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A MODEL DERIVATIONS

A.1 MF-POSTERIOR PREDICTIVE FOR EXPONENTIAL FAMILY MODELS

In multi-fidelity BOCD, we desire the posterior predictive distribution conditioned on the run length,

p(xt | rt = `, ζt,Dt−`:t−1). (1)

Assume this is an exponential family model with the following likelihood and and prior density functions:

pθt(x) = h1(x) exp
{
θ>t u(x)− a1(θt)

}
, (2)

πχ,ν(θt) = h2(θt) exp
{
θ>t χ− νa1(θt)− a2(χ, ν)

}
. (3)

See the main text for a description of these terms. We introduce the following notation to denote the data and parameter
estimates for the previous ` observations, associated with the run length hypothesis rt = `:

D(`) := Dt−`:t−1, χ` := χ+

t−1∑
τ=t−`

ζτu(xτ ), ν` := ν +

t−1∑
τ=t−`

ζτ . (4)

Then the posterior predictive is

p(xt | rt = `, ζt,D
(`)) (5)

=

∫
Θ

pθ(xt)
ζtπχ`,ν`(θ)dθ (6)

=

∫
Θ

[h1(xt)]
ζt exp

{
θ>ζtu(xt)− ζta1(θ)

}
(7)

h2(θ) exp
{
θ>χ` − ν`a1(θ)− a2(χ`, ν`)

}
dθ (8)

= [h1(xt)]
ζt

∫
Θ
h2(θ) exp

{
θ> [ζtu(xt) + χ`]− a1(θ) [ζt + ν`]

}
dθ

exp {a2(χ`, ν`)}
(9)

?
= [h1(xt)]

ζt
exp {a2(ζtu(xt) + χ`, ζt + ν`)}

exp {a2(χ`, ν`)}
(10)

= [h1(xt)]
ζt exp {a2(ζtu(xt) + χ`, ζt + ν`)− a2(χ`, ν`)} (11)

Step ? follows from the previous line because we know the normalizer for the integral. This result is similar to the result on
power posteriors for the exponential family [Miller and Dunson, 2018]. However, our approach requires multiple values of
powers, which represent data fidelities.
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A.2 MULTI-FIDELITY GAUSSIAN MODEL

To simplify notation, we ignore the run length in this section, since it only specifies which data need to be accounted for in
the MF-posterior distribution. Consider a univariate1 Gaussian model with known variance.

xi
iid∼ N (θt, σ

2
x), θt ∼ N (µ0, σ

2
0). (12)

The multi-fidelity likelihood is

t∏
i=1

pθt(xi)
ζi =

t∏
i=1

[
1√
2πσ2

x

exp

{
− 1

2σ2
x

(xi − θt)2
}]ζi

(13)

∝
t∏
i=1

exp

{
− ζi
2σ2

x

(xi − θt)2
}

(14)

When ζi < 1, the variance of N (xi |σ2
x/ζi) increases, and the fidelity hyperparameter has the natural interpretation of

increasing the variance of our model.

The multi-fidelity posterior is the product of t+ 1 independent Gaussian densities, which is itself Gaussian:

π(θt | D1:t) ∝ N (θt |µ0, σ
2
0)

t∏
i=1

N (xi | θt, σ2
x/ζi) (15)

∝ N (θt |µt, σ2
t ), (16)

where

1

σ2
t

=
1

σ2
0

+

t∑
i=1

ζi
σ2
x

, µt = σ2
t

(
µ0

σ2
0

+

t∑
i=1

ζixi
σ2
x

)
. (17)

The MF-posterior predictive can be computed by integrating out θt. This is a convolution of two Gaussians, the posterior
and the prior π(θ) = N (θ |µ0, σ

2
0), which is again Gaussian:

p(xt+1 | ζt+1,D1:t) =

∫
Θ

[N (xt+1 | θt, σ2
x)]

ζt+1N (θt |µt, σ2
t )dθt (18)

= N
(
xt+1 |µt,

σ2
x

ζt+1
+ σ2

t

)
. (19)

With a single fidelity and ζ = 1, this results reduces to the standard result for Gaussian models with known variance [Murphy,
2007].

A.3 MULTI-FIDELITY BERNOULLI MODEL

To simplify notation, we ignore the run length in this section, since it only specifies which data need to be accounted for in
the MF-posterior distribution. Consider a beta-Bernoulli model

xi
iid∼ Bernoulli(θt), θt ∼ Beta(α0, β0). (20)

The multi-fidelity likelihood is

t∏
i=1

pθt(xi)
ζi =

t∏
i=1

[
θxi
t (1− θt)1−xi

]ζi (21)

=

t∏
i=1

θζixi

t (1− θt)ζi(1−xi). (22)

1This result straightforwardly extends to the multivariate Gaussian.



Figure 1: Orange x marks and blue circles denote low- and high-fidelity data respectively. A two-fidelity model that actively
selects the lower fidelity if its information gain is close in value to the higher fidelity’s information gain (Equation (31)).

Therefore the MF-posterior is

π(θt)

t∏
i=1

pθt(xi)
ζi ∝ 1

B(α0, β0)
θα0−1
t (1− θt)β0−1

t∏
i=1

θζixi

t (1− θt)ζi(1−xi) (23)

∝ θα0−1+
∑

t ζixi

t (1− θt)β0−1+
∑

t ζi−xiζi . (24)

So the MF-posterior is proportional to a beta distribution

π(θt |D1:t) = Beta(αt, βt),

αt := α0 +

t∑
i=1

ζixi,

βt := β0 +

t∑
i=1

ζi(1− xi).

(25)

The MF-posterior predictive is:

p(xt+1 | ζt+1,D1:t) (26)

=

∫ 1

0

pθt(xt+1)
ζt+1p(θt | D1:t)dθt (27)

=

∫ 1

0

(
θ
xt+1

t (1− θt)1−xt+1
)ζt+1

(
1

B(αt, βt)
θαt−1
t (1− θt)βt−1

)
dθt (28)

=
1

B(αt, βt)

∫ 1

0

θ
ζt+1xt+1+αt−1
t (1− θt)ζt+1(1−xt+1)+βt−1dθt (29)

=
B(αt + ζt+1xt+1, βt + ζt+1(1− xt+1))

B(αt, βt)
. (30)

The last step as, as in the general case, depends on knowing the normalizer of the beta distribution. Notice that the base
measure h1(xt) of the Bernoulli distribution is one, and therefore [h1(xt)]

ζt = 1.

B ALTERNATIVE DECISION RULE

Here, consider the scenario of just two fidelities, low fidelity ζlow and high fidelity ζhigh. An alternative decision rule to
the one in the main text would be to choose the lower fidelity when its utility or information gain is within some margin
hyperparameter δ of the higher fidelity’s utility:

ζ?t =

{
ζlow if |U(ζlow)− U(ζhigh)| < δ,
ζhigh otherwise.

(31)



However, we found that results on the Gaussian model in the main text were not promising (Figure 1). The model would
frequently switch between fidelities because the utilties U(ζlow) and U(ζhigh) were quite close in value. We found that
information rate was more stable because it requires a more significant change in information gain to induce a switch.



C MF-BOCD ALGORITHM IN DIDACTIC CODE

This Python code is a didactic example of the MF-BOCD algorithm. At each time step, the algorithm (1) chooses a data
fidelity using maximal information rate; (2) observes a datum of the chosen fidelity; (3-4) computes the posterior predictive
and run-length posterior distributions; (5) updates the model parameters; and (6) makes a prediction. Please see the code
repository2 for a complete example.

Note that in practice, each datum will be observed by evaluating an observation model in real-time. Here, for clarity, we
simply index into a pre-initialized data array.

1 import numpy as np
2 from scipy.special import logsumexp
3

4 def mf_bocd(data, model, hazard, costs):
5 J, T = data.shape
6 log_message = np.array([1])
7 log_R = np.ones((T+1, T+1))
8 log_R[0, 0] = 1
9 pmean = np.zeros(T)

10 igs = np.empty(J)
11 choices = np.empty(T)
12

13 for t in range(1, T+1):
14

15 # 1. Choose fidelity.
16 rl_post = np.exp(log_R[t-1, :t])
17 for j in range(J):
18 igs[j] = compute_info_gain(t, model, rl_post, log_message, hazard, j)
19 j_star = np.argmax(igs / costs)
20 choices[t-1] = j_star
21

22 # 2. Observe new datum.
23 x = data[j_star, t-1]
24

25 # 3. Compute predictive probabilities.
26 log_pis = model.log_pred_prob(t, x, j_star)
27

28 # 4. Estimate run length distribution.
29 log_growth_probs = log_pis + log_message + np.log(1 - hazard)
30 log_cp_prob = logsumexp(log_pis + log_message + np.log(hazard))
31 new_log_joint = np.append(log_cp_prob, log_growth_probs)
32 log_R[t, :t+1] = new_log_joint
33 log_R[t, :t+1] -= logsumexp(new_log_joint)
34

35 # 5. Update model parameters and message pass.
36 model.update_params(t, x, j_star)
37 log_message = new_log_joint
38

39 # 6. Predict.
40 pmean[t-1] = np.sum(model.mean_params[:t] * rl_post)
41

42 return choices, np.exp(log_R), pmean

2https://github.com/princetonlips/mf-bocd

https://github.com/princetonlips/mf-bocd


D ABLATION STUDIES

Here, we report the results of an ablation study for the multi-fidelity Gaussian and multi-fidelity Bernoulli models. For
varying costs, a multi-fidelity model using information gain-based switching was run on data generated from their respective
data generating proceses. The percentage of low-fidelity observations was recorded; call this Plow. Then a randomized
multi-fidelity model was run on the same dataset. At each time step, the randomized model chose low-fidelity data based on
a Bernoulli random variable with bias Plow. The goal of this experiment is to demonstrate that when the model switches to
high-fidelity data is important to model performance, not just the fact that some percentage of high-fidelity data are used.
We found that for both Gaussian (Table 1) and Bernoulli data (Table 2), choosing when to switch fidelities was often useful.

Table 1: Ablation study for multi-fidelity Gaussian models. “LF only” is BOCD using only low-fidelity data. Mean and
two standard errors, representing 95% confidence intervals, are reported over 200 trials. Bold numbers indicate statistically
significant using 95% confidence intervals.

MSE L1

LF (%) LF only Random Info-based LF only Random Info-based

1

0.879 (0.034)

0.046 (0.056) 0.003 (0.001)

270.87 (8.35)

5.98 (3.06) 73.92 (9.61)
2 0.125 (0.073) 0.111 (0.046) 18.18 (7.37) 77.68 (9.79)

38 0.680 (0.118) 0.494 (0.059) 162.31 (12.97) 161.05 (11.08)
53 0.702 (0.091) 0.483 (0.066) 183.40 (11.36) 173.01 (10.46)
60 0.752 (0.140) 0.452 (0.037) 186.11 (10.89) 174.95 (10.13)
67 0.665 (0.075) 0.466 (0.036) 187.72 (10.01) 173.41 (9.91)
74 0.643 (0.064) 0.480 (0.043) 182.18 (9.48) 175.88 (9.36)
80 0.656 (0.087) 0.492 (0.044) 184.66 (9.20) 175.70 (9.20)
97 0.547 (0.028) 0.537 (0.028) 176.76 (9.40) 175.34 (9.33)

Table 2: Ablation study for multi-fidelity Bernoulli models. “LF only” is BOCD using only low-fidelity data. Mean and
two standard errors, representing 95% confidence intervals, are reported over 200 trials. Bold numbers indicate statistically
significant using 95% confidence intervals.

MSE L1

LF (%) LF only Random Info-based LF only Random Info-based

9

0.123 (0.009)

0.003 (0.001) 0.002 (0.000)

186.27 (7.02)

45.55 (6.04) 40.31 (5.43)
21 0.008 (0.001) 0.009 (0.002) 76.42 (7.68) 71.88 (7.54)
25 0.011 (0.002) 0.011 (0.002) 84.47 (8.11) 80.61 (7.89)
46 0.025 (0.003) 0.021 (0.003) 124.80 (7.07) 117.34 (7.31)
61 0.040 (0.004) 0.034 (0.005) 143.87 (6.34) 139.88 (7.23)
68 0.050 (0.005) 0.040 (0.005) 158.48 (6.34) 149.79 (7.02)
73 0.057 (0.005) 0.048 (0.006) 163.68 (6.39) 158.08 (6.66)
83 0.077 (0.006) 0.064 (0.007) 174.01 (6.21) 170.26 (6.49)
90 0.098 (0.007) 0.082 (0.007) 184.46 (6.11) 178.86 (6.28)



E EXPERIMENTAL DETAILS

E.1 CAMVID EXPERIMENTS

The pretrained MobileNets were downloaded from the Fastseg Python library.3

We can estimate the computational cost of MF-BOCD (λMF) relative to BOCD using only high- (λHF) and low- (λLF) fidelity
data. We used 85 low- and 86 high- fidelity observations. The low- (high-) fidelity observation model required 19.48 (36.89)
billion flops (Table 3). Computing the information gain required 465,291 flops. The total cost of our algorithm in billions of
flops is

λLF = 171×19.5 ≈ 3333,

λHF = 171×36.9 ≈ 6303,

λMF = 0.00046+(85×19.5) + (86×36.7) ≈ 4827.

As we can see, decision-making has a marginal cost.

Table 3: Observation model details for CamVid and MIMII experiments. (CamVid) The high-fidelity model has roughly
twice times the number of flops and higher accuracy as measured by intersection-over-union (IoU) on the Cityscapes dataset.
(MIMII) The high-fidelity model requires roughly 250 times as many floating point operations (ops). “FC”, “M”, and “B”
mean fully-connected, millions, and billions respectively.

Fidelity Model Ops Accuracy

CamVid HF V3-large 36.86 B 72.3 (IoU%)
LF V3-small 19.48 B 67.4 (IoU%)

MIMII HF MicroNet-AD(M) 124.7 M 96.15 (AUC%)
LF Two-layer FC 0.5 M 86.7 (AUC%)

Figure 2: Illustration of pipeline to generate anomaly scores from log-Mel spectrograms using deep neural networks.

E.2 MIMII EXPERIMENT

In the MIMII experiment, the output of the observation models (Table 3) is a scalar anomaly score in the range [0, 1], where
0 indicates normal machine operation. An illustration of how these scores are obtained for an audio clip is shown in Figure 2.
To convert these anomaly scores to binary numbers for a Bernoulli multi-fidelity posterior predictive model, we thresholded
the scores to integers in {0, 1}. The quality of the observation models depends on the choice of threshold. For examples of
these data, see Figure 3. To select the appropriate threshold, we used the intersection of the false negative and false positive

3https://github.com/ekzhang/fastseg

https://github.com/ekzhang/fastseg


Figure 3: Examples of MIMII anomaly scores, five audio clips for each machine. Dashed red lines separate audio clips.

rate curves, which corresponds to the top-left corner of the receiver operating characteristic (ROC) curves for each machine
and each observation model (Figure 4).



Figure 4: False positive (FPR) and false negative rates (FNR) for high- (HF) and low- (LF) fidelity observation models on
MIMII cross-validation data. Vertical dashed lines indicated the chosen threshold

Figure 5: Illustration of MIMII data after converting log-Mel spectrograms to binary numbers with machine- and observation
model-specific thresholds. The true binary value is denoted with a black line.
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