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Abstract

Deep subspace clustering based on data self-expression is devoted to learning pairwise affini-
ties in the latent feature space. Existing methods tend to rely on an autoencoder framework
to learn representations for an affinity matrix. However, the representation learning driven
largely by pixel-level data reconstruction is somewhat incompatible with the subspace clus-
tering task. With the unavailability of ground truth, can structural representations, which
is exactly what subspace clustering favors, be achieved by simply exploiting the supervision
information in the data itself? In this paper, we formulate this intuition as a structural
contrastive prediction task and propose an end-to-end trainable framework referred as
Deep Structural Contrastive Subspace Clustering (DSCSC). Specifically, DSCSC makes
use of data augmentation technique to mine positive pairs and constructs a data simi-
larity graph in the embedding feature space to search negative pairs. A novel structural
contrastive loss is proposed on the latent representations to achieve positive-concentrated
and negative-separated property for subspace preserving. Extensive experiments on the
benchmark datasets demonstrate that our method outperforms the state-of-the-art deep
subspace clustering methods and imply the necessity of the proposed structural contrastive
loss.

Keywords: Deep subspace clustering; Convolutional autoencoder; Contrastive represen-
tations.

1. Introduction

Subspace clustering focuses on partitioning the high-dimensional data into disjoint groups
corresponding to the subspaces in an unsupervised manner. Motivated by the assumption
that each data point can be represented using a linear or affine combination of the rest
of data points on the dataset, subspace clustering methods based on data self-expression
follow a two-step process by first constructing an affinity matrix between data points and
then applying spectral clustering to the affinity matrix. As an excellent affinity matrix can
indicate a weighted graph of data points, the subspace clustering technique has been applied
successfully in motion segmentation Li et al. (2015a); Xia et al. (2018), face clustering
Abavisani and Patel (2018), bioinformatics Zhao et al. (2008), and movie recommendation
Li et al. (2015b), to name a few.
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The early endeavors in subspace clustering assume that data resides in a union of linear
subspaces. Note that the self-expression scheme can be devised by replacing the dictionary
Aharon et al. (2006) with the dataset itself, i.e.,

X = XC, and diag(C) = 0, (1)

where X ∈ RD×N is a collection of data points, C ∈ RN×N is the coefficient matrix. It can
be formulated as a optimization problem with an elaborate regularization R(C):

Ĉ = arg min
C
||X −XC||2F +R(C),

s.t. diag(C) = 0.
(2)

To avoid the trivial solution, the diagonal elements are enforced to be zero. Finally, affinities
of data points can be induced by (|Ĉ|+ |Ĉ|T)/2.

Traditional subspace clustering. The prominent sparse subspace clustering Elham-
ifar and Vidal (2013); Peng et al. (2013); Chen et al. (2020b); Li et al. (2018, 2017) deems
that one data point is linearly related to a few data points in the dataset and encourages
coefficients to be sparse. By contrast, the low-rank subspace clustering works Vidal and
Favaro (2014); Chen and Yang (2014); Zhu et al. (2018) aim at learning the coefficients with
a structured arrangement. Overall, the regularization R(C) has been investigated with `0,
`1, nuclear norm, or the combination of them to pursue a more exactly block-diagonal
affinity matrix which suits spectral clustering towards the distinct partitions. However, the
real-world data does not necessarily conform with the linear subspace model. Therefore,
several researchers have proposed kernel-based subspace clustering works Patel and Vidal
(2014); Yin et al. (2016) to utilize a series of kernels to replace the inner product of the data
matrix. Nevertheless, there is no theoretical guarantee that the empirically defined kernels
could correspond to feature spaces that are well-suited for subspace clustering.

Deep subspace clustering. Past decade has witnessed the successful improvement in
various applications by extending the traditional learning model to deep neural networks.
With the original data Ji et al. (2017); Zhang et al. (2019); Zhou et al. (2018); Zhang et al.
(2019); Seo et al. (2019); Kheirandishfard et al. (2020) or hand-crafted features Peng et al.
(2016, 2018, 2020), deep subspace clustering methods design an explicit non-linear map-
ping to exploit complex underlying patterns of data and learn suitable representations that
satisfy the self-expressiveness property. To build an end-to-end framework, deep subspace
clustering (DSC) network, proposed in Ji et al. (2017), employs a convolutional autoen-
coder with a plug-in self-expression layer between the encoder and decoder to learn the
intermediate deep features. Following the footsteps of DSC, several recent work introduces
the clustering-guided loss Zhou et al. (2018); Zhang et al. (2019) to improve the deep rep-
resentations and achieves promising clustering results.

Most of previous deep subspace clustering approaches are developed based on the stan-
dard autoencoder architecture where a decoder network is trained to preserve information
in the intermediate representations. However, the current popular reconstruction loss it-
self, which merely makes use of pixel-level information in the input data, is insufficient to
contribute to favorable representations to subspace clustering, which actually prefers the
structural ones instead. Different from supervised tasks, the unavailability of ground truth
makes it not easy to capture relations within data instances in the subspace clustering
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task. In view of this, we propose a novel deep subspace clustering framework called Deep
Structural Contrastive Subspace Clustering (DSCSC) by designing an elaborate structural
contrastive prediction task which simply exploits the potential supervision information in
the dataset. Particularly, given input data, DSCSC applies random data transformation on
each of them to constitute positive pairs and construct a similarity graph on the embedding
feature space to mine negative pairs. With the help of the proposed structural contrastive
loss, the positive-concentrated and negative-separated property can be approximated so
that the structure information in the dataset is preserved in the learned intermediate rep-
resentations.

The contributions of this paper can be summarized as follows:

1. We propose an end-to-end trainable framework which, to the best of our knowledge,
is the first one to incorporate contrastive learning and self-expression learning into a
Siamese network for subspace clustering.

2. We design a novel structural contrastive loss which approximates the positive-concentrated
and negative-separated property to facilitate structural representations which are
more favored to the subspace clustering task.

3. Experiment results on benchmark datasets show that the proposed DSCSC outper-
forms other state-of-the-art subspace clustering methods and demonstrate the supe-
riority of structural contrastive representations.

2. Related Work

In this paper, we aim to design a subspace-clustering-specific structural contrastive rep-
resentation learning algorithm. Therefore, we briefly introduce the traditional contrastive
learning methods and previous deep subspace clustering methods in this section.

2.1. Contrastive learning

Recently, contrastive learning has achieved state-of-the-art performance in unsupervised
representation learning. The key motivation behind contrastive learning is to attract the
positive sample pairs and repulse the negative sample pairs. In practice, contrastive learning
methods profit from a large number of negative samples. Specifically, NCE Wu et al. (2018)
introduces a memory bank to preserve negative samples. Based on a Siamese network,
MoCo proposed in He et al. (2020) maintains a queue of negative samples and turns one
branch into a momentum encoder to improve consistency of the queue. With the help of
data augmentation, SimCLR Chen et al. (2020) directly uses negative samples coexisting
in the current batch, which requires a large batch size to work well. Different from the
current approaches contrastive learning which treat every training sample as an independent
class, our framework proposes a structured contrastive loss with the consideration of the
underlying supervision across the dataset to learn structural representations which are more
favorable for subspace clustering.
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2.2. Deep subspace clustering networks

The deep subspace clustering with sparse prior firstly computes the sparse regularized self-
expression coefficients in the original space and then updates the network to preserve the
coefficients for deep representations clustering Peng et al. (2016, 2018). The participation
of pre-defined self-expression coefficients facilitates the deep representations complementing
global structure information by learning to progressively transform input data into nonlinear
latent space. However, the subspace clustering results hinge on the input hand-crafted
features Peng et al. (2016, 2018).

Considering the unit sphere distribution assumption for the deep features, Peng et al.
extend their work Peng et al. (2016, 2018) into a dynamical sparse representation searching
task Peng et al. (2020). Ji et al. propose a convolutional autoencoder network which treats
the original image as the input of networks and performs the deep representation learning
and self-expression coefficient learning simultaneously Ji et al. (2017). Subsequently, some
works introduce regularization on the intermediate feature for more powerful representation
ability Seo et al. (2019); Kheirandishfard et al. (2020). In addition, the clustering-guided
methods have been proposed in Zhou et al. (2018); Zhang et al. (2019). Deep adversarial
subspace clustering (DASC), introduced in Zhou et al. (2018), consists of a subspace clus-
tering generator and a quality-verifying discriminator, which learns against each other. In
the GAN-alike architecture of DASC, the generator runs subspace estimation and sample
clustering while the discriminator evaluates current clustering performance by inspecting
whether the re-sampled data from the estimated subspaces is equipped with the corre-
sponding subspace properties. DASC proposes a subspace estimation criterion to extract
more proper deep feature for real subspace generation. Turning to the self-supervised deep
subspace clustering method Zhang et al. (2019), it introduces a dual self-supervision to
supervise representation learning and self-expression coefficient learning. Different from
DASC, the self-supervised deep subspace clustering method Zhang et al. (2019) introduces
the spectral clustering loss for improving the deep representations.

Nevertheless, the networks aforementioned ignore the supervision knowledge in the data
itself. Inspired by the contrastive learning in unsupervised representation learning Chen
et al. (2020a), we propose a novel network which aims to learn positive concentrated and
negative separated representations by discovering the negative neighborhood for subspace
clustering. Based on the autoencoder structure, the proposed DSCSC maps the encoded
representation into another latent space where 1) the data point is close to its augmented
counterpart and 2) the data point stays away from its negative neighbors. The combination
of the autoencoder loss and structural contrastive loss helps to strengthen the discriminative
ability of the intermediate representations for subspace clustering.

3. Methodology

Previous deep subspace clustering works pursue a minimum reconstruction of autoencoders
Ji et al. (2017). However, it seems to be suboptimal to subspace clustering works. For one
thing, subspace clustering requires a robust geometric structure of data points, rather than
the pixel-level reconstructions. For another, the optimization of autoencoder-based recon-
struction can decrease the structural information existing in the data points. Therefore, a
relatively more cluster-friendly representation is necessary in the subspace clustering task.
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Figure 1: Deep subspace clustering network with structural contrastive representations.
Along the data stream, the images and augmented ones are fed into a shared
convolution layers to obtain the intermediate deep features. Then, the output
features from self-expression layers and augmented features are decoded with
deconvolution layers in DRH. Meanwhile, they are projected by fully-connected
layers into low-dimensional representations for structural contrastive learning.

In this paper, the pixel-level reconstruction and structural contrastive representation are
integrated into the deep subspace clustering framework to cluster multiple data points into
multiple groups in an end-to-end way where each group includes data points from the same
subspace with the help of our DSCSC. To this end, as illustrated in Figure 1, the proposed
DSCSC network is designed with four principle modules:

• Pair Construction Base (PCB) that includes a random data augmentation module T (·)
to stochastically transform data and a convolution encoder f(·) to extract features of
both given data points and the corresponding augmented ones.

• Self-Expression Module (SEM) that enables the network to learn the intermediate
features and affinities simultaneously.

• Structural Contrastive Head (SCH) G1(·) projects the encoded representations into
another latent feature space where the proposed structural contrastive loss is applied.

• Data Reconstruction Head (DRH) G2(·) that projects the encoded representations into
the original data space for data reconstruction.

As follows, we briefly introduce the architecture of the proposed network in more detail
at first. Afterwards, a simple yet effective training strategy would be described to make it
easy to train our network.

3.1. Pair construction base

Given one data point xi, we firstly apply stochastic data transformation on it to obtain
another view of the data denoted as x̂i = T (xi). In this way, we can build a positive
pair which comprises the image itself and its augmented one. Subsequently, a convolution
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encoder is adopted to extract features from original images and the augmented samples
respectively, resulting in zi = f(xi) and ẑi = f(x̂i). Note that our method does not rely
on a specially designed encoder. Here, we simply exploit the same network architecture
in Ji et al. (2017); Zhou et al. (2018); Zhang et al. (2019) as the encoder f(·) for a fair
comparison.

3.2. Self-expression module

Following Ji et al. (2017); Zhou et al. (2018); Zhang et al. (2019), we also make use of the self-
expression property Elhamifar and Vidal (2013) that interprets each point in a subspace
as a linear combination of other points in the same subspace for subspace clustering in
this paper. Besides, considering the significance that the learned representations are well-
suitable for subspace clustering, we integrate a self-expression module into our network to
enable affinity estimation and representation learning to be performed at the same time.
Essentially, SEM works as a simple fully-connected layer without any biases and non-linear
activation functions. Therefore, SEM imposes the following loss function in our network:

LSEM =
α

2
||Z −ZC||2F + ||C||2F,

s.t. diag(C) = 0,
(3)

where Z = {zi}i=1,2,··· ,N ∈ Rd×N indicates the intermediate deep representations obtained
by the encoders, C ∈ RN×N represents the coefficient matrix, the diagonal constraint on C
is designed to avoid the trivial solution that C = I and α denotes to a tradeoff parameter.

3.3. Structural contrastive head

Since PCB has already performed data augmentation on the image data, we have 2N data
samples {x1,x2,x3, · · · ,xN , x̂1, x̂2, x̂3, · · · , x̂N}. For each of image example xi, we only
treat x̂i as its positive sample and leave the remaining 2(N − 1) samples out. Afterwards,
the contrastive learning is applied to learn structural contrastive representations of data
points with the positive-concentrated and negative-seperated property. In order to escape
from information loss caused by the contrastive learning, we adopt a structural contrastive
head (SCH) to project the encoded representation into another latent space via hi = G1(zi)
and ĥi = G1(ẑi). As a result, the intermediate features extracted from the encoder is more
likely to preserve meaningful information for the subspace clustering task. We note that
SCH is implemented as two stacked MLP layers, namely hi = G1(zi) and ĥi = G1(ẑi).
The positive-concentrated property enables data points to be close to their augmented
counterparts in the feature space while the negative-seperated property enforces different
data points to be far away from their negative neighbors. Specifically, given a data point
xi, we expect its positive sample x̂i to be recognized as xi and its negative neighbors not
to be classified into xi. To begin with, the possibility P (i|x̂i) that x̂i belongs to xi can be
defined as follows:

P (i|x̂i) =
exp

(
sim(hT

i ĥi)/ρ
)

∑N
k=1 exp

(
sim(hT

k ĥi)/ρ
) , (4)
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where ρ represents the temperature factor that controls the concentration level of the dis-
tribution and sim(u,v) = uTv/(||u|| · ||v||) denotes to the pair-wise similarity measured by
the cosine distance.

Moreover, the probability of xj being classified as xi is defined by

P (i|xj) =
exp

(
sim(hT

i hj)/ρ
)∑N

k=1 exp
(
sim(hT

k hj)/ρ
) . (5)

Correspondingly, the probability of xj being not recognized as xi is referred as 1−P (i|xj).
Considering the event that every data point is recognized as xi happens mutually inde-

pendently, the joint possibility Pi that x̂i belongs to xi and xj being not recognized as xi

is calculated in the following equation.

Pi = P (i|x̂i)
N∏
j 6=i

(1− P (i|xj)). (6)

As a result, the loss function of SCH can be expressed as the average of the negative
log likelihood over all data points, leading to:

LSCH = − 1

N

∑
i

logP (i|x̂i) +
∑
j 6=i

log(1− P (i|xj))

 . (7)

Obviously, the optimization problem of Eq. (7) can be solved by maximizing Eq. (4)
while minimizing Eq. (5). On the one hand, the maximization of Eq. (4) requires to

increase the value of exp
(

sim(hT
i ĥi)/ρ

)
and decreases that of exp

(
sim(hT

k ĥi)/ρ
)

, k 6= i.

This not only enlarges the similarity of positive pairs and but also shrinks the similarity of
negative pairs, which promotes the augmentation-invariance and the spread-out property of
the learned representations. On the other hand, the minimization of Eq. (4) is to minimize
exp

(
sim(hT

i hj)/ρ
)
, which further makes xi separated from xj and enhances the spread-out

property. Although the loss function defined in Eq. (7) is beneficial to ensure the positive-
concentrated and negative-seperated properties, such an instance-level learning mechanism
does not take instance-to-instance correlation into account, simply selecting all of other
original data points as the negative neighbors of the given data point xi. This makes
it difficult to represent the desired cluster memberships from the learned representations
and thus poses considerable barriers on the subspace clustering task. To alleviate the
aforementioned problem, we propose a structural contrastive learning strategy to facilitate
feature learning in our network. In particular, observing that data points in the same
cluster tend to be close to each other and far from those in the different clusters, we are
motivated to take advantage of the encoded representations of data points for negative
neighbors discover. As a result, the loss function of SCH preliminarily defined in Eq. (7)
can be rewritten as follows:

LSCH = − 1

N

∑
i

logP (i|x̂i) +
∑

j /∈N(i,k)

log(1− P (i|xj))

 , (8)
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where N(i, k) indicates the k-nearest original data points of xi with regard to the encoded
feature zi. The evolvement of loss function from (7) to (8) means that we incorporate
structural contrastive loss into the optimization framework of our network and using the
underlying structure across the dataset to supervise representation learning. The structural
supervision information facilitates cluster relationship exploration and cluster boundary
determination, contributing to better clustering performance.

3.4. Data reconstruction head

To equip the encoded feature with meaningful and useful information about the original
data as much as possible, we introduce a data reconstruction head (DRH) that is made
up of several stacked deconvolution layers to project the encoded representation into the
original space for data reconstruction, i.e. yi = G2(zi) and ŷi = G2(ẑi), where yi and ŷi

indicates the reconstructed xi and ŷi respectively. Thus, the loss function for DRH is the
reconstruction error given as follows:

LDRH = − 1

2N

N∑
i=1

(
1

2
||xi − yi||22 +

1

2
||x̂i − ŷi||22). (9)

3.5. Training strategy

On the one hand, since the datasets adopted for subspace clustering in this paper are not
large-scale (e.g., in the order of thousands of images), our network can still remain of a
tractable size. On the other hand, this, in turn, would make it difficult to directly train a
network with millions of parameters from scratch. As described later, we design a simple
yet effective training strategy to facilitate network training. Overall, the whole training
process is performed in two independent stages.

Stage I: Pre-training network without SEM
we firstly remove SEM and subsequently pre-train our network without the self-expression

module. Therefore, we adopt the overall cost function given in Eq. (10) to train the network
in this stage.

L = LDRH + βLSCH, (10)

where LDRH, LSCH represent the loss functions designed for DRH and SCH that have been
introduced above and β is a trade-off parameter for balancing.

Stage II: Fine-tuning the whole network with SEM
In this stage, we first initialize the network with the weights learned from the previous

stage and fine-tune the whole network together with self-expression module afterwards.
Consequently, the overall cost function we design for training in this stage is defined as
follows:

L = LDRH + βLSCH + γLSEM, (11)

where LDRH, LSCH, and LSEM represent the loss functions designed for DRH, SCH and
SEM and β, γ indicate trade-off parameters to balance the effect of different modules.

After the training stage, we no longer need to estimate the affinity among data points.
Instead, we directly use the learned weights in SEM to construct the affinity matrix as
A = 1

2(|C|+ |C|T ). Lastly, spectral clustering is performed on the resulting affinity matrix



Deep Structural Contrastive Subspace Clustering

A to obtain a segmentation of the data. All details of the training procedure are specified
in Algorithm 1.

Algorithm 1 Training procedure for DSCSC

Input: original images X, tradeoff parameters, neighborhood number k, temperature factor
ρ, augmentation family T (·), and maximum iteration Tmax;
1. Pre-train the network without SEM via Eq. (10);
2. Randomly Initialize the self-expressive module;
for epoch = 1:Tmax do

3. Run the encoder f(·) in PCB to extract features of images;
4. Search negative neighbors of each image;
5. Fine-tune the network via Eq. (11);

end
6. Run the spectral clustering on the affinity matrix;
Output: label assignment Q.

4. Experiment and Discussion

4.1. Experiments setting

To evaluate the clustering performance of the proposed DSCSC, we conduct extensive ex-
periments on five benchmark datasets, namely MNIST, COIL20, ORL, Extended Yale B
and UMIST. Figure 2 illustrates the image examples of each dataset.

(a) MNIST

(b) COIL20

(c) ORL (d) Extended Yale B (e) UMIST

Figure 2: Examples of the five benchmark datasets.
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We compare our network with a wide range of benchmark subspace clustering meth-
ods including sparse subspace clustering (SSC) Elhamifar and Vidal (2009, 2013), elastic
net subspace clustering (ENSC) You et al. (2016a), kernel SSC (KSSC) Patel and Vidal
(2014), SSC by orthogonal matching pursuit (SSC-OMP) You et al. (2016b), efficient dense
subspace clustering (EDSC) Pan Ji et al. (2014), low-rank representation (LRR) Liu et al.
(2010), low-rank subspace clustering (LRSC) Vidal and Favaro (2014), deep subspace clus-
tering network (DSC-Net) Ji et al. (2017), SSC with pre-trained convolutional auto-encoder
features (AE+SSC), Deep Adversarial Subspace Clustering (DASC) Zhou et al. (2018), Self-
Supervised Convolutional Subspace Clustering Network (S2ConSCN) Zhang et al. (2019),
and Deep Low-rank Subspace Clustering (DLRSC) Kheirandishfard et al. (2020).

We search augmentation policies to find the best policy yields the highest mean Sil-
houette coefficient on different datasets via searching strategy proposed in Abavisani et al.
(2020) using the default hyperparameter setting. We set the temperature τ = 0.08 for
all datasets. For the trade-off parameters α and γ, we set α = 1.0 × 10

n
10
−3 and γ = 1

where n is the number of subspaces in each dataset. For the specific parameters for the
proposed structural contrastive loss, we set β = 10. To better illustrate the effectiveness of
our method, we introduce two kinds of criterion, accuracy (ACC) and normalized mutual
information (NMI) Nguyen et al. (2010), to measure the clustering results. In all experi-
ments, we fix the learning rate and temperature factor to be 1.0×10−3 and 0.1 respectively.
Meanwhile, we adopt Adam and the Rectified Linear Unit (ReLU) Krizhevsky et al. (2012)
as the optimizer and nonlinear activation function in our network. The output embedding
feature dimension in SCH is defined to be 64 for ORL, MNIST and UMIST, 128 for Yale B
and 256 for COIL20. The network architectures for different datasets are specified in Table
1.

Table 1: Network parameters ((kernel size) × #channels) for different datasets.
Layers ORL UMIST Yale B MNIST COIL20

PCB-1 (3×3)×3 (3×3)×15 (5×5)×10 (5×5)×20 (3×3)×15
PCB-2 (3×3)×3 (3×3)×10 (3×3)×20 (3×3)×10 -
PCB-3 (3×3)×5 (3×3)× 5 (3×3)×30 (3×3)× 5 -
DRH-1 (3×3)×5 (3×3)× 5 (3×3)×30 (3×3)× 5 -
DRH-2 (3×3)×3 (3×3)×10 (3×3)×20 (3×3)×10 -
DRH-3 (3×3)×3 (3×3)×15 (5×5)×10 (5×5)×20 (3×3)×15

4.2. Experiments on ORL, Yale B and UMIST

In this section, we first test the clustering performance of our method on several fine-grained
face datasets. In terms of ORL, it includes face images of 40 different subjects, each of which
merely has 10 images taken under varying facial expressions and facial details. In the exper-
iments on ORL, we down-sample images to 32 × 32 and adopt a three-layer convolutional
network for the encoder in PCB and the corresponding a three-layer deconvolutional net-
work for DRH. We set the kernel size to 3× 3 and channels to 3-3-5 and 5-3-3 individually.
When it comes to Yale B, the dataset consists of up to 2432 frontal face images for 38 indi-
viduals under different illumination. Following previous methods, we down-sample images
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Table 2: Clustering results (%) on ORL, Yale B and UMIST datasets.
Dataset ORL Yale B UMIST

Metric ACC NMI ACC NMI ACC NMI

LRSC 67.75 80.82 67.43 77.19 67.29 74.98
SSC 67.00 82.06 62.54 86.04 69.04 74.89

EnSC 69.25 82.20 61.14 82.43 69.31 75.69
EDSC 70.38 77.99 84.99 86.36 69.37 75.22

AE+SSC 74.50 88.24 74.75 77.64 70.42 75.15
SSC-OMP 71.00 79.52 73.72 78.03 64.38 70.68

KSSC 71.43 80.70 69.21 73.59 65.31 73.77
DSCNet-L1 85.50 90.23 96.81 96.87 72.42 75.56
DSCNet-L2 86.00 90.34 97.33 97.03 73.12 76.62

DASC 88.25 93.15 98.56 98.01 76.88 80.42
S2ConSCN-L1 89.50 — 98.48 — — —
S2ConSCN-L2 88.75 — 98.44 — — —
DSCSC (ours) 90.75 94.44 98.64 98.15 81.75 85.42

to 48 × 42. The encoder in PCB comprises three stacked convolutional layers with 10, 20
and 20 channels. Turning to UMIST, it only contains 20 persons, each with 24 images being
taken under very different poses. we use a three-layer convolutional structure as the encoder
in the PCB and correspondingly three stacked deconvolutional layers to form DRH. The
kernel sizes and channels of the encoder (DRH) are 3-3-3 and 15-10-5 (3-3-3 and 5-10-15).

The experiment results on the two datasets is provided in Table 2. It is clear that the
proposed DSCSC consistently outperforms other the state-of-the-art deep subspace cluster-
ing methods, which further demonstrates the significance in utilizing contrastive learning
for subspace. As will illustrated later, the success of our DASC can be attributed to the
participation of neighborhood-level contrastive learning.

4.3. Experiments on MNIST and COIL20

We further conduct experiments on the MNIST dataset for handwritten digit recognition.
MNIST consists of 70000 hand-written digit images of size 28 × 28. Due to computation
limitation, we randomly select 100 images of each category for clustering, resulting in a
subset of 1,000 images. In this experiment, we use a three-layer convolutional structure as
the encoder in the PCB and correspondingly three stacked deconvolutional layers to form
DRH. The kernel sizes and channels of the encoder (DRH) are 5-3-3 and 20-10-5 (3-3-5 and
5-10-20). COIL20 consists of 1440 gray-scale image samples, distributed over 20 objects.
Object images in the dataset tend to more diverse since they are taken with poses varying
at an interval of 5 degrees. Following most of previous methods, We down-sample each of
images to 32× 32. For such a special dataset, the encoder in PCB have only one layer with
15 channels and a 3× 3 kernel.

The experiment results on the two datasets are reported in Table 3. It is noticeable that
traditional subspace clustering techniques produce relatively unsatisfying clustering results,
which means that deep features can assist in subspace clustering. Among deep clustering



Peng Zhu

Table 3: Clustering results (%) on MNIST and COIL20 datasets.
Dataset MNIST COIL20

Metric ACC NMI ACC NMI

LRSC 51.40 55.76 74.16 84.52
SSC 45.30 47.09 86.31 88.92

EnSC 49.83 54.95 87.60 89.52
EDSC 56.50 57.52 83.71 88.28

AE+SSC 48.40 53.37 87.11 89.90
SSC-OMP 34.00 32.72 64.10 74.12

KSSC 52.20 56.23 70.87 82.43
DSCNet-L1 72.80 72.17 93.05 93.53
DSCNet-L2 75.00 73.19 94.86 94.08

DASC 80.40 78.00 96.39 96.86
S2ConSCN-L1 — — 97.86 —
S2ConSCN-L2 — — 97.67 —
DSCSC (ours) 85.12 82.12 97.88 97.42

techniques, AC+SSC results in the worst clustering results, showing the superiority of end-
to-end scheme for feature learning and affinity estimation. Lastly, DSCSC achieves the
best clustering performance, which demonstrates the effectiveness of combing contrastive
learning with subspace clustering.

4.4. Ablation Study

4.4.1. Module contribution.

Table 4 reports the contribution of modules in the proposed DSCSC with regard to the
clustering performance on ORL. Note that, when the proposed DSCSC only has the encoder
for feature extraction and DRH for data reconstruction, it works in the same way as DSCNet
Ji et al. (2017). We note that data augmentation plays much difference in our method.
When no data augmentation is introduced, every positive pair consists of totally same data
and thus only negative neighbors take part in model optimization, which leads to pretty poor
results. With help of DRH, the encoded representation are enforced to preserve the useful
information of original input data as much as possible, which makes the learned features
more meaningful and therefore facilitate contrastive learning in SCH. That is the reason
why our DSCSC is able to significantly outperforms other state-of-the-art deep subspace
clustering techniques with the joint contribution of data augmentation, DRH and SCH.

Table 4: Clustering results (%) on ORL dataset with different combinations of modules.
Metric ACC NMI

DRH 86.00 90.34
DRH+SCH 87.00 92.10

Augmentation+DRH+SCH 90.75 94.44
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4.4.2. Effect of structural contrastive learning.

Figure 3 shows how the clustering performance varies with different values of k. Clearly,
when k = 0, the adopted contrastive loss would turn to be instance-level. This would
make it difficult to represent the desired cluster memberships from the learned intermediate
features. As k grows, an increasing amount of valuable data could get rid of being treated
as negative neighbors, which facilitates cluster-discriminative representation learning and
subspace clustering. As could be seen from Figure 3, when k is set between 10 and 20, the
clustering performance of DSCSC does not change largely and almost keeps better than that
of S2ConSCN (89.50%), implying that our method is not highly depend on a well-designed
k.

Figure 3: Clustering results (%) versus k on ORL dataset.

5. Conclusion

In this paper, we propose a trainable end-to-end deep contrastive subspace clustering
(DSCSC) network. Apart from the convolution auto-encoder framework, we also integrate
structural contrastive learning into the proposed network to jointly learn pixel-level and
structural contrastive representations for subspace-preserving affinity construction. Thanks
to the introduced structural contrastive loss, the supervision information existing in the
data itself helps to make the encoded feature positive-concentrated and negative-separated,
leading to the state-of-the art clustering performance. Extensive experiments on benchmark
datasets demonstrates the effectiveness of the proposed DSCSC.
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