
Supplementary Materials for
XOR-SGD: Provable Convex Stochastic Optimization

for Decision-making under Uncertainty

Fan Ding1 Yexiang Xue1

1Department of Computer Science, Purdue University, West Lafayette, Indiana, USA

A XOR-SAMPLING FOR THE
WEIGHTED CASE

The text here provides a synopsis for the approach in Ermon
et al. [2013]. We still encourage the readers to read the
original text for a better explanation. Let w(θ), p(θ) and Z
as defined before, the high-level idea of XOR-Sampling is
to first dicretize w(θ) to w′(θ) as in Definition 1, followed
by embedding the weighted w′(θ) to the unweighted space
∆w. Finally, XOR-sampling uses counting based on hashing
and randomization to sample uniformly from ∆w.

Definition 1. Assumew(θ) has both upper and lower bound,
namely, M = maxθ w(θ) and m = minθ w(θ). Let b ≥
1, ε > 0, r = 2b/(2b − 1) and l = dlogr(2

n/ε)e. Partition
the configurations into the following weight based disjoint
buckets: Bi = {θ|w(θ) ∈ (M

ri+1 ,
M
ri]}, i = 0, . . . , l − 1 and

Bl = {θ|w(θ) ∈ (0, M
rl

]}. The discretized weight function
w′ : {0, 1}n → R+ is defined as follows: w′(θ) = M

ri+1 if
θ ∈ Bi, i = 0, . . . , l−1 and w′(θ) = 0 if θ ∈ Bl. This leads
to the corresponding discretized probability distribution
p′(θ) = w′(θ)/Z ′ where Z ′ is the normalization constant
of w′(θ).

For the weighted case, the goal of XOR-sampling is to guar-
antee that the probability of sampling one θ is proportional
to the unnormalized density (up to a multiplicative constant).
By Definition 1, we obtain a distribution p′(x) which sat-
isfying 1

ρp(x) ≤ p′(x) ≤ ρp(x) where ρ = r2

1−ε . Then,
XOR-sampling implements a horizontal slice technique to
transform a weighted problem into an unweighted one. For
the easiness of illustration, we denote M ′ = maxθ w

′(θ)
and m′ as the smallest non-zero value of w′(θ). Then con-
sider the simple case where b = 1 and r = 2, where we
have M ′ = 2l−1m′. Let δ = (δ0, . . . , δl−2)T ∈ {0, 1}l−1

be a binary vector of length l − 1, XOR-sampling samples
(θ, δ) uniformly at random from the following set ∆w using
the unweighted version of sampling based on hashing and

randomization:

∆w = {(θ, δ) : w′(θ) ≤ 2i+1m′ ⇒ δi = 0}. (1)

If we sample (θ, δ) uniformly at random from ∆w and then
only return θ, it can be proved that the probability of sam-
pling θ from w′(θ) is proportional to m′2i−1 when w(θ)
is sandwiched between m′2i−1 and m′2i. Therefore, this
technique leads to the constant approximation guarantee of
XOR-Sampling. The precise statement of the guarantee is
in Theorem 2. For general case of b and r, please refer to
Ermon et al. [2013].

Setting εηφ to Zero In Definition 1 we can make b larger
and ε smaller enough, then there will be a possibly large but
finite value of l such that M

rl
is smaller than m , which leads

Bl to be empty and εηφ to be zero.

B PROOFS

B.1 PROOF OF LEMMA 1

We define two functions g+
k = max{gk,0} and g−k =

min{gk,0} where 0 is a vector of all 0 which has the same
dimension as gk. We have gk = g+

k + g−k . We define both
∇f(xk)+ and ∇f(xk)− in the similar way. Then Lemma 1
gives the new bounds of two terms assuming the constant
bound on the gradient, which are essential to the proof of
convergence rate. The proof of Lemma 1 is as follows:

Proof. (Lemma 1) Since we have the constant bound that

1

c
∇f(xk)+ ≤ E[g+

k] ≤ c∇f(xk)+. (2)

c∇f(xk)− ≤ E[g−k] ≤ 1

c
∇f(xk)−. (3)

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Fan Ding <ding274@purdue.edu>?Subject=72

and because of g+
k ≥ 0 and g−k ≤ 0 we can obtain

1

c
||E[g+

k]||22 =
1

c
〈E[g+

k],E[g+
k]〉 ≤ 〈∇f(xk)+,E[g+

k]〉

≤ c〈E[g+
k],E[g+

k]〉 = c||E[g+
k]||22.

1

c
||E[g−k]||22 =

1

c
〈E[g−k],E[g−k]〉 ≤ 〈∇f(xk)−,E[g−k]〉

≤ c〈E[g−k],E[g−k]〉 = c||E[g−k]||22.

which exactly means

1

c
||E[gk]||22 ≤ 〈∇f(xk),E[gk]〉 ≤ c||E[gk]||22.

To prove the second inequality, we need to take advantage of
the convexity of f . Denote [xk − x∗]+ = max{xk − x∗, 0}
and [xk − x∗]− = min{xk − x∗, 0}, we know xk − x∗ =
[xk−x∗]++[xk−x∗]−. In addition, because f is convex, the
index set of non-zero entries of [xk − x∗]+ and ∇f(xk)+

is the same. The index set of non-zero entries of [xk −
x∗]− and∇f(xk)− is also the same. In addition, because of
Equation 2 and 3, the index set of non-zero entries of E[g+

k]
(E[g−k]) is the same with∇f(xk)+ (∇f(xk)−). Combining
these facts with Equations 2 and 3, we have

1

c
〈E[g+

k], [xk − x∗]+〉 ≤ 〈∇f(xk)+, [xk − x∗]+〉

≤ c〈E[g+
k], [xk − x∗]+〉.

1

c
〈E[g−k], [xk − x∗]−〉 ≤ 〈∇f(xk)−, [xk − x∗]−〉

≤ c〈E[g−k], [xk − x∗]−〉.

Combining these two equations, we have

1

c
〈E[gk], xk − x∗〉 ≤ 〈∇f(xk), xk − x∗〉 ≤ c〈E[gk], xk − x∗〉.

This completes the proof.

B.2 PROOF OF THEOREM 4

Proof. (Theorem 4) Since we use N samples at each itera-
tion, we have gk = 1

N

∑N
i=1 g

i
k and E[gk] = E[gik]. In each

iteration k we can adjust the parameters in XOR-Sampling
to make the tail εηφ zero, then for each sample gik we can
obtain from Theorem 2 that

1

ρκ
Eθ[∇f(xk, θ)]

+ ≤ E[gi+k] ≤ ρκEθ[∇f(xk, θ)]
+. (4)

ρκEθ[∇f(xk, θ)]
− ≤ E[gi−k] ≤ 1

ρκ
Eθ[∇f(xk, θ)]

−.

(5)

The variance of each sample gik can also be bounded by

V ar(gik)

= Eθ′∼p′(θ′)[||∇f(xk, θ
′)||22]− ||Eθ′∼p′(θ′)[∇f(xk, θ

′)]||22,
≤ ρκEθ∼p(θ)[||∇f(xk, θ)||22],

= ρκ(V ar(∇f(xk, θ)) + ||Eθ∼p(θ)[∇f(xk, θ)]||22),

≤ ρκ(σ2 + ε2).

Denote gk
+ = max{gk, 0} and gk

− = min{gk, 0}.
Clearly, gi+k ≥ 0 and gi−k ≤ 0. Moreover, for a given
dimension, either gi+k = 0 for that dimension or gi−k = 0.
Evaluating gk dimension by dimension, we can see that
gk

+ = 1
N

∑N
i=1 g

i+
k and gk− = 1

N

∑N
i=1 g

i−
k . Combined

with Equation 4 and 5, we know

1

ρκ
Eθ[∇f(xk, θ)]

+ ≤ E[gk
+] ≤ ρκEθ[∇f(xk, θ)]

+.

ρκEθ[∇f(xk, θ)]
− ≤ E[gk

−] ≤ 1

ρκ
Eθ[∇f(xk, θ)]

−.

Because E[gk] = E[gik], we also have

V ar(gk) =
1

N2
V ar(

N∑
i=1

gik) =
V ar(gik)

N
.

Then the variance of gk can be bounded as

V ar(gk) ≤ ρκ(σ2 + ε2)

N
.

Therefore, we can then apply Theorem 3 to get the result in
equation 5.

ExK
[Eθ[f(xK , θ)]]− Eθ[f(x∗, θ)]

≤ ρκ||x0 − x∗||22
2tK

+
tmaxk{V ar(gk)}

ρκ
,

≤ ρκ||x0 − x∗||22
2tK

+
t(σ2 + ε2)

N
.

which can also be written as

ExK
[obj]−OPT ≤ ρκ||x0 − x∗||22

2tK
+
t(σ2 + ε2)

N
. (6)

This completes the proof.

C EXPERIMENTS

We evaluate our XOR-SGD algorithm on the inventory man-
agement Ziukov [2016], Shapiro and Philpott [2007] and
the network design problems Sheldon et al. [2012], Wu et al.
[2017, 2016]. For each setting of both applications, to pro-
duce a sample, Gibbs sampling first takes 100 steps to burn
in, and then draws samples every 30 steps. We fix the itera-
tion step of both BP and BPChain as 20, which is enough
for BP to converge. We allow SGD with Gibbs sampling,
BP and BPChain to draw more samples than XOR-SGD for
a fair comparison. All experiments were conducted using
single core architectures on Intel Xeon Gold 6126 2.60GHz
machines with 96GB RAM and a wall-time limit of 10 hours.
For both applications, we use MRF as probabilistic models
for Pr(θ), which can be seen in the next section. For a fair
comparison, once a solution x is generated by either algo-
rithm, we use an exact weighted counter ACE Barton et al.
[2016] to evaluate Eθ∼Pr(θ)f(x, θ) exactly. All objective
values reported here are from ACE.

C.1 SETTINGS OF STOCHASTIC INVENTORY
MANAGEMENT

Taking into account of the storage constraint, the original
problem is equivalent to the following problem:

min
x≥0

max
µ≥0

Ed∼Pr(d)[G(x, d)] + µ(wTx−X). (7)

For inventory management problem, we assume each di can
take two different values, one corresponding to the high
demand one corresponding to the low demand. Then, we
introduce a new vector θ where θi = 1 means di is the high
value while θi = 0 otherwise. In the experiment we range n
from 10 to 100 increased by a step size of 10 and draw 10
instances for each setting. Under each setting, we draw every
ci uniformly from (0, 5], hi uniformly from (0, 10], sample
si uniformly drawn from (0, 10] and let bi = ci+si. The two
values of each di are also uniformly drawn from (0, 10]. We
model Pr(θ) as a MRF with several cliques. The variables
in each clique are highly correlated with each other. For a
problem with n products, we draw the number of cliques
uniformly from [n, 2n]. The domain size of each clique φα
is chosen from the range of [1, 6] at random. The potential
function of a clique involving l variables is in the form of
a table of size 2l. The i-th entry of this table, denoted as
vi, is modeled as vi = vi1 + vi2vi3, where vi1 is uniformly
drawn from (0, 1), v3 uniformly from (10, 1000) and binary
variable vi2 uniformly randomly drawn from {0, 1}. Each
storage requirement wi is drawn from (0, 10] uniformly at
random. The largest storage limit X is set to be 5n. We
also evaluate our method given different percentages of the
largest storage limit, which is shown in Figure 2 (middle). In
the SGD algorithm, x is initialized with the absolute value
of a Gaussian random variable from N (5, 3) to ensure it is
non-negative.

In terms of the parameters in XOR-Sampling we fix P =
100, b = 7, ε = 0.01 and the others the same as in Ermon
et al. [2013] to guarantee ρκ =

√
2. Learning rate t is 0.1

at first and divided by 10 after 50 iterations, then further
divided by 10 after 100 iterations. η is 10 at first and divided
by 10 after 50 iterations, then further divided by 10 after
100 iterations. The total number of both K and M are set to
be 200. However, since we run each algorithm on one single
core with a wall-time limit of 10 hours for a fair comparison,
not all algorithms can complete all iterations. The plots are
based on the best results found by each algorithm within the
time limit.

C.2 SETTINGS OF STOCHASTIC NETWORK
DESIGN

The task in equation 8 is equivalent to solving the following
problem:

min
∆g≥0

max
µ≥0

Eθ∼Pr(θ)[C(g + ∆g, θ)] + µ(
∑
e∈E

ce∆ge −B).

(8)

Because of the convexity ofC(g+∆g, θ) and strong duality,
both problems have the same optimal solution.

We test our algorithm on a real-world problem, the so-called
Flood Preparation problem for the emergency medical ser-
vices (EMS) on road networks Wu et al. [2016]. The prob-
lem setup, including the graph structure and the definition of
Pr(θ), are the same as that in Wu et al. [2016]. The original
network is unweighted, hence we set the initial conductance
value for each edge as 1. ce is initialized uniformly from
the range (0, 10). The largest budget size B is 1000. We
evaluate our method varying the percentage allowed of the
largest budget size, which is shown in Figure 3 (middle).
In the experiment, each entry of ∆g is initialized with the
absolute value of a Gaussian random variable from N (0, 1).
Total number of SGD iterations is 2000, while not all algo-
rithms can complete all 2000 iterations within the time limit
of 10 hours. The experimental results reported in the plots
are based on the best solutions found by each algorithm
within the time limit. Learning rate t is 1 at first and divided
by 10 after 20 iterations, further by 10 after 100 iterations.
Parameters in XOR-Sampling are set to be the same as in
the inventory management problem.

The left figure in Figure 3 shows the percentage of savings
between SGD with other sampling methods and XOR-SGD
among all of the 4 different networks, while the middle
and the right figures show the averaged commuting time
with regard to different budget sizes and different number
of samples, respectively. For the left and the middle figures,
we let XOR-SGD take 100 samples in each iteration while
SGD with other methods take 10,000. We can see from the
left figure that objective optimized by XOR-SGD is at least
5% better than that optimized by other methods for all the 4
different networks. In addition, from the middle and the right
figures we know that with the increase of either budget size
or the number of samples, our method can find consistently
better solutions than the compared methods. In particular,
from the right figure we can see even 40 samples in each
iteration are enough for XOR-SGD to compete with the
result from Gibbs with 20,000 samples. Meanwhile, XOR-
SGD also runs faster than the compared method under this
situation. In this experiment, XOR-SGD with 40 samples
take 1 minutes 40 seconds per SGD iteration, while SGD
with 20,000 Gibbs samples need 2.5 minutes per iteration.
Since sampling time of both BP and BPChain is no shorter
than Gibbs Sampling, we thus conclude that XOR-SGD

outperforms other methods both in efficiency and in the
quality of solutions found.

References

John P Barton, Eleonora De Leonardis, Alice Coucke, and
Simona Cocco. Ace: adaptive cluster expansion for maxi-
mum entropy graphical model inference. Bioinformatics,
32(20):3089–3097, 2016.

Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and
Bart Selman. Embed and project: Discrete sampling with
universal hashing. In Advances in Neural Information
Processing Systems (NIPS), 2013.

Alexander Shapiro and Andy Philpott. A tutorial on stochas-
tic programming. 2007.

Daniel Sheldon, Bistra Dilkina, Adam N Elmachtoub, Ryan
Finseth, Ashish Sabharwal, Jon Conrad, Carla P Gomes,
David Shmoys, William Allen, Ole Amundsen, et al. Max-
imizing the spread of cascades using network design.
arXiv preprint arXiv:1203.3514, 2012.

Xiaojian Wu, Daniel R Sheldon, and Shlomo Zilberstein.
Optimizing resilience in large scale networks. In Pro-
ceedings of the 30th Conference of AAAI, 2016.

Xiaojian Wu, Yexiang Xue, Bart Selman, and Carla P.
Gomes. Xor-sampling for network design with corre-
lated stochastic events. In Proceedings of the 26th IJCAI,
pages 4640–4647, 2017.

Serhii Ziukov. A literature review on models of inventory
management under uncertainty. 2016.

	XOR-Sampling for the Weighted Case
	Proofs
	Proof of Lemma 1
	Proof of Theorem 4

	Experiments
	Settings of Stochastic Inventory Management
	Settings of Stochastic Network Design

