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Abstract

The sequential hypothesis testing problem is
a class of statistical analyses where the sam-
ple size is not fixed in advance. Instead, the
decision-process takes in new observations se-
quentially to make real-time decisions for test-
ing an alternative hypothesis against a null
hypothesis until some stopping criterion is
satisfied. In many common applications of
sequential hypothesis testing, the data can
be highly sensitive and may require privacy
protection; for example, sequential hypothesis
testing is used in clinical trials, where doctors
sequentially collect data from patients and
must determine when to stop recruiting pa-
tients and whether the treatment is effective.
The field of differential privacy has been devel-
oped to offer data analysis tools with strong
privacy guarantees, and has been commonly
applied to machine learning and statistical
tasks. In this work, we study the sequen-
tial hypothesis testing problem under a slight
variant of differential privacy, known as Renyi
differential privacy. We present a new private
algorithm based on Wald’s Sequential Proba-
bility Ratio Test (SPRT) that also gives strong
theoretical privacy guarantees. We provide
theoretical analysis on statistical performance
measured by Type I and Type II error as well
as the expected sample size. We also empiri-
cally validate our theoretical results on several
synthetic databases, showing that our algo-
rithms also perform well in practice. Unlike
previous work in private hypothesis testing
that focused only on the classical fixed sample
setting, our results in the sequential setting
allow a conclusion to be reached much ear-
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lier, and thus saving the cost of collecting
additional samples.

1 Introduction

Hypothesis testing is a fundamental task in statistics
and machine learning, and involves testing a null hy-
pothesis H0 against an alternative hypothesis H1, given
observed data. For the usual statistical hypothesis tests,
the sample size is fixed before the data are collected,
but for a sequential test we observe streaming data,
where the total sample size depends on the data and
is thus a random variable. Sequential hypothesis test-
ing is valuable because it may enable a decision to be
reached earlier than with a fixed sample size test, which
is critical when waiting for additional samples is costly.

The most prominent algorithm for sequential hypoth-
esis testing is the Sequential Probability Ratio Test
(SPRT) initially developed by [Wald, 1945] for efficient
testing of anti-aircraft gunnery during World War II,
and later used in the design of fully sequential clini-
cal trials [Armitage, 1950, Armitage, 1954]. This algo-
rithm continuously monitors the log-likelihood ratio
of the observed data under the alternative and under
the null hypotheses, and halts as soon as this ratio
takes a value that is either very large or very small,
reflecting that one hypothesis is overwhelmingly more
likely than the other, given the observed data. The
analyst running SPRT can choose these thresholds to
trade-off her desired confidence in her final decision
with making decisions quickly (with respect to the
number of samples). In modern day, SPRT and other
techniques for sequential hypothesis testing are widely
used for many real-world applications, including clinical
trials and quality control [Wald, 2004, Siegmund, 2013,
Whitehead, 1997, Ghosh and Sen, 1991].

Performance of a sequential testing procedure is evalu-
ated using four main criteria: two operating character-
istic (OC) functions to describe the accuracy of final
decisions, and two average sample number (ASN) func-
tions to describe how quickly a decision was reached.
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The two OC criteria are the probability of Type I er-
ror, Pr[reject H0 |H0], and the probability of Type II
error, Pr[accept H0 |H1]. Since the number of observa-
tions T is a random variable, the two ASN functions
are the expected sample size under the null and al-
ternative hypotheses, EH0

[T ] and EH1
[T ], respectively.

[Wald and Wolfowitz, 1948] showed that the sequen-
tial probability ratio test (SPRT) is the optimal test
of testing a simple null H0 against a simple alternative
H1 when observations are assumed to be sampled i.i.d.,
where optimality is defined as simultaneously minimiz-
ing both EH0

[T ] and EH1
[T ] subject to constraints on

Type I and Type II error probabilities.

In modern applications of sequential hypothesis test-
ing — for example to medical clinical trials — pri-
vacy also becomes another crucial performance crite-
rion, as the data and decisions can be highly sensitive.
The field of differential privacy [Dwork et al., 2006]
has emerged as the gold standard in private data
analysis by providing algorithms with strong worst-
case privacy guarantees. It is a parameterized pri-
vacy notion, where the privacy parameter ε allows for
a smooth tradeoff between accuracy of the analysis
and privacy to the individuals in the database. In-
formally, an algorithm is ε-differentially private if it
ensures that any particular output of the algorithm is
at most eε more likely when a single user’s data are
changed. In recent years, tools for differentially private
data analysis have been deployed in practice by major
organizations such as Google [Erlingsson et al., 2014],
Apple [Differential Privacy Team, Apple, 2017], Mi-
crosoft [Ding et al., 2017], and the U.S. Census Bu-
reau [Dajani et al., 2017].

In this work, we provide the first differentially private
algorithm for the sequential hypothesis testing problem
with theoretical guarantees on the Type I and Type
II error, and the expected sample size. By focusing
on the metrics most relevant to the field of statistics
and its practitioners, our work may be more readily
deployed in practice. One real-world application of
our results is the design of statistically valid sequential
experiments and clinical trials before data are collected
or observed. Typically when designing sequential ex-
periments, a scientist must develop and pre-register a
well-justified protocol for making final decisions under
all possible data outcomes, and no further adjustments
to the protocol can be made once data collection has
begun. Fully sequential design of clinical trials, as
suggested by [Armitage, 1950, Armitage, 1954], where
evaluation occurs after each new patient outcome was
not always possible for statistical or practical reasons –
e.g., it is difficult to convene a data and safety moni-
toring committee after each observation. With recent
advancements in statistics and computing, it has be-

come feasible to continuously monitor and evaluate
every patient [Whitehead, 1997]. Modern examples of
fully sequential trials include the “MADIT” clinical
trial to evaluate the effect of an implanted defibrillator
[DeMets, 1998] and a COVID-19 therapeutics trial in-
tended to speed up the decision process [Harrell, 2020].
Fully sequential trials risk leaking patient’s sensitive
information, especially for patients with data collected
shortly before the trial is halted. Our proposed pri-
vate sequential test can be used for monitoring trials
where privacy protection is necessary, such as those
with irreversible clinical outcomes like death or severe
infectious disease. It can also balance the tradeoff be-
tween small expected sample sizes for rapid decision,
controlled Type I and Type II error properties, and
formal privacy protections.

1.1 Our contribution

In this work, we combine tools from differential privacy
with classical statistical methods for sequential hypoth-
esis testing to develop a private version of Wald’s SPRT,
which we call PrivSPRT.

The most natural existing tool for privatizing Wald’s
SPRT is a private subroutine called AboveThresh
[Dwork et al., 2009, Dwork and Roth, 2014] (also
known as SparseVector). This algorithm takes in
a database X and a stream of queries q1, q2, . . ., and
sequentially privately tests whether the numerical
value of each query qi evaluated on the database qi(X)
is above or below a pre-specified threshold. A natural
first attempt at a private version of SPRT would be
to instantiate AboveThresh using the SPRT test
statistic as the query and using the SPRT stopping
criteria as the threshold (see Section 2.1 for more
details). However, as we show in Section 4, the random
noise internal to AboveThresh that is used to
guarantee privacy causes extremely poor performance
in terms of the relevant OC and ASN metrics. In
particular, we note that while AboveThresh was
designed to provide good performance with respect to
high-probability finite-sample performance guarantees
that are commonly used in the computer science
literature, it fails to provide good performance on
the metrics that are most relevant to the statistics
community, such as Type I and Type II error.

We instead build our algorithm PrivSPRT us-
ing a generalized version of AboveThresh from
[Zhu and Wang, 2020] instantiated with Gaussian
noise (rather than Laplace as in [Dwork et al., 2009]),
and we show that this modification results in good
performance in terms of the OC and ASN metrics
of interest. Specifically, we give bounds on the ex-
pected sample size of PrivSPRT (Theorem 8) and
the Type I and Type II error (Theorem 9). We ana-
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lyze the privacy of PrivSPRT through a generaliza-
tion of DP known as Renyi differential privacy (RDP)
[Mironov, 2017], which is often preferred in practice
due to its tighter composition properties with Gaussian
noise [Wang et al., 2019]. We show that PrivSPRT
satisfies RDP (Theorem 7), which also implies that is
satisfies DP (Theorem 4). Finally, we perform experi-
ments to empirically validate our theoretical findings
(Section 4).

1.2 Related work

Background on non-private SPRT was presented
earlier in this section, so we focus our attention here on
private hypothesis testing. Private (fixed-sample-size)
hypothesis testing has previously been considered in
the static setting, where the analyst wishes to test a
hypothesis (or family of hypothesis) at a single point in
time for a fixed database [Gaboardi et al., 2016,
Gaboardi and Rogers, 2018, Sheffet, 2018,
Couch et al., 2019, Canonne et al., 2019]. Dynamic
or online private sequential decision making has
recently gained traction in various settings, including
recent work on private sequential change-point detec-
tion [Cummings et al., 2018, Cummings et al., 2020,
Zhang et al., 2021]. These works all rely on the
AboveThresh/SparseVector technique to achieve
privacy in sequential change-point problems, where
the focus is on the privacy of parameter estimation
of change-point. Our work deals with the sequential
hypothesis testing problem which is essentially a
classification problem, and our aim is to provide a
unifying approach by showing that a generalization of
this technique can be applied to solve general private
sequential hypothesis testing problems for a more gen-
eral class of accuracy objectives. [Wang et al., 2020]
considers privatization of SPRT. Their algorithm is to
add Laplace noise to the thresholds to generate a noisy
stopping time, and then use exponential mechanism
to output the binary decision. They show that the
algorithm can provide a weaker notion of privacy that
is data dependent, and it will only converge to DP
when the stopping time goes to ∞. In contrast, our
results aim to minimize stopping time, and therefore,
a direct comparison would not be applicable.

2 Preliminaries

This section provides the background on sequential
hypothesis testing (Section 2.1) and the differentially
private tools (Section 2.2) that will be brought to bear
in our PrivSPRT algorithm.

2.1 Sequential hypothesis testing

A sequence X of data points, x1, x2, · · · , are ob-
served sequentially, i.e., arriving one at a time.
Let ft(x1, . . . , xt) denote the true joint probability
density function (pdf) of the first t observations,
(x1, x2, . . . , xt). Under the simplest model where
the data points are sampled i.i.d. from some dis-
tribution f , then ft(x1, . . . , xt) =

∏t
i=1 f(xi). In

more general dependence models, ft(x1, . . . , xt) =∏t
i=1 f(xi|x1, · · · , xi−1).

In sequential hypothesis testing problems, the analyst
has two possible hypotheses on the pdfs – f0t and
f1t – and her goal is to quickly (i.e., with as few sam-
ples as possible) and correctly test the null hypotheses
H0 : ft = f0t against the alternative H1 : ft = f1t.

1

At each time t, the analyst must make one of the fol-
lowing three decisions: (1) halt collecting observations
and accept the null hypothesis H0, (2) halt collecting
observations and reject the null hypothesis H0, or (3)
continue collecting observations to provide additional
information.

There are four main criteria to assess the performance of
sequential tests, including two operating characteristic
(OC) functions and two average sample number (ASN)
functions [Wald, 2004, Siegmund, 2013]. The two OC
functions are Type I error, Pr0[reject H0] (i.e., rejecting
H0 when H0 is true), and Type II error, Pr1[accept H0]
(i.e., accepting H0 when H1 is true), which address
correct decision-making, and are well-studied in the
standard classification or hypothesis testing contexts.
The two ASN functions are the expected sample size
under both the null and alternative hypotheses, i.e.,
E0[T ] and E1[T ], which ensure that decisions are made
efficiently and that unnecessary costs are not incurred
by collecting too many samples. In sequential hypothe-
sis testing problems, the objective is to simultaneously
minimize E0[T ] and E1[T ] subject to the constraints
that Type I and Type II error probabilities are both
small.

Wald’s sequential probability ratio test (SPRT)
[Wald, 1945] is a celebrated optimal solution when
testing a simple null H0 , where the joint distri-
bution is completely specified, against a simple al-
ternative H1 under the simplest i.i.d. model, where
the data are independent and identically distributed.
The idea behind SPRT is straightforward: the ana-
lyst continues to collect observations until she has
enough evidence to confidently decide whether H0

or H1 is true, as measured by the cumulative log-

1For simplicity in the remainder of this paper, we will
abuse notation to use the subscripts 0 and 1 to indicate
probability with respect to the distributions given in H0

and H1, respectively.
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likelihood ratio statistic being either too large or too
small. Mathematically, at each time t, the analyst
calculates the cumulative log-likelihood ratio statistic:

`t = log f1t(x1,...,xt)
f0t(x1,...,xt)

. Under the i.i.d. model, this test

statistic becomes: `t =
∑t
i=1 log f1(xi)

f0(xi)
. Moreover, the

analyst chooses two positive constants a, b, and runs
the SPRT test until the following stopping time is
reached: T = min{t ≥ 1 : `t /∈ (−a, b)}. After reaching
the stopping criterion, a statistical decision is made
based on the following rule:

Reject H0 if `T ≥ b,
Accept H0 if `T ≤ −a.

Intuitively, the set (−a, b) is the range of test statis-
tics where the analyst is uncertain between H0 and
H1. If the test statistic ever falls outside of this range,
then the analyst can have high confidence about one
of the hypotheses being true. Under the i.i.d. model,
the SPRT is exactly optimal in the sense of minimiz-
ing both expected sample sizes, E0[T ] and E1[T ], si-
multaneously, among all other (sequential or fixed-
sample size) tests whose Type I and Type II error
probabilities are same as (or smaller than) those of the
SPRT [Wald and Wolfowitz, 1948]. Below we denote
x(a) u y(a) if x(a)/y(a)→ 1 if a→∞ (or if a→ 0).

Theorem 1 (Error Rates [Wald, 1945]). The approx-
imation of Type I error of SPRT is Pr0[`T ≥ b] u

1−exp(−a)
exp(b)−exp(−a) , and the approximation of the Type II er-

ror of SPRT is Pr1[`T ≤ −a] u exp(−a) exp(b)−1
exp(b)−exp(−a) .

The additional assumption that the observations xt are
independent and identically distributed is required to
give the expected sample size.

Theorem 2 (Expected Sample Size [Wald, 1945]).
When x1, x2, . . . are sampled i.i.d., SPRT has expected
samples sizes:

E1[T ] u
−a exp(−a)(exp(b)− 1) + b exp(b)(1− exp(−a))

DKL(f1||f0)(exp(b)− exp(−a))
,

(1)

E0[T ] u
−a(exp(b)− 1) + b(1− exp(−a))

−DKL(f0||f1)(exp(b)− exp(−a))
. (2)

2.2 Differential privacy

Differential privacy is a statistical notion of database
privacy, which ensures that the output of an algorithm
will still have approximately the same distribution is a
single data entry were to be changed. Differential pri-
vacy considers a general database space D. If databases
are real-valued and contain a fixed number n of entries,
then D = Rn; in our sequential hypothesis testing set-
ting, our database will be of a random size so D = R∗.
Two databases X,X ′ ∈ D are said to be neighboring if
they differ in at most one entry.

Definition 1 (Differential Privacy
[Dwork et al., 2006]). A randomized algorithm
M : D → R is (ε, δ)-differentially private if for
every pair of neighboring databases X,X ′ ∈ D,
and for every subset of possible outputs S ⊆ R,
Pr[M(X) ∈ S] ≤ exp(ε) Pr[M(X ′) ∈ S] + δ.

Renyi differential privacy (RDP) is a relaxation of dif-
ferential privacy based on the Renyi divergence, defined

as Dα(P ||Q) = 1
α−1 logEQ

(
P (x)
Q(x)

)α
. This privacy no-

tion requires that the distribution over outputs on two
neighboring databases is close in Renyi divergence.

Definition 2 (Renyi Differential Privacy
[Mironov, 2017]). A randomized algorithm
M : D → R is (α, ε)-RDP with order α ≥ 1, if
for neighboring datasets X,X ′ ∈ D it holds that
Dα(M(X)||M(X ′)) ≤ ε.

Renyi differential privacy is desirable for its straightfor-
ward composition, meaning that the privacy parameters
degrade gracefully as additional computations are per-
formed on the data, even when the private mechanisms
are chosen adaptively. This allows us to design RDP
mechanisms using simple private building blocks.

Theorem 3 (Basic RDP Composition
[Mironov, 2017]). Let M1 : D → R is (α, ε1)-RDP
and M2 : D → R is (α, ε2)-RDP, then the mechanism
defined as (M1,M2) satisfies (α, ε1 + ε2)-RDP.

While DP also satisfies its own variant of composition,
RDP is especially amenable to composition of Gaussian
noise mechanisms. We can also easily translate between
the notions of RDP and DP because any (α, ε)-RDP
mechanism is also (εδ, δ)-differential privacy for δ > 0,
as shown below in Theorem 4. Thus when running
multiple RDP mechanisms, a common approach is to
first perform RDP composition across the mechanisms
and then translate the RDP guarantee into one of
differential privacy.

Theorem 4 (From RDP to DP [Mironov, 2017]).

If M is (α, ε)-RDP, then it is also (ε + log 1/δ
α−1 , δ)-

differential privacy for any 0 < δ < 1.

Mechanisms for achieving both privacy notions typ-
ically add noise that scales with the sensitivity of
the function being evaluated, which is the maximum
change in the function’s value between two neighboring
databases. For a real-valued function q, this is formally
defined as: ∆q = maxX,X′ neighbors |q(X)− q(X ′)|.

The Gaussian mechanism with parameters (ε, δ, σ)
takes in a function q, database X, and outputs
q(X) +N (0, σ2). The scale of the noise is fully spec-
ified as σ =

√
2 log(1.25/δ)∆q/ε, given the privacy

parameters ε and δ and the query sensitivity ∆q.
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Theorem 5 (Privacy of Gaussian Mechanism
[Dwork and Roth, 2014]). The Gaussian Mechanism
with parameter σ =

√
2 log(1.25/δ)∆q/ε is (ε, δ)-

differentially private.

The AboveThresh algorithm [Dwork et al., 2009,
Dwork and Roth, 2014] is a DP mechanism for han-
dling a sequence of queries arriving online. It takes in
a potentially unbounded stream of queries, compares
the answer of each query to a fixed noisy threshold,
and halts when it finds a noisy answer that exceeds
the noisy threshold (denoted as >, and otherwise ⊥),
where the added noise follows the Laplace distribution.
In many cases, more concentrated noise (e.g., Gaussian)
is preferred, and [Zhu and Wang, 2020] gives the gen-
eralized version of GenAboveThresh (presented in
Algorithm 1), using general noise-adding mechanisms
M1 andM2. These mechanisms can be any RDP algo-
rithms that take in a real-valued input and produce a
noisy estimate of the value. Our algorithm PrivSPRT
will rely on an instantiation of GenAboveThresh
using Gaussian mechanisms for differential privacy.

Algorithm 1 Generalized Above Noisy Threshold:
GenAboveThresh(X,∆, {q1, q2, . . .}, H,M1,M2)

Input: database X, stream of queries {q1, q2, . . .}
each with sensitivity ∆, threshold H, noise-adding
mechanisms M1,M2 that each add noise to their
real-valued input.
Let Ĥ ∼M1(H)
for each query i do

Let q̂i ∼M2(qi(X))
if q̂i > Ĥ then

Output ai = >
Halt

else
Output ai = ⊥

end if
end for

Theorem 6 (Privacy of GenAboveThresh
[Zhu and Wang, 2020].). Let M1 be any private
mechanism that satisfies ε1(α)-RDP for queries with
sensitivity ∆, and M2 be any private mechanism
that satisfies ε2(α)-RDP for queries with sensitivity
2∆. Let T be a random variable indicating the
stopping time of Algorithm 1 instantiated with
(X,∆, {q1, q2, . . .}, H,M1,M2). Then Algorithm 1
(denotes by M) satisfies

Dα(M(X)||M(X ′)) ≤ ε1(α) + ε2(α) + log supE[T |Z1]
α−1 ,

(3)

and

Dα(M(X)||M(X ′)) ≤α− (γ − 1/γ)

α− 1
ε1(

γ

γ − 1
α) + ε2(α)

+
logEZ1(E[T |Z1]γ)

γ(α− 1)
, (4)

for all γ > 1 and 1 < α < ∞, where Z1 is the added
noise from M1.

In the case where the expected length is bounded by
tmax, Theorem 6 implies an RDP bound of the form
ε1(α) + ε2(α) + log(1 + tmax)/(α− 1).

3 Private Sequential Hypothesis
Testing

In this section, we present our main result, which is a
differentially private algorithm for the sequential hy-
pothesis testing problem that also has small expected
sample size and low Type I and Type II errors. We
present our PrivSPRT algorithm in Section 3.1 and
the theoretical results on privacy, error rates, and sam-
ple size in Section 3.2.

3.1 PrivSPRT algorithm

We present our algorithm for private sequential hypoth-
esis testing, PrivSPRT, given formally in Algorithm 2.
The algorithm is a private version of SPRT, and it uses
two parallel instantiations of GenAboveThresh to
ensure privacy of the statistical decision. It instantiates
two Gaussian mechanims with parameters σ1 and σ2
as the noise-adding mechanisms, M1 and M2, respec-
tively. At each time t, the algorithm computes the
log-likelihood ratio `t for x1, x2, . . . , xt, and uses the
Gaussian mechanism to add noise to the log-likelihood
ratio. It then compares this noisy statistic against two
pre-fixed noisy thresholds that depend on the SPRT
decision thresholds a and b, and the other Gaussian
mechanism with parameter σ1. The stopping condition
of PrivSPRT is similar to that of SPRT, only using
noisy versions of the thresholds. Once the stopping
condition is reached, the algorithm stops collecting
additional samples and outputs its statistical decision.

It is useful to highlight that we add noises to the cu-
mulative log-likelihood ratio statistics, will allow us to
maintain the first-order statistical optimality of our
proposed algorithms. Here, the first-order optimality
means the expected sample sizes of our algorithms sub-
ject to the privacy constraints converge to the classical
optimal non-private expected sample size results up to
O(1). Meanwhile, we should mention that one could
also add noises individual log-likelihood ratio statis-
tics to satisfy the privacy constraints, but doing so will



Private Sequential Hypothesis Testing for Statisticians

severely affect the expected sample sizes, and thus yield
to algorithms that are suboptimal from the statistical
efficiency viewpoint.

The sensitivity of the log-likelihood ratios is defined

as: ∆(`) = maxx log f1(x)
f0(x)

− minx′ log f1(x
′)

f0(x′) . For cer-

tain distributions, including Gaussians, the sensitivity
∆(`) is unbounded and therefore would require infinite
noise to preserve privacy. We instead use a truncation
parameter A > 0 to control the sensitivity of the log-
likelihood ratio calculation, and add noise proportional
to the post-truncation range. We note that the idea
of truncating the likelihood for privacy also appears
in [Canonne et al., 2019] for private simple hypotheses
testing and [Zhang et al., 2021] for private sequential
change-point detection. The A-truncated log-likelihood
ratio is

`t(A) =
∑t
i=1[log f1(xi)

f0(xi)
]A−A,

where the truncation operation is defined as [x]A−A =
−A, if x < −A;A, if x > A;x, otherwise.

Algorithm 2 Private Sequential Probability Ratio
Test: PrivSPRT(X, f1, f2,−a, b, σ1, σ2, A)

Input: database X, distributions f0, f1, SPRT
thresholds −a, b, Gaussian mechanisms M1 with
parameter (ε′/2, δ, σ1) and M2 with parameters
(ε′/2, δ, σ2), truncation parameter A

Let −̂a ∼M1(−a) and b̂ ∼M1(b)
for each time t do

Compute `t(A) =
∑t
i=1

[
log f1(xi)

f0(xi)

]A
−A

Let ˆ̀a
t ∼M2(`t(A)) and ˆ̀b

t ∼M2(`t(A))

if ˆ̀b
t > b̂ then
Halt and output d = 1 (reject H0)

else if ˆ̀a
t < −̂a then

Halt and output d = 0 (accept H0)
else

Proceed to the next iteration
end if

end for

Comparing to standard AboveThresh. One
may wonder why GenAboveThresh is needed,
and whether the original AboveThresh algorithm
of [Dwork et al., 2009, Dwork and Roth, 2014] with
Laplace noise (as referred to as SparseVector) would
be sufficient, perhaps with some loss in accuracy. In
fact, this change to Laplace noise would break the desir-
able statistical properties of (non-private) SPRT. The
properties of the SPRT depends on the overshoot of
`T − b or `T − (−a), and to maintain the first-order
optimality on the expected sample size, controlling the
second moments of the noisy statistics is necessary.
Adding Laplace noise will make the variance too large,

and thus the desirable properties will break down. Em-
pirically, we show in Section 4 that using Laplace noise
instead of Gaussian noise results in undesirable perfor-
mance. On the theoretical side, statistical analysis of
the SPRT is traditionally based on renewal theory and
overshoot analysis in applied probability, which both
rely heavily on the central limit theorem (CLT), and
thus the standard techniques are still applicable when
adding Gaussian noise for privacy. On the other hand,
if we add Laplace noise, the standard statistical tech-
niques are inapplicable to characterize the overshoots;
it remains an open problem to develop new tools to
analyze the corresponding statistical properties.

3.2 Theoretical results on privacy, sample
size, and error rates

In this subsection, we provide formal results on
the privacy guarantees and statistical properties of
PrivSPRT. For analyzing the expected sample size,
we will relate E0[T ] and E1[T ] to the input parameters
a, b. Similarly for analyzing the error rates, we will re-
late the Type I and Type II error to a and b. Recall that
these errors respectively correspond to the false positive
and false negative rates of the algorithm, which can be
respectively defined as α = Pr0[`t(A) + Zbt ≥ b + Zb]
and β = Pr1[`t(A) + Zat ≤ a+ Za] from PrivSPRT.

While our statistical properties of sample size and error
rate are analyzed under the assumption that x1, x2, . . .
follow either H0 or H1, as is standard in the statistics
literature, our privacy guarantees hold unconditionally,
regardless of the actual data distribution.

Privacy. Privacy of PrivSPRT follows by composi-
tion of two parallel instantiation of Algorithm 1, one
each for the upper and lower bounds on `t. Theo-
rem 3 gives Renyi divergence bounds for the outputs
on two neighboring databases for GenAboveThresh,
but it only implies Renyi differential privacy when the
conditional expectation of the stopping time or the mo-
ments of conditional expectation of the stopping time
are bounded. [Zhu and Wang, 2020] shows that the
stopping time of GenAboveThresh instantiated with
Gaussian noise and non-negative queries has bounded
moments of the conditional expectation of the stopping
time, and thus it satisfies RDP. However, in our case,
the log-likelihood ratio queries can be negative, and
this result cannot be immediately applied in our set-
ting. Therefore, to prove that PrivSPRT is private,
we must show that the expectation of the stopping time
T is bounded. We remark that we can alternatively
halt Algorithm 2 when t reaches an upper bound, and
then make a decision using hypothesis testing methods
when the sample size is fixed. However, this approach
requires new analysis for the sample size and error
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rates [Siegmund, 2013]. The full proof of Theorem 7
appears in Appendix A.1.

Theorem 7 (Privacy). Let TA = EZA
[1 +

ρ−11 + 5(a+ZA)+3
√
2σ2

2µ0
]γ and TB = EZB

[1 + ρ−10 +
5(b+ZB)+3

√
2σ2

2µ1
]γ, where ρ0 = 1 − exp(− (1−c)µ2

1

2A2 ) and

ρ1 = 1 − exp(− (1−c)µ2
0

2A2 ). Then algorithm 2 satisfies

(α, αγ/(γ−1)−1α−1
2αA2

σ2
1

+ 4αA2

σ2
2

+ 2 logmax{TA,TB}
γ(α−1) )-RDP, for

any 1 < α <∞.

Corollary 1. For σ1 and σ2 are chosen to be
the parameters specified in the Gaussian mech-
anisms that satisfy (ε′/2, δ)-differential privacy,
PrivSPRT(X, f1, f2,−a, b, σ1, σ2, A) in Algorithm 2

satisfies (α, (αγ/(γ−1)−1α−1 + 1)ε′+ 2 logmax{TA,TB}
α−1 )-RDP,

for any 1 < α <∞.

Because we are using the Gaussian mechanism as
the noise-adding mechanism, the dependence of the
stopping time in the privacy guarantee is unavoid-
able. TA and TB in Theorem 7 are the moments
of the conditional expectation of the stopping time,
which depending on the true underlying distribution
that generated the data; TA is roughly O((a+σ2

µ0
)γ),

and similarly TB is roughly O(( b+σ2

µ1
)γ). Theorem

7 and Corollary 1 further imply an (ε, δ)-differential
privacy bound for PrivSPRT by Theorem 4. For
δ < 1/2 log max{TA, TB}, and σ1 and σ2 are cho-
sen to be the parameters specified in the Gaussian
mechanisms that satisfy (ε′/2, δ)-differential privacy,
PrivSPRT is (ε, δ)-differentially private, with ε =

(αγ/(γ−1)−1α−1 + 1)ε′ + 4 log(1/δ)/(α− 1).

Sample Size. When analyzing statistical properties
of PrivSPRT, an important quantity is the expecta-
tion of the truncated individual log-likelihood ratios:

µ0 = −E0[log f1(x)
f0(x)

]A−A, and µ1 = E1[log f1(x)
f0(x)

]A−A.

When A goes to ∞, the above expectations converge
to the KL-divergence between f0 and f1.

A technical challenge that arises in bounding the ex-
pected sample size is that the noisy log-likelihood ratio
at time t cannot be decomposed into a summation of
t i.i.d. random variables because of the noise terms.
This preludes the use of Wald’s identity [Wald, 1944],
which is used in the proof of bounded sample size for
non-private SPRT, and relates the expectation of a sum
of randomly-many finite-mean, i.i.d. random variables
to the expected number of terms in the sum and the
expectation of the random variables.

Instead, we leverage a critical fact that Ei[T ] =∑∞
t=0 Pri[T > t] for i ∈ {0, 1}, and thus relate the

expected sample size to the probability of the noisy
truncated log-likelihood ratio being within the noisy

thresholds at each time t. Since the event is less prob-
able for a large t, we partition the range [0,∞) into
several sub-intervals, and bound the probability in
each sub-interval seperately. This results in our O( b

µ1
)

bound on the expected sample size in Theorem 8 when
the noise parameters σ1 and σ2 go to 0. This result
is consistent with the non-private sample size result
O( b

DKL
), and it is first-order optimal. We note that a

similar idea of partitioning the whole range into sub-
intervals also appears in [Liu and Mei, 2020], where it
was applied only for handling Gaussian data.

The last term in the bound of Theorem 8 is the ad-
ditional cost that comes from adding Gaussian noise,
which quantifies the cost of privacy. In the proof, we
permit large values of the difference between the Gaus-
sian noise Zt to Zb (or Za) for a large t, which reduces
the additional expected sample size required for pri-
vacy. The analysis relies on partitioning the range into
k intervals and a time-specific threshold depending on
a constant c, and the results are under the optimal
choice of k and c. The proof is given in Appendix A.2.

Theorem 8 (Sample Size). The expected sample
size of PrivSPRT(X, f1, f2,−a, b, σ1, σ2, A) under
H1 satisfies E1[T ] ≤ 1 + mink∈N minc∈(0,1)(

b
(1−c)µ1

+

1
2(k+1)

b
(1−c)µ1

+ (k + 1)ρ−11 +
3
√

2(σ2
1+σ

2
2)

4(1−c)µ1
), where

ρ0 = 1 − exp(− (1−c)µ2
1

2A2 ). Similarly, the ex-
pected sample size under H0 satisfies E0[T ] ≤ 1 +
mink∈N minc∈(0,1)(

a
(1−c)µ0

+ 1
2(k+1)

a
(1−c)µ0

+(k+1)ρ−10 +

3
√

2(σ2
1+σ

2
2)

4(1−c)µ0
), where ρ1 = 1− exp(− (1−c)µ2

0

2A2 ).

To interpret the results in Theorem 8, we choose a
specific (potentially suboptimal) values of k and c.
Choosing k = 1 and c = 1

2 gives E[T ] ≤ 1 +ρ−11 + 5b
2µ1

+

3
√

2(σ2
1+σ

2
2)

2µ1
, which is O( b

µ1
) +O(

√
(σ2

1+σ
2
2)

µ1
). The first

term is the same as in the classical non-private results,
and the second term is the additional cost for privacy.
Since σ1 and σ2 will be chosen to scale with A

ε′ , the

additional cost for privacy is O( A
µ1ε

), where µ1 is the ex-
pectation of the truncated log-likelihood ratios, which
serves as a distance measure similar to the KL diver-
gence. Our expected sample size and error rate results
converge to the classical non-private results up to O(1),
ignoring the dependence on ε. The asymptotic depen-
dence on ε is O(1/ε), which matches the sample com-
plexity dependence on ε in the simpler problem of pri-
vate simple hypothesis testing [Canonne et al., 2019].

Error rates. We now move to provide guarantees for
the Type I and Type II error rates of PrivSPRT. In
the classical sequential hypothesis testing literature for
non-private SPRT, the standard technique to charac-
terize the error rates is based on the change of measure
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method that heavily utilizes the likelihood ratio statis-
tics. Unfortunately, the test statistics of PrivSPRT
are no longer the likelihood ratio, since the algorithm
add Gaussian noise and truncates the log-likelihood for
privacy. As a result, the standard change-of-measure
technique is no longer applicable.

To characterize the error rates of PrivSPRT, we apply
an alternative method based on the brute force estima-
tion of the error probabilities, which was first proposed
in [Sahu and Kar, 2015] in the context of distributed
hypothesis testing in sensor networks. It turns out that
this alternative method is also applicable to the setting
of PrivSPRT. The main idea is as follows: Type I er-
ror, Pr0[d = 1], can be written as a sum of probabilities
of the noisy log-likelihood ratio being above the noisy
threshold at time t and the event that the stopping time
is t for all t > 0:

∑∞
t=1 Pr0[`t(A)+Zt > b+Zb ∧ T = t].

We then partition the range of time [1,∞) into several
sub-intervals and analyze them separately as before
with the expected sample size. Although the high-level
approach is similar to analyzing the expected sample
size, the sub-intervals need to be carefully chosen here
to give a meaningful bound for the error rates. The
detailed proof is deferred to Appendix A.3.

Theorem 9 (Error Rate). Let d ∈ {0, 1} be the de-
cision output by PrivSPRT(X, f1, f2,−a, b, σ1, σ2, A).
Then the Type I error is bounded by:

Pr0[d = 1] ≤ min
k∈N

min
c∈(0,1)

{Q1 +Q2 +Q3} , (5)

where Q1 = 2ρ−10 exp(− 2b(1−c)µ0

A2 )(1 + k exp( 1
8k ), Q2 =

k exp( 1
4k+3 )) and Q3 =

√
2(σ2

1+σ
2
2)

4(1−c)µ0
, and ρ0 = 1 −

exp(− (1−c)µ2
0

2A2 ). The Type II error is bounded by:

Pr1[d = 0] ≤ min
k∈N

min
c∈(0,1)

{W1 +W2 +W3} , (6)

where W1 = 2ρ−11 exp(− 2a(1−c)µ1

A2 )(1+k exp( 1
8k ), W2 =

k exp( 1
4k+3 )), and W3 =

√
2(σ2

1+σ
2
2)

4(1−c)µ1
, and ρ1 = 1 −

exp(− (1−c)µ2
1

2A2 ).

To interpret the results, in Theorem 9, choosing k = 1

and c = 1 − A2

2µ0
gives Pr0[d = 1] ≤ 2ρ−10 (1 +

exp( 18 )) exp(−b)+

√
2(σ2

1+σ
2
2)

2A2 +exp( 17 ). Again, the first
term is the same as the non-private result O(exp(−b)).
The additional O(

√
σ2
1+σ

2
2

A2 ) term quantifies the cost of
privacy. Since we are instantiating the Gaussian mech-
anisms with noise parameters σ1 and σ2 proportional
to the sensitivity 2A and the privacy parameter ε, the
additional error term is reduced to O( 1

εA ). This implies
the algorithm will incur a larger error rate for stronger
privacy guarantees.

4 Numerical Results

In this section, we present results from Monte Carlo
experiments designed to validate the theoretical results
of PrivSPRT. We only need to validate the statisti-
cal properties of PrivSPRT— sample size and error
rates — since the privacy guarantee holds even in the
worst-case over databases and hypotheses. In Section
4.1, we focus on sequentially testing means of Bernoulli
distributions; in Appendix B.1, we provide additional
empirical results on testing means of Gaussian distri-
butions. In Appendix B.2, we demonstrate empirically
that the classic AboveThresh mechanism does not
provide satisfactory performance in terms of sample
size and error rates, thus justifying our algorithmic
modifications made in PrivSPRT.

4.1 Testing on Bernoulli Data

In this section, our experiment focus on Bernoulli data,
where x1, x2, · · · ∼ Ber(θ) are sampled i.i.d. from a
Bernoulli distribution with parameter θ. Monitoring
Bernoulli data is one of the early research in the fully
sequential design in clinical trials, see [Armitage, 1950].
For instance, one want to evaluate the effect of a
new drug or treatment on the mortality rate of an
unknown infectious disease such as COVID-19 in a
sub-population of groups.

Here we consider two different scenarios that are simple
yet useful to shed new lights on real-world applications.
One is when the distance between the null hypothe-
sis and the alternative hypothesis on θ is large, say,
H0 : θ = 0.7 against H1 : θ = 0.3, e.g., the effect of a
new treatment is expected to be significant to reduce
the mortality rate among people whose age is 65 years
or older in a developing country. The other is when
the distance between the null hypothesis and the al-
ternative hypothesis on θ is small, say, H0 : θ = 0.6
against H1 : θ = 0.4, e.g., the effect of a drug to certain
age group with certain diseases in a developed country.
Since µ0 = µ1 under this setting, the expected sample
sizes under H1 and H0 are identical, and similarly, the
Type I error and Type II error are also identical. For
simplicity, we will use E[T ] and error to denote the
expected sample size and the error, respectively.

To obtain an accurate estimate of Type I and Type
II errors, we use the importance sampling technique
for the Monte Carlo simulations. This is because
the estimate of the Type I error based on n inde-

pendent trials is n−1
∑n
k=1

f0(X[1:T ])
f1(X[1:T ])I(`T (A) + ZT ≥

b+ Zb) where the sample X is generated from f1 has
much smaller variance compared to the naive estimate
n−1

∑n
k=1 I(`T (A) + ZT ≥ b + Zb) where the sample

X is generated from f0.
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We use two (ε′/2, δ = 1e − 05)-differentially pri-
vate Gaussian mechanisms as the noise-adding mech-
anisms in PrivSPRT, corresponding to σ2

1 =
32 log(1.25/δ)A2/ε2 and σ2

2 = 128 log(1.25/δ)A2/ε2.
Although the log-likelihood ratio is uniformly bounded
for Bernoulli data, we invoke the truncation with pa-
rameter A because µ0 and µ1 are linear with respect
to A for Bernoulli data, which makes the validation
easier. For each simulation, we repeat the process for
105 times. The results are presented in Figure 1, which
plots the expected sample size E[T ] against the log
scale of 1/error, with varying the privacy parameter
ε′ = 0.5, 1, 2. From this figure, when we want to pro-
vide a stronger privacy, i.e., when ε becomes smaller,
then we will have larger expected sample sizes for given
Type I and Type II error probabilities constraints. This
is consistent with our intuition on the tradeoff between
privacy and statistical efficiency.

We also conduct experiments for testing H0 : θ = 0.7
against H1 : θ = 0.2, when E1[T ] and E2[T ] are not
symmetric. We vary this truncation parameter A =
0.05, 0.2, 0.5, 0.7 in our experiments. For each fixed A
and ε, we choose thresholds a and b through Monte
Carlo simulation to control the Type I error and Type
II error at the same level (10−6).The results of these
simulations are presented in Table 1.

2 3 4 5 6 7 8 9

0
50

10
0

15
0

20
0

log(error−1)

E
[T

]

ε=0.5
ε=1
ε=2

(a) Large distance

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0
50

10
0

15
0

20
0

25
0

30
0

log(error−1)

E
[T

]

ε=0.5
ε=1
ε=2

(b) Small distance

Figure 1: Three-way trade-off between privacy, expected
sample size, and error rate. For large distance (left), we are
testing H0 : θ = 0.7 against H1 : θ = 0.3; for small distance
(right), we are testing H0 : θ = 0.6 against H1 : θ = 0.4.

Table 1 shows three positive results. First, for each
fixed privacy parameter ε′, the expected sample sizes
are almost the same across varying A, and the thresh-
olds are almost linear with respect to A. This suggests
that the expected sample size E0[T ] (resp. E1[T ]) is
proportional to a/A or A/a (resp. b/A or A/b). The
parameter A controls a trade-off between how much
information is lost from truncation in the log-likelihood
ratios and how much noise is added for privacy. Thus
expected sample sizes are larger for a larger A = 0.7
with ε′ = 0.5, 1, as the additional noise starts to dom-
inate the information provided by the log-likelihood
ratios. Second, in our setting, the expectation of the
truncated log-likehood ratio µ0 = 0.6A and µ1 = 0.4A.
We see from Table 1 that E0[T ]/E1[T ] is roughly 2/3

Table 1: Numerical values of expected sample size under
H0 and H1, Type I error and Type II error for testing the
Bernoulli parameter.

A ε′ a, b error rates E0[T ] E1[T ]

0.05
0.5 8,7.5

10−6

139.662 172.89
1 4.3, 4.3 86.12 122.144
2 2.5, 2.5 61.683 88.307

0.2
0.5 32,32 139.456 195.504
1 16.8, 16.8 85.336 123.542
2 9.5,9.5 56.645 83.127

0.5
0.5 80,80 139.252 199.718
1 43, 43 88.137 127.986
2 25, 25 61.494 88.182

0.7
0.5 125,120 173.305 227.387
1 63,63 95.304 136.336
2 35,35 61.944 87.363

∞ 16, 16 29.607 28.318

for all the cases, which further validates Theorem 8 that
E0[T ] (resp. E1[T ]) is O(a/A) (resp. O(b/A)). Third,
for each fixed A, a/E0[T ] (resp. b/E1[T ]) decreases as
ε′ increases for weaker privacy, which is consistent with
Theorem 8, because the additional cost does not involve
the threshold, and it decreases for weaker privacy.

4.2 Comparing with the Standard
AboveThresh

We conduct experiments for testing means of Gaus-
sian data using both the PrivSPRT with Gaussian
noise and the original AboveThresh algorithm with
Laplace noise. The results are presented in Table 2. For
PrivSPRT we use two (ε′/2, δ = 1e−05)-differentially
private Gaussian mechanisms as the noise-adding mech-
anisms. In AboveThresh we use two ε/2-differentially
private Laplace mechanisms, and the total privacy loss
is 2ε. We vary the truncation parameter A = 0.5, 1, 2, 5,
and choose the thresholds a, b through Monte Carlo
simulation with importance sampling to control Type
I and Type II errors at the 0.05 level. Table 2 shows
that using the original AboveThresh algorithm with
Laplace noise results in much larger expected sample
sizes, given that the Type I and Type II errors are
fixed. We note that although the overall privacy cost
for PrivSPRT is slightly larger, PrivSPRT provides
a better trade-off between privacy and accuracy. The
detailed setup and discussion are deferred to Appendix
B.
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Supplementary Material:
Private Sequential Hypothesis Testing for Statisticians:

Privacy, Error Rates, and Sample Size

A Omitted Proofs

In this appendix, we provide proofs for our main theorems, which were omitted in the body of the paper due to
space reasons. We restate the theorems here for convenience.

A.1 Proof of privacy

Theorem 7 (Privacy). Let TA = EZA
[1 + ρ−11 + 5(a+ZA)+3

√
2σ2

2µ0
]γ and TB = EZB

[1 + ρ−10 + 5(b+ZB)+3
√
2σ2

2µ1
]γ,

where ρ0 = 1 − exp(− (1−c)µ2
1

2A2 ) and ρ1 = 1 − exp(− (1−c)µ2
0

2A2 ). Then algorithm 2 satisfies (α, αγ/(γ−1)−1α−1
2αA2

σ2
1

+

4αA2

σ2
2

+ 2 logmax{TA,TB}
γ(α−1) )-RDP, for any 1 < α <∞.

Proof. We first show that the expectation of the stopping time T is bounded given ZA and ZB . We instead show
the equivalent fact that Pi(T =∞) = 0 for i = 0, 1. Define a constant d = a+ b. If T =∞, then for any positive
integer r, the following inequalities must hold:

(

(k+1)r∑
i=kr+1

[log
f1(xi)

f0(xi)
]A−A + Z)2 < d2 k = 0, 1, 2, . . . , (7)

where Z ∼ N(0, σ2
2). We can further express Z as a summation of r independent Gaussians

∑r
i=1 Zi, and then

(7) is equivalent to

(

(k+1)r∑
i=kr+1

([log
f1(xi)

f0(xi)
]A−A + Zi))

2 < d2 k = 0, 1, 2, . . . . (8)

To prove Pi(T = ∞) = 0 for i = 0, 1, it is sufficient to show that the probability is zero that (8) holds for all

integer values of k. Since the variance of [log f1(xi)
f0(xi)

]A−A + Zi is not zero, and it is bounded below by the variance

of [log f1(xi)
f0(xi)

]A−A, the expected value of (
∑j
i=1([log f1(xi)

f0(xi)
]A−A + Zi))

2 converges to ∞ as j goes to ∞. Therefore,

there exists a positive integer r such that

P [(

j∑
i=1

([log
f1(xi)

f0(xi)
]A−A + Zi))

2 < r2] < 1. (9)

From (9) it follows that the probability that (8) is fulfilled for all values of k up to ∞ is equal to zero (using
a union bound over all k), and thus Pi(T = ∞) = 0 for i = 0, 1. Hence, Ei[T |ZA, Zb] is bounded, and then
Ei[T |ZA, Zb]γ is bounded. We use the same method to compute the upper bound of Ei[T |ZA, Zb] as in the
proof in A.2 with σ1 = 0, and a and b replaced by a + ZA and b + ZB, respectively. For i = 0, 1, we denote
Ei[T |ZA, Zb]γ as TA and TB, respectively. Since we consider the worst case for privacy, we take the maximum

over TA and TB in the final bound. For Gaussian mechanisms, ε1( γ
γ−1α) = γαA2

(γ−1)σ2
1

and ε2(α) = 2αA2

σ2
2

. From

inequality (4) in Theorem 6, it follows that using GenAboveThreshfor truncated log-likelihood ratio queries

satisfies (αγ/(γ−1)−1α−1
αA2

σ2
1

+ 2αA2

σ2
2

+ logmax{TA,TB}
γ(α−1) )-RDP, for any 1 < α <∞. Then privacy of PrivSPRT follows

from composition of two parallel instantiations of Algorithm 1.
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A.2 Proof of sample size

Theorem 8 (Sample Size). The expected sample size of PrivSPRT(X, f1, f2,−a, b, σ1, σ2, A) under H1 satisfies

E1[T ] ≤ 1 + mink∈N minc∈(0,1)(
b

(1−c)µ1
+ 1

2(k+1)
b

(1−c)µ1
+ (k+ 1)ρ−11 +

3
√

2(σ2
1+σ

2
2)

4(1−c)µ1
), where ρ0 = 1− exp(− (1−c)µ2

1

2A2 ).

Similarly, the expected sample size under H0 satisfies E0[T ] ≤ 1 + mink∈N minc∈(0,1)(
a

(1−c)µ0
+ 1

2(k+1)
a

(1−c)µ0
+

(k + 1)ρ−10 +
3
√

2(σ2
1+σ

2
2)

4(1−c)µ0
), where ρ1 = 1− exp(− (1−c)µ2

0

2A2 ).

Proof. In the proof, we leverage a critical fact that Ei[T ] =
∑∞
t=0 Pri(T > t) for i ∈ {0, 1}, and thus relate the

expected sample size to the probability of the noisy truncated log-likelihood ratio within the noisy thresholds for
each time t. Since the event is less probable for a large t, we partition the range [0,∞) into several sub-intervals,
and bound the probability in each sub-interval seperately. We provide the detailed proof for E1[T ], the proof is
the same for E0[T ] with b replaced by a and µ1 replaced by µ0.

E1[T ] =

∞∑
t=0

P1(T > t)

≤
∞∑
t=0

P1(`t + Zt ≤ b+ Zb)

≤
∞∑
t=0

P1(`t − tµ1 ≤ b− tµ1 + δt) + P1(Zt ≤ Zb − δt) (10)

We will bound the first term in (10) as follows. Let δt = ctµ1, where c is a constant within (0, 1).

∞∑
t=0

P1(`t − tµ1 ≤ b− tµ1 + δt)

=

∞∑
t=0

P1(`t − tµ1 ≤ b− (1− c)tµ1) (11)

Let γ denote b
(1−c)µ1

, and m denote (1− c)µ1. We bound the infinite sum in (11) by partitioning [0,∞] into four

sub-intervals:

[0, γ], (γ,
3

2
γ], (

3

2
γ, 2γ], (2γ,∞).

Let S1, S2, S3, S4 respectively denote the summation value as the index t ranges over these sub-intervals. When
t ∈ [0, γ], we have b− (1− c)tµ1 > 0. Since `t − tµ1 is a mean-zero random variable, we bound S1 by

S1 =

[γ]∑
t=1

P1(`t − tµ1 ≤ b− (1− c)tµ1)

≤
[γ]∑
t=1

1 ≤ γ + 1. (12)

When t > γ, following Hoeffding inequality, we have P1(`t − tµ1 ≤ b− (1− c)tµ1) ≤ exp(− (b−mt)2
2tA2 ). We will use
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the following observation as the main tool. For any i and j with i < j, we have

j∑
i

exp(− (b−mt)2

2tA2
)

≤
j∑
i

exp(− b2

2jA2
+
bm

A2
− m2t

2A2
)

= exp(− b2

2jA2
+
bm

A2
)

j∑
i

exp(−m
2t

2A2
)

= exp(− b2

2jA2
+
bm

A2
)
exp(−m

2i
2A2 )− exp(−m

2(j+1)
2A2 )

1− exp(− m2

2A2 )

≤ρ−1 exp(− b2

2jA2
+
bm

A2
) exp(−m

2i

2A2
), (13)

where ρ = 1− exp(− m2

2A2 ). By applying (13) to the case where i = 3
2γ and j = 2γ, we obtain a bound on

S3 ≤ ρ−1. (14)

Similarly, by applying (13) to the case where i = 2γ and j =∞, we obtain a bound on

S4 ≤ ρ−1. (15)

To bound S2, we further partition the sub-interval (γ, 32γ] into k intervals:

(γ,
k + 2

k + 1
γ], and (

j + 2

j + 1
γ,
j + 1

j
γ], for j = 2, . . . , k.

For the first interval (γ, k+2
k+1γ], since b−mt < 0 and `t − tµ1 is a mean-zero random variable, we have the simple

fact that P1(`t − tµ1 ≤ b− (1− c)tµ1) ≤ 1
2 . Then the summation over the first interval is bounded by 1

2(k+1)γ.

By applying (13) to the remaining k − 1 intervals with i = j+2
j+1γ and j = j+1

j γ, we obtain

S2 ≤
1

2(k + 1)
γ +

k∑
j=2

[ j+1
j γ]∑

t=[ j+2
j+1γ]

exp(− (b−mt)2

2tA2
)

≤ 1

2(k + 1)
γ + (k − 1)ρ−1, (16)

for any k. Combining (12), (16), (14) and (15), we can bound the first term in (10) by 1 + γ + mink{ 1
2(k+1)γ +

(k + 1)ρ−1}.

Next we bound the second term in (10). We will use the fact that Pr(N(0, σ2) > x) ≤ 1
2 exp(− x2

2σ2 ) for a Gaussian
distribution.

Pr(Zb − Zt ≥ δt) ≤ Pr(N(0, σ2
1 + σ2

2) ≥ δt)

≤ 1

2
exp(− δ2t

2(σ2
1 + σ2

2)
) (17)

We now consider the sum of these terms over all t:
∞∑
t=0

Pr(Zb − Zt ≥ δt) ≤
1

2

∞∑
t=0

exp(− (ctµ1)2

2(σ2
1 + σ2

2)
) (18)

=

√
2(σ2

1 + σ2
2)

2(1− c)µ1

∞∑
t=0

exp(−t2) (19)

≤ 3
√

2(σ2
1 + σ2

2)

4(1− c)µ1
. (20)
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We combine these to derive the final bound as desired: E1[T ] ≤ 1 + b
(1−c)µ1

+ mink minc{ 1
2(k+1)

b
(1−c)µ1

+ (k +

1)ρ−1 +
3
√

2(σ2
1+σ

2
2)

4(1−c)µ1
}. The bound on E0[T ] follows by symmetry, with b replaced by a, and µ1 replaced by µ0.

A.3 Proof of error rate

Theorem 9 (Error Rate). Let d ∈ {0, 1} be the decision output by PrivSPRT(X, f1, f2,−a, b, σ1, σ2, A). Then
the Type I error is bounded by:

Pr0[d = 1] ≤ min
k∈N

min
c∈(0,1)

{Q1 +Q2 +Q3} , (5)

where Q1 = 2ρ−10 exp(− 2b(1−c)µ0

A2 )(1 + k exp( 1
8k ), Q2 = k exp( 1

4k+3 )) and Q3 =

√
2(σ2

1+σ
2
2)

4(1−c)µ0
, and ρ0 = 1 −

exp(− (1−c)µ2
0

2A2 ). The Type II error is bounded by:

Pr1[d = 0] ≤ min
k∈N

min
c∈(0,1)

{W1 +W2 +W3} , (6)

where W1 = 2ρ−11 exp(− 2a(1−c)µ1

A2 )(1 + k exp( 1
8k ), W2 = k exp( 1

4k+3 )), and W3 =

√
2(σ2

1+σ
2
2)

4(1−c)µ1
, and ρ1 = 1 −

exp(− (1−c)µ2
1

2A2 ).

Proof. The proof of error rates is based on a brute force estimation of the error probabilities: We can write the
Type I error Pr0[d = 1] as a sum of probabilities of the noisy log-likelihood ratio being above the noisy threshold
at time t for all t > 0:

∑∞
t=1 Pr0[`t(A) + Zt > b+ Zb ∧ T = t]. We then partition the range [1,∞) into several

sub-intervals and analyze them separately. We provide the detailed proof for P0(d = 1). The proof is the same
for P0(d = 1) with b replaced by a, and µ0 replaced by µ1. To start, we have the following brute force estimation:

P0(d = 1) = P0(`(T ) + ZT > b+ Zb)

=

∞∑
t=1

P0(T = t, `(t) + Zt > b+ Zb)

≤
∞∑
t=1

P0(`(t) + Zt > b+ Zb)

≤
∞∑
t=1

P0(`(t) + tµ0 > b+ tµ0 − δt) + Pr(Zt − Zb > δt). (21)

We choose δt = ctµ0, where c is a constant within (0, 1). To simply the notation, we let γ denote b
(1−c)µ0

, and

m denote (1− c)µ0. We bound the first term in (21) using similar technique as in the proof of Theorem 8. We
partition [1,∞) into four sub-intervals:

[0,
1

2
γ], (

1

2
γ, γ], (γ, 2γ], (2γ,∞).

We will use the following observation as the main tool. For any i and j with i < j, we have

j∑
i

exp(− (b+mt)2

2tA2
)

≤
j∑
i

exp(− b2

2jA2
− bm

A2
− m2t

2A2
)

= exp(− b2

2jA2
− bm

A2
)

j∑
i

exp(−m
2t

2A2
)

≤ρ−1 exp(− b2

2jA2
− bm

A2
) exp(−m

2i

2A2
), (22)
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where ρ = 1− exp(− m2

2A2 ). By applying (22) to the case that i = 1 and j = 1
2γ, we obtain

S1 ≤ ρ−1 exp(−2bm

A2
) exp(− m2

2A2
)

≤ ρ−1 exp(−2bm

A2
), (23)

where (23) follows from the fact that exp(− m2

2A2 ) < 1. Similarly, we have

S4 ≤ ρ−1 exp(−2bm

A2
). (24)

We further partition ( 1
2γ, γ] into k sub-intervals (k+j−12k γ, k+j2k γ] for j = 1, 2, . . . , k. We have

S2 ≤
k∑
j=1

ρ−1 exp(−bm
A2

k

k + j
− bm

A2
− bm

2A2

k + j − 1

2k
)

=
k∑
j=1

ρ−1 exp(− bm

2A2
(2 + (

2k

k + j
+
k + j − 1

2k
)))

≤
k∑
j=1

ρ−1 exp(− bm

2A2
(2 + 2− 1

2k
)) (25)

= kρ−1 exp(−2bm

A2

8k − 1

8k
). (26)

Similarly, we have

S3 ≤ kρ−1 exp(−2bm

A2

4k + 3

4k + 3
). (27)

Next we bound the error from the added Gaussian noise.

∞∑
t=1

Pr(Zt − Zb ≥ δt) ≤
1

2

∞∑
t=0

exp(− (ctµ0)2

2(σ2
1 + σ2

2)
) (28)

=

√
2(σ2

1 + σ2
2)

2(1− c)µ0

∞∑
t=1

exp(−t2) (29)

≤
√

2(σ2
1 + σ2

2)

4(1− c)µ0
(30)

Combining (23), (26), (27), (24) and (30), we obtain

P0(d = 1) ≤ min
k

min
c
{2ρ−1 exp(−2b(1− c)µ0

A2
)(1 + k exp(

1

8k
) + k exp(

1

4k + 3
)) +

√
2(σ2

1 + σ2
2)

4(1− c)µ0
}

B Additional Experiments

B.1 Testing on Gaussian Data

In this section, our experiments focus on testing means of Gaussian data, where x1, x2, . . . ∼ N(µ, 1) are sampled
i.i.d. from a Gaussian distribution with mean µ. We again consider two different scenarios: large distance between
the null and alternative hypotheses on µ corresponding to H0 : µ = 0 against H1 : µ = 2, and a small distance
between the null and alternative hypotheses on µ corresponding to H0 : µ = 0 against H1 : µ = 1. We will denote
the expected sample size as E[T ] since E0[T ] and E1[T ] are identical for Gaussian data, and similarly, we denote
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the Type I error and Type II error as errors. We use two (2, ε′/2)-RDP Gaussian mechanisms as our private
mechanisms in PrivSPRT, corresponding to σ1 = 2

√
2A/ε′ and σ2 = 4A/ε′. We note that this setting offers an

(ε′ + 2 log(1/δ), δ)-differential privacy guarantee, where the additional term 2 log(1/δ) is small.

In Figure 2, we plot the expected sample size E[T ] against the log scale of 1/error, and we vary the privacy
parameter ε′ = 0.5, 1, 2. This experiment is conducted under the setting where we fix the truncation threshold
A = 0.5 and vary the decision threshold a, b. For each simulation, we repeat the process 105 times and report
average performance. As in the case with Bernoulli data, we see that we experience a larger expected sample size
for a given Type I and Type II error constraint as ε decreases. Additionally, we need fewer samples to distinguish
µ for a large distance regime (Left vs. Right, note the different scales on the y-axes).
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Figure 2: Three-way trade-off between privacy, expected sample size, and error rate. For large distance (left), we are
testing H0 : µ = 0 against H1 : µ = 2; for small distance (right), we are testing H0 : µ = 0 against H1 : µ = 1.

We again conduct experiments to further validate our theoretical results empirically in the Gaussian setting. In
Table 2 (left), we vary the truncation parameter A = 0.5, 1, 2, 5 and the privacy parameter ε′ = 0.5, 1, 2,∞. For
each fixed A and ε′, we choose thresholds a, b through Monte Carlo simulation with importance sampling to
control Type I and Type II errors at the 0.05 level. Similar to the results for testing the Bernoulli parameter, the
thresholds are almost linear with respect to A. The expected sample sizes E0[T ] and E1[T ] are almost the same for
all A = 0.5, 1, 2, and E0[T ] and E1[T ] increase for a larger A = 5, because the noise added for privacy dominates
the information provided by the log-likelihood ratios. This suggests that a relatively small A is preferred, and
as long as A is not too large, it has little impact on the performance. Moreover, we observe that a/E0[T ] (resp.
b/E1[T ]) decreases as ε′ increases for weaker privacy, as the additional cost term in Theorem 8 decreases for less
noise.

B.2 Using the standard AboveThresh.

To compare against the performance of our PrivSPRT, we also conduct experiments for testing means of
Gaussian data using the original AboveThresh algorithm with Laplace noise that satisfies ε/2-differential
privacy. We now vary the truncation parameter A = 0.5, 1, 2, 5, and choose the thresholds such that the Type I
and Type II error are below 0.05. The results are presented in Table 2 (right). Table 2 shows that using the
original AboveThresh algorithm with Laplace noise results in much larger expected sample sizes, given that
the Type I and Type II errors are fixed at the 0.05 level. We note that although the overall privacy cost for
PrivSPRT is slightly larger, PrivSPRT provides a better trade-off between privacy and accuracy.

We also empirically study the overshoot property when adding Laplace noise. We again consider testing H0 : θ = 0.7
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against H1 : θ = 0.2 for Bernoulli data. We choose this setting because µ0 6= µ1, to have a comprehensive view of
E0[T ] and E1[T ], and the Type I and Type II errors. We now fix the truncation parameter A = 0.5, and vary the
privacy parameter ε = 0.5, 1, 2 and the thresholds a, b = 10, 20, 40. The results are presented in Table 3.

Table 2: Numerical values of expected sample size E[T ], error rates for testing the Gaussian mean using
PrivSPRT(left) and the original AboveThresh with Laplace noise (right). The thresholds a, b are chosen to
control Type I and Type II error at 0.05 (within the Monte Carlo simulation errors).

PrivSPRTwith Gaussian noise AboveThresh with Laplace noise

A ε′ a = b error rates E[T ] A ε a = b error rates E[T ]

0.5
0.5 9

0.05

12.547
0.5

0.5 28

0.05

22.821
1 4 7.298 1 12 12.621
2 2.1 4.890 2 6.5 10.482

1
0.5 18 12.485

1
0.5 59 26.032

1 8.2 7.367 1 29 17.165
2 4 4.792 2 15 13.291

2
0.5 36 13.333

2
0.5 112 23.581

1 16 7.460 1 52 15.438
2 8 5.000 2 28 12.564

5
0.5 90 16.943

5
0.5 270 24.426

1 40 10.156 1 140 21.067
2 98 6.190 2 70 15.872

∞ 2 1.793

On the theoretical side, we should expect the expected sample size to be O(b/µ1) for non-private SPRT. However,
we see from Table 3 that the expected sample sizes are nonlinear with respect to the thresholds for strong privacy
(ε = 0.5, 1), which is no longer consistent with the CLT theorem for non-private SPRT. In contrast, we observe
from Table 1 that E0[T ] (resp. E1[T ]) is O(a/µ0) (resp. O(b/µ1)) in Section 4 when adding Gaussian noise in
PrivSPRT. Intuitively, it appears that the overshoot analysis when adding Laplace noise relies heavily on the
additional noise, rather than the statistical information provided by log-likelihood ratios. Characterizing the
relevant statistical properties when adding Laplace noise requires new tools, which we leave as future work for
the privacy and statistics communities.

Table 3: Numerical values of expected sample sizes E0[T ] and E1[T ], Type I error and Type II error for testing
Bernoulli parameter using the original AboveThresh algorithm with Laplace noise.

a = b ε Type I Type II E0[T ] E1[T ]

10
0.5 0.3634 0.3562 3.537 3.762
1 0.2184 0.3132 9.246 10.399
2 0.0181 0.2185 22.317 29.035

20
0.5 0.2577 0.1750 11.824 11.62
1 0.0235 0.0140 35.353 43.121
2 1.03e-05 3.53e-05 55.136 77.450

40
0.5 0.0164 0.0266 51.257 66.529
1 8.11e-08 2.4e-04 99.026 144.114
2 1.04e-20 3.79e-19 121.27 179.172
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