Proceedings of Machine Learning Research 157, 2021 ACML 2021

Transfer Learning with Adaptive Online TrAdaBoost for
Data Streams

Ocean Wu HWU344@QAUCKLANDUNI.AC.NZ
Yun Sing Koh YKOHQCS.AUCKLAND.AC.NZ
Gillian Dobbie G.DOBBIEQAUCKLAND.AC.NZ
Thomas Lacombe THOMAS.LACOMBE@QAUCKLAND.AC.NZ

School of Computer Science, The University of Auckland, New Zealand

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

In many real-world applications, data are often produced in the form of streams. Consider,
for example, data produced by sensors. In data streams there can be concept drift where
the distribution of the data changes. When we deal with multiple streams from the same
domain, concepts that have occurred in one stream may occur in another. Therefore, being
able to reuse knowledge across multiple streams can help models recover from concept drifts
more quickly. A major challenge is that these data streams may be only partially identical
and a direct adoption would not suffice. In this paper, we propose a novel framework
to transfer both identical and partially identical concepts across different streams. In
particular, we propose a new technique called Adaptive Online TrAdaBoost that tunes
weight adjustments during boosting based on model performance. The experiments on
synthetic data verify the desired properties of the proposed method, and the experiments
on real-world data show the better performance of the method for data stream mining
compared with its baselines.

Keywords: Transfer Learning; Online Boosting; Concept Drift; Data Stream

1. Introduction

Transfer learning aims to enhance the learning performance of a model in a target domain
by transferring knowledge from source domains (Zhuang et al., 2020). Most existing studies
on transfer learning focus on stationary environments, assuming that the data in each
domain are generated from the same distribution. Addressing target tasks that have sparse
or no labelled data has been well studied. Yet, this assumption may not hold where the
environments are dynamic, e.g., financial data inferences, energy demand predictions, and
climate data analysis. In a non-stationary environment, the distributions of the generated
data may evolve, thus rendering models designed using a previous distribution obsolete.
This is known as concept drift. Some research efforts exist on transfer learning under non-
stationary environments (Yang et al., 2021; Wu et al., 2017). Yet, very little work explicitly
exploit all of the continuous, infinite, and concept-recurring characteristics of data streams.
Every data stream can act as either the source, the target, or even both, to share and apply
knowledge among each other.

Unlike most transfer learning techniques in the area, we focus on online transfer for
evolving data streams. Current approaches either assume that there is a similarity between

© 2021 O. Wu, Y.S. Koh, G. Dobbie & T. Lacombe.

Wu KoH DOBBIE LACOMBE

the source and target domains, or only use the underlying trends within the data streams
without the assumption of similarity of concepts. However, we believe that there is a middle
ground whereby partial model reuse is possible, given the models may be closely related.

The main contributions are summarised as follows. First, we propose a transfer learning
framework for evolving data streams that implements transfer between identical domains.
Secondly, we propose a novel Adaptive Online TrAdaBoost (AOTrAdaBoost) technique that
tunes the sensitivity of weighting during the boosting process such that our framework can
benefit from partially identical domains where noise and dissimilarities in data distributions
may exist.

The remainder of this paper is organised as follows. In Section 2 we provide an overview
of work related to transfer learning under data streams, followed by preliminaries to our
work in Section 3. In Section 4 we present the details of our transfer learning framework and
theoretical analysis of runtime and memory complexities. We then evaluate the performance
of our techniques on both synthetic and real-world datasets in Section 5. Finally, Section 6
concludes our work and proposes future perspectives.

2. Related Work

This section discusses research related to transfer learning and the boosting techniques for
data streams.

Transfer Learning for Data Streams. Numerous researches have been conducted
on the topic of Transfer Learning in either the online or the offline settings, but few have fo-
cused on the data stream environments, especially for instance-incremental methods. Minku
(2019) discusses the similarities between transfer learning and learning in non-stationary
environments. Both Melanie (Du et al., 2019) and MARLINE (Du et al., 2020) are ensemble
techniques that maintain a pool of ensembles for multiple data streams, whose predictions
are based on the weighted majority vote among the predictions of the pool of ensembles.
Higher weights are assigned to ensembles that are most appropriate to the current con-
cept. In particular, Melanie learns from multiple data sources with the assumption that
both source and target domains share similar concepts, and MARLINE performs transfer
learning using multiple data sources that may have different concepts from the target. Wen
et al. (2019) proposed a variant of Hoeffding Tree to adapt to online transfer learning, and
a framework embedding such variant to select the optimal source model to do multi-sources
online transfer learning by a measure of local similarity. Yet, the proposed framework
does not handle concept drifts. BOTL (Mckay et al., 2020) enables bi-directional transfer
learning between a single source and a single target domain under the regression setting.

Boosting Techniques. AdaBoost is a boosting algorithm where each iteration a model
is trained on the instances with updated weights, based on a previous model. The weight is
incremented if a previous model makes a wrong prediction, so that incorrect classifications
are given more attention. TrAdaBoost (Dai et al., 2007) extends AdaBoost to the transfer
learning scenario to deal with the negative effects of the instances coming from a different
distribution. Different weight update strategies are applied based on the data distributions.
Weights are incremented (i.e. AdaBoost) for same-distribution data (i.e. target domain),
and decremented on the diff-distribution data (i.e. source domain) to reduce the impacts.
TransferBoost (Eaton and desJardins, 2011) is a multiple source transfer learning algorithm

ADAPTIVE ONLINE TRADABOOST

based on TrAdaBoost which performs boosting at both the instance level and the task
level. It selectively chooses the source knowledge to transfer to the target task based on
task transferability. All the discussed boosting techniques have been adapted to instance-
incremental learning methods for data streams (Oza and Russell, 2001; Wang and Pineau,
2015).

In particular, we consider transfer learning under homogeneous environments under the
classification setting, while utilising the recurring models for instance transfer when concept
drifts are detected in data streams. Our particular setting distinguishes our framework from
the existing methodologies.

3. Preliminaries

A data stream is potentially an infinite sequence of data which arrives sequentially, S =
(s1,82,---,8¢t,...). An instance of the data stream S at time ¢ is defined as a tuple s; =
(z¢,y:) where x is a feature vector used to predict the target variable y. The learning
objective at a particular time ¢ is to predict the corresponding 1 for a given feature vector
x; by a model H; that was generated at the time stamp ¢, which results in a prediction
U141 = H¢(x¢41). The real label y;41 is compared with the prediction §;41.

A concept drift (Gama and Kosina, 2014) occurs when the distribution from the feature
x and target y changes between the two time steps tg and 1, i.e., 3z : Py (x,y) # P, (z,y).
The joint distribution can also be written as Pi(z,y) = Pi(x)P(y|x), where Pi(x) is the
distribution of the features and P;(y|z) is the posterior probability of the classes.

3.1. Problem Definition

Let S = {So,51,...,Snv-1} be N evolving data streams. Given the feature space X; and
the label space), each i € S is associated with a domain D; = {&X;,pi(z)} and a task
T; = {Vi,pi(y|lx)}, where z € X, y € Y, pi(z) is the marginal probability distribution,
pi(y|x) is the posterior probability distribution. Each of the streams can either act as the
source or the target data stream. Concept drifts may occur for all 4 in S. For each concept
drift we use cz to denote the jth concept occurred in ¢. Our objective is to learn a function
f that minimizes the risk for the upcoming cz in the target data stream by model reuse.
Specifically, we investigate our methodology under the inductive transfer learning setting
(i.e. Vi,[Vi # Y Vpi(y|z) # ' (y|z)]) in the context of evolving data streams.

3.2. Online AdaBoost and TrAdaBoost

Given D,,(n) as the weight distribution of the nth sample (x,, y,), and €, as the weighted
error of the mth boosting iteration with the mth base model h,,. AdaBoost (Freund and
Schapire, 1997) updates the sample weight for the following base model by

Dpy1(n) = Din(n) X {eam fim () = Yn

Zm etm hon(Tn) # Yn

where Z,, is a normalization factor such that D,,;1 becomes a distribution, and a,, =

%ln(lz—i’”). Online AdaBoost (Wang and Pineau, 2015) algorithm use the normalization

Wu KoH DOBBIE LACOMBE

factor incrementally so that the weight of each new arriving instance can be appropriately
updated for each base model. Oza et al. noted that the weight update step of AdaBoost
can be reformulated as:

1
91—) hm n) = Un
Dyy1(n) = Dip(n) x {2(116m) (zn) =y
2€m hm(xn) 7é Yn

Online AdaBoost algorithm tracks the sum of correctly classified (A\°¢) and misclassified
()\SW) instances respectively. The error of each base model can be approximated by € =

%. When a new instance (z,,y,) arrives, its weight X is set to 1 for the first base

model. For the next iteration it is updated by A < ﬁ if it is classified correctly, and

A~ % otherwise. Each base model is repeatedly updated k times using (z, y,),where
k = Poisson(\).

In online TrAdaBoost (Wang and Pineau, 2015), consider the following)\%%, X%};Vn,
)\gfn, Ag% use to track the sum of weights of correctly classified (SC) and misclassified
(SW) samples from target domain (7') and source domain (S) by the mth base model

during the online learning process. Here
SW
€5 =)‘S,m
MMy SC SwW SC SwW?
Ao+ Ao + A, + AT

)\SW
€1 = T,m
T SO SW SC SW
AT,m +)\T,m +)\S,m +)\S,m

and
A,
DT m I I

m = Y50 SW SO SW
)\T + /\T,m +)\S,m +)\S,m

,1M

For the following base models, referring to the weight update step of batch TrAdaBoost,
the weight can be updated by

B
1+DT,m7(1718)€S,m725T,m m(7’1) 7é Yn

A —
)\ — 1+DT,m_(1_,8)€S,m_2€T,m hm(xn) - yTL
ho (2

for a sample from source domain, and

A —
A\ = {1+DT’m(1ﬁ)657m26T’m hm(xn) = Yn
= AX
ET$7,L(1+DT7m7(175)657,,”725:?'7”) hm(xn) # Yn

for a sample from target domain. Here 5 = where Ng is the total number of

-1
144/2In|Ng|/M

samples from the source domain and M is the number of base models.

ADAPTIVE ONLINE TRADABOOST

. Source Data Stream S

Model Repository
Rs €R

ANAN
Soge

\

Accuracy

)
Match Frrrrrrmmrrrr s Ty
A) Model Background Ensemble (BE) (DJFind b s.t. 1
P . Kappa(bk) > Kappa(FM)
Taract Data St T Drift Warning Transfer A A e A |, wherebeBE ‘
A 'argetData Stream 1 detected on the " Instances |
; by by bi-1 é
Foreground m
Model (FM)
: by

(E) Replace FM with by,
/ Model Repository
RT €R

F] Store FMin Ry_

R AN
-

Accuracy

O -
{j ti+Nops §j Time

Figure 1: An overview of the primary transfer learning task in our proposed framework.
The execution order of the main workflow is labeled alphabetically.

4. Our Transfer Learning Framework

In this section, we present our proposed transfer learning framework and the AOTrAdaBoost
algorithm which is based on the online TrAdaBoost (Wang and Pineau, 2015). Our approach
is able to transfer knowledge from a source data stream and reuse old concepts in the target
data stream at the same time. This is achieved by using an online model and an instance
transfer strategy. Both source and target data streams may suffer concept drift.

Our framework maintains a set of model repository R = {Rg, R1,..., Ry_1} for each
of the data streams S = {Sy, S1,...,Sy_1}. Each repository in R stores all the models for
each of the observed concepts in its corresponding data stream. In addition, each model
caches a set of training instances that were used to build the model. For each data stream
i € 8§, the framework maintains a corresponding foreground model for training and
making predictions. The foreground model is equipped with two drift detectors, one for
detecting drift warnings and the other for detecting actual drifts. When the drift warning
is detected on the foreground model, the framework starts training both a background
ensemble for the transfer learning task, and a background model to handle new concepts
that have not been observed in §. Fig. 1 provides an overview of the primary transfer
learning workflow of the framework. Our proposed framework consists of two stages. Stage
1 prepares the system for transfer learning by observing the new distribution and then
selects a model in R which is the closest match. Stage 2 carries out transfer learning by
performing boosting on the instances provided by the matched model.

We initiate Stage 1 at either the very beginning of the target data stream (i.e., at
timestamp ¢ = 0) or when a drift warning is detected on a foreground model at time ¢;.

Wu KoH DOBBIE LACOMBE

At this point we initialise a background ensemble of fixed size K to perform boosting
on upcoming data instances in the target data stream. The background ensemble is a
set of models training in the background that may be useful in the future, however these
background models do not take part in the current prediction process. During Stage 1 (i.e.
[ti, ti + Nops] where N, is a user-defined window size of instances called grace period), the
background ensemble performs boosting on its models by increasing weights on wrongly
predicted data instances, which is equivalent to AdaBoost or OzaBoost.

At the end of the grace period, we carry out a model matching process whereby we
match a model from the model repositories R, using the instances observed in the target
data stream during the grace period. There are many ways to perform model matching, such
as comparing the distributions of the matched model’s training instances and the observed
instances in target data stream, clustering and RCD (Gongalves Jr and De Barros, 2013).
For simplicity, we perform matching based on model performance on data instances during
the grace period. That is, the model with the highest kappa statistics on predicting the
grace period instances is matched. The procedure of Stage 1 corresponds to Algorithm 1 in
Lines 1 to 16.

Stage 2 uses the matched model’s cached training instances to train the background
ensemble using our boosting strategy. For each instance received from the target data
stream, we train the background ensemble on both the received instance and N,f, number
of instances provided by the matched model. Precisely, at each time stamp ¢ > ¢;+ N,ps, the
background ensemble (1) performs boosting for the instance arriving at ¢ in the target data
stream, by increasing instance weight on correct predictions (i.e. AdaBoost or OzaBoost);
(2) performs boosting for N, instances provided by the matched model, by decreasing
weights on wrong predictions. The details of this weighting mechanism is explained in
Section 4.1. There are two benefits with this configuration. Firstly, this configuration does
not block training/predicting in the target data stream, and secondly the data instances
from the target data stream can enhance the background ensemble on desired distribution
and thus improve the effectiveness of transfer learning continuously. This process is detailed
in Algorithm 1 in Line 11 and Lines 18 to 21.

During Stage 2, we continuously monitor the performance of the models in the back-
ground ensemble by evaluating their prediction accuracy on each arriving instance in the
target data stream. If a model in the background ensemble has obtained higher performance
than the foreground model on the target instances by a threshold of x, it then replaces the
foreground model. The background ensemble is then removed, and the foreground model
is added to the target stream’s concept repository. In Algorithm 1, Lines 11 and Lines 18
to 29 describe the whole procedure for Stage 2.

In order to handle new concepts that have not been observed in any data streams, the
framework also starts training a background model when the drift warning was detected,
and then use the background model to replace the foreground model when the actual drift
is detected. This is similar to the base models in the Adaptive Random Forest (Gomes
et al., 2017). Another benefit of having a background model under our transfer learning
framework is that it can act as a fail-safe measure for negative transfers. If the framework
fails to match a correct model which produces inferior members in the background ensemble,
the background model can replace the drifted foreground model instead.

© 0 N O AN W N

N N N N B R E R R e R
W N B O ©® I O oA W N O

24
25
26
27
28
29
30

ADAPTIVE ONLINE TRADABOOST

Algorithm 1: The Transfer Learning Framework

Data: An instance (z,y) from the target data stream T arriving at time ¢

Input : Grace period N,ss, number of instances to transfer Ny, Size of Background Ensemble K,
model replacement threshold k € (0, 1), v for AOTrAdaBoost, model repositories for all data
streams R, model repository for target data stream Rp

if drift warning detected vV t = 0 then
BackgroundEnsemble < {bg,b1,...bx_1};
Init BackgroundM odel,
tsta'rt — t7

end

if actual drift detected then
Rr.append(ForegroundModel);
ForegroundM odel < BackgroundM odel,

end

if BackgroundEnsemble # () then
AOTrAdaBoost(Background Ensemble, (x,y), IsFromTarget, 1);
if m = null then

ift = tstart + Nobs then

Match model m from R;

f « tanh(y - Kappa(m));

end

else

for i + [1, Nye,] do

Obtain an instance (Tsrc, Ysre) from m’s cached training instances;
AOTrAdaBoost(BackgroundEnsemble, (Tsrc, Ysre), IsSFromSource, f);

end

end
Candidate M odel < a member model in BackgroundEnsemble with the highest Kappa statistics
on instances from T
if Kappa(CandidateModel) — Kappa(ForegroundModel) > k then
Rr.append(ForegroundModel);
ForegroundM odel < Candidate M odel;
BackgroundEnsemble < 0;
m < null;
end

end

4.1. Adaptive Online TrAdaBoost (AOTrAdaBoost)

The base model receives a sample either from the source domain or the target domain.
For inter-stream instances, we propose a weighted-based subspace alignment method by re-
weighting the source samples based on how close they are to the target subspace. We can
use a distance measure « to determine the closeness of the source space to the target space.
We run a subsample of the instances from the target stream on the models in the source
stream. In our framework, we used the kappa statistics to measure the model’s performance.
The intuition behind this approach is that if the data used to build the source model is
similar to the target stream, then running the subsample of the instances from the target
stream should yield high kappa statistics.

We use a weight assignment strategy for assigning larger weights to the source samples
that are closer to the target domain. If the instances are from the target data stream, we

Wu KoH DOBBIE LACOMBE

boost the instances by adopting a similar strategy in TrAdaBoost. The weight adjustments
for transferred instances during the boosting process is based on a weight factor f calculated

as such:
{1 (Tn,yn) €T

tanh(v-a) (zn,yn) €S

where v € (0,inf) is a user-defined value and « is the matched model’s performance (i.e.
kappa statistics) on instances during grace period in target stream. S and 7' denotes the
source and target data streams, respectively. Fig. 2 illustrates the effects of . The factor
f is then applied on to A during the weight update process:

A —
)\ _ {f ’ 1+DT,m_(1_,8)€S,m_2€T,m hm(xn) - yn
= BA
f ’ 1+DT,m7(1713)€S,m726T,m hm(xn) 7é yn

The implication of the weight factor f is
1+ P ST that, the boosted weights on data instances com-
) ing from the matched model, becomes propor-
tional to the matched model’s performance on

061 , the target data stream. This is equivalent to
“ P utilising the quality of the matched model to

08+)

041, control the confidence of the boosting process.
——— If the applied weight lowers the A value, then
029/ -y = even when a model in the background ensem-
0 ~=10 ble has made a correct prediction, the growth
0 02 04 06 08 1 of A value becomes more conservative. Essen-

tially this factor reduces our transfer strategy to
a partial model transfer, if the matched model
has low performance on the target data stream.
As a result, it may reduce the possibility of false
positives, which is especially crucial under un-
stable environments such as the data streams.

Figure 2: Effects of v on weight adjust-
ments during boosting.

4.2. Theoretical Analysis
4.2.1. MEMORY COMPLEXITY

The main memory consumers in the transfer learning framework are the model repositories
across the data streams. Suppose the base model’s memory complexity (including cached
training instances) is @), and we have N data streams with a total of N model repositories
of size L each to transfer concepts across. The memory complexity of the framework is thus

O(Q-N-L).

4.2.2. TIME COMPLEXITY

Referring to Algorithm 1, two processes have main impacts on the time complexity, that
is, the model matching process in Stage 1 and the AOTrAdaBoost process on transferred
instances in Stage 2. Let the base model’s time complexity for training be P, and the size

ADAPTIVE ONLINE TRADABOOST

of the background ensemble be K. AOTrAdaBoost is based on the instance-incremental
version of TrAdaBoost (Wang and Pineau, 2015). The time complexity of this version of
TrAdaBoost is based on the user-defined A\ for online boosting. The weight adjustments
of AOTrAdaBoost only impose constant time complexity during the boosting process. In
addition, our transfer learning framework performs AOTrAdaBoost on N, ., transferred in-
stances per arriving instance in the target data stream. Therefore the total time complexity
of AOTrAdaBoost is O(A - P - K - Nyfer).

The time complexity of the model matching process in Stage 1 depends on the choice
of matching strategy. Suppose the classification complexity of the base model is I and
the average grace period is of length J, our simplified model matching technique iterates
through all the models across the repository thus producing a total time complexity of
O(I-J-N-L). But there are other approaches to reduce the time complexity of this process
as mentioned in Section 4.

5. Experimental Evaluation

In this section, we evaluate the performance of our transfer learning framework and AO-
TrAdaBoost. The classification performance is based on prequential evaluation, where each
instance from the data stream is first used for testing, and then for training. The exper-
iments were performed on the NVIDIA DGX-2 Station (Version 4.0.7, 40 cores, Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20GHz, 252 GiB memory). Our code, synthetic dataset
generators and test scripts are available online! for reproducible results.

Baseline Techniques. In the experiments we chose to use Hoeffding Tree as the base
model. In order to evaluate the effectiveness of the different components in the transfer
learning framework, we chose to compare against the following baselines: (1) HT: a variant
of Hoeffding Tree where a background tree starts growing upon drift warning detection, and
replace the foreground model upon actual concept drift detection. This is similar to the base
model by Gomes et al. (2017); (2) w/o Boost: this baseline replaces the background ensemble
in our transfer learning framework with a single model, to evaluate the effectiveness of using
boosting for transfer learning in data streams; (3) OzaBoost (Oza and Russell, 2001); and
(4) (instance-incremental) TrAdaBoost (Wang and Pineau, 2015). We plugged the baselines
in our transfer learning framework in place of our AOTrAdaBoost algorithm. This design
allows us to compare the benefits of the different boosting components.

We developed the above baselines on top of the Hoeffding Tree in StreamDM?. The
default parameters of the base model are used for experimentations. We used grid search to
tune the parameters in Algorithm 1 for every baselines on each of the datasets. The ranges
of the parameters considered are in the format of start:step:end, inclusive: N, = 100 :
100 : 400, Nt = 100 : 100 : 300, K =10:10:50, x =0.0:0.1: 0.4, and v =1:1:10.

Evaluation Measures. We evaluate the performance of the techniques using standard
performance measures for data streams (accuracy and kappa statistics (Bifet et al., 2013))
and runtime. We also use the cumulative accuracy gain (CAG) against HT as the baseline
technique over the entire stream, specifically > ((accuracy(B) — accuracy(HT)),where B is
the model we are evaluating. The cumulative accuracy gain is calculated as follows:

1. https://github.com/ingako/A0TrAdaBoost
2. https://github.com/huawei-noah/streamDM-Cpp

https://github.com/ingako/AOTrAdaBoost
https://github.com/huawei-noah/streamDM-Cpp

Wu KoH DOBBIE LACOMBE

n n
CAG =) (Mp(x:) —yi) = »_(Mur((2:) — i)

i=0 1=0
where Mp(.) is the prediction from the model we are evaluating, and Mpr(.) is the pre-
diction from the HT model. The function above is performed over the lifetime of the data
stream. The cumulative kappa gain (CKG) is calculated in the same way, with the kappa
metric instead of accuracy. This measure is adapted from Wu et al. (2020). This per-
formance measure tracks the working characteristics over the course of the stream, which
is especially important for evaluating new solutions to dynamic data streams (Krawczyk
et al., 2017). It also takes into account the performance decay caused by model overfitting
at the drift points. We believe this is a better adapted measure to continuously monitor
the utility of our transfer learning framework. The sample frequency parameter is set to
100 data instances.

Datasets. We use both synthetic and real-world datasets in our experiments. For
generating synthetic datasets, we used the Agrawal generator (Agrawal et al., 1993) and
the Random Tree generator (Domingos and Hulten, 2000). The Agrawal generator generates
classification functions with different complexities. The Random Tree generator builds a
decision tree by splitting on features and assigning class on leaves at random. The synthetic
datasets include abrupt and gradual drifts. The abrupt and gradual drift widths are set
to 1 and 500 data instances, respectively. The stable period is set to 8000 data instances
and we generate a total of 15000 data instances for each of the data streams so that each
dataset contains one concept drift. The real-world dataset is obtained from Du et al. (2020).
The task is to classify whether rental bikes are in low or high demand at different times in
different cities. We use the configuration of weekdays from Washington D.C as the source
and weekends in London as the target, whereby both source and target datasets contain
concept drifts.

5.1. Baseline Technique Comparisons on Synthetic Datasets

We study the two scenarios that our transfer learning framework with AOTrAdaBoost
mainly address. In the first scenario transfer learning is conducted on data streams with
different noise levels. In the second scenario transfer is conducted on streams with partial
concept drifts, whereby only part of the concept changes but a portion of the relationship
in the concept still holds. We also conducted a case study to demonstrate the effectiveness
of our technique on long-running data streams with multiple concept drifts and different
lengths of drift intervals (i.e. the intervals between every consecutive concept drifts).

We ran all experiments 10 times with varying seeds for every synthetic dataset con-
figuration. We selected Functions 1 and 8 according to Agrawal et al. (1993) to generate
concept drifts in the Agrawal datasets. The details of the functions are available in the
supplementary materials (See footnote 1). With the Random Tree generator, we generate
concept drifts by building decision trees with different maximum tree depths of 5 and 9.
Two datasets are generated for source and target data streams for each of the experimen-
tation. We only measure performance on the target data streams, since the results on the
source data streams are the same.

ADAPTIVE ONLINE TRADABOOST

We performed Friedman tests with a level of significance of 0.05 across all the exper-
imentation results. The results showing statistically significant differences among all the
baseline techniques are in bold in Tables 1 to 3. Overall, our framework with AOTrAd-
aBoost leads to higher accuracy, kappa statistics, cumulative accuracy gain and cumulative
kappa gain compared with the baselines. In the following sections we provide details of the
individual experiments.

Table 1: Results on Synthetic Datasets for Different Noise Levels

Agrawal with Abrupt Drifts

Agrawal with Gradual Drifts

‘ Benchmark ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec) ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
HT 92.28 £ 17.52 84.56 & 35.05 - - 0.59 = 0.02 82.20 & 30.43 64.40 £ 60.86 - - 0.58 £0.01
%o w/o Boost 95.68 + 10.57 91.35 4 21.15 509 + 281 1019 £ 562 0.99 +0.14 89.89 £ 19.58 79.79 £ 39.17 1154 + 1996 2308 + 3992 1.03 £0.14
+ | OzaBoost 95.65 + 10.64 91.29 4+ 21.29 505 £ 260 1010 £ 520 2.39+0.35 90.63 & 14.89 81.25 £29.78 1264 + 1646 2528 + 3294 1.26 +£0.18
§ TrAdaBoost 95.98 + 11.15 91.96 + 22.30 555 + 261 1111 4 521 2.28+0.29 94.10 £ 13.15 88.20 £ 26.28 1785 £ 1678 3571 + 3358 1.874+0.17
AOTrAdaBoost | 96.09 + 11.14 92.17 +22.28 571 +246 1142 + 491 2.63 +0.37 94.34 +12.99 88.69 £ 25.97 1822 4+ 1696 3644 + 3394 1.75 £ 0.30
HT 84.56 = 20.57 69.11 +41.14 - - 0.58 = 0.01 70.19 & 36.42 40.37 £72.84 - - 0.59 £ 0.02
§ w/o Boost 90.09 + 10.39 80.17 4+ 20.78 830 + 393 1659 =+ 786 1.09 £ 0.10 85.88 4 16.44 71.76 + 32.87 2354 + 2318 4708 + 4636 1.05+£0.17
7| OzaBoost 89.27 +10.65 78.53 £21.31 707 £ 505 1413 £+ 1010 1.44£0.23 87.61 = 11.60 75.21 £23.21 2613 42043 5226 + 4086 2.64 £ 0.58
§ TrAdaBoost 90.61 + 10.70 81.22 4 21.41 908 + 389 1816 & 779 2.194+0.23 89.72 + 11.68 79.45 £ 23.35 2931 42084 5862 + 4169 2.51£0.41
AOTrAdaBoost | 90.61 & 10.70 81.22 4+ 21.41 908 + 389 1816 £ 779 2.64+0.25 |89.83+11.44 79.66 + 22.88 2946 £+ 2100 5893 + 4201 2.60 +0.47
HT 92.28 £ 17.52 84.56 & 35.05 - - 0.59 = 0.03 82.20 & 30.43 64.40 £ 60.86 - - 0.58 £0.01
%U w/o Boost 94.67 +10.92 89.34 + 21.84 359 + 247 718 + 494 1.00 £0.22 89.18 £ 19.98 78.36 £ 39.96 1048 + 1996 2095 + 3993 1.03 +0.21
| OzaBoost 93.124+12.91 86.24 4+ 25.83 126 & 303 253 £ 606 1.52£0.30 90.79 £ 17.31 81.59 £ 34.61 1289 £2127 2578 £4255 1.9540.52
% TrAdaBoost 94.72 £ 10.78 89.44 + 21.56 366 + 261 732 £523 2.37 £ 0.09 83.06 £ 32.45 1400 + 2029 2799 + 4059 1.76 £ 0.42
AOTrAdaBoost | 95.06 + 10.82 90.11 4+ 21.64 416 + 226 833 + 451 2.69+0.15 |92.63+15.80 85.26 + 31.59 1565+ 1972 3129 + 3944 1.78 £0.23
N HT T5.47 £24.24 50.94 4 48.48 - - 0.58 +0.02 69.40 & 32.01 38.80 £ 64.03 - - 0.58 £0.01
S w/o Boost 84.78 + 11.61 69.57 4 23.22 1397 £ 697 2795 + 1394 1.07+0.17 80.14 4 18.43 60.27 + 36.86 1610 + 2049 3221 + 4099 0.99 +£0.18
+ | OzaBoost 84.12+11.70 68.24 4 23.40 1298 =745 2596 £ 1490 2.10 +£0.29 79.66 & 15.32 59.33 £ 30.63 1539 £1967 3080 = 3934 1.0440.22
gu TrAdaBoost 85.17 £ 11.92 70.34 £ 23.85 1455 £ 685 2910 £ 1370 1.90 £0.20 83.40 £ 13.49 66.81 £ 26.98 2100 = 2001 4202 + 4003 1.86 4 0.24
~| AOTrAdaBoost | 85.21 +11.88 70.41 4 23.77 1460 + 671 2921 £ 1343 2.04+0.18 |84.59+11.56 69.18 & 23.11 2278 42042 4557 + 4084 2.17+£0.24
N HT 84.56 4 20.57 69.11 +-41.14 - - 0.66 = 0.01 70.19 & 36.42 40.37 £ 72.84 - - 0.58 £0.01
S w/0 Boost 89.33 + 11.29 78.66 + 22.58 716 £ 497 1433 + 994 1.09 +0.25 84.48 +20.18 68.96 + 40.36 2144 + 2353 4288 + 4706 0.93 +£0.19
+ | OzaBoost 89.75+11.13 79.51 £22.26 779 £ 386 1559 £ 772 1.69 £0.34 86.28 & 16.38 72.56 £ 32.75 241442214 4828 4429 1.39 4 0.36
gw TrAdaBoost 90.41 + 10.96 80.81 + 21.93 877 +437 1755 + 874 1.50 £0.29 87.01 + 15.98 74.03 £ 31.95 2524 + 2174 5049 + 4348 1.524+0.24
N AOTrAdaBoost | 90.90 & 10.76 81.80 & 21.53 951 +£401 1903 % 802 1424021 |87.87+15.72 75.74 + 31.43 2653 + 2193 5306 + 4387 1.36 +0.39

‘ ‘ Random Tree with Abrupt Drifts Random Tree with Gradual Drifts

‘ Benchmark ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec) ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
HT 57.96 4 7.42 7.56 4 13.43 - - 0.75 4+ 0.01 57.97£7.17 7.58 4+ 12.95 - - 0.76 £ 0.01
gu w/o0 Boost 63.74 +10.64 22.76 + 17.63 867 +2 2280+ 7 1.33+0.33 63.52 &+ 10.61 22.29 £ 17.52 832+23 2207 £ 39 1.53 +0.26
+ | OzaBoost 59.19 4 9.01 11.19 £ 12.60 185+ 21 544 + 36 3.33+1.53 60.64 & 8.91 14.69 + 14.31 400 £ 63 1066 £ 143 3.03 +£0.48
§ TrAdaBoost 63.04 +10.10 20.52 4 16.45 763 £ 12 1943 + 33 3.81 +£0.37 60.71 + 8.41 12.45 +£12.40 411 £ 56 730 + 121 247 +£0.26
AOTrAdaBoost | 65.44 + 10.69 26.60 4+ 18.48 1123 87 2856 + 184 3.80+0.47 |64.35+10.77 23.18 +17.81 956 + 49 2339 + 95 2.40 +£0.26
HT 55.59 4 5.90 4.12+£9.13 - - 0.76 &+ 0.01 55.58 £ 5.94 4.22£9.07 - - 0.76 + 0.01
%Q w/o Boost 58.93 +£9.97 14.54 + 16.69 501+5 1563 £ 5 1.89 +0.21 60.53 + 8.52 17.79 £14.23 743 £27 2036 £ 45 1.53+0.11
7| OzaBoost 55.45 £ 6.36 4.224+£9.79 —21+£3 14+24 1.64£0.28 55.70 £5.98 5.68 +10.44 18+ 32 219+ 27 1.5740.23
%“ TrAdaBoost 59.67 4 8.61 16.61 + 14.72 611412 1873 47 3.99 +0.51 60.90 + 8.73 17.80 £ 14.62 797 £ 70 2037 + 116 2.89+£0.25
AOTrAdaBoost | 61.97 £+ 8.36 19.59 + 14.29 956 + 21 2321 + 41 4.12+0.19 61.51 + 8.84 18.77 + 14.68 889 + 99 2183 + 186 3.19+0.18
HT 57.96 4 7.42 7.56 +13.43 - - 0.77 £ 0.02 57.97£7.17 7.58 +12.95 - - 0.76 £ 0.01
%O w /o Boost 62.44 +10.49 19.44 £ 16.96 672+ 4 1781 £4 1.58 £0.24 63.05 4+ 9.92 20.52 £ 16.11 762 £91 1941 £ 183 1.5140.16
| OzaBoost 60.33 & 8.34 16.37 £13.94 356 £ 54 1321 4+ 111 2.924+0.33 57.67£7.39 11.33 £12.12 —45 £ 37 562 + 234 3.37+0.28
% TrAdaBoost 62.83 +9.37 18.91 + 14.56 731+2 1702+ 5 2.07+0.30 60.50 + 8.40 14.91 £12.53 378 £ 65 1099 + 163 2.35+£0.38
~| AOTrAdaBoost | 64.50 +9.78 23.754+16.16 981 +121 2428 + 194 1.95+0.38 | 63.48 +£10.47 22.05+17.22 826 + 67 2169 £+ 121 2.30+£0.44
= HT 53.96 + 5.73 1.71 +6.98 - - 0.76 + 0.01 53.96 £5.77 1.56 £ 6.90 - - 0.76 £ 0.01
S w/o Boost 56.72 4+ 7.62 11.26 £ 13.98 414 £5 1433 £ 12 1.49£0.17 57.29+£7.13 12.05+13.07 500 £ 65 1573 £ 136 1.59 £ 0.10
+ | OzaBoost 54.29 +5.73 0.87 £ 5.50 50 £ 25 —127 £ 56 2.574+0.94 54.49 £5.93 5.54 4+ 9.87 79+ 34 596 + 74 3.99 £ 0.69
§ TrAdaBoost 55.68 = 6.04 6.15 £8.39 257+ 8 667 £ 10 2.91+0.25 56.67 £ 6.55 11.13 £12.06 407 £35 1436 + 117 2.44 £0.40
| AOTrAdaBoost | 57.94 + 6.84 13.23 +12.37 596 &+ 50 1728 + 45 2.814+0.29 57.58 £ 7.08 12.78 + 12.75 544 + 49 1682 £+ 78 248 +£0.21
® HT 55.59 4 5.90 4.12+£9.13 - - 0.76 + 0.01 55.58 4 5.94 4.22+9.07 - - 0.76 £ 0.02
S w /o Boost 58.97 £ 7.35 13.59 +12.85 507 £17 1420 £ 60 1.69 £0.10 58.69 £ 7.30 12.74 £12.11 467 £ 58 1278 £ 117 1.62+0.18
+ | OzaBoost 55.73 £ 6.10 4.46 £ 9.66 20+ 14 51+£16 1.52 £ 0.26 55.56 £ 6.10 4.43 £9.05 —3£28 31+48 1.55 £ 0.17
§ TrAdaBoost 57.58 & 6.94 12.34 +11.93 299 £18 1232 £ 30 2.53+0.34 57.08 £7.65 10.92 +13.19 225+ 109 1005 £ 187 2.47+0.30
| AOTrAdaBoost | 60.44 +8.07 16.30 & 13.60 728 45 1827 £+ 69 2.56 +0.07 59.90 £+ 8.28 15.42 + 14.14 648 + 73 1679 + 138 2.56 £ 0.20

NOTE: The left-most column are the specific noise settings in the format of (noise

percentage in source data stream) - (noise percentage in target data stream).
Statistically significant results for Acc./Kappa and CAG/CKG are in bold.

Wu KoH DOBBIE LACOMBE

5.1.1. TRANSFER UNDER DIFFERENT NOISE LEVELS

We generate three different noise level settings, 0%, 10%, 20%, on the datasets to evaluate
the effects of noise on our techniques. In particular, we study the following settings: (1)
transfer between data streams without any noise; (2) transfer between noise-free and noisy
data streams and vice versa; (3) transfer between data streams with noise in different
levels. The left-most column in Table 1 lists the specific noise settings in the format of
(noise percentage in source data stream) - (noise percentage in target data stream). For
example, the noise setting of 10% - 0%, indicates that there is a 10% noise in the source
data stream and 0% noise in the target stream. The results in Table 1 show that our
framework with AOTrAdaBoost is the most robust technique against noise compared to
other baselines. One exception is in the Agrawal datasets with gradual drifts and a noise
setting of 10% - 0%, where the cumulative gains of the baselines are the most unstable and
the standard deviations are higher than the means. This is because gradual drifts exhibit
similar properties to noise, therefore gradual drifts with noise greatly increase the actual
noise in total. As a result, when transferring from a very noisy environment to noise-free
environment, boosting may cause negative transfers. In that case, it may be better to use
the background model instead of the boosted models from the background ensemble. A
similar observation was made on the Random Tree datasets with the same configuration,
where the standard deviations on cumulative gains are higher compared to other Random
Tree dataset configurations. However, our framework is still able to obtain much higher
positive gains on this configuration. Potentially, this is due to the different complexities of
the concept drifts between the two data generators. Another observation is that our transfer
learning framework with AOTrAdaBoost presents more gain on the scenarios in which both
source and target data streams are noisy, especially when the source contains more noise
than the target. More noise in the source data stream means the matched model tend to
have lower performance. Therefore AOTrAdaBoost is able to adjust the boosting process
to reduce the effect of noise (i.e. false positives).

5.1.2. PARTIAL CONCEPT TRANSFER

Transferring from a complex concept to a simpler concept exhibit similar properties to
transferring from a noisy environment to a less noisy one. Therefore for partial concept
transfer we evaluate a specific scenario where a simpler concept is transferred to a more
complex one. For the Agrawal generator, we added two new functions based on Functions
1 and 8 by adding a logical disjunction of the proposition (car maker < 2) for classifying
Group A. Function 1 and 8 were used to generate concept drifts in the source data stream,
and the new functions were used in the target data stream, since the new functions are
more complex due to the added propositions. For the Random Tree generator, we generate
trees with more depth 6 and 10. These configurations are used for generating the datasets
acting as the target data streams. Table 2 shows the effectiveness of our transfer learning
framework with AOTrAdaBoost on transferring partial concepts.

5.1.3. CASE STUDY

We also performed a case study with the Random Tree generator to produce a larger
dataset with 150000 of instances. Concept drifts are generated based on a random tree

ADAPTIVE ONLINE TRADABOOST

Table 2: Results on Synthetic Datasets for Partial Concept Transfer

| Agrawal with Abrupt Drifts Agrawal with Gradual Drifts
Benchmark | Ace. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec) | Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
HT 71.26 £ 35.66 42.52 £71.33 - 0.57 £0.01 68.78 £ 36.35 37.56 £ 72.69 - - 0.58 = 0.02
w/o Boost 92.76 £ 10.98 85.51 £21.97 32254600 6449 + 1199 0.96 4 0.24 91.16 £ 11.44 82.33 £22.88 3358 + 527 6716 4 1053 1.01 +£0.20
OzaBoost 92.15 £12.12 84.31£24.23 3134 +433 6268 + 867 1.15£0.17 90.01 +13.88 80.01 £27.77 3184+ 670 6368 + 1340 1.49 +0.33
TrAdaBoost 93.89 £ 10.66 87.78 £21.32 3394 4 490 6789 4 980 2.07£0.26 92.44 + 11.46 84.89 £ 22.92 3550 & 678 7099 £ 1355 2.21£0.23
AOTrAdaBoost | 94.26 + 10.44 88.52 + 20.87 3450 £+ 535 6901 £+ 1069 2.27 +0.31 93.33 £10.79 86.66 + 21.58 3683 + 529 7365+ 1057 2.34 +0.46

‘ Random Tree with Abrupt Drifts Random Tree with Gradual Drifts
Benchmark Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec) Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
HT 57.96 £7.42 7.56 £13.43 - - 0.76 + 0.01 57.97T£7.17 7.58 £12.95 - - 0.76 £+ 0.01
w/o Boost 63.74 £ 10.64 22.76 £ 17.63 867 £2 2280+ 7 1.44£0.25 62.76 £ 10.25 21.28 £17.10 718+ 10 2055 + 25 1.46 +£0.23
OzaBoost 59.19 £9.01 11.19 + 12.60 185 + 21 544 + 36 3.2141.77 58.93 +£9.10 10.54 £12.91 143 + 28 443 +43 1.734+0.22
TrAdaBoost 63.04 +10.10 20.52 + 16.45 763 £ 12 1943 +33 3.51£0.44 62.97 +10.07 19.99 + 16.27 749 £+ 68 1861 + 232 3.26 £0.38

AOTrAdaBoost | 65.44 + 10.69 26.60 + 18.48 1123 +£87 2856 + 184 3.88+0.61 |64.424+11.01 23.73 £19.17 968 + 127 2422 + 257 3.87 £ 0.46

depths sequence of [2,4, 6,8, 10, 12], with random drift intervals generated between 1000 +
200 - D[0,20) + uniform[0, 100), where D is a Poisson distribution P(X = z) =)‘wjl_k and
A = 3. Both source and target data streams contain no noise. While the AOTrAdaBoost
configuration has more advantages over other baselines when the source and target data
streams are more dissimilar, it is still able to obtain higher performance continuously as

demonstrated in Table 3.

Table 3: Results for Case Study with 0% Noise in Both Source and Target Stream

Benchmark | Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
HT 59.95 4 8.62 13.75 £ 15.12 - - 14.47 +£0.38
w/o Boost 61.45 £ 9.00 17.96 £+ 16.10 2247 £+ 1065 6323 + 3210 13.55 £ 1.70
OzaBoost 60.08 £ 8.72 13.97 £ 15.08 197 £ 611 334 £ 2118 19.33 £ 2.87
TrAdaBoost 61.00 £ 9.39 17.37 + 16.64 1579 + 2109 5430 £ 4623 2296 £4.14

AOTrAdaBoost | 61.77 £ 9.25 18.87 4 16.55 2724 + 1155 7684 + 3371 22.33 £4.56

5.2. Parameter Sensitivity Analysis

Referring to Algorithm 1, five parameters may affect the performance of our technique.
Table 4 shows the impact of the parameters on the Agrawal datasets with abrupt and
gradual drifts and a noise setting of 20% - 10%.

According to Table 4, on the datasets with abrupt drifts, higher performances can be
achieved with lower N,;s values compared to datasets with gradual drifts. For N,f,, both
abrupt and gradual drifts prefer higher values, but for the gradual drifts this parameter
needs to be fine-tuned. This is because gradual drifts exhibit similar properties to noisy
data, and a higher N, value may lead to overfitting before the end of the gradual drifts. K
needs to be fine-tuned even though a larger size may create more diversity in the background
ensemble. This is because having more boosting members can potentially lead to higher
instance weights, causing members near the end of the boosting queue to overfit. Higher x
may lead to models in the background ensemble having less probability to swap with the
drifted foreground model. Therefore, higher k may reduce false positives, but for gradual
drifts a lower k value may be preferred since the data is noisy. As for v, a lower value
may be preferred when transferring from noisy environments, since lower + can reduce
AOTrAdaBoost to partial model transfer to avoid false positives.

Wu KoH DOBBIE LACOMBE

Table 4: Parameter Sensitivity Evaluation

Abrupt Drift

Gradual Drift

Nops ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec) ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
100 |90.90 +10.76 81.80 £21.53 951 £401 1903 £ 802 1.42+£1.42 | 84.96+15.44 69.91+30.87 2215+£2084 4431 £4168 2.02+2.02
200 | 88.46 £14.38 76.92+28.77 586 £476 11724953 1.17£1.17 | 85.44+£17.28 70.89+34.55 2288 £1937 4577 £3874 1.93+1.93
300 | 88.15+£15.36 76.31 +30.72 540 £ 542 1079 £ 1083 1.33+1.33 | 84.35+19.08 68.71 £38.16 2125+ 2010 4250 + 4021 1.83+1.83
400 | 87.39£16.10 74.78 +£32.21 4254485 850 & 969 1.26 £1.26 | 87.87£15.72 75.74 £ 31.43 2653 £2193 5306 £4387 1.36 + 1.36
Nofer ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec) ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
100 | 89.24 £11.52 78.47+£23.04 702+494 1404 + 988 1.23+£1.23 |86.28+16.08 72.56+32.15 2414 £2164 4829 +£4329 1.47+1.47
200 | 89.63 £11.35 79.254+22.71 7604479 1521 4958 1.294+1.29 | 87.87+£15.72 75.744+31.43 2653 2193 5306 +4387 1.36 = 1.36
300 |90.90 £10.76 81.80+21.53 951 +401 1903 + 802 1.42+£1.42 | 86.80£15.94 73.61 4+ 31.87 2493 £+ 2220 4986 + 4441 1.56 £+ 1.56
K ‘ Ace. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec) ‘ Ace. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
0.0 |86.89+15.70 73.77+31.39 350 £471 699 £ 942 1.05£1.05 |85.80+£16.99 71.60+33.99 2342 +2197 4685+£4394 1.25+1.25
0.1 |88.43+12.11 76.86 £ 24.22 581 £465 11624 931 1.08 £1.08 | 86.78 = 15.88 73.56 £31.76 2489 + 2191 4978 + 4382 1.34+1.34
0.2 |90.21+11.01 80.41 £22.03 848 £480 1695+ 959 1.31£1.31 87.87+15.72 75.74 £31.43 2653 +2193 5306 + 4387 1.36 +1.36
0.3]90.90+10.76 81.80+21.53 951 £401 1903 & 802 1.42+1.42 | 87.75+£15.67 75.50+31.32 2634 +2220 5269 + 4441 1.50 4 1.50
0.4 |90.74+11.09 81.48+22.18 928 £387 1856+ 774 1.56 £1.56 | 87.40+£15.85 74.81 £31.69 2582 +£2170 5166 £4340 1.62+ 1.62
K ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec) ‘ Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
10 | 90.90 £10.76 81.80+21.53 951 +401 1903 + 802 1.42+1.42 | 87.22+15.61 74.44+31.21 2555 +£2111 5110+£4223 1.24+1.24
20 190.90+£10.74 81.79+£21.48 951 +421 1902 + 842 1.77+£1.77 | 86.28 £16.38 72.56 +32.75 2414 £1971 4828 £3943 1.32+1.32
30 190.63+10.86 81.25+21.72 910 +£451 1821 4902 2.03+2.03 |87.87+£15.72 75.74+31.43 2653 +2193 530644387 1.36 £ 1.36
40 | 89.76 £11.34 79.52 £22.68 781 +369 1562+ 738 230+230 |86.12+£16.96 72.24433.92 238942279 477944560 1.82+1.82
50 190.19+11.01 80.38 +22.02 8454337 1690 £673 2.54+254 | 85.65+£17.47 T71.314+34.93 232041944 464143890 2.12+£2.12
v | Ace (%) Kappa (%) CAG (%) CKG (%) Runtime (sec) | Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
2.0 190.26 +10.95 80.51 £21.91 855+£396 17104 791 1.38£1.38 | 87.09+15.89 74.18 £31.77 2535 +£2174 5071 £4348 1.37+1.37
4.0 |190.90 £10.76 81.80+21.53 951 £401 1903 + 802 1.42+£1.42 86.58 +16.07 73.15 £32.14 2458 +2219 4917 + 4438 1.61+1.61
6.0 | 90.79£10.80 81.58+21.61 9354426 1870+ 853 1.36 £1.36 | 87.87£15.72 75.744+31.43 2653 +2193 5306 +4387 1.36 £ 1.36
8.0 [90.12+11.10 80.24 £22.20 835+385 1670+ 770 1.44+1.44 |86.57+£16.03 73.14 £32.04 2457 £2169 4915+4339 1.49+1.49

5.3. Experiments on Real World Dataset

Table 5 shows our framework with AOTrAdaBoost is able to obtain the highest accuracy
gains compared to other baselines. Fig. 3 shows that the AOTradaBoost configuration is
more stable than the other baselines throughout the course of the stream. We notice that
at the beginning AOTradaBoost and HT w/o Boost were the top two performers, while
later AOTrAdaBoost and TrAdaBoost were the top two performers. We observe that our
technique adapts to this stream as it evolves and manages to keep a more stable and higher

accuracy.
Table 5: Results on Real-World Dataset - Bike
Benchmark | Acc. (%) Kappa (%) CAG (%) CKG (%) Runtime (sec)
HT 72.494+12.02 29.10 + 29.66 - 0.39
w/o Boost 72.02 £13.01 29.90 + 28.94 —23 39 0.31
OzaBoost 70.96 £ 10.42 25.98 + 25.22 —-75 —153 0.53
TrAdaBoost 76.22 £8.02 38.15 + 26.81 183 443 1.39
AOTrAdaBoost | 77.37 £ 7.27 42.28 4+ 24.59 239 646 1.54

6. Conclusion

We presented a novel transfer learning framework for evolving data streams. In particular,
we proposed a novel AOTrAdaBoost technique that tunes the sensitivity of weighting during
the boosting process, such that our framework is more robust against noisy source domains

ADAPTIVE ONLINE TRADABOOST

Accuracy

0.60 \ i — HT \ i
1 w/o Boost \/
055 —= OzaBoost "I
- —-= TrAdaBoost

—-= AOTrAdaBoost

0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5
No. of Instances le3

Figure 3: Accuracy results for the bike dataset (target domain).

and benefit from source domains containing partially similar concepts. We empirically
evaluated our technique on both synthetic and real-world datasets. Our AOTrAdaBoost
has shown to obtain statistically significant performance gains over baseline techniques.

In future work, we will investigate the problem of negative transfers in noisy to noise-free
environments. We plan to adaptively swap between the transfer learning framework and
the background model. We will also adapt the user-defined parameters dynamically, based
on the characteristics of the data streams such as stream volatility.

Acknowledgments

This work was funded in part by the Office of Naval Research Global grant (N62909-19-1-
2042).

References

R. Agrawal, T. Imielinski, and A. Swami. Database mining: a performance perspective.
IEEE Transactions on Knowledge and Data Engineering, 5(6):914-925, Dec 1993.

Albert Bifet, Jesse Read, Indré Zliobaite, Bernhard Pfahringer, and Geoff Holmes. Pitfalls
in benchmarking data stream classification and how to avoid them. In Machine Learning
and Knowledge Discovery in Databases, pages 465-479, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. ISBN 978-3-642-40988-2.

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for transfer learning.
In ICML, page 193-200, New York, NY, USA, 2007.

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In SIGKDD, page
71-80, New York, NY, USA, 2000.

H. Du, L. L. Minku, and H. Zhou. Multi-source transfer learning for non-stationary envi-
ronments. In IJCNN, pages 1-8, 2019.

H. Du, L. L. Minku, and H. Zhou. Marline: Multi-source mapping transfer learning for
non-stationary environments. In ICDM, pages 122-131, 2020.

Wu KoH DOBBIE LACOMBE

Eric Eaton and Marie desJardins. Selective transfer between learning tasks using task-based
boosting. AAAI 25(1), 2011.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139,
1997. ISSN 0022-0000.

Joao Gama and Petr Kosina. Recurrent concepts in data streams classification. Knowledge
and Information Systems, 40(3):489-507, 2014.

Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bern-
hard Ptharinger, Geoff Holmes, and Talel Abdessalem. Adaptive random forests for
evolving data stream classification. Machine Learning, 106(9-10):1469-1495, 2017.

Paulo Mauricio Gongalves Jr and Roberto Souto Maior De Barros. Red: A recurring concept
drift framework. Pattern Recognition Letters, 34(9):1018-1025, 2013.

Bartosz Krawczyk, Leandro L. Minku, Joao Gama, Jerzy Stefanowski, and Michat Wozniak.
Ensemble learning for data stream analysis: A survey. Information Fusion, 37:132 — 156,
2017.

Helen Mckay, Nathan Griffiths, Phillip Taylor, Theo Damoulas, and Zhou Xu. Bi-directional
online transfer learning: a framework. Annals of Telecommunications, 75(9-10):523-547,
2020.

Leandro L. Minku. Transfer Learning in Non-stationary Environments, pages 13-37.
Springer International Publishing, Cham, 2019.

Nikunj Oza and Stuart Russell. Online bagging and boosting. Proceedings of Artificial
Intelligence and Statistics, 2001.

Boyu Wang and Joelle Pineau. Online boosting algorithms for anytime transfer and multi-
task learning. In AAAI page 3038-3044, 2015.

Yimin Wen, Yixiu Qin, Keke Qin, Xiaoxia Lu, and Pingshan Liu. Online transfer learning
with multiple decision trees. IJMLC, 10(10):2941-2962, 2019.

Ocean Wu, Yun Sing Koh, Gillian Dobbie, and Thomas Lacombe. Pearl: Probabilistic exact
adaptive random forest with lossy counting for data streams. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 17-30. Springer, 2020.

Q. Wu, H. Wu, X. Zhou, M. Tan, Y. Xu, Y. Yan, and T. Hao. Online transfer learning with
multiple homogeneous or heterogeneous sources. IEEE Transactions on Knowledge and
Data Engineering, 29(7):1494-1507, 2017.

C. Yang, Y. M. Cheung, J. Ding, and K. C. Tan. Concept drift-tolerant transfer learning
in dynamic environments. TNNLS, pages 1-15, 2021.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui
Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings of the
IEEE, 109(1):43-76, 2020.

	Introduction
	Related Work
	Preliminaries
	Problem Definition
	Online AdaBoost and TrAdaBoost

	Our Transfer Learning Framework
	Adaptive Online TrAdaBoost (AOTrAdaBoost)
	Theoretical Analysis
	Memory Complexity
	Time Complexity

	Experimental Evaluation
	Baseline Technique Comparisons on Synthetic Datasets
	Transfer under Different Noise Levels
	Partial Concept Transfer
	Case Study

	Parameter Sensitivity Analysis
	Experiments on Real World Dataset

	Conclusion

