setup in (Whittington & Bogacz, 2017; Bogacz, 2017)
differs slightly from the setup in (Song et al., 2020; Salvatori
et al., 2021b); for example, in the former, the seed (see
Definition B.3) is chosen randomly (see Remark B.4 for a
short explanation), while in the latter, no particular choice
of the seed of the non-input nodes is specified. In (Song
et al., 2020), three gradient descent training methodologies
are presented, whereas (Salvatori et al., 2021b) only one of
these training methodologies is used.

We follow the established convention from the cited papers
of numbering the layers in descending order, the 0-th layer
being the output layer. Because the training stage parallels
the theory for the prediction stage, we only develop the
theory for the latter here (see also Section 6 for more
information on the training stage).

Because the entire definition of a PCN is cumbersome to
wield, we brake it down in smaller pieces. Because we
use superscript indices, there is a danger of conflating this
notation with the operation of exponentiation. We therefore
establish the convention that, unless explicitly stated, a
superscript that appears directly on a single symbol is an
index, not an exponent, as is, e.g., the case for n™ below. We
number the layers of the network in descending numbering,
in order to be consistent with (Song et al., 2020).

Definition B.1 (PCN specification). Let

e L >1, nL, . ,no € N3 be the neural architecture;
¢ f: R — R differentiable be the activation function;

¢ v € R be the PCN step size;
which form the model hyperparameters and

s Vle{L-1,...,0}Vje n*Vien]: 0/, eR
be the weight from the j-th node in layer ¢ + 1 to the

(Non-)Convergence Results for Predictive Coding Networks

i-th node in layer ¢, and we collectively denote them
by the family of vectors

—(nt
0 :=(0; ;) ec{L—1,....}icln?],jcnt+1] a4

=0 ;)ecir-1, .0} ice] jelnt+1]s

where the notation 6%,
this weight connects;

; emphasizes which node pair

which form the model parameters (and can by changed by
training). We call a tuple

(L7nL7"'7nO7f7977)

a predictive coding network (PCN).

This definition collects all the pieces of information that are
needed to specify (but not compute) a specific PCN, e.g.,
the concrete example introduced in (2) is the PCN given by

(3’]‘? 17]'7f7 (a’ /B)’f}/)?

where, according to the definition above, 3 denotes the
number of layers, the 3-tuple (1, 1, 1) the number of nodes
in each layer, f : R — R the (not further specified)
activation function, («,) the weights, and -y the step size. A
(gradient-based) computation rule that specifies how PCNs
deliver an output is still missing at this stage. In order to
define it in a concise manner, two functions need to be
introduced on which the gradient computation depends.

Definition B.2 (Auxiliary functions). Let (L, nt, ... ,no)
be a neural architecture and f an activation function.
Consider the index sets

U={{ti):Le{L,...,0}ic]}, 15

U, ={i):Le{lL—1,...,0},ic[n]}, (16)

and

W= {(t,i,5) L € {L—-1,...,0},j € 0T ,i € [n]}, (17)

where u = |U|, u, = |Us|, and w = |W)|. The first set is
used to index all the nodes, the second set indexes all nodes
except the ones from the first (input) layer, and the third set
is used to index all the weights between pairs of nodes.

Consider the families of vectors, indexed by &/ and W,

y = (y))e.iyeu € RY,

and

&= (&) wijew = () wipew € RY,

where we use the notation ;. ;, concordant with the
previous definition, to emphasize that this expression
denotes the weight from node j to node 7 in a PCN context.

On these families of vectors, we define for each (¢, 1) € U,
the functions

Z+1
‘RYXRY = R, pf(y,€) : Z L), (18)
called belief functions, and

n[

0
F:R"xRY SR, F(y,&) = > Y ey, (19)
{=L—-1

Jj=1

called energy functions, where

1
ei RYXRY 5 R, £i(y,€) = 5y — mi(1,€))%, 20)

are the error functions. An interpretation of all these objects
is given in Remark 2.1. We denote the derivative of F' with
respect to the U, > (¢,7)-th entry of the y variables (the

“node derivative”) with O/F.

Notice that 39, ..., y%, the elements of y that are indexed
by the nodes from the last layer ¢ = 0, are not used in (18),
only in (19) and (20). We keep these nodes nonetheless
in the definition of ,uf for notational convenience, in order
for uf, F and € to have the same set of arguments. The
elements of y that are indexed by the first layer, £ = L, are
used in all three functions.

Definition B3 (Computation rule). Let
(L,n*,...,n°% f,0,7) be a PCN. For a given input
s = (Spry...,81) € R™" and given initializations (also

called seeds) for all non-input nodes,

n= (Uf)(é,i)eu* € R*,

the sequence of all value nodes, which is a sequence of
vectors within R%,

((xf,t)(e,i)eu)teN,

is defined in the following way:

If t = 0, we set:
* V(i) eUN\U, = by = s,
L V(L) €Ut aty =,

andift=1,2,...,

c V(i) eUNU, :

we set:

¢ _ 4
it+1 — Tits

* V(i) €Uy : b,y =af, —OF(24,0).

(To exclude a pathological behavior, we assume that the
node derivative of F exists at all points (¢, 6).)

(Non-)Convergence Results for Predictive Coding Networks

Denote by e = (£) (¢,i)cu. the limiting values of the
vector all non-input value nodes,

tlingo(xf,t)(f,i)eu*’ 21
if all these limits exists. The subvector xgo of T, that
corresponds to the limiting nodes from the last layer,
(29 o)ieno)» is called the (1-)output of the PCN, as the
computations depend a priori on the initializations (it will
turn out, see Propositions C.1 and C.2, that if an output
exists, it is unique, hence we can speak simply of the output).

Furthermore, let

(@¢)ten = ((xf,t)(fvi)eu*)tel\w

as we will use this notation a number of times in the sequel
(e.g.,limit (21) from above becomes lim;_, o,).

In the definition of the computation rule above, the
expression “V(¢, i) € U \ U, explicitly means “Vi € [nr]”,
hence the nodes at the input layer take for all time steps the
constant input value.

In (Song et al., 2020), instead of a single sequence

(5) eveu) yens (22)

there are two more sequences that are directly defined,

(i) wiern) e and (65, wiren) sen-

In our setup, these can be seen to arise by feeding the
functions yf and ¢ from Definition B.2, defined for (1) €
U, with the sequence (22):

(1) eirert)y = (HEEF D) (xyete) e
(5) nert) ey = (E @) (mgreu) sens

which makes our setup more lightweight, in comparison.

Remark B.4 (Deterministic initializations). The
initializations in (Whittington & Bogacz, 2017) are
chosen to be normally distributed with constant variance
and mean depending on the value from the previous layer
(which in turn depends on a random choice from the layer
before), i.e., nf ~ N(,uf’o, 1), where Uf,o depends on nf“,
for all (¢,i) € U,; only for £ = L — 1, the mean of the
normal distribution is itself deterministic and depends on
the input. Here, in contrast, we make no assumption about
the distribution from which the initial conditions might be
drawn, since the focus lies on investigating whether the
initial conditions affect the convergence of the network,
regardless of which initial conditions might be more or less
likely.

Definition B.S (Dynamical system). Let
(L,n™,...,n% f,0,7) be a PCN with input s € R"". The
mapping ¥, ¢ : R“* — R*~, given by

\11579(2) = (Zf - "}/afF(S, 2, 9))(€,i)67/{*a (23)

that maps z := (2£)(s,i)cu, to the vector that is obtained by
carrying out one time step of the computation rule for all
non-input nodes, is called PCN map. A PCN map captures
the essential, non-trivial parts of a PCN.

Remark B.6. Note that PCN maps are discrete gradient
systems, by virtue of

-7 F(Sa 2, 9),
(£,3)eU,

since then VG(z) = (2f — v0!F (s, 2,0)) 0.0 eu, -

Remark B.7 (Design decision). One could alternatively have
used a different definition of PCNs (and in particular of its
computation rule and of its auxiliary functions pf, F,),
such that a PCN and all its associated quantities are only
defined on those nodes that change with time, i.e., on all
nodes except the x1’s, for i € [nl]. In that case, the
connection with a dynamical system would have been more
direct. We settled on the definitions as above in order to stay
as faithful as possible to (Song et al., 2020) and show exactly
how their model, when explicitly written down, gives rise
to a dynamical system.

Proposition B.8 (Prediction-stage equivalence between
PCNs and dynamical systems). Let (L,n’, ..., n° f,0,7)
be a PCN with input s € R"L, initializations 1 =
(nf)(&i)eu* € R"*| and value nodes sequence (xi)ien as
defined in the computation rule.

Then, we have

(24)

(«rt)tEN>1 = (\I’iaa (n))tEN;1 ’

where the “t” superscript on the right-hand side denotes
the t-th composition of W, g with itself.

In particular, supposing that all value nodes converge to a
finite limit, we have

0 : : t
Too = PrOjy0 [hm ‘I’s,a(n)} :
t—o0
i.e., the limit of the output layer vector equals last n°-many
entries of the limit of the vector ‘I'i,a (n), where proj,o [|
denotes the projection of a vector down to the mentioned
subset of its entries.

Proof. Writing (24) out at t = 1, the equivalence is obvious.
By induction, equality follows for all t = 2, 3, ... From this,
the claim about the equality in the limit is immediate. [

Therefore, studying a PCN is equivalent to studying
a discrete dynamical system (R%r, U, ,) given by the
iterations of the PCN map, ¢ + \Pzﬂ. Notice: The input
to the PCN becomes a parameter of the dynamical system,
and the initializations of the PCN become the input for the
dynamical system.

(Non-)Convergence Results for Predictive Coding Networks

The reason why we exclude the input-nodes in
Definition B.5 is to allow the possibility of its linearization
around a fixed point, which we will later specify, to have no
unital eigenvalues. If an eigenvalue has value 1, a number
of standard theorems cannot be applied, as the information
that the linearization contains is less indicative for the
behavior of the original system.

We now compute explicitly the node derivatives O/F,
recovering the prediction part of formula (7) from (Song
et al., 2020).

Proposition B.9 (Expressing the derivative explicitly).

Let (L,n", n®) be a neural architecture and f a
differentiable activation function. Then, we have

OiF(y,&) = €i(y, &)~

afF(yag) = 61‘ (yvé-)a

yZ Z‘](*Z Zyg

040,

(=0,

forally = (y$)neu € R* & =
and (£,1) € Us.

(g 7])(@1])61/\/ € R¥

Proof. The proof consists of trivial, but tedious
computations. Notice that, if L = 1, we only need
to prove the formula for the case ¢ = 0, as no terms with a
higher ¢ value are present. Since those computations are
a subset of the ones that we need to carry out in the case
L > 2, we first assume that this holds and consider the case
L =1 at the end. We thus have

Fly, &)= O;lef(y,)+ ; ey, 8)l, (#£0
a? 5?(3/76)7 g — 07
(25)
since

9= T 00 D00+

j=1 j=1

+> W)+ w9

j=1 j=1
+) 5,6
j=1

which further equals

HORS)

o

(vt — 1y, 9))?

£ Z+1

1 ¢
= 1Y Z Gerd ()%,
and the term y, for £ # 0,

41
* does not appear within the sum Z;;l sf (y, &) nor all
the previous sums;

* appears only within the ¢-th summand of the sum

> ey, €);

e appears within each
néfl ¢ .
Zj:] 5]'(3/75),

* does not appear within any summand of any later sum;

summand of the sum

and for £ = 0, only €Y (y, &) contains the term .

—
We first compute 0 [¢£(y, €) +Z?:11 ey, ©)] from (25),
as computing 99 €9(y, £) amount to carrying out only a
subset of the same computations. We have

Ol)+ 3 7 06l = o 50 — (s, €)P) +

+Za€€1

+1
1 n
= Oll5 il — D2 0L) +
j=1
n(—l
1
DA Z 05 1 F (W) — 0f i F W)
j=1 k=1, k#i
n@+1
= =0 W) +
j=1

£—1

+ (<

J

Z ekf

Z aekf

k 1,k#i

-,

(Non-)Convergence Results for Predictive Coding Networks

Now

Z 0J<—k Hﬁ—zf(z)] =

k=1,k#i

S0 we obtain, inserting (26) into the previous expression,

Oflef(y,) + Y ey (9] =
=1

it

=yl = > 0 -

J=1
nt—1

PRI

j=1

£l

Z‘g it yk

Using the £ (y, &) and ¢ (y, £) terms, we can rewrite this as
nl*l
[(y,) + Z e w9 =

— 1y, &) — f(y!) Z T = T (. 9))

et(y, "(yf) Z 05 (55, 9)),

respectively. To evaluate 99 [c?](y, &), we notice that the

term
iy Z g5 (.6)

appears only if £ > 1, so thus, going through the previous
computations, vanishes if £ = 0, and we arrive at

ANy, &) = b (y, €). 27)

If L = 1, the whole proof is reduced to showing 99 £9(y, &),

which we already did, see (27). O]

Remark B.10 (Explicit computation rule). It follows that,
explicitly, the computation rule in case of L > 2, for £ # 0,

becomes

¢ ¢ ¢ ¢ ¢
Lit+1 = Lit — ’Y{xit — i (2, 0) — f’(%,t)'

Z e 2= 1_//71(%9))}’

while for ¢ = 0, it becomes

‘T?,t-i-l =T {x?t - H?(Iv 9)} (28)
and for L = 1 consists only of (28). It depends in both
cases ultimately also on the values of the nodes in layer L,

i.e., the input values, since these values appear within the
“z” terms that is contain in the “// wl(z,0)” term.

Furthermore, for L > 2, the right-hand side of mapping
Uy : R" — R“* then becomes

R U CA I B)Z]<_1 72(8,Z, €))}
el (rn)) SO (06,80

zl f'ysl(s 2,€)
Z?Lo _7;€20(37§)

(29

while for L = 1 it becomes the subvector

- 6(1)(55 Z, g)

:) (30)

220 - 767010 (57 Z,ﬁ)

where again the right-hand side depends in each case the
input values and z = (2{) (¢,5)err, € R"*.

C. General Phase Space Analysis and
Convergence for Prediction

We now prove basic theorems about the phase portrait to
which PCNs give rise.

Proposition C.1 (Fixed point formula). Let
(Lynt,...,n°% f,0,7) be a PCN with input
s = (81,...,8,L) € R™ and arbitrary initializations.
The associated PCN map ¥, 9 : R"* — R"* then has a
unique fixed point

_ (vL—l

Z=(Z"",. ..

) no) € R™
given by

z 91(—][, SJL

Jjr=1

xL—-1 __ E
ZnL*I - 9TLL<—]L S]L)

Jjr=1

yL—2 __

1 - j: 91‘—]L 1 z :eL 1¢-JL S]L))
jr-1=1 jr=1

(Non-)Convergence Results for Predictive Coding Networks

nl - Zeleh (Z JL-14JL SJL)))

Zl_ Zeh—h (Z J1<J2 ((A)>>

Ji=1 Jj2=1

nO - Z an‘)(—jl <Z J14J2 (

Ji=1 Jj2=1

(A)---)).

where A denotes the term

AfZF)L

Jjr=1

14-JL SJL)'

Proof. Because hierarchical dependencies of the entries of
the vector z € R"+, see Remark B.10, the proof consists
of solving the equations given by the fixed point, starting
from the equations corresponding to the layer ¢ = 0 first
and continuing up to layer £ = L — 1; then and substituting
the obtained values back all the way down to layer ¢ = 0.

Explicitly this is done in the following way: Let U, 4(2) =

%, for 2 = (35 1,...7,%5{_11,.. z?,..., 20,) e R, ie.,
forall £ € {L —1,...,1} and all i € [n’], we have

it

Z gfii E+1
Z 9]<—z f ! Za <—kf)

€29

and for ¢ = 0 and i € [n°], we have

Z 0L, f(3), G

respectively. Solving all the equations (32), we obtain for
all i € [nY] that

2 =3 —'y(

Z 0“—J1

J1=1

where we changed the name of the index variable, in order to
better reflect the layer of nodes over which we are summing.

Plugging these into the equations (31), for £ = 1, we obtain
for all i € [n'], since all terms containing f/(2?) vanish,

that

Z 01(—]2

Jj2=1

where analogously as before we changed the name of the
index variable.

Continuing in this manner until we arrive at = L — 1,
where we obtain for all i € [n 1]

Z eu—]L

Jjr=1

Thus, all 2ZL ~1°5 are uniquely determined by the values of
the input s. Now substituting these values backwards, we
obtain that all 2 VL 2> are uniquely determined by the values
of s, namely,

pL-1
vL—2 2 : L—-1 L—-1y\ _
Zi - 9“—]L 1f(ZjL—1) -
jr—1=1
L1
L—-1
Z 0: . f § : 9]L v f(85.))-
jr—1=1 jr=1

Continuing in this manner now going backwards through
all layers, we obtain that all Z}’s and 2’s are also uniquely
determined by the values of s, so we obtain for i € [n!]:

S (Zem (- f(A))~-->,

Jj2=1 ja=1

and, for i € [n°]:

Zewl (i%eﬂ("'ﬂz‘l))“'),

Jj1=1 Jj2=1

where A denotes the term

Z 97L 14-JL S]L)' O

Jjr=1

A standard textbook argument shows that =, if it exists
(see Definition B.3), equals 2. We repeat the argument in
order to cater to a general audience that may not be familiar
with dynamical systems:

Proposition C.2. Let (L,n",...,n° f,0,~) be a PCN
with input s = (81,...,8,L) € R™ and arbitrary
initializations and assume the limiting values of all non-
input value nodes exist, i.e. T, exists (see Definition B.3).
Then, xo = Z, where Z is the unique fixed point Z of the
associated PCN map ¥, g (as given by Proposition C.1).

(Non-)Convergence Results for Predictive Coding Networks

Proof. If (x;)ien has limit z, then (U, g(x¢))i>0 has
limit U, p(zo) by continuity of Wy g; but (x);>0 and
(U5 0(zt))e>0 differ by a single shift, so must have the same
limit. It follows that ¥, g(Too) = oo, 1.6. Too = Z as the
fixed point 2 is unique. O

An analogous figure to the qualitative Figure 4 from
Section 3 holds true for the general case.

Already from the definition of a PCN, it is apparent that
excepting the step size, which does not exist for fully-
connected feedforward networks (FCFNs), all the other
pieces of information of PCNs are the same as for those for
FCFNs. We use the same encoding of information (omitting
only the step size) for FCFNs as we did for PCNs.

Definition C.3 (FCFN definition and computation rule).
Under the same terminology as in Definitions B.1 and B.2,
we call a tuple (L,n",...,n% f,0) a fully-connected
feedforward network (FCFN). For a given input s, the vector
within R" of value nodes

T = (xf)(z,i)ew

is defined in the following way:

s V(i) €U\ U, 1 2t = s,
o V(4,i) e UN{(4,%) : £ =0} :

"2+1

v = fO) Oy alth),
j=1

241

C V(i) €U, =02l = 3T iyt

The subvector of of nodes from the last layer, (x?)ie[no],
is called output of the FCFN.

Remark C.4 (FCFN and PCN prediction-equivalence by
design). The way in which FCFNs are set up, we do not
apply the activation function f at the last layer. This is
necessary to ensure that the proposition below holds. Both
variants of FCFNs (with and without applying the activation
function at the last layer) are met in the literature and which
variant one uses does not impact the major properties of
FCFNs (such as universal approximation, to name the most
basic one) in a significant way.

On a computational level, the major distinction between a
PCN and a FCFN is that the latter needs to converge to have
an output, while the former always has an output (computed
after a finite number of steps).

The next proposition shows that if a PCN converges, it
converges to the fixed point found above, which at the same
time is equal to the output of the FCFN with the same
architecture and weights.

Proposition C.5 (Prediction-stage FCFN and PCN
equivalence on the fixed point). Let (L,n”, ..., n° f,0,7)
be a PCN and f be C1, i.e., continuously differentiable, and
s:=(81,...,8,L) € R an input. Suppose the PCN has
an output (for some initializations n). The output is then
given by the values of the fixed point projected on to the 0-th
layer (and thus is independent of the initializations) and is
also identical to the output of the FCFN with corresponding
parameters (L,n*,... ,n° f.0).

Proof. The PCN map U, 4 is continuous, since f is C'.
Hence, if the sequence of value nodes converges for input
s, or if W converges by Proposition B.8, they must
converge to a fixed point (continuity is essential for this).
By Proposition C.1, the fixed point is unique. Therefore,
the value nodes from the last layer must converge to the
corresponding values of the fixed point from the last layer,
(29)ie [n0]- Butif one tracks the computation rule for FCFNs,
given input s, through each layer, one arrives at the same
formulas as given above for the fixed point and thus also
at (é?)ie[n()] . O

Now, we analyze the stability of the fixed point: If each
weight is sufficiently close (in absolute value) to the origin
of the phase space, and the step size is sufficiently small,
then every PCN is convergent to its fixed point for any
(possibly non-linear) activation function f.

The proof is a direct application of the non-bifurcation
Theorem D.1, which shows that for certain fixed points,
these persists for small changes of the parameters:

Remark C.6 (Alternative proof strategy). One could have
also based the proof of the theorem below on a different
proof that relies on bounding the eigenvalues of the Jacobian
for the original system, see (Krabs, 2010), Chapter 1.3.
But since bounding the eigenvalues may be tedious if we
have new information about the activation function f, and
because our aim is to make this article self-contained to not
rely on the continuous-time formalism (which, as we argued
in the introduction, is in general not too informative of the
discrete-time version), we do not use this approach.

Theorem C.7 (Prediction-stage convergence criteria for
PCNs). Let (L,n",...,n° f,0,7) be a PCN, f be C?,
and s € R"" an input. Then, there exists an open set
open set V. C R+ around 0 € R"*, an open set U C RY
around 0 € RY, such that if we initialize the PCN with
n € V, pick the weights to be 0 € U, and let the step size
be vy € (0,1), then the PCN converges (to the unique fixed
point that coincides with the output of the corresponding
FCFN as shown previously).

Proof. We first analyze the behavior of ¥, g, obtained by
Proposition B.8, for § = 0 € RY , i.e., all weights are set

(Non-)Convergence Results for Predictive Coding Networks

to zero. In that case, by (29) and (30), ¥, ¢ is a linear map
given by
Ws0(n) = (1 =7)n,

and the dynamical system (R"*, ¥ () has as (unique) fixed
point 0 € R“+. Furthermore, it has a single eigenvalue
1 —~ € (0,1), hence for any initial value, all trajectories
converge to the fixed point 0, which is stable.

Now, if we set p := 6’ for some 8/ € R, (uo,zo) =
(0,0) € R* x R¥, and h(u,n) = Uy ,(n), his C* (since
the activation function is C'2, but only its derivative appears
within the defining formula, cf. Proposition B.9). Thus, we
can apply Theorem D.1 to obtain the existence of an open
set U C R™ that contains the zero weight vector and an
open set V' C R*+ in the parameter space that contains the
zero fixed point, such that if we pick ¢/ € U andn € V,
then W, ¢/ also has a stable fixed point, which means

tliglo ‘I’i,e/ (n)

exists and is finite. Reverting back to the PCN, by
Proposition B.8, we conclude the proof. O

Remark C.8 (Quantitative convergence guarantees).
Replacing the implicit function theorem with a quantitative
version (see, e.g., (Liverani, accessed 20 December
2021)), it is possible to obtain a concrete estimate of the
radiuses 71, ro of open balls B, (0) € V C R"* and
B,,(0) C U C R" for which the above holds.

The example that is investigated in Section 5 from the main
body of the article precisely is concerned with what happens
with U, 4(n) when (7, 0) are outside of the set U x V.

D. A Theorem from Dynamical Systems
Theory

In this section, we present a theorem from dynamical
systems theory, that is relevant both in the main body of the
article that illustrates the theory in a readable manner by a
concrete example, as well as for the corresponding general
theory from the appendices (see Appendices B and C).

Theorem D.1 (A non-bifurcation theorem). Let h : RP X
R™ — R” be a family of C' maps, depending on a
parameter RP. Assume that there exists a (po,xo) €
RP x R™ such that x that is a fixed point (i.e., h(po, xo) =
xo) and that 1 is not an eigenvalue of the Jacobian of
h(po,) : R™ = R™ ar xo.

Then, there exists

e an open set V. C R" containing x,
e an open set U C RP containing L,

e and a C' “fixed point providing” functionr : U — V

such that

* (ko) = o and h(p,r(p)) = r(p) forall p € U;

* for any fixed p € U, the map h(p,) has no other fixed
point in'V other than r(j);

* and for each p € U, the stability of () is the same
as that of x.

A basic version of the proof can be found in, e.g., (Broer &
Takens, 2010), Theorem 3.5, p. 116, and is in turn a direct
application of the implicit function theorem for functions
with domain R?P x R".

