RUMs from Head-to-Head Contests

Matteo Almanza ' 2 Flavio Chierichetti’ Ravi Kumar* Alessandro Panconesi’> Andrew Tomkins *

Abstract

Random utility models (RUMs) encode the like-
lihood that a particular item will be selected from
a slate of competing items. RUMs are well-
studied objects in both discrete choice theory
and, more recently, in the machine learning com-
munity, as they encode a fairly broad notion of
rational user behavior. In this paper, we focus on
slates of size two representing head-to-head con-
tests. Given a tournament matrix M such that
M; ; is the probability that item j will be selected
from {4, j}, we consider the problem of finding
the RUM that most closely reproduces M. For
this problem we obtain a polynomial-time algo-
rithm returning a RUM that approximately mini-
mizes the average error over the pairs. Our exper-
iments show that RUMs can perfectly represent
many of the tournament matrices that have been
considered in the literature; in fact, the maximum
average error induced by RUMs on the matrices
we considered is negligible (= 0.001). We also
show that RUMs are competitive, on prediction
tasks, with previous approaches.

1. Introduction

Random utility models (RUMs) are perhaps the most im-
portant model in discrete choice (Train, 2003). In full gen-
erality, they posit that a user selecting an item from some
slate of choices has a personal vector encoding the value
of all items in the universe. The user behaves rationally by
selecting the available item in the slate of the highest value.
As each user may have a different value vector, the RUM
model allows a wide range of effects. There are no known
efficient learning algorithms for RUMs.

In pairwise choice, the setting is the same, but the user must
choose between only two alternatives, rather than from an

! Algorand Labs *This work was carried out while the author
was at Sapienza University of Rome. *Sapienza University of
Rome “Google Mountain View. Correspondence to: Matteo Al-
manza <almanza@di.uniromal.it>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

arbitrary slate of alternatives as in the full model. Pairwise
choice arises whenever head-to-head competitions occur,
as in two-player games, two-alternative forced-choice test-
ing (Bogacz et al., 2006), or online experiences that com-
pare an item with an alternative. The pairwise choice model
is well studied, with a number of approaches that learn over
either subsets of the class of RUMs, or incomparable mod-
els (Chen & Joachims, 2016; Adams et al., 2010; Makhijani
& Ugander, 2019; Veerathu & Rajkumar, 2021).

Our main technical findings are general RUM learning al-
gorithms for pairwise choice. First, we introduce RIPPLE,
for Randomized Interior Point Permutation LEarner. We
show that for pairwise choice, RIPPLE is guaranteed to re-
turn a RUM that attains almost the best possible average
error over all RUMs, in polynomial time. The polynomial-
time guarantee requires solving an exponential-size dual
linear program using the ellipsoid method, which is un-
likely to be efficient in practice. Hence, we also intro-
duce RUMRUNNER, a practical variant which is also guar-
anteed to return a near-optimal RUM. RUMRUNNER uses
a separating hyperplane heuristic that performs efficiently
in our experimental evaluation, but unlike RIPPLE it does
not have a guarantee of polynomial running time. While
previous results in this area require heuristics to optimize
non-concave likelihoods, often requiring multiple runs to
escape possible poor local optima, RUMRUNNER guaran-
tees convergence to a solution whose value is e-close to the
optimum, and contains no hyper-parameters to tune. In em-
pirical evaluations we observe that RUMRUNNER is neither
subject to poor local optima nor has stability issues.

Our approach. A RUM may be characterized as a distri-
bution over users, each of whom is represented by a vector
giving the value of each item in the universe. Given a pair
of alternatives, the likelihood that the first element is se-
lected is the likelihood that a value vector drawn from the
distribution assigns a higher score to the first item than the
second. Since the decision depends only on which score is
higher, we may represent these value vectors as permuta-
tions of {1, ..., n} for a universe of n items, which simpli-
fies the RUM to a distribution over permutations.

Our approach begins by writing a large linear program (LP)
in which a variable encodes the weight of each permuta-
tion in the RUM. The LP contains constraints for each pair
{i,j} of elements asking that the total probability assigned

RUMs from Head-to-Head Contests

to permutations with ¢ > j should have at most a given er-
ror from the true target probability. The objective of the LP
then is to minimize the total approximation error.

This LP has exponentially many variables, but its dual has
only polynomially many variables (albeit with exponen-
tially many constraints). The structure of the dual allows a
separating oracle to be constructed by approximately solv-
ing an instance of the minimum Feedback Arc Set (FAS)
problem. This in turn gives a polynomial-size set of permu-
tations capable of additively approximating the best possi-
ble RUM, and the original LP can now be solved in poly-
nomial time to recover the approximating solution.

Empirical findings. We present a comprehensive set of ex-
periments comparing the RUM algorithm to other standard
and recent approaches to pairwise choice: the Blade-Chest
(BC) algorithm of Chen & Joachims (2016) and the MV
algorithm of Makhijani & Ugander (2019).

In the pairwise setting, the entire data distribution has a
particularly simple parameterization: it can be completely
represented by an n X n tournament matrix M such that
M ; is the probability that j beats 7 when the user is shown
the pair {i, j}. Furthermore, for several of our experimen-
tal datasets, the training data provides a high-accuracy es-
timate of M. In these cases, the training data is effectively
the entire data distribution, so the best algorithm will ex-
actly reproduce the matrix M. Thus, in addition to compar-
ing test-set prediction accuracy (which will depend on the
variance of the entries of M), we also report the ability of
an algorithm to capture the matrix M as given. For datasets
based on election data, our RUM-finding algorithm is able
to perfectly encode M. For other datasets, the error we
attain in approximating M is on the order of 1/n?. For
predictive tasks, our RUM algorithms also perform compa-
rably to the BC and MV algorithms.

Implications. Finding a high-quality RUM for pairwise
comparisons has several desirable properties:

e RUMs naturally provide the ability to predict winning
probabilities for larger slates, even when trained only
on pairwise data; no other algorithm we are aware of
for this problem has this property.

e Our learned RUMs are based on weighted sets of per-
mutations, and are thus naturally interpretable and in-
trospectible. For instance, one can study the properties
of the high-weight permutations.

e RUMs capture a natural notion of rational behavior, in
which users select the item they value most highly.

e The permutations learned by our RUM algorithm rep-
resent a de facto clustering of the user population into
segments, characterized by their different behaviors
with respect to their choices. This may have value
beyond predictions, e.g., in market segmentation.

The rest of the paper proceeds as follows. Section 2 covers
related work and Section 3 contains the background. Sec-
tion 4 presents our results for minimizing average errors
and shows evidence that our approach will not extend to
the uniform error setting. Section 5 describes techniques to
find succinct approximating RUMs. Experimental results
are in Section 6 and Section 7 has concluding thoughts. All
missing proofs are in the Supplementary Material.

2. Related work

The problem of representing a tournament matrix with
choice models has been often considered in the literature.
We mention those that are closest in spirit to our work.

Chen & Joachims (2016) proposed the Blade-Chest (BC)
model, which represents each player ¢ with two vectors b;
(blade) and c; (chest) in the Euclidean space; the probabil-
ity that player ¢ beats player j is a function of b}, ¢;, b;, c;.
The BC model can produce any tournament matrix, in par-
ticular those with non-transitive tripletsl, that are observed
in practice and cannot be achieved with standard MNL
models. The BC model is optimized via gradient descent
(GD) on a non-concave function, with no global optimum
guarantee. Earlier, Adams et al. (2010) proposed a similar
model to represent the outcomes of baseball matches.

Makhijani & Ugander (2019) proposed a different model,
the Majority Vote (MV) model. In this model, each player
is represented by k features, with k£ odd. Each feature
corresponds to an independent RUM?, e.g., an MNL or a
Gaussian—Thurstone model. A match between two players
i and j consists of k rounds: in the ¢th round, the two play-
ers play independently against each other using only their
tth features. The player who wins the majority of rounds, is
the winner of the match. They proposed GD to maximize
the model’s (non-concave) likelihood, with no guarantees
on the global optimum. Interestingly, they show that for a
class of models, the ability of models from the class to in-
duce non-transitivity implies the non-log-concavity of their
likelihoods, i.e., the GD procedure of any of these models
could still get stuck at a local optimum.

In fact, Makhijani & Ugander (2019) suggest general (i.e.,
possibly dependent) RUMs to be a natural choice for rep-
resenting tournament matrices, but point out that previ-
ous work (Train, 2003) has found optimization over unre-
stricted RUMs to be hard. In our paper we tackle this prob-
lem. We show how to find an approximately optimal unre-
stricted RUM for a tournament matrix; we circumvent the
aforementioned non-concavity issues by casting the prob-

"Players i, j, k such that each beats another with probability
more than 1/2: P; ; > 1/2, Pj, > 1/2,and Py; > 1/2.

2 An independent RUM is a RUM where the noise vector 7 (see
Section 3.1) has mutually independent entries.

RUMs from Head-to-Head Contests

lem combinatorially, and solving it using LP and the ellip-
soid method. We also observe experimentally that these un-
restricted RUMs almost perfectly represent the tournament
matrices that originated them—yvindicating that RUMs are
ideal for this task!

Finally, we mention the novel two-level (2L) model
of Veerathu & Rajkumar (2021). In general their model
is as powerful (and as hard to optimize) as the BC model.
They thus restrict their model to rank-2 tournaments and
show a polynomial time learning algorithm in this case.?
Interestingly, their learning algorithm appeals to the mini-
mum FAS problem, which they show can be solved opti-
mally in polynomial time on rank-2 tournaments. We ob-
serve that there exist dependent RUMs that cannot be rep-
resented by the 2L model (see Appendix D).

The problem of actively, or passively, learning RUMs has
been studied in several papers (Soufiani et al., 2012; Oh &
Shah, 2014; Chierichetti et al., 2018a;b; Negahban et al.,
2018; Tang, 2020). Farias et al. (2009); Chierichetti et al.
(2021) considered the problem of bounding a RUM’s sup-
port without changing the RUM’s behavior. The goal of our
paper, instead, is to find the RUM (approximately) closest
to a given tournament matrix.

3. Preliminaries
3.1. Discrete Choice and Random Utility Models

In our paper, we use [n] to denote the set {1,...,n}, and
2["] to denote the power set of [n]. We also use ([Z]) to
denote the class of subsets of [n] of cardinality .

We use S,, to denote the set of all the permutations of [n],
and S* =S, \ {(1 > --- > n)} to denote the set of all the
permutations of [n] with the exception of the permutation
that reverses the natural ordering relation. For a permuta-
tion 7 € S,, and for an item ¢ € [n], we let 7(7) € [n]
be the value (or position) of item ¢ in 7. For instance, if
m=8=<1=<4<2),thenn(2) =4,7(4) =3,n(1) =
2,m(3) = 1.

As is standard in discrete choice literature, we use slate to
denote a set in 2I" \ {@}, i.e., any non-empty subset of
[n]. For a permutation 7 € S,, and a slate T' C [n], we let
m(T) = arg max 7 (i),
ieT
denote the item of 7 that has the largest value in 7, i.e., the
winner in T' given m.

A random utility model (RUM) on [n] is a distribution D
on S,. (Henceforth, we drop “[n]” when it is clear from

3In their experiments, they do not measure how close their
guesses of the win-probabilities are; they consider the “upset”
metric, which counts the number of pairs of players such that the
model correctly identifies the most-likely winner in the pair.

the context.) For a slate T, we use Dt to denote the distri-
bution of the random variable 7 (7T") for 7 ~ D. (Clearly,
supp(Dy) C T'.) In other words, Dy is the induced distri-
bution of the winner in 7" for a random permutation from
D. Let Dr (i) be the probability that ¢ is a winner in 7.

RUMs are often presented in terms of noisy item evalua-
tions made by users: each item ¢ has a base value V;, each
user samples (71, ..., 7,) from a joint noise distribution*,
and the utility U; of item ¢ to this user is V; + n;. Given
a slate, the “rational” user chooses the highest utility item
in the slate (with ties broken u.a.r.). Equivalently, the user
first sorts all the items decreasingly according to the ob-
served U;’s (again, with ties broken u.a.r.) to get a permu-
tation. Then, for a given slate, the rational user chooses
the highest ranked item in the slate according to the per-
mutation. It is easy to see that these two definitions are
equivalent (Chierichetti et al., 2018a).

3.2. Tournaments and Feedback Arc Set problems

Given a set [n] of players, and {i, j} € ([Z]), a fournament
matrix {P; ;}7';_, gives the (empirical) probability that j
wins in a head-to-head contest with ¢. Clearly, P; ;, P;; >
Oand P, ; + P;; = 1, for each {i, j} € (12)).

As we will show, RUM optimization for head-to-head con-
tests (i.e., tournament matrices) is closely related to the
minimum Feedback Arc Set (FAS) problem, which is NP-
hard (Karp, 1972); the latter has two equivalent definitions.

The first definition is perhaps the most well-known. A 7-
bounded directed graph G(V, A, w) consists of the vertex
set V. = [n], the arc set A C {(i,j) € V2 | i # j}
satisfying (i,7) € A = (4,1) € A, and a non-negative
weight function w : A — [0, 7] on its arcs.

Problem 1 (FAS on 7-bounded directed graphs). Given a
T-bounded directed graph G(V, A, w), find a permutation
w of the vertices V that minimizes

C/G(V,A,w)(ﬂ') = Z

(i,§)€A and i<,j

w((i, j))-

The second definition forces input graph to be a tran-
sitive tournament (i.e., a complete DAG) with arcs go-
ing from lower-indexed vertices to higher-indexed ones.
A 7-bounded transitive tournament G(V, A,w) is a com-
plete DAG consisting of the vertex set V' = [n], arc set
A = {(i,j) € V? | i < j}, and a weight function
w: A — [—7,7] on its arcs.

Problem 2 (FAS on 7-bounded transitive tournaments).
Given a T-bounded transitive tournament G(V, A, w), find
a permutation T of the vertices V that minimizes

*We recall that, in an independent RUM, the 7;’s are mutually
independent.

RUMs from Head-to-Head Contests

Cav,am(m) = > w((%;7))-

1<i<j<n and i<rJ

Note that while the input graphs to Problem 2 are less gen-
eral than those to Problem 1, the arc weights of Problem 2
can be chosen in a more general way.

For Problem 1, Frieze & Kannan (1999) give an O(67n?)-
additive approximation algorithm, for 6 > 0.

Theorem 3 (Frieze & Kannan (1999)). There exists an ap-
proximation algorithm for Problem 1 that, for a T-bounded
directed graph G on n nodes, returns a permutation '
such that Cl(m') < O(67n?) 4+ minges, Ch(), in time
O (6‘471) + 20(672), with probability at least 2/3, for an
arbitrary § > 0.

We will use this approximation algorithm for Problem 2.
The two problems are equivalent from an additive approxi-
mation point of view. The following is folklore.

Observation 4. Any «-additive approximation polynomial
time algorithm for Problem I with a given T can be trans-
formed into an a-additive approximation polynomial time
algorithm for Problem 2 with the same T, and vice versa.

3.3. Approximating Tournaments by RUMs

We formally define the main problems that we consider.

Definition 5 (Average RUM approximation). A given tour-
nament matrix P is approximated on average to within € by
a RUM R if

avg |Ry () —

}%j|<:6
I =
1<i<j<n

Given P, let €, (P) be the smallest® x > 0 such that there
exists a RUM that approximates P on average to within x.

Note that each RUM R on [n] is such that Ry; j; (i) = 1 —

Ry; jy(j) for each {4, 5} € (!2)). Thus, the above average

: ic[n E:‘ n]\{i |R i\ U)*Fh‘l.
is equal to =&l =I€l jﬁén}_l){’ 2 2~ i.e., average the

error over each pair and each winner of the pair.

Problem 6. Given a tournament matrix P, find a -
additive approximation to €1 (P), i.e., obtain a RUM whose
average distance from P is not larger than 1 (P) + 4.

Similarly, one can define the maximum-error variant.

Definition 7 (Uniform RUM approximation). A given tour-
nament matrix P is uniformly approximated to within € by
a RUM R if

max

}aj|§;6
1<i<j<n

| Riiy (5) —
Given P, let €5, (P) be the smallest® x > 0 such that there
exists a RUM that uniformly approximates P to within x.

3 As we will see, the minimum exists since it can be obtained
as the solution to a finite-sized LP.

4. Minimizing Average Error

In this section we describe the RIPPLE algorithm to find
a RUM that additively approximates € (P) to within § =
© (log~*"n) in time polynomial in n. Our approach has
three steps: (i) writing down Problem 6 as a linear pro-
gram (LP) of exponential size, (ii) developing an approx-
imate separation oracle for its dual, and (iii) showing that
the Ellipsoid algorithm converges to an approximate solu-
tion when aided by this approximate separation oracle.

We start by writing down the primal LP for Problem 6:
Hﬂn(;)il- E: €i,j

1<i<j<n

Pij—¢€;<> p<Pj+e; V1<i<j<n

= g
z: pr < 1

TESY

€i,j >0 V1l < 1<J1<n

DPr Z 0 Vr S S:L

The program minimizes the average /1 -error over the pairs,
optimizing over the permutations. Note that, since its num-
ber of variables is exponential in n, this LP cannot be di-
rectly solved as is in time polynomial in 7.

Observe that the LP (1) assigns a non-negative probability
to each permutation m € S, and requires the sums of their
probabilities to be not larger than 1. To get a RUM R out
of a solution to the LP (1) one can assign, for each 7 € S7,
probability p, to w. Recall that (1 > --- > n) is the only
permutation of [n] not in S (this particular permutation
does not contribute to the probability that j beats ¢, for any
j >). The probability that the RUM R assigns to (1 >
- >=n)isthenequalto 1 — > p,.
TESY

Let us first rewrite the above primal LP as:

. =1
min (2) > €y
1<i<j<n
Lijtej+ > pr>2P; VI<i<j<n
WGS;
i<nJ
Uiji€ij— >, pr>—Pij V1<i<j<n 2)
ﬂES;
i<rj
D: - E: P 2 -1
TES)
€ij >0 V1§§i<ijf§n
pr >0 Vr €S},

‘We then take its dual in order to reduce the number of vari-
ables to a polynomial in n:

max—D + Y

1<i<j<n

(Pij - (Lij — Uiy))

€ij:Liy+ Uiy < (2)71 Vi<i<j<n (3
pr:—D+ > (Li; —U;) <0 VmeS;
1<i<j<n
i<xJ

D,Ui;,Li; >0 Vi<i<j<n

RUMs from Head-to-Head Contests

Observe that each feasible solution to the Dual LP (3) can
be transformed into a feasible solution with the same value
and with the property that for each 7 < j at most one
of U;; and L; ; is non-zero. (Indeed, if they are both
positive, then we can subtract min(U; ;, L; ;) from both
of them without impacting feasibility and without chang-
ing the objective function’s value.) Then, given a feasi-
ble solution to the Dual LP, we define A; ; = U; ; — L; ;
and after the above transformation, we are guaranteed
that UiJ' = max (Ai7j,0), L@j = max (—Ai7j,0), and
|A; j| = L; j + U, ;. The Dual LP (3) is then equivalent to:

max—D — > (Pij-Aij)
1<i<j<n
-D—- Y A;; <0 VreSh @
1<i<j<n
i<
—(3) <A< (5T VI<i<j<n
D>0

Observe that LP (4) optimizes over a vector A whose /o -
norm is bounded by (72‘)71. The goal is to maximize the
objective function under the constraint that the transitive
tournament whose (4, j) arc has weight A, ;, for each 1 <
i < 7 < n, has a minimum FAS of value at least —D.
In other words, the separation oracle problem for LP (4) is
an instance of Problem 2, i.e., of minimum FAS on 1/(})-
bounded transitive tournaments.

We now transform LP (4) from a maximization problem
into a feasibility one, since we will be using the Ellipsoid
algorithm to solve it:

cp:—D— > (Pij-Aij)=p

1<i<j<n
cr:—=D— > A;; <0 VreS}
F, = 1<i<j<n
P [
ey —(1)7T< AL <(D)7TT VI<i<j<n
cp:D>0

Clearly, LP (4) has value at least p iff F}, is feasible. We
now give an approximate separation oracle for F,.

Theorem 8. Fix any 6(n) > Q (log™"* n). Then, there
exists a randomized algorithm that gets as input an as-
signment {D,A19,...,8,_1,} to F,, and that in time
O(n?), with probability at least 2/3, (i) returns an un-
satisfied constraint of I, if at least one of the constraints
Cp,CD, OF ¢i 5 (for 1 < i < j < n) is unsatisfied, oth-
erwise (ii) if there exists at least one m € S}, such that

—-D— Y A, ;> d(n), the algorithm returns an un-
1<i<j<n

satisfied c, constraint, otherwise (iii) the algorithm might

not return any unsatisfied constraint (even if some exists).

Moreover; if there exists at least one m € S}, such that

—D— > A, ;> d(n), then for any constant ¢ > 0,
1<i<j<n
i<nj

if the above randomized algorithm is run independently for
O(clogn) times, the probability that no unsatisfied con-

straint is returned shrinks to n~°.

Proof. The algorithm can check the validity of each of the
Cp,cp, and ¢; ; (for 1 < ¢ < j < n) constraints in time
O(n?); if one of the constraints is unsatisfied, it can be
returned. Otherwise, they are all valid, and the algorithm
creates the transitive tournament G(V, A, w) with V' = [n],
A={(j) | 1<i<j<n}adw((i) = Ay
Then, G(V, A, w) is a T-bounded transitive tournament, for
7 < O(n™?),i.e., is an instance of Problem 2. In fact, con-
sider any m € S5: if Cfy 4 () is the cost of solution
7 for the instance G(V, A, w) of Problem 2, then the con-
straint ¢, of Fy is exactly —D — C’C/;(VVA_’“))(W) < 0, or
equivalently, C¢y 4 ,y(7) = =D.

Theorem 3 and Observation 4 imply the existence of an al-
gorithm for Problem 2 on G(V, A, w) that additively ap-
proximates the optimal solution to any § > 0 in time

O(n-67%) + 20067%) In particular, for each 6(n) >
Q (log™**?n), the problem can be approximated to within
an additive 6(n) in time O(n?).

Suppose that 7’ is the permutation returned by the additive-
approximation algorithm. Then, with probability at least
2/3, for each 7 € S, it holds that Cy, 4, (T) =

Cg(V,A,w)(W/) —4(n).

Now, if =D = C¢(y: 4 ,,(7') > 0 then ¢y is an unsatis-
fied constraint, which can be returned (indeed, if this hap-
pens, then 7’ € S};in fact, 1 = 2 = .-+ > n is the only
permutation in S,, — S}, and Og*(v, Aw) has a value of 0
on this permutation). Otherwise, C%y, 4 ,\(7) = —D;
then, it must hold that C¢, v 4) (T) = CGy g) (7') =
d(n) > —D — §(n), i.e., for each 7 € S, the constraint
-D— > A;; <§(n) musthold.
1<i<j<n
i<xj

Finally, to decrease the error probability to n~¢, it suf-
fices to (independently) run the randomized algorithm for
Problem 2, O(clogn) times. Then a permutation with the

smallest cost C’é’;(‘,’ Aw) in these runs can be returned. [

We can now use the approximate separation oracle of The-
orem 8 along with the Ellipsoid algorithm (Grotschel et al.,
1988), to obtain a d-additive approximation to Problem 6.

Theorem 9. Problem 6 can be additively approximated to
any § > Q(log™* n) in polynomial time.

Proof. First, our algorithm RIPPLE guesses a p €
{i 0]0<i< L%J} (the algorithm can binary search
among the values in this set). For a given p, the Ellip-
soid algorithm (Grotschel et al., 1988) can be used with

RUMs from Head-to-Head Contests

the approximate separation oracle of Theorem 8 to approx-
imately check the non-emptiness of F),. In particular, the
Ellipsoid algorithm will call the separation oracle at most
polynomially many times, obtaining at most polynomially
many separating hyperplanes. If the set of returned hyper-
planes forms an infeasible LP, the Ellipsoid algorithm can
correctly conclude that F), is empty.

Otherwise, the Ellipsoid algorithm could return a point
x = (D,A1,...,A,_1,,) that the oracle was unable
to separate from F,. This point could be outside of F),
since the oracle only guarantees® that the c, constraints
hold to within an additive § error. We then define the point
' =(D+9,A12,...,8,1,); we have that 2’ € F,,_;.
Indeed, (i) each ¢, constraint will be satisfied by z’ (with
T, ¢ is off by at most §; and, the value of the LHS of the ¢,
constraint decreases by J from z to z’), (ii) the ¢,—s con-
straint of F,_5 will be satisfied by 2’ (the constraint ¢, of
F, is satisfied with z, thus ¢,_s is satisfied by 2), and (iii)
each remaining constraint will still be satisfied.

Suppose that 7* is the smallest ¢ for which the algorithm

could conclude that 2’ € F,«_s5 where p* = i* - 4.7

Then, the Dual LP (4) does not admit a solution of value at
least p* + J, but admits a solution of value at least p* — 4.
It follows that the optimal solution of the Dual LP (4), and
thus of the Primal LP (1), lies in [p* —§, p* +d]. Hence, the
Ellipsoid algorithm with the above separation oracle, lets us
additively approximate the value of the optimal solution of
Problem 6 to within 24.

To complete the description of RIPPLE, it only remains to
obtain an approximating RUM having an error within the
smallest possible plus 2. Consider the run of the Ellip-
soid algorithm with p = p*. In this run, the Ellipsoid al-
gorithm calls the separation oracle at most polynomially
many times; thus, the oracle returns at most polynomially
many separating hyperplanes, some of which might refer
to non-permutation constraints, while the rest refer to the
permutation constraints of, say, permutations 7y, ...,y
(t < n°W). Now, if we restrict the primal LP (1) to (i)
its non-permutation variables and (ii) the permutation vari-
ables pr,, ..., pr,,then we obtain an LP of size polynomial
in n (hence, solvable in polynomial time) and with an opti-
mal value not larger than 20 plus the optimum of the primal
LP (1). Thus, solving the restricted LP allows us to obtain

8Given that the approximate separation oracle is a randomized
algorithm, this guarantee might fail to hold. Still, given that the
oracle is called no more than polynomially many times, and given
that the probability of its error can be made as small as n™ ¢, for
an arbitrary constant ¢ > 0, with high probability the guarantee
will hold at each oracle call.

Such an 4* must exist since Problem 6 always admits a solu-
tion of value at most 1/2. Indeed, the RUM such that Ry; ;3 (j) =
1/2,foreach1 <4 < j < n, can be realized, e.g., with a uniform
distribution over S,,.

pu(D, D) = (Z)

a RUM with an error not larger than the smallest possible
plus 26. O

One might ask if the same technique can be used to min-
imize uniform error as in Definition 7. Unfortunately, the
separation oracle for this version is NP-hard to approxi-
mate to some additive constant. We discuss the uniform
error problem in Section B of the Supplementary Material.

S. Succinct Representation for Average Errors

The RUMs obtained from Theorem 9 might be supported
by (polynomially) many permutations. In this section we
discuss succinct representation of those (and other) RUMs.

First, we note that a result of Chierichetti et al. (2021) im-
plies that any RUM can be sketched to O(¢~2 - nlog?®n)
bits in such a way that the probability distribution of each
slate of size two is approximated to within an additive error
e. Here, we will show that O(e~2 - nlogn) bits suffice to
approximate the average ¢; -error (and the average ¢s-error)
over slates of size two to within an additive error €.

As we will see, our sketch is a uniform RUM supported
on a multiset of 0(6*2) permutations, i.e., by a number of
permutations that is independent of n. Note that a uniform
RUM supported on k£ permutations can be represented by
a k-dimensional vector per item; the generic item’s vec-
tor contains the ranks of that item in the k permutations
of the RUM. Therefore, our succinct representation can
also be seen as an embedding of the items in an O(e~2)-
dimensional space.

Define the (pairwise) RMSE® between RUMs D and D’ as
2
> (Pas) - Dy ()

i.j€[nli#j

p(D, D) = n(n —1)

We also define a {,-version of the above measure:
. / . q

S|P)= Dhiy)

i,j€ln], i<y

Since D{i}j}(i) =1- D{i’j}(j), we get |D{Z-$j}(j) —

DY, () = 1Dy () — Dl 1y (0)]: thus, p = po.

The sketch we propose samples O (e~ 2) permutations from
the original RUM D and uses them as the support of a new
RUM D that, as we show, approximates D both in the p;-
and p»-senses.

Theorem 10. For a RUM D and for each € > 0, there is a
RUM D that samples uniformly from a multiset of O (6_2)

8Note that the RMSE defined by Makhijani & Ugander (2019)
is slightly different: their denominator is n” instead of n.- (n —1).
It is possible to show that our RUM approximation holds for their
RMSE version as well.

RUMs from Head-to-Head Contests

Algorithm 1 RUMRUNNER, a heuristic for Problem 6.

1S+ o

(1< <n)

3: repeat

4: S+ Su{r*}

5: Solve the primal LP (1) restricted to the variables ¢, and p-

for m € S; let P be its optimal primal solution, and D be

its optimal dual solution

7* < Viol-HP (D)

cuntil 7 = L

: return the RUM induced by P, i.e., the RUM that samples
7 € S with probability P(pr)

N —

permutations such that p1(D, D) < € and ps(D, D) < e.

Since each permutation can be represented with O(n logn)
bits, an immediate consequence of Theorem 10 is that all
RUMs (in particular, those obtained by our algorithms) can
be represented succinctly.

Corollary 11. For a RUM D on [n] and for each ¢ > 0,
there is a RUM D representable with O(e=2 - nlogn) bits
such that p1(D, D) < e and p2(D, D) < e.

6. Experiments

We present three groups of experiments. Section 6.3 stud-
ies the effectiveness of RUMRUNNER at representing a
given tournament matrix. As described in the Introduction,
we view this as the key metric for situations in which the
tournament matrix is known to reasonable precision, and
we find that the approximation error is very small for all
datasets (zero, or order of 1/n? for an n x n tournament).

Next, in Section 6.4, we ask whether the resulting RUM
can be approximated by a much smaller RUM; we con-
sider a number of heuristics to sketch a RUM with support
on only k£ = 10 permutations, and identify two approaches
that are able to approximate all tournament matrices well in
this regime. This suggests that very small RUMs may ap-
proximate real-world datasets, resulting in computational
efficiencies and increased transparency.

Finally, in Section 6.5, we consider a standard prediction
setting in which the data is split between train/test, and the
learned model is measured according to its generalization
performance. This setting is appropriate if the training sam-
ple is too small to fully characterize the data distribution.

6.1. Linear programs and separation oracles

For computational efficiency reasons, we do not use RIP-
PLE as described to fit RUMsS to the datasets. Instead, we
develop RUMRUNNER using a separating-hyperplane ap-
proach, described in Algorithm 1.

RUMRUNNER employs a separation oracle for the dual: a

Algorithm 2 A randomized local search for Viol-HP,

i.e., the separation oracle. In experiments, we set t = 100.

1: For a permutation , let (i) fas(m) = > i<; D(A;,;) be
i<

1=<x
the FAS cost of 7 on the dual solution’s direct]ed graph and
(ii) N () be the set of permutations that can be obtained by
moving one of the elements of 7 to a new position.
: fasmin < o0
cfori=1,...,tdo
7 < uniform at random permutation from S,,
while 31’ € N(7) such that fas(n’) < fas(w) do
T 4 argmin, ey () fas(n’)
if fas(7) < fasmin then
fasmin « fas(m)
Tmin $— T
10: if —D(D) — fasmin < 0 then
11: return L
12: else
13: return Tmin

R AR N

function Viol-HP that, given the transitive tournament in-
duced by the dual solution, either returns a violated hyper-
plane, or L if it could not find any such hyperplane. As
mentioned in Section 4, the Viol-HP separation oracle
needs to find a permutation 7 inducing a minimum FAS
of the transitive tournament. Given such a 7, the function
needs only to check if > D(A; ;) > —D(D).

i<jyi<nj
Now, given that finding a minimum FAS is NP-hard, we
implemented two versions of Viol—-HP. One is the classi-
cal exact dynamic programming algorithm (Lawler, 1964),
running in time O(n2™), and another is a randomized local
search heuristic, Algorithm 2; the latter might fail to return
the minimum FAS. In our experiments, we could run the
exact algorithm on most of the datasets; for the remaining,
we resorted to Algorithm 2, sampling 100 permutations,
and stopping an iteration if the gain in the last step was
less than 1075, Note that Algorithm 2 might fail to find a
separating hyperplane even if it exists, which means RUM-
RUNNER might fail to return a RUM at the minimum dis-
tance from the input matrix. (This is the reason why Table 1
has two columns detailing the average-error of RUMs: the
first column gives the average-error that the RUM returned
by RUMRUNNER has with respect to the matrix, the sec-
ond gives a lower bound on the minimum possible average-
error achievable by a RUM with respect to the matrix.) In
practice however, as we discuss in Section C of the Sup-
plementary Material, RUMRUNNER works fairly well: it
always returns a RUM (hence always gives a correct upper
bound on the distance of the input matrix to RUMs) and,
with an extra final check on the feasibility for the dual of
its last D solution, RUMRUNNER can also certify a lower
bound on the distance of the input matrix to the best ap-
proximating RUM. In our experiments, this final check was
implemented with an exact algorithm.

RUMs from Head-to-Head Contests

Table 1. Statistics about the RUMs obtained by RUMRUNNER:
the cardinality of the support (|S|), the average error, a lower
bound on the average error, and the uniform error.

Dataset n |S| avg. err. ‘ lower bound |\ e orp
on avg. err.

A5 16 121

A9 12 67

Al7 13 79 0

A48 10 46

A8l 11 56

SF 35 572 | 0.001408 0.001408 0.1438

Jester | 100 | 3553 | 0.000461 0 0.0786

6.2. Experimental Setup

Our main algorithm is RUMRUNNER, which uses Algo-
rithm 1 along with either Algorithm 2 or the exact al-
gorithm (Lawler, 1964) for Viol-HP. We implemented
RUMRUNNER in Python using IBM cplex” as the LP solver.

All experiments were done on commodity hardware'?.

Baselines. As baselines we considered the Thurstone
model (Thurstone, 1994), Multinomial Logit (MNL) (also
known as Bradley—Terry—Luce model) (Bradley & Terry,
1952), Blade-Chest (BC) (Chen & Joachims, 2016), and
3D Gaussian majority vote (MV) (Makhijani & Ugander,
2019). We used, as implementations of these baselines,
those made available by Chen & Joachims (2016) and
Makhijani & Ugander (2019).

Datasets. We measured the performances of the algorithms
on a number of datasets: a class of commonly studied elec-
tion datasets A5, A9, A17,A48,A81 (Tideman, 2006), one
videogame dataset representing matchups between Super
Street Fighter IV (SF) characters (Chen & Joachims, 2016),
and the Jester rating dataset (Goldberg et al., 2001).

Unlike the others, the election datasets are composed of
ballots, each containing a partial ranking (i.e., a ranking of
a subset) of the candidates. Following Makhijani & Ugan-
der (2019), as we are looking for pairwise matches, we
“transformed” a generic ballot—a ranking of a subset S of
candidates—into a set of (lg |) matches, one for each pair
of candidates in S, where the winner of the generic match
is the candidate that is ranked higher in the ballot.

6.3. RUM Approximation

Table 1 shows how close the RUMs computed by RUM-
RUNNER come to their respective input tournament ma-
trices. In the case of the election datasets the error is
zero: the representation is perfect. For SF, the total er-
ror = (%) - 0.001408... ~ 0.837, which is smaller
than 1, the range of an entry of the 35 x 35 matrix. For

‘http://ibm.com/analytics/cplex—optimizer
1912-Core Ryzen 3900X with 64GB of RAM

—— Random + LP —— Top-k + LP
Top-k (scaled) ~—— k-center + LP

A5 A9 Al7

—— light-RUM
=== Original RUM

107 1071 4 107t

5‘ 1072 1072 4 1072

L - -3
91073 A 1073 4 10

104 4

10-14
10-2 4
10-3 -
1074 4

0 1073

Figure 1. Average error for different number of permutations k
(horizontal axis) for the considered heuristics.

Jester, the best RUM we could find induces a total er-
ror of (120) -0.000461 ... ~ 2.281, i.e., slightly more than
two entries of the 100 x 100 matrix. While the algorithms
are crafted to minimize average error, we also report the

uniform/maximum error.

6.4. Sketching

Theorem 10 shows that the support of a generic RUM can
be reduced to O(e~2) permutations while guaranteeing that
the new RUM is within a distance € to the original, both in
the RMSE and in the average sense. In this section we de-
scribe two heuristics for support reduction, that appear to
work significantly better in practice. We apply our heuris-
tics to the RUMs produced by our algorithm; we note,
though, that they can be applied to any RUM.

For each of our RUMs R, and for a fixed value of k, we
considered the following heuristics:

e Random + LP: sample a set of k£ permutations u.a.r.
from S,,, and run the primal LP (1) on that set of per-
mutations to obtain their weights.

e Top-k (scaled): consider the set T" of the k permu-
tations having largest probability in R; create a new
RUM supported on 7', assign probabilities to 1"”s per-
mutations by scaling up their probabilities in R.

e Top-k + LP: given T as above, run the primal LP (1)
on 7' to assign new probabilities to its permutations.

e k-Center + LP: run the Greedy k-center algorithm of
(Gonzalez, 1985) on the support permutations of the
RUM, using their Kendall distance scaled by the prod-
uct of their probabilities in R; run the LP on the re-
turned centers to assign them probabilities.

e Light-RUM: sample k permutations from R as in The-
orem 10.

Each heuristic returns a RUM supported on < k permuta-
tions. We compared these RUMs to the tournament matrix
that was used to produce R, i.e., to the original dataset.

RUMs from Head-to-Head Contests

Table 2. Average error of RUMs obtained through different support reduction heuristics, with the target support of size k = 10.

Dataset | Original RUM | Random +LP Top-k (scaled) —Top-k +LP k-center + LP Light-RUM
A5 0 0.156 £0.020 0.059 0.041 0.045 £0.004 0.111 £0.016
A9 0 0.133 £0.030 0.031 0.010 0.011 £0.002 0.119 £0.023
Al7 0 0.112 £0.014 0.034 0.014 0.014 +£0.001 0.119 £0.033
A48 0 0.107 £0.022 0.043 0.015 0.015 +£0.001 0.119 £0.029
A81 0 0.129 £0.024 0.056 0.047 0.046 £0.005 0.113 £0.021
SF 0.00141 0.149 +0.008 0.113 0.104 0.105 £0.008 0.127 £0.011
Jester 0.00046 0.168 £0.008 0.119 0.108 0.108 £0.003 0.121 £0.006

In Table 2, we report the (expected) average error of the
different heuristics (each averaged over 20 runs) for a fixed
value of £ = 10. In Figure 1, we report the (expected) av-
erage error for different values of k. Observe that the qual-
ity of the solution produced by the LP (1) has a significant
dependence on the set of permutations/variables available
to it—Random + LP is significantly worse than the other
heuristics that use the LP in their final step. Still, if we
limit ourselves to scaling up the probabilities of the top-k
permutations of the original RUM (Top-k (scaled)), the re-
sults are worse than, but comparable to, those obtained by
the best LP method. It is also clear that Light-RUM is pe-
nalized by its uniformity—its probabilities, by design, have
a 1/k granularity.

Even with £ = 10 permutations, the RUMs obtained by the
two best heuristics, Top-k + LP and k-center + LP closely
approximate the original tournament matrix.

6.5. Quality of generalization

We also compared the predictive performance of our algo-
rithm with respect to several baselines. Our tests follows
those of Makhijani & Ugander (2019): we use a five-fold
cross-validation, and measure their RMSE as a metric.

For each dataset, we first compute the list of its ¢ match-
ups. We then split, uniformly at random, the list into
five parts, conditioned on each part having length equal
to either [t/5] or [¢/5]. Then, for each part, we con-
sidered that part as the test set, and the union of the re-
maining four parts as the training set. For each train/test
pair, we ran all the algorithms on the training data to ob-
tain a prediction matrix. Finally, we computed the RMSE
as defined in Makhijani & Ugander (2019), p/(D, D’) =

. N2 .
_ E% _;él(D(i,j}(J)_D/{i,j}(j)) /n?, between each predic-
1,7 n,1FE]

tion matrix and its corresponding test set. We ran-
domly sampled 10 splittings obtaining, for each dataset, 50
train/test pairs.

In Table 3 we report our prediction results. Observe that
the baseline results are different from the ones reported in
Makhijani & Ugander (2019),'! but the ratios of their RM-

""We confirmed with the authors that our numbers are indeed
correct; the discrepancy is due to a library error.

SEs remain similar.

The results show that RUMRUNNER is competitive with the
other baselines. Since we are able to approximate perfectly
(e.g., in the elections datasets) or almost perfectly (SF) the
training matrix, our algorithm is essentially obtaining the
same results of the training matrix used, with no change, as
the predictor.

Table 3. Expected RMSE in the cross-validation experiment. We
sampled ten 5-fold splittings per dataset. The only significant dif-
ference is that RUMRUNNER beats MNL and Thurstone for A9.
The standard deviations are all in the range [+0.002, +0.007].

Dataset | MNL Thurstone BC MV RUMRUNNER

A5 0.041 0.041 0.041 0.041 0.043
A9 0.026 0.027 0.023 0.023 0.021
Al7 0.049 0.050 0.051 0.050 0.052

A48 0.034 0.035
A81 0.043 0.043
SF 0.137 0.137

0.033 0.034 0.035
0.042 0.042 0.043
0.138 0.137 0.142

7. Conclusions

In this paper we studied the problem of approximating a
given tournament matrix by a RUM. We obtained an algo-
rithm to minimize the average error to within a o(1) mar-
gin; we also showed that such an approach is unlikely to
work to minimize the uniform error. A natural open ques-
tion is to extend our methods beyond head-to-head con-
tests. For example, given the winning probabilities in slates
of size three, what is the complexity of finding the closest
RUM, to minimize the average error? Another interesting
question is the following: given a tournament matrix, is
there a RUM on support of size k that exactly represents it?

Acknowledgments

We thank the anonymous reviewers for their careful read-
ing. We also thank Mohammad Mahdian, Rahul Makhi-
jani, Tim Roughgarden, Johan Ugander, and Santosh Vem-
pala for useful discussions and suggestions.

Flavio Chierichetti and Alessandro Panconesi were sup-
ported in part by BiCi—Bertinoro International Center for
Informatics. Flavio Chierichetti was supported in part by
the PRIN project 2017K7XPAN.

RUMs from Head-to-Head Contests

References

Adams, R. P, Dahl, G. E., and Murray, 1. Incorporat-
ing side information in probabilistic matrix factorization
with Gaussian processes. In UAI pp. 1-9, 2010.

Bogacz, R., Brown, E., Moelhlis, J., Holmes, P., and Co-
hen, J. The physics of optimal decision making: A for-
mal analysis of models of performance in two-alternative
forced-choice tasks. Psychological Review, 113(4):700—
765, 2006.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: 1. The method of paired compar-
isons. Biometrika, 39(3/4):324-345, 1952.

Chen, S. and Joachims, T. Modeling intransitivity in
matchup and comparison data. In WSDM, pp. 227-236,
2016.

Chierichetti, F., Kumar, R., and Tomkins, A. Discrete
choice, permutations, and reconstruction. In SODA, pp.
576-586, 2018a.

Chierichetti, F., Kumar, R., and Tomkins, A. Learning a
mixture of two multinomial logits. In ICML, pp. 961—
969, 2018b.

Chierichetti, F., Kumar, R., and Tomkins, A. Light RUMs.
In ICML, pp. 1888-1897, 2021.

Clementi, A. and Trevisan, L. Improved non-
approximability results for minimum vertex cover with
density constraints. 7CS, 225(1):113-0128, 1999.

Farias, V. F,, Jagabathula, S., and Shah, D. A data-driven
approach to modeling choice. In NIPS, pp. 504512,
2009.

Frieze, A. and Kannan, R. Quick approximation to matrices
and applications. Combinatorica, 19(2):175-220, 1999.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. Eigen-
taste: A constant time collaborative filtering algorithm.
Information Retrieval, 4:133-151, 07 2001.

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical Computer Science, 38:
293-306, 1985.

Grotschel, M., Lovasz, L., and Schrijver, A. Geometric
Algorithms and Combinatorial Optimization, volume 2.
Springer, 1988.

Karp, R. M. Reducibility among combinatorial problems.
In Miller, R. E., Thatcher, J. W., and Bohlinger, J. D.
(eds.), Complexity of Computer Computations. The IBM
Research Symposia Series, pp. 85—103. Springer, 1972.

Lawler, E. A comment on minimum feedback arc sets.
IEEE Transactions on Circuit Theory, 11(2):296-297,
1964.

Makhijani, R. and Ugander, J. Parametric models for in-
transitivity in pairwise rankings. In WWW, pp. 3056—
3062, 2019.

Negahban, S., Oh, S., Thekumparampil, K. K., and Xu, J.
Learning from comparisons and choices. JMLR, 19(1):
1478-1572, 2018.

Oh, S. and Shah, D. Learning mixed multinomial logit
model from ordinal data. In NIPS, pp. 595-603, 2014.

Soufiani, H. A., Parkes, D. C., and Xia, L. Random utility
theory for social choice. In NIPS, pp. 126—134, 2012.

Tang, W. Learning an arbitrary mixture of two multinomial
logits. arXiv, 2007.00204, 2020.

Thurstone, L. L. A law of comparative judgment. Psycho-
logical Review, 34:273-286, 1994.

Tideman, N. Collective Decisions and Voting: The Poten-
tial for Public Choice. Routledge, 2006.

Train, K. E. Discrete Choice Methods with Simulation.
Cambridge University Press, 2003.

Veerathu, V. and Rajkumar, A. On the structure of paramet-
ric tournaments with application to ranking from pair-
wise comparisons. In NeurlIPS, 2021.

RUMs from Head-to-Head Contests

Supplementary Material

A. Missing Proofs
A.1. Proof of Observation 4

Proof. LetG = ([n], A’,w") be an instance of Problem 1. Let A” = {(i,5) | 1 <i < j <n},andforeachl1 <i < j <mn,
let
w'((i,5)) if (i, 5) € A,
w’((i,5)) = ¢ —w'((i,5)) if (j,4) € A,
0 otherwise.

Then, G = (V, A”,w") is an instance of Problem 2. Now, let W/ = >~ w’((,7)); then, for each permutation 7 € S,,,
i,j)EA
5

it holds that C'/,_ (VLA) (m) = Cé;:(v, At (m) — W', Thus additive approximation is preserved in this direction.

Analogously, let G = ([n], A”,w") be an instance of Problem 2. Let A’ = {(4,7) | (1 < i < j < nandw’((¢,5)) >
0)or(1<j<i<mnandw’((i,5)) <0)}, and for each (7,) € A’, let

W (i.)) = { (7)) ifi <,

—w"((i,)) ifj < i.

Then, G = (V, A’,w’) is an instance of Problem 1. Now, let W = > w”((i,7)); then, for each permutation
(i,4)€A”
w’' ((4,5))<0
T € Sy, itholds that C;_ v 4) (T) = CG_ (v g () — W Thus additive approximation is preserved in this other
direction, as well. O

A.2. Proof of Theorem 10

Proof. In a manner similar to Chierichetti et al. (2021), we sample k = [;%1 independent permutations 7y, . .., 7, from

D, and we let D be the uniform RUM over the multiset {m1,..., 7}, i.e., the RUM D samples ¢ uniformly at random
from [k], and returns ;.

For arbitrary ¢ < j, consider the random variable X = 5{“}(j). Then, X = % iff there are exactly &’ indices t in

[k] such that j >, i. Observe that, by the iid choice of the ;’s from D, the distribution of £’ is equal to the binomial
distribution Bin(k, p) with p = Dy; ;1 (j).

Then, E[X] = E [B{iyj}(j)} = — p= Dy, (), and

E [(X - p)ﬂ = Var[X] = - <

since p(1 — p) is maximized at p = 1/2.

Using Jensen’s inequality, E[| X — p|] < /E[(X — p)?],

Thus for each ¢ € {1, 2},
= . NE _
E HD{i,j}(]) - D{i,j}(])’ } < (4k)"Y2.
= . . q
Let Sq = Z ‘D{i,j}(J) — Dy jy ()

1<i<j<n

B[S,] < @ (4k)~9/2

We also have S, > 0; thus, by Markov’s inequality, we get that Pr [S, < 4E[S,]] > 3/4. Consider the event £, =“S, <

By the linearity of expectation, we have

RUMs from Head-to-Head Contests

(2)41=9/2 . |;=9/2” We get

3
Pr¢,] > Pr[S, < 4E[S,]] > T
Now, p, (D, 5) = /Sq/(5)- Then, &, entails that
~ n 417g . kii 1
Pq <D7D) <y (2)(:)2 <437F .k <
2

where the last inequality follows from ¢ > 1 and k > 4. Since Pr[¢,] > 3/4 for ¢ € {1, 2}, with probability 1/2, Dis an
e-approximation of D both in p;- and pa-senses. O

B. Minimizing Uniform Error

As in the average error case, once can write the primal LP for minimizing the uniform error:

min €
Lij:e+ > pr>P; VI<i<j<n
TES]
<)
Uj:e— > pa>—P,; V1<i<j<n
TES)
i<xJ
D: - Z pTrZ_l
ﬂ’es’:(l
e>0
pr >0 VWGS;

We then take the dual, obtaining:

max—D+ Y (Pij-(Liy —Uiy))

1<i<j<n

€ Z (Li’j + Ui,j) S 1

1<i<j<n
Pr:—D + Z (Li,]' — Ui,]') <0 VmeS;
1<i<j<n
i<rJ
D,Uz‘,j,Lz‘,jZO V1§i<j§n

As before, we observe that if min(U; j, L; j) > 0, then we can subtract this quantity from both L; ; and U; ; with no
impact on feasibility nor on the objective. This way, we can set A; ; = U; ; — L; j. The € constraint then becomes
Zl§i<j§n |A; ;| < 1. Thus, the dual LP is equivalent to:

max *D — Z (Piy]' . Aﬁj)

1<i<j<n
-D— > A; <0 VmeS; 5)
1<i<j<n
B i<n]
Al <1
D>0

Thus, when minimizing the maximum error, the dual LP optimizes over a vector A whose ¢1-norm is at most 1 — recall
that, in the case of average error minimization, it was the ¢,,-norm of A that was bounded to be at most 1. The goal of the
LP does not change: this LP aims to maximize the same objective function of the LP for the average error, under the same
constraint that the A-graph has a minimum FAS of value at least —D.

We show that the Separation Oracle problem for LP (5) is NP-hard to additively approximate to some positive constant.
Hence, the Ellipsoid-based approach we used to get an o(1)-approximation algorithm for Problem 6, fails for the maximum-
error variant.

Theorem 12. There exists a constant o > 0 such that, given an assignment to (5), it is NP-hard to determine whether the
assignment satisfies each constraint, or whether some constraint is off by at least c.

RUMs from Head-to-Head Contests

Proof. The classical reduction (Karp, 1972) from Vertex-Cover to (unweighted) Feedback Arc Set'? creates a FAS instance
composed of the digraph H with 2n vertices, max-indegree and max-outdegree not larger than § + 1, and a number of arcs
equal to 2n + 2m, starting from a Vertex Cover instance composed of a graph G, having n nodes, maximum degree J,
and m edges. The reduction guarantees the existence of a k-Vertex Cover in G(V, E) iff a k-Feedback Arc Set exists in
H(V,A).

The Vertex Cover instances of Clementi & Trevisan (1999) have maximum degree § < ¢ = O(1), so that m < g -n and,
also, m > %;13 Clementi & Trevisan (1999) show that there exists a constant ¢’ > 1 such that it is NP-hard to distinguish
whether the minimum Vertex Cover of such an instance has size < k or > 'k, for k > %.14

Then, if we plug the Vertex Cover instances of Clementi & Trevisan (1999) into the reduction of Karp (1972), we get a
digraph H having m' = 2n + 2m arcs, with

)
m’§2n+2~§on:2n+5n§(2+c)~n,

and such that it is NP-hard to tell whether the minimum FAS of H is smaller than % or larger than ¢k, for the inapprox-
imability ratio ¢/ > 1 of (Clementi & Trevisan, 1999).

We observe that, by & > %, m > & and 0 < ¢, we get k > 5-. Also, by m’ < (2 + ¢) - n, we get that k > ﬁ;c)
Now, let t = [{(4,7)|(j,7) € AN 1 < i < j < n}| be the number of arcs of H from a node of higher index to a node of
lower index. We can assume that t > ¢ - k.1

Now, consider the problem that a Separation Oracle for (5) has to solve — that is, consider Problem 2. Given a digraph H
with m/ arcs on the vertex set [n/], foreach 1 <1 < j <n/,weset (i) A; ; = 77% if (¢,7) is an arc of H, (ii) A, ; = —#
if (j,4) is an arc of H, and (iii) A, ; = 0 otherwise. Now, let ¢ be the number of pairs 1 < i < j < n’ such that A; ; < 0.
Weset D = % — observe, then, that D > 0. The question is whether this assignment satisfies each constraint of (5),

or whether it is off on some constraint by some additive constant « > 0.

Observe that, for any permutation 7 of the vertices, if C’(7) is the cost of 7 for the FAS instance H, then

C'(n) t
= 3 8-SR
1<i<j<n
i<xJ

Observe that the total /1 weight of the A-tournament is 1; thus, the |Al; < 1 constraint is satisfied. The reduction above
shows that it is NP-hard to tell whether minrcs, C”(m) < %L, or minges, C”(7) > C,T’Z,_t. Now, in the latter case,
our choice of D guarantees that each constraint is satisfied; in the former case, instead, some constraint (in particular, a
constraint corresponding to a permutation obtaining a minimum Feedback Arc Set) would be off by at least an additive
(d—-1)- % term. Thus, it is NP-hard to determine if all the constraints of the separation oracle are satisfied, or if there

exists a constraint that is off by an additive term of

-1

/
—(d —1)- [
a=(c) 2¢2 + 4c

k
o > Q(1).

Thus, there exists a constant o > 0 such that it is NP-hard to distinguish whether an assignment to (5) satisfies each
constraint, or whether there exists some permutation constraint on which it is off by at least a. By the polynomial time
equivalence of the separation oracle problem and the LP optimization problem (Grotschel et al., 1988), it is thus NP-hard

to find the RUM that minimizes the maximum error with respect to a given tournament matrix. [

"2That is, to the version of Problem 1, where each arc has the same weight of 1.

“Indeed, nodes of degree 0 can be removed from the graph without impacting the size of its optimal Vertex Covers. And, a graph of
n nodes, having no nodes of degree 0, has to have at least 7 edges.

'“Recall that a graph G with m edges and maximum degree 8, cannot have a Vertex Cover of size smaller than 5. That is, the Vertex
Cover problem reduced to instances where k < 7 is solvable in polynomial time. Thus, we can assume to reduce the set of hard Vertex
Cover instances to those such that k > *¢.

5Given that we have a gap problem, which requires us to distinguish between graphs whose minimum FAS has value smaller than ,
and graphs with minimum FAS having value larger than ¢k, instances that do not satisfy this property can be easily solved in polynomial
time — in such instances, the permutation 1 < 2 < - -+ < n has a FAS cost not larger than t < ¢’ - k.

RUMs from Head-to-Head Contests

C. Certifying optimality

If the RUM returned by Algorithm 1 is at distance 0 from the matrix P, its optimality is trivially guaranteed. If, instead,
the distance is non-zero, we need to do extra work to certify it. One way to do this is to test whether the dual solution
D returned by the last iteration of the loop of Algorithm 1 satisfies all dual constraints, i.e., we have to obtain the exact

minimum FAS of the transitive tournament with D(A) as the weights.

In the case of the Jester dataset in which n = 100, doing so is infeasible since the runtime of the exact dynamic
programming algorithm for FAS is O(n2"); we then have no positive lower bound on the smallest distance to a RUM of
that particular matrix. For the SF dataset in which n = 35, it so happens that the dual solution D obtained by the last
iteration of Algorithm 1’s loop induces a directed graph with only 28 vertices hit by at least one non-zero arc. Then, the
minimum FAS instance is effectively reduced to a graph of order n = 28: the exact algorithm terminated in less than a
minute, certifying (i) the feasibility of D for the unrestricted dual (3) and that (ii) the distance to the SF matrix of the RUM
returned by Algorithm 1 is optimal (see Table 1).

Thus, while Algorithm 1 is a heuristic, it always returns a RUM and hence always gives a correct upper bound on the
distance of the input matrix to RUMs. Moreover, with an extra final check on the feasibility for the dual of its last D
solution, the heuristic can also certify a lower bound on the distance of the input matrix to the best approximating RUM.
In our experiments, when applied, this final check was made with an exact algorithm. The Ellipsoid Algorithm, instead,
makes this check using the Approximate Separation Oracle of Theorem 8.

D. The 2L model

The two-level (2L) model of Veerathu & Rajkumar (2021) partitions the n items into groups: each group is associated to
a positive weight, and to a rank-2 tournament between its items. Pairwise matches between players in a same group are
governed by the rank-2 tournament; if a player belongs to group ¢, and a second player belongs to group j # 4, and if
the weights of the two groups are w; and wj, then the first player wins with probability proportional to w; (that is, with
probability #w;)

One can easily show that there exist tournament matrices that can be represented via rank-2 tournaments (and thus via the
2L model), but not with RUMs. We show here that there also exist matrices that can be represented by RUMs, but not by
2L models.

In particular, consider the following tournament matrix over the set of players X = {(4,7) | 0 <i,j < 2},

(0,00 (0,1) (0,2) (

. le’ 11—« le’
11—« . o o
«

—_

0) (LD (L2) (200 (1) (22)
« l-a 1—-a 1-—«
« l—-a 1—-a 1-«
« 11—« l—-a 1—-a 1-«
l—-a 1—-a 1-« 11—« « « «
Po=|l1-a 1—-a 1—-a 11—« . o o a

l-a 1-a 1-—« « 11—« . « « a
« « « l—-a 1—-a 1-« «
« « « l-a 1—-a 1-a 11—« . «
« « « l—-a 1—-a 1-« « 11—«

e 2 0 0

Q
NN E RO OO
N = O N = O N = O
N AN 2NN NN AN AN’

e e e e e

for « € [0, 1]. With this matrix,

e player (i, j) beats player (i, k), for k = (j + 1) mod 3, with probability 1 — «, and
e player (i, j) beats player (k,¢), for k = (i + 1) mod 3, with probability 1 — a.

Note that for each @ # %, P, has various disjoint non-transitive triplets, e.g., for each i € {0,1,2}, the subset
{(%,0), (¢,1), (¢,2)} is a non-transitive triplet. Moreover, P, conjoins those three disjoint non-transitive triplets to form
other non-transitive triplets: for each 4, j, k € {0, 1,2}, the subset {(0,), (1,7), (2,k)} is also a non-transitive triplet.

We now show that (unrestricted) RUMs are able to represent such a P, for each % <a< % We will later show that 2L
models can represent P, only if & = %
Lemma 13. For each % <a< %, the tournament matrix P, can be represented with a RUM.

RUMs from Head-to-Head Contests

Proof. We start by observing that if P, is representable with a RUM, then P, _,, is also representable with a RUM. Indeed,
for a permutation 7 of X, let 7 be the reverse of . We also define the reverse of a RUM: the reverse R of RUM R is the
RUM that assigns probability R(w) to the permutation 7, for each 7 in the support of R. Then, for each pair a and b of
items, the probability that a beats b in R is equal to the probability that b beats @ in R. Observe that if P, requires the
generic item a beat another item b with probability p, p, then P;_,, requires b to beat a with probability p, . Thus, if R is
a RUM for P, then R is a RUM for P;_,,.

We now prove that the existence of a RUM for Py /3 implies the existence of a RUM for P,, for each % <a< %

First, if both the tournament matrix P’ and the tournament matrix P”" admit RUMs, then for each 3 € [0, 1], the tournament
matrix 8- P’ + (1 — 8) - P” also admits a RUM: to sample a permutation from this RUM, one first flips a coin with head
probability 3; if the coin comes up heads, one samples an independent permutation from the RUM of P’, otherwise one
samples an independent permutation from the rum of P”.

We have already proved that the existence of a RUM for P /3 implies the existence of a RUM for P;/3. Let M, be
the RUM that is obtained by mixing the RUM for P, /3, with weight 8 = 2 — 3a, and the RUM for P, /3, with weight
1 — B = 3a — 1. Then, an event that has probability % in P /3 (and thus probability % in P 3) ends up having probability
(2—3a) - 34 (3a—1) - 2 = avin M,; and, likewise, an event having probability 2 in Py /3 (and probability & in Py /3)
ends up having probability (2 — 3a) - 2 + (3 — 1) - § = 1 — avin M.

Thus, the existence of a RUM for P; /3 implies the existence of a RUM for P, for each % <a< %
Then, there only remains to prove that there exists a RUM for P /3.

Consider theset S = {2 <1 < 0,0 <2< 1,1 <0 < 2} of permutations. We will consider the uniform distribution on
S; with this distribution, for each ¢ € {0, 1,2}, the probability that ¢ beats (i + 1) mod 3 is exactly 2/3.

Our RUM R, /3 behaves as follows. For each i € {0, 1,2}, let m; be sampled independently and uniformly at random
from S. Moreover, let 7 be also sampled independently and uniformly at random from S. Then, the RUM returns the
permutation

With this RUM, for each player (4, j), and for k = (j + 1) mod 3, we have that Pr [(4, j) beats (¢, k)] = 2/3.

Analogously, for each player (i, j), for k = (i+1) mod 3, and foreach ¢ € {0, 1,2}, we that Pr [(4,) beats (k,)] = 2/3.
Thus R, /3 is a RUM that represents P /3. O

We then show that the 2L model of (Veerathu & Rajkumar, 2021) cannot represent P, unless o = % In P /5, the winner
of each single match is chosen by flipping a fair coin: thus, one can represent P; /o with a uniform MNL and, consequently,
with a 2L model.

Our construction and our proof hinge on some constraints that 2L models have to obey when representing non-transitive
triplets. As we will see, these constraints are incompatible with P, for each o # %

Lemma 14. For each o # %, the tournament matrix P, cannot be represented with a 2L model.

Proof. Recall that X = {(4,7) | 0 < 4,5 < 2} is the set of players; let us also define three disjoint subsets of X, that we
call “parts”, X; = {(i,7) |0 < j <2} for0<i <2

Recall that the model of Veerathu & Rajkumar (2021) is on two levels. The model partitions the player set X in “groups”
Gy, G, . . ., and assigns a positive weight w; to the generic group i. When two players, respectively from groups G; and
Gj, i # j, play against each other, a MNL is used to determine the winner: the player from group ¢ wins with probability
w;fwj , and the one from group j wins with probability w;ijwj . When two players from the same group G; play against
each other, the game is decided by a rank-2 tournament. '

Suppose by contradiction that a 2L model for representing P, o # % is composed of groups G, ..., Gi—1. Then,

RUMs from Head-to-Head Contests

o there cannot exist a part X; that is split among 3 distinct groups, say, G, , Gi,, G, indeed, if this were the case, there

. . . . wiw(u 1 wiﬂ(z) 1 w"'w(s) 1
would have to exist a permutation 7 of the indices such that — T P TR I > 5 o T 5s
Wiz (1) TWir(2) Wiz (2) TWig(3) Wiz (3) TWir(1)

Le., Wi) > Wi, > Wi g > Wi, ,acontradiction;
e also, there cannot exist a part X; that is split among 2 distinct groups, say, (¢, 7), (i, k) € G4 and (i,¢) € Gy, for
{j,k,¢} ={0,1,2} and a # b. Indeed, if this were the case, the probability that the model assigns to (4, £) beating

(4, 7). i.e., 45—, would be the same to that it assigns to (7, £) beating (i, k), contradicting F,’s requirements.

Therefore, each X; is to be fully contained in some group; in particular, there can either be 1, 2, or 3 groups.

Veerathu & Rajkumar (2021) prove that rank-2 tournaments are unable to capture tournament matrices P having indices
a,b,c,dsuchthat Py p, Py o, Pe o > % and P, 4, Py 4, Pe.q > % or such that P, p, Py o, Pr o > % and P, 4, Py g, Pe g < %
In other words, rank-2 tournaments cannot represent a non-transitive triplet (a is stronger than b, b is stronger than ¢, and ¢
is stronger than a) together with an extra item that is either stronger than each item in the triple, or weaker than each item
in the triple (i.e., each of a, b, ¢ is weaker than d, or each of a, b, ¢ is stronger than d).

Thus, if the partition into groups of the 2L model of Veerathu & Rajkumar (2021) has a group G; having some X; as a
subset, and containing some element of X — X, then the rank-2 tournament of G; is unable to represent P, restricted to
G; thus the 2L model is unable to represent P,.

It follows that a 2L model, to correctly represent P, has to contain exactly 3 groups, in fact, one group for each of the
three “parts” X, X1, X2. Without loss of generality, let us assume that G; = X; for ¢ € {0,1,2}.

Now, suppose that o < % To correctly represent P, the MNL weights would have to guarantee that the weight w; of
G is larger the weight wo of Go (since Pg0),(1,0) = a < %), that wy > w3 (since P 0y,2,0) = @ < %), and that
ws > wq (since P(2,0)7(070) =a< %), which is a contradiction. Likewise, suppose that o« > % In this case, to correctly
represent P, the MNL weights would have to guarantee that w; < wz (since F(g,(1,0) = @ > %), that wy < ws (since

P(1,0),(2,0) = @ > 1), and that ws < wy (since P20 (0,0) = @ > 3), which is also a contradiction.

Thus, the tournament matrix P, cannot be represented by a 2L model, for each o # % O

The following is then immediate.

Corollary 15. For each o € [%, %) U (%, %] the tournament matrix P, can be represented by a RUM and cannot be
represented by 2L models.

We point out that the same result could be obtained by a subset of the rows and columns of P,—it is sufficient to have each
element of one of the three parts X, together with an arbitrary element of a second part X;, and an arbitrary element of
the last part Xy, for {4, j, k} = {0, 1,2}. We used all the 9 elements of the union of the three parts, since we felt that, this
way, the RUM construction is clearer. In fact, while our construction only tensors an intransitive triplet with itself, RUMs
can be shown to withstand arbitrarily many such tensorings, provided that each triplet’s « is bounded between é and %

