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Abstract

We study the problem of transfer learning,
observing that previous efforts to understand
its information-theoretic limits do not fully
exploit the geometric structure of the source
and target domains. In contrast, our study
first illustrates the benefits of incorporating
a natural geometric structure within a linear
regression model, which corresponds to the
generalized eigenvalue problem formed by the
Gram matrices of both domains. We next es-
tablish a finite-sample minimax lower bound,
propose a refined model interpolation estima-
tor that enjoys a matching upper bound, and
then extend our framework to multiple source
domains and generalized linear models. Sur-
prisingly, as long as information is available
on the distance between the source and target
parameters, negative-transfer does not occur.
Simulation studies show that our proposed
interpolation estimator outperforms state-of-
the-art transfer learning methods in both
moderate- and high-dimensional settings.

1 INTRODUCTION

The task of transferring knowledge from one domain
(source) to another related domain (target) is known
as transfer learning. This task arises naturally in a
wide range of applications where data is scarce in the
target domain but substantial in a source domain be-
lieved to be somewhat similar to the target. For ex-
ample, in the context of marketing and demand pre-
diction for products in a new market, it is natural to
use source information involving well-tested markets.
Similarly, demand prediction for new products can be
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estimated using source information from current mar-
ket products (Afrin et al., 2018). Rigorous statistical
formulations of transfer learning introduce non-trivial
challenges. This includes balancing the tension be-
tween tractability in the training procedure and flex-
ibility in order to reflect the differences between the
source and target environments. In addition to this
tension, a useful modeling framework should provide
statistical insights on the efficiency gain induced by
introducing source information into target inference.

Our goal in this paper is to introduce a transfer learn-
ing formulation under linear and generalized linear
models that addresses the above tractability-flexibility
tension and produces effective efficiency insights. In
particular, the contributions of this paper include:

(i) Our formulation provides an easy-to-compute
transfer learning estimator that optimally (in a pre-
cise sense) interpolates the target and source param-
eters subject to an uncertainty region which controls
the differences between source and target models.

(ii) Our modelling framework exposes a natural geo-
metric structure that is built on using the Fisher in-
formation metric (also known as information geome-
try) which we exploit in order to understand the main
drivers of transfer learning from source to target.

(iii) We are able to provide a finite-sample minimax
lower bound and show that the worst-case risk of our
estimator in (i) achieves (up to a constant) the mini-
max lower bound uniformly over the magnitude of the
difference between the target and source models.

One of the insights from our formulation, for exam-
ple, is that as long as information is available on the
distance between the source and target parameters,
negative-transfer does not occur. Namely, the worst-
case risk of our estimator in (i) is always smaller than
the minimax risk of using the target dataset alone.

Although there is a significant amount of literature on
applied transfer learning procedures (Pan and Yang,
2009; Torrey and Shavlik, 2010; Weiss et al., 2016;
Taskesen et al., 2021), the literature on rigorous math-
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ematical formulations that lead to minimax optimal es-
timators is limited. Cai and Wei (2021) consider trans-
fer learning in the context of a stylized non-parametric
classification setting under a different set of assump-
tions including a model that only allows posterior drift.
Kpotufe and Martinet (2021) study classification set-
tings similar to that of Cai and Wei (2021), albeit
under covariate-shift assumptions on the difference in
source and target environments. In strong contrast,
while our methodology is parametric, our analysis is
not limited to classification problems and it further
supports more general environments including more
general drift conditions between the target and source
models, where indeed our analysis of the underlying
geometry explicitly accounts for these differences.

Bastani (2021) considers linear and non-linear regres-
sion models similar to our work, and proposes a two-
step joint estimator for transfer learning. However,
their focus is on high-dimensional settings under spar-
sity assumptions and no minimax optimality result is
established; moreover, since they use an l1 norm for the
analysis, their results are not directly comparable to
our results. Li et al. (2020) extend the work of Bastani
(2021) to allow multiple source domains and establish
a minimax lower bound for high-dimensional linear
regression models (LRMs). However, their bound is
asymptotic in the number of target samples, and they
further constrain the difference between the source and
target parameters relative to the size of the target
sample. Tian and Feng (2021) further extend this
work of Li et al. (2020) to high-dimensional general-
ized linear models (GLMs). In strong contrast, we
study a fixed-difference environment without any such
constraint and the performance of our optimal estima-
tor is measured in terms of finite-sample bounds which
match (up to a computable constant factor) the mini-
max lower bound uniformly over the magnitude of the
difference between the models.

Kalan et al. (2020) consider the LRM setting and in-
volve the spectral gap of the generalized eigenvalue
problem we consider, with definitions for the popula-
tion distribution of their random-design setting anal-
ogous to ours in the fixed-design setting. However, in
strong contrast, our analysis handles the entire spec-
trum of the generalized eigenvalues and our results es-
sentially provide a tighter lower bound in comparison
with the results of Kalan et al. (2020), thus illustrating
the significance of our geometric perspective.

A simulation study compares our estimator to the
work of Bastani (2021), Li et al. (2020) and more di-
rect methods commonly used in practice (e.g., pooling
all available data). As our estimator is designed in
a fixed-dimension setting, the simulation results con-
firm the strong performance of our approach in moder-

ate dimensions. Moreover, a heuristic modification of
our methods using an l1 regularization, as in Li et al.
(2020) and Bastani (2021), seems to provide further
improvements over these methods in the sparse high-
dimensional case. We plan to investigate these types
of modifications as part of our future research. Finally,
results based on a real-world dataset further confirm
the strong performance of our approach.

To briefly summarize our approach, let us consider the
linear regression transfer learning problem between a
source and a target with Gaussian errors. We start
the construction of our estimator by reparameterizing
the linear regression estimators. Instead of expressing
them in terms of the canonical bases, as is custom-
ary, we express them in terms of a generalized eigen-
value problem that arises when computing the Fisher-
Rao distance using the design matrices of the source
and target. This distance induces a Riemmanian ge-
ometric structure between the models. Specifically,
convex combinations in the reparameterized (Riemma-
nian) space correspond to general interpolations in the
(original space of) LRM parameters.

Our estimator is obtained from the class generated by
the convex combination of estimators for the source
and target in the reparameterized space. Then, we ob-
tain the minimax estimator by maximizing over mod-
els within a given distance while minimizing over our
chosen class of estimators. The minimization is car-
ried out over convex combination parameters which
are different for each coefficient. The final estimator
is transformed back to the canonical basis.

For our minimax lower bound, we rely once again on
the Fisher information metric and the reparameteri-
zation used in the design of our estimator. We then
apply Le Cam’s two-point minimax method which in
our case reduces to studying two carefully designed
hypotheses for each coefficient.

Section 2 presents our mathematical framework and
theoretical results for transfer learning under LRMs.
Then, Section 3 extends our framework to support a
class of GLMs as well as multiple sources. Section 4
presents simulation results showing that our algorithm
outperforms various transfer learning methods. The
supplement contains additional theoretical and simu-
lation results, related technical details, and all proofs.

2 LINEAR REGRESSION MODELS

We consider our mathematical framework for transfer
learning within the context of LRMs. We introduce
our framework and establish our theoretical results on
minimax bounds in Section 2.1, where we also pro-
pose a refined model interpolation estimator that is
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minimax optimal. Then, in Section 2.2, we compare
the minimax bounds to the basic approaches discussed
in Daumé (2007), showing the latter to be suboptimal.

2.1 Mathematical Framework

Let X denote a d-dimensional feature space, Y a re-
sponse space, and N (µ, σ2) the normal distribution
with mean µ and variance σ2. Our base source LRM
can then be formally written as

yi = x>i θS + εi, i ∈ [nS ], (1)

where θS ∈ Rd is the regression coefficient for the
source model, nS is the number of samples from the
source model, xi ∈ X are (fixed) designs and yi ∈ Y
are independent response samples, εi ∼ N (0, σ2

S) are
independent noise random variables for i ∈ [nS ], and
[n] := {1, . . . , n}. Similarly, our base target LRM can
be formally written as

vi = w>i θT + ηi, i ∈ [nT ], (2)

where θT ∈ Rd is the regression coefficient for the tar-
get model, nT is the number of samples from the target
model, wi ∈ X are (fixed) designs and vi ∈ Y are in-
dependent response samples, and ηi ∼ N (0, σ2

T ) are
independent noise random variables for i ∈ [nT ]. We
denote the distribution of the models (1) and (2) by
PS and PT , respectively.

For ease of exposition, we collect the designs and re-
sponses in (1) from the source domain into the design
matrix X and the response vector Y, respectively; i.e.,
x>i is the i-th row of X and yi is the i-th element of
Y. Similarly, we collect the target designs and re-
sponses in (2) into the design matrix W and the re-
sponse vector V, respectively. With ε := (εi)i∈[nS ] and
η := (ηi)i∈[nT ], we can then write the LRM as

Y = XθS + ε, εi ∼ N (0, σ2
S), (3)

V = WθT + η, ηi ∼ N (0, σ2
T ). (4)

We consider fixed-design matrices to be (arbitrarily)
different for the source and target domains, thus fo-
cusing on a combination of concept drift and a version
of covariate shift best suited to the fixed-design set-
ting, which is similar to Bastani (2021).

Our interests lie in estimating the regression coeffi-
cient θT for the target domain. Hence, we assume that
the noise variance σ2

T is known and then we consider
the family of distributions (4) parameterized by θT as
a manifold. Various geometries can be defined on a
manifold of statistical models (Nielsen, 2020), among
which the Fisher-Riemannian manifold given by the
Fisher information metric tensor is particularly useful,
representing the unique invariant metric tensor under

Markov embeddings up to a scaling constant (Camp-
bell, 1986). For the Gaussian location model (4), we
can compute the Fisher information matrix with re-
spect to θT , up to a scaling constant, as W>W.

Given an estimate θ̂ of θT , we consider the Riemannian
geodesic metric distance (or the Fisher-Rao distance)

as a principled way to measure the dissimilarity of θ̂ to
the (unknown) ground truth θT . We therefore define

the loss function `(θ̂, θT ) as

`(θ̂, θT ) = (θ̂ − θT )>(W>W)(θ̂ − θT ). (5)

Such a loss function was used and termed “prediction
loss” in Lee and Courtade (2020) without the above
geometrical motivation. However, as we will show,
the geometric structure of the source and target mod-
els can play an important role in transfer learning,
in particular, the discrepancy between the Fisher-Rao
distances induced by the models (3) and (4).

We aim to employ minimax theory to establish the
optimality of statistical learning procedures. Given
an estimator θ̂ arising from any learning procedure,
we consider its worst-case risk over an uncertainty set
of plausible distributions; refer to (Tsybakov, 2008,
Chapter 2). In the transfer learning setting, one natu-
ral uncertainty set is given by all source and target dis-
tributions whose dissimilarity is upper-bounded. How-
ever, instead of the l0 or l1-norm typically used in the
high-dimensional setting (Tian and Feng, 2021; Bas-
tani, 2021; Li et al., 2020), we characterize the dissim-
ilarity between θS and θT in terms of the Fisher-Rao
distance induced by (4), and thus the transfer learning
uncertainty set is given by {D(θS , θT ) ≤ U2} where

D(θS , θT ) = (θS − θT )>(W>W)(θS − θT ). (6)

While our approach is based on knowledge of U , we
note that requirements of knowing certain popula-
tion quantities to rigorously prove optimality are also
prevalent in recent studies such as Bastani (2021), Cai
and Wei (2021), Li et al. (2020), Tian and Feng (2021).

We further remark that the form of D(θS , θT ) in (6)
is chosen for the convenience of our analysis, though
more general forms are available to us. In fact, for our
analysis to go through, it suffices to choose

D(θS , θT ) = (θS − θT )>O(θS − θT ),

for O positive-definite, and where (W>W)−1O com-
mutes with (W>W)−1X>X.

These ingredients lead to the minimax risk formulation

R = inf
θ̂

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂, θT )]. (7)

Our minimax risk takes the infimum over all estimators
θ̂ given the data and takes the supremum over all pairs
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(θS , θT ) whose distance (6) is bounded by U2. Fixing
some θS implies that samples from the source domain
are not useful, whereas we establish minimax bounds
with the finiteness of both source and target samples
playing a role, consistent with the existing literature.

In order to determine R, we obtain an upper bound
B and a lower bound L on R. Note that the maxi-
mum risk of any estimator provides an upper bound.
Hence, we first construct a novel estimator that utilizes
the geometric structure of the source and target mod-
els, and then derive a matching lower bound (up to a
constant factor) using Le Cam’s method (Tsybakov,
2008, Chapter 2). We make the following assumption
throughout the rest of Section 2.1.

Assumption 2.1. The Gram matrix W>W corre-
sponding to the target model is positive-definite.

2.1.1 Derivation of the Upper Bound

The key to obtain a tight upper bound B is to note
that the geometric structural difference between the
Fisher-Riemannian manifolds induced by the mod-
els (3) and (4) is fully described by the generalized
eigenvalue problem of the pencil (X>X,W>W); refer
to Golub and Van Loan (2013). Specifically, we have

X>Xei = λiW
>Wei,

with eigenvalues λi arranged in descending order and
eigenvectors E = (e1, . . . , ed) normalized so that

E>(W>W)E = I, E>(X>X)E = diag(λ1, . . . , λd).

These eigenvectors represent the directions of the
spread of designs with the corresponding eigenvalues
representing the relative magnitude of the spread in
these directions. The generalized eigenvalue prob-
lem has been previously used to define suitable loss
functions for positive definite matrices, such as the
Förstner metric (Förstner and Moonen, 2003) and
Stein’s loss (James and Stein, 1992).

Next, let us write θS and θT in the eigenbasis E as

θS = EβS , θT = EβT , (8)

respectively, and thus the problem is given by

Y = (XE)βS + ε, εi ∼ N (0, σ2
S), (9)

V = (WE)βT + η, ηi ∼ N (0, σ2
T ), (10)

`(θ̂, θT ) = ˜̀(β̂, βT ) = ‖β̂ − βT ‖22,
D(θS , θT ) = D̃(βS , βT ) = ‖βS − βT ‖22,

where θ̂ = Eβ̂. Hence, it is more convenient to work
with the following reparameterization of the original
formulation in (7):

inf
β̂

sup
D̃(βS ,βT )≤U2

EPS ,PT [˜̀(β̂, βT )]. (11)

Denote by β̂S and β̂T the ordinary least squares esti-
mate for problems (9) and (10), respectively; namely,

β̂S = (E>X>XE)−1E>X>Y,

β̂T = (E>W>WE)−1E>W>V.

Our proposed model averaging estimator then inter-
polates β̂S and β̂T coordinate-wise, i.e., we have

θ̂t1,...,td = Eβ̂t1,...,td ,

β̂t1,...,td = diag(t1, . . . , td)β̂S (12)

+ diag(1− t1, . . . , 1− td)β̂T , ti ∈ [0, 1].

We have the following main result for an upper bound
B on problem (7), or equivalently on problem (11).

Theorem 2.1. Under Assumption 2.1, an upper
bound B is given by

inf
t1,...,td

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂t1,...,td , θT )] (13)

=

d∑
i=1

1
1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

, (14)

where

α?i =

{∑K?

j=i κj + 1
K?+1 (1−

∑K?

j=1 jκj) if i ≤ K? + 1,

0 if i > K? + 1,

K? = max∑K
i=1 iκi≤1,0≤K≤d−1

K,

κi =
σ2
S

U2
(

1

λi+1
− 1

λi
), i = 1, . . . , d− 1.

Moreover, the optimal estimator θ̂t?1 ,...,t?d satisfies

t?i =
σ2
T

σ2
T + α?iU

2 +
σ2
S

λi

. (15)

Sketch of Proof : Problem (13) can be reformulated
into the following finite-dimensional optimization:

inf
ti∈[0,1]

sup
αi≥0,

∑d
i=1 αi=1

d∑
i=1

t2i

(
σ2
S

λi
+ αiU

2

)
+(1−ti)2σ2

T .

Since the objective function is convex in ti and con-
cave in αi, by Sion’s minimax theorem (Sion, 1958) we
can swap the infimum and supremum to obtain (and,
moreover, a pair of Nash equilibrium exists for)

sup
αi≥0,

∑d
i=1 αi=1

inf
ti∈[0,1]

d∑
i=1

t2i

(
σ2
S

λi
+ αiU

2

)
+(1−ti)2σ2

T .
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The inner problem is quadratic and easy to solve, and
thus we arrive at

sup
αi≥0,

∑d
i=1 αi=1

d∑
i=1

1
1
σ2
T

+ 1

αiU2+
σ2
S
λi

,

which again has an explicit solution. �

2.1.2 Derivation of the Lower Bound

Utilizing the coordinate transformation (8) and results
from Theorem 2.1, we next have the following main
result for a lower bound L on problem (7), or equiva-
lently on problem (11).

Theorem 2.2. Under Assumption 2.1, a lower bound
L is given by

inf
θ̂

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂, θT )]

≥
exp

(
− 1

2

)
16

d∑
i=1

1
1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

. (16)

Sketch of Proof : It is more convenient to work with
the reparametrization (11), which is lower bounded by

inf
β̂

sup
((βS)i−(βT )i)2≤α?iU2∀i

EPS ,PT [˜̀(β̂, βT )]

≥
d∑
i=1

inf
β̂i

sup
((βS)i−(βT )i)2≤α?iU2

EPS ,PT [(β̂i − (βT )i)
2].

(17)

We note that (E>X>Y)i and (E>W>V)i are suffi-
cient statistics for (βS)i and (βT )i, respectively, and

(E>X>Y)i = λi(βS)i + ε̃i, ε̃i ∼ N (0, λiσ
2
S),

(E>W>V)i = (βT )i + η̃i, η̃i ∼ N (0, σ2
T ),

where the noise ε̃i and η̃i are independent. For each
of the d one-dimensional minimax problems in (17),
we reduce the problem to the testing of two carefully
constructed hypotheses via Le Cam’s method. �

From Theorems 2.1 and 2.2, we observe that the up-
per bound B and the lower bound L differ by only a
constant factor (i.e., exp

(
− 1

2

)
/16). We therefore have

established that the minimax risk R obeys the rate

R ∼
d∑
i=1

1
1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

.

Under mild conditions, we obtain that the Gram ma-
trix W>W grows on the order Op(nT ), and then the

minimax risk for the usual l2 loss has the rate

inf
θ̂

sup
D(θS ,θT )≤U2

EPS ,PT [‖θ̂−θT ‖22] ∼
d∑
i=1

1
nT

1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

with probability one on the realization of designs.

Remark 2.1. Using the channel capacity of a non-
Gaussian additive noise channel (Ihara, 1978), we
can improve the uniform constant exp

(
− 1

2

)
/16 to

max{exp
(
− 1

2

)
/16,

(
(σ2
S/λi)/(α

?
iU

2 + σ2
S/λi)

)2} for
the i-th summand in (16). Note that the second term
is 1 if α?i = 0, and it is arbitrarily close to 1 if U is
sufficiently small. Details are given in the supplement.

Remark 2.2. The analysis in Kalan et al. (2020) (in
random design) involves the spectral gap of the gener-
alized eigenvalue problem, while our analysis (in fixed
design) takes care of the entire spectrum of the general-
ized eigenvalues. Details are given in the supplement.

2.2 Comparison with Basic Approaches

For an analytical comparison with our theoretical re-
sults above, we now consider a corresponding mathe-
matical analysis of three basic approaches for transfer
learning often deployed in practice: use only the source
dataset; use only the target dataset; and pool both the
source and target datasets to train a single model as
discussed in Daumé (2007). We then compare and dis-
cuss the results for each of these basic transfer learning
approaches with those above in Theorems 2.1 and 2.2.

Our theoretical results for the three basic approaches
are summarized in the following proposition.

Proposition 2.1. 1. For the LRM based solely on the
source dataset, the estimator θ̂S = Eβ̂S satisfies

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂S , θT )] = U2 + σ2
S

d∑
i=1

λ−1
i .

2. For the LRM based solely on the target dataset, the
estimator θ̂T = Eβ̂T satisfies

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂T , θT )] = dσ2
T .

3. Finally, for the LRM based on pooling the source
and target datasets, the estimator

θ̂P =

((
X> W>)(X

W

))−1

·
(
X> W>)(Y

V

)
(18)

satisfies

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂P , θT )] = U2 max
1≤i≤d

{(
λi

1 + λi

)2
}

+ σ2
T

d∑
i=1

(
1

1 + λi

)2

+ σ2
S

d∑
i=1

λi
(1 + λi)2

.
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We observe that the worst-case risk (14) attained
by our proposed estimator is smaller than that of
the basic approaches using only the source or target
dataset. Moreover, the ordinary least squares estimate
θ̂T is minimax optimal when using only the target
dataset (Hodges and Lehmann, 1950, Theorem 6.5).
Thus we show, surprisingly, that negative transfer can-
not occur if we have access to the bound U on the dis-
tance between the source and target parameters. In
particular, negative transfer does not occur if there ex-
ists an estimator such that the worst-case risk of the es-
timator is smaller than the minimax risk of only using
the samples from the target domain, noting that our
model interpolation estimator satisfies this condition.
We also show in the supplement that the worst-case
risk (14) is smaller than that of the pooling method.

3 GENERALIZED LINEAR MODEL

Our mathematical framework and theoretical results
above have been limited to the case of transfer learn-
ing with respect to LRMs. We next turn to consider
our corresponding mathematical framework and theo-
retical results for the case of transfer learning within
the context of a class of GLMs. We also extend our
framework to allow multiple source domains. The class
of GLMs of interest is presented first, followed by our
mathematical analysis that leads to theoretical results
for GLMs analogous to Theorems 2.2 and 2.1.

Suppose we have access to M different source distri-
butions. For each source m ∈ [M ], assume the nSm
samples y

(m)
1 , . . . , y

(m)
nSm come from the GLM density

(with respect to some dominating measure µSm)

f (m)(y
(m)
i ; θSm) =

t(m)(y
(m)
i ) exp

(
y

(m)
i 〈x(m)

i , θSm〉 −Ψ(m)(〈x(m)
i , θSm〉)

a(m)(σSm)

)
,

where (x
(m)
i )> is the i-th row of the design matrix

X(m), t(m)(·) is a nonnegative-valued function defined
on the response space, a(m)(·) is a positive function of
σSm , and Ψ(m)(·) is the log-partition function. In a
similar manner for the target, assume the nT samples
v1, . . . , vnT come from the GLM density (with respect
to a possibly different dominating measure µT )

g(vi; θT ) = l(vi) exp

(
vi〈wi, θT 〉 − Γ(〈wi, θT 〉)

b(σT )

)
,

where w>i is the i-th row of the design matrix W, l(·)
is analogous to t(m)(·), b(·) is analogous to a(m)(·),
and Γ(·) is analogous to Ψ(m)(·).

Note that the above GLM, under which samples are
generated according to an exponential family with nat-
ural parameter equal to a linear transformation of the

underlying parameter θ, was used in Lee and Courtade
(2020) though not in the context of transfer learning.
We further assume that

sup
z

(Ψ(m))
′′
(z) ≤ CSm ∀m, sup

z
Γ

′′
(z) ≤ CT .

Following in a manner similar to Section 2.1, we next
can respectively define the loss function `(θ̂, θT ) and
the uncertainty set {D(θSm , θT ) ≤ U2

m} as

`(θ̂, θT ) = (θ̂ − θT )>(W>W)(θ̂ − θT ),

D(θSm , θT ) = (θSm − θT )>(W>W)(θSm − θT ).

This leads to the problem formulation

inf
θ̂

sup
D(θSm ,θT )≤U2

m,∀m
EPT ,PSm ,m∈[M ][`(θ̂, θT )]. (19)

To simplify the notation, when no confusion arises,
we shall henceforth abbreviate the expectation
EPT ,PSm ,m∈[M ][`(θ̂, θT )] by E[`(θ̂, θT )].

Towards solving this problem formulation, consider
the generalized eigenvalue problem of the matrix pencil
((X(m))>X(m),W>W); refer to Golub and Van Loan
(2013). More specifically, we have

(X(m))>X(m)e
(m)
i = λ

(m)
i W>We

(m)
i ,

where the eigenvalues are arranged such that λ
(m)
1 ≥

· · · ≥ λ(m)
d . Observe that, for any θ ∈ Rd,

θ>(X(m))>X(m)θ ≤ λ(m)
1 θ>W>Wθ.

We then have the following main result for a lower
bound on the solution of (19) using Le Cam’s and
Fano’s methods (Tsybakov, 2008, Chapter 2).

Theorem 3.1. A lower bound of the minimax risk
corresponding to the GLMs is given by

inf
θ̂

sup
D(θSm ,θT )≤U2

m,∀m
E[`(θ̂, θT )]

≥ e−1

800

d∑M
m=1

1
U2
m
d +

a(m)(σSm
)

CSm
λ
(m)
1

+ CT
b(σT )

.

Details are given in the supplement.

Remark 3.1. For the non-transfer learning setting
considered in Lee and Courtade (2020), our proof
method gives rise to a lower bound of d · b(σT )/CT
which is sharper than their lower bound of

max

{
‖ΛW‖21
‖ΛW‖22

, λmin(W>W)‖Λ−1
W‖1

}
· b(σT )/CT ,

where ΛW is the vector of eigenvalues of the
positive-definite matrix W>W, and Λ−1

W denotes its
coordinate-wise inverse.
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Specializing Theorem 3.1 to the LRM case, we derive
a multiple sources analog to Theorem 2.2.

Corollary 3.1. When the GLMs considered are Gaus-
sian LRMs, then a lower bound of the minimax risk is

inf
θ̂

sup
D(θSm ,θT )≤U2

m,∀m
E[`(θ̂, θT )]

≥ e−1

800

d∑M
m=1

1
U2
m
d +

σ2
Sm

λ
(m)
1

+ 1
σ2
T

.

In comparison to Theorem 2.2, the rate in Corol-

lary 3.1 involves the spectral gap λ
(m)
1 /λ

(m)
d .

Turning to consider an upper bound within the context
of GLMs, we assume that infz(Ψ

(m))
′′
(z) ≥ LSm , ∀m,

and infz Γ
′′
(z) ≥ LT . Then, using the sub-Gaussian

concentration bound for GLM noise and results of Bas-
tani (2021), we obtain the following upper bound of the
minimax risk corresponding to the GLMs (ignoring the
leading constant):

d∑M
m=1

1
U2
m
d +

2CSm
a(m)(σSm

)

L2
Sm

λ
(m)
d

+ 1
2CT b(σT )

L2
T

. (20)

The details are provided in the supplement. Compar-
ing (20) with Theorem 3.1, we observe that our upper
and lower bounds match up to the ratios CSm/LSm
and CT /LT and the spectral gap λ

(m)
1 /λ

(m)
d . We

plan to consider the tight analysis of upper and lower
bounds in the GLM setting as part of future research.

4 SIMULATION RESULTS

Our focus in this paper is on a mathematical frame-
work of transfer learning and corresponding theoret-
ical results related to geometric structures, minimax
bounds, and minimax optimality. To provide further
insights and understanding with respect to our frame-
work and results, we now present a collection of sim-
ulation results that investigate the quantitative per-
formance of our model interpolation estimator under
various conditions, environments, and parameter set-
tings. These simulation results showcase the ability of
our proposed estimator to outperform the basic trans-
fer learning approach discussed in Daumé (2007) and
the recent state-of-the-art transfer learning methods
of Bastani (2021) and Li et al. (2020).

We consider the LRM in the transfer learning setting
of a single source domain and a single target domain.
The optimal interpolation scheme (15) requires that
we specify the parameters U, σS and σT , which are typ-
ically unknown a priori. In Section 4.1, we first quali-
tatively explore the behavior of our proposed method

with respect to the setting of U relative to its true
value, while assuming perfect knowledge of the re-
maining parameters. Then, in Section 4.2, we treat
all three parameters as unknown and develop heuristic
estimation procedures with which we compare this full-
fledged version of our proposed method against other
competing methods in the research literature.1

Figure 1: Simulation Results with Different Ground
Truth U . Solid Lines Represent the Proposed Method.
Dashed Lines Represent the Basic Pooling Method.

4.1 Misspecification of U

For our investigation of the impact of misspecifica-
tions of U , the baseline parameters are set to be
d = 20, nS = 1000, nT = 100, σ2

S = σ2
T = 1. We

randomly generate X where each row independently
follows the standard multivariate Gaussian, and also
independently generate W in a similar fashion. We
consider βT , the target parameter after the coordinate
transformation (8), as the vector of all ones. Note that
specifying θT and βT is equivalent given the design
matrices X and W. Experiments are then performed
with ground-truth values of U ∈ {0.5, 1.5, 2.5} where,
for each value of U , we generate βS to be the Nash
equilibrium in problem (13). We then repeat 1000
independent simulation runs where, in each run, the
design matrices X,W are kept unchanged and fresh
copies of the response vectors Y,V are resampled fol-
lowing the LRM (9) and (10).

In calculating the optimal interpolation scheme, we as-
sume σ2

S , σ
2
T to be known and experiment with Uguess

values that are equispaced within the interval [0, 3] as
(mis)specifications of U . Then, we compute the aver-
age of the estimation error for θT in (5) over the 1000
runs and plot the corresponding trends with respect
to Uguess. The results are summarized in the left plot
of Figure 1, where the horizontal lines are the aver-
aged error of the basic pooling method (18) included
for comparison. We observe that the performance gap
between the proposed method (in solid lines) and the
basic pooling method (in dashed lines) increases with

1All problems are modeled in Python and run on an
Intel i5 CPU (1.4GHz) computer.
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Table 1: Simulation Results Comparing the Proposed Method to Other Competing Methods in Moderate-
Dimensions (Left-Half) and in High-Dimensions (Right-Half). “Basic” Represents the Lowest of the Errors
Attained by the Three Basic Methods in Section 2.2. Numbers in Parentheses Are Standard Deviations.

U Basic Proposed Two-Step Trans-Lasso Basic Proposed Two-Step Trans-Lasso
0.5 1.9(0.6) 2.3(1.3) 3.0(2.5) 0.9(1.8) 9.1(1.7) 9.3(2.1) 11.8(3.9) 9.6(3.0)
1.5 3.9(1.1) 4.3(1.5) 5.7(3.2) 2.8(2.9) 11.4(2.0) 11.4(2.3) 14.5(4.6) 12.2(2.9)
2.5 6.9(1.5) 6.5(1.7) 7.9(2.6) 5.3(2.3) 15.2(1.9) 14.6(2.5) 18.1(3.8) 16.2(2.3)
3.5 11.7(1.9) 9.2(2.5) 11.9(3.5) 9.5(2.9) 20.5(2.5) 18.6(2.7) 23.8(3.4) 21.7(2.8)
4.5 18.6(2.7) 12.4(4.1) 15.4(4.9) 13.9(4.0) 27.6(2.3) 23.6(3.9) 31.2(3.1) 29.2(2.9)
5.5 20.3(6.1) 14.8(5.3) 17.9(5.9) 18.0(5.3) 36.9(3.1) 29.4(4.6) 41.3(3.9) 38.3(3.4)
6.5 20.9(6.6) 15.8(5.5) 18.4(6.6) 19.2(7.3) 46.1(3.2) 33.7(5.0) 42.1(4.8) 47.9(3.7)
7.5 19.3(5.8) 16.2(4.8) 18.8(7.8) 19.6(8.2) 54.6(12.5) 40.7(6.6) 65.6(5.9) 60.8(5.2)
8.5 20.8(6.6) 18.8(6.6) 20.8(8.5) 21.4(8.8) 53.8(10.5) 43.6(7.2) 80.9(6.3) 73.5(4.8)
9.5 20.4(6.6) 19.1(6.5) 19.6(7.5) 20.1(8.0) 51.7(11.3) 48.3(9.6) 97.7(9.1) 88.6(6.2)

the ground-truth value of U . While this gap is highest
when the proposed method uses the correct U value,
it is robust to misspecification in U .

We now vary the parameter values and observe that
similar phenomena exist across the different settings:

• The ground-truth value of U is changed to
{5, 10, 15}, and we experiment with Uguess values eq-
uispaced within [0, 20]. The results are summarized in
the right plot of Figure 1. Our proposed method works
much better than the basic pooling method across the
wider range of U values around the ground-truth.

• The rows of X are generated independently by a
zero-mean Gaussian with a Toeplitz covariance ma-
trix (Li et al., 2020, Section 5.2), or both X and W
are generated in this way; refer to the supplement and
Figure 2. The introduction of correlation does not im-
pact the performance of either method when compared
to the uncorrelated case in the left plot of Figure 1.

• The noise variances are changed to σ2
S = 1, σ2

T = 5,
or σ2

S = 5, σ2
T = 1; refer to the supplement and Fig-

ure 3. The proposed method handles large variances
in the source data much better than the basic pooling
method, while high variance in (smaller sized) target
data has no significant impact on either method.

• The dimension d is changed to 5, or d = 100 but with
βT three-sparse (specifically, the first three elements of
βT are one and the rest are zero); refer to the supple-
ment and Figure 4. Lower dimensionality seems to
improve the performance gap between the two meth-
ods as compared to the left plot of Figure 1, while this
gap shortens in high-dimensions with extreme sparsity.

4.2 Comparisons with Competing Methods

We have seen from Figures 1 – 4 that our method ad-
mits a broad tolerance to misspecifications of the value

of U relative to its true value, especially if the true
value is moderately large. We next develop heuristic
procedures for estimating U , alongside with σ2

S and
σ2
T , from the datasets as follows.

• We use the usual least squares MLE estimate

σ̂2
S =

1

nS

nS∑
i=1

(
yi − x>i θ̂S

)2

,

with θ̂S the ordinary least squares estimate of θS in (3).

• For moderate dimension and θT not sparse, we use

a similar least squares estimate σ̂2
T . However, in high-

dimensional settings, it has been observed that a more
accurate estimator is given by (Reid et al., 2016)

σ̂2
T =

1

nT − ŝγ̂

nT∑
i=1

(
vi − w>i θ̂T,γ̂

)2

,

where θ̂T,γ̂ is the Lasso estimator with cross-validated
penalization parameter γ̂, and ŝγ̂ is the number of non-

zero elements in θ̂T,γ̂ .

• We use a 5-fold cross-validation (CV) procedure to

determine an estimate Û , where the CV objective is
the mean-squared test error on the hold-out set.

The experimental results in Section 4.1 demonstrate
forms of robustness with respect to the misspecifica-
tion of U in our approach. Beyond the above 5-fold CV
approach to estimate U from the datasets, which deliv-
ers promising results below in comparison with state-
of-the-art methods, we can use subsampling methods
as an alternative to estimate U whenever the source
and target samples are not too scarce. We plan to ad-
dress this issue in more detail as part of future work.

Now we compare the results from our full-fledged
method with those from the basic methods discussed
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Table 2: Results Comparing the Proposed Method to Other Competing Methods on Uber&Lyft Data.

nS nT Û Basic Proposed Two-Step Trans-Lasso
1000 100 19.79 34.54(15.10) (pooling) 28.50(16.53) 1.16(2.03)×105 93.80(57.22)
10000 1000 19.20 38.52(14.72) (target) 36.30(14.32) 1.62(2.35)×105 778.47(538.76)
1000 1000 15.05 37.17(10.66) (target) 36.04(11.08) 8.84(13.23)×105 353.49(347.70)
100 10000 47.97 30.72(9.35) (target) 30.50(9.35) 1.08(15.94)×106 47.59(44.61)

10000 100 9.29 29.86(6.37) (pooling) 26.47(8.10) 1.35(2.46)×104 101.31(67.10)

in Section 2.2 and two recent state-of-the-art transfer
learning methods in the literature, namely the two-
step joint estimator proposed by Bastani (2021) and
its extension to Trans-Lasso by Li et al. (2020). For the
latter case, since the setting is a single source domain
from which learning is transferred to a target domain,
we only include for comparison the Oracle Trans-Lasso
algorithm in Li et al. (2020) (i.e., their Algorithm 1).

4.2.1 Comparisons in Moderate-Dimensions

The parameters for the case of moderate dimensions
are set to be d = 20, nS = 1000, nT = 100, σ2

S = σ2
T =

1. We randomly generate X where each row inde-
pendently follows the standard multivariate Gaussian,
and independently generate W in a similar fashion.
We consider θT to be the vector of all ones. Experi-
ments are performed with ground-truth values of U in
{0.5, 1.5, . . . , 9.5} where, for each value of U , we gener-
ate θS to be the Nash equilibrium in problem (13). We
then repeat 1000 independent simulation runs where,
in each run, the design matrices X,W are kept un-
changed and fresh copies of the response vectors Y,V
are resampled following the LRM (3) and (4). For the
methods under consideration, we report the average
estimation error of θT in (5), and its standard devia-
tion, over the 1000 runs. The results are summarized
in the left-half of Table 1. For small U , the Trans-
Lasso method produces the best results. We note that
these minimax optimality results of Li et al. (2020) are
established under different assumptions, and that their
results do not contradict our minimax optimality re-
sults. For moderate to larger U , our proposed method
attains better performance on average. We also pro-
vide additional experiments with nS = 200, nT = 100
in the supplement, which exhibit consistent behaviors.

4.2.2 Comparisons in High-Dimensions

With all other parameters remaining the same, we now
consider a more challenging high-dimensional setting
where d = 100. Moreover, we set θT to be a sparse
vector where the first 20 elements are one, and the re-
maining 80 elements are zero. To deal with this high-
dimensional setup, we make a simple heuristic modi-
fication to the proposed interpolation scheme (12) by

replacing the least squares estimator β̂T with β̂T,γ̂ , i.e.,

the Lasso estimator θ̂T,γ̂ after the coordinate transfor-
mation (8). We repeat 1000 independent simulation
runs, and report the average estimation error of θT
in (5) and its standard deviation for the methods un-
der consideration. The results are summarized in the
right-half of Table 1. Our proposed method outper-
forms the other two methods for all U values consid-
ered, somewhat surprisingly even for small U since the
competing methods were designed to exploit sparsity.
The supplement provides additional experiments with
nS = 200, nT = 100 that exhibit consistent behaviors.

4.2.3 Comparisons on Real-World Dataset

Lastly, we compare the results from the different meth-
ods using the Uber&Lyft dataset2 of Uber and Lyft
cab rides collected in Boston, MA. The learning prob-
lem comprises prediction of the price using d = 32 nu-
merical features, including hour-of-the-day, distance,
weather, and demand factors. We consider UberX as
the source model and standard Lyft service as the tar-
get. The entire dataset consists of 55094 observations
for the source and 51235 observations for the target,
from which we compute the ground truth regression
parameters; see the supplement. Since we wish to
study the benefit of transfer learning, we restrict our-
selves to small random subsamples. We repeat 100 in-
dependent experiments and summarize the results in
Table 2. Our proposed method attains a better per-
formance on average, by a small margin relative to the
basic methods and by a large margin relative to the
two-step estimator and Trans-Lasso. Notice that for
this problem lq sparsity, q ∈ [0, 1], (required by the last
two methods) does not reasonably capture the contrast
between the source and target models, due to the mod-
erate dimensions and the existence of one dominating
feature; see Table 4 and Figure 9 in the supplement.

2https://www.kaggle.com/brllrb/uber-and-lyft-
dataset-boston-ma
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Supplementary Material:
A Class of Geometric Structures in Transfer Learning:

Minimax Bounds and Optimality

In support of the main body of the paper, this supplement contains additional results, technical details, and
complete proofs of our theoretical results. We start by presenting proofs and related results for Theorem 2.1 and
Theorem 2.2 in Sections A.1 and A.2, respectively. We then present the proofs of Remark 2.1 and Proposition 2.1
in Sections A.3 and A.4, respectively. Next, we present the proofs of Theorem 3.1, Remark 3.1 and Corollary 3.1
in Sections A.5, A.6 and A.7, respectively. Each of these sections includes statements of the theoretical results
from the main body of the paper in an effort to make the supplement self-contained. We also provide auxiliary
results on the GLM upper bound in Section A.8 and on the comparison with Kalan et al. (2020) in Section A.9.
Finally, in Section B, we present an additional set of simulation results together with additional details and
results for the application of a real-world dataset that complement those in the main body of the paper.

A Proofs and Related Results

A.1 Proof of Theorem 2.1

Theorem 2.1. Under Assumption 2.1, an upper bound B is given by

inf
t1,...,td

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂t1,...,td , θT )] (13)

=

d∑
i=1

1
1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

, (14)

where

α?i =

{∑K?

j=i κj + 1
K?+1 (1−

∑K?

j=1 jκj) if i ≤ K? + 1,

0 if i > K? + 1,

and

K? = max∑K
i=1 iκi≤1,0≤K≤d−1

K,

with

κi =
σ2
S

U2
(

1

λi+1
− 1

λi
), i = 1, . . . , d− 1.

Moreover, the optimal estimator θ̂t?1 ,...,t?d satisfies

t?i =
σ2
T

σ2
T + α?iU

2 +
σ2
S

λi

. (15)

Proof. It is more convenient to work with the reparametrization (11). Note that

β̂S = (E>X>XE)−1E>X>Y ∼ N (βS , σ
2
Sdiag(λ−1

1 , . . . , λ−1
d )),

β̂T = (E>W>WE)−1E>W>V ∼ N (βT , σ
2
T I).
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We therefore obtain

inf
t1,...,td

sup
D̃(βS ,βT )≤U2

EPS ,PT [‖β̂ − βT ‖22]

= inf
t1,...,td

sup
‖βS−βT ‖22≤U2

Tr
(
diag(t21, . . . , t

2
d)σ

2
Sdiag(λ−1

1 , . . . , λ−1
d )
)

+

d∑
i=1

t2i ((βS)i − (βT )i)
2

+ Tr
(
diag((1− t1)2, . . . , (1− td)2)σ2

T

)
= inf
t1,...,td

sup
αi≥0,

∑d
i=1 αi=1

d∑
i=1

t2i

(
σ2
S

λi
+ αiU

2

)
+ (1− ti)2σ2

T

= sup
αi≥0,

∑d
i=1 αi=1

inf
t1,...,td

d∑
i=1

t2i

(
σ2
S

λi
+ αiU

2

)
+ (1− ti)2σ2

T

= sup
αi≥0,

∑d
i=1 αi=1

d∑
i=1

1
1
σ2
T

+ 1

αiU2+
σ2
S
λi

= dσ2
T − σ4

T

 inf
αi≥0,

∑d
i=1 αi=1

d∑
i=1

1

αiU2 + σ2
T +

σ2
S

λi

 ,

where Sion’s minimax theorem (Sion, 1958) is employed to swap the supremum and infinum. Further note that

σ2
T +

σ2
S

λ1
≤ · · · ≤ σ2

T +
σ2
S

λd
.

Let

κi =
σ2
S

U2
(

1

λi+1
− 1

λi
), i = 1, . . . , d− 1,

and

K? = max∑K
i=1 iκi≤1,0≤K≤d−1

K.

It is then easy to see that the solution of

inf
αi≥0,

∑d
i=1 αi=1

d∑
i=1

1

αiU2 + σ2
T +

σ2
S

λi

is given by

α?i =

{∑K?

j=i κj + 1
K?+1 (1−

∑K?

j=1 jκj) if i ≤ K? + 1,

0 if i > K? + 1.

Hence, we have

inf
t1,...,td

sup
D̃(βS ,βT )≤U2

EPS ,PT [‖β̂ − βT ‖22] =

d∑
i=1

1
1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

,

and

t?i =

1

α?iU
2+

σ2
S
λi

1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

=
σ2
T

σ2
T + α?iU

2 +
σ2
S

λi

, i = 1, . . . , d,

thus completing the proof.
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A.2 Proof of Theorem 2.2

In order to obtain our lower bound results, we shall make use of the following lemma which concerns the
admissibility of the hypotheses in applying Le Cam’s or Fano’s method (Tsybakov, 2008, Chapter 2).

Lemma A.1. For any γi > 0, Ui > 0, i = 0, . . . ,M, and K ≥ 1
4 , there exists β

(j)
i ∈ R, i = 0, . . . ,M, j = 0, 1,

such that the following conditions hold simultaneously:

1.
(
β

(0)
0 − β(1)

0

)2

= 1
K

1
γ0+

∑M
k=1

1

U2
k
+ 1
γk

;

2.
∣∣∣β(j)

0 − β(j)
i

∣∣∣ ≤ Ui, i = 1, . . . ,M, j = 0, 1;

3.
(
β

(0)
i − β

(1)
i

)2

≤ 1
K

1

U2
i
+ 1
γi

1
γi

γ0+
∑M
k=1

1

U2
k
+ 1
γk

, i = 1, . . . ,M .

Under these conditions, we have
M∑
i=0

γi

(
β

(0)
i − β

(1)
i

)2

≤ 1

K
.

Proof. For the three conditions to hold simultaneously, it suffices to show (using the triangle inequality twice to
bound condition 2 in terms of conditions 1 and 3) that, for i = 1, . . . ,M ,

√√√√ 1

γ0 +
∑M
k=1

1
U2
k+ 1

γk

−

√√√√√ 1
U2
i + 1

γi

1
γi

γ0 +
∑M
k=1

1
U2
k+ 1

γk

≤ 2
√
KUi.

This problem is equivalent to showing that

1−
√

1

γi

1

U2
i + 1

γi

≤ 2
√
KUi

√√√√γ0 +

M∑
k=1

1

U2
k + 1

γk

.

In fact, we can show a tighter bound

1−
√

1

γi

1

U2
i + 1

γi

≤ 2
√
KUi

√
γ0 +

1

U2
i + 1

γi

,

which can be rewritten as √
U2
i +

1

γi
−
√

1

γi
≤ 2
√
KUi

√
1 + γ0(U2

i +
1

γi
),

or further rewritten as
U2
i√

U2
i + 1

γi
+
√

1
γi

≤ 2
√
KUi

√
1 + γ0(U2

i +
1

γi
). (21)

Since K ≥ 1
4 and

Ui√
U2
i + 1

γi
+
√

1
γi

≤ 1,

we conclude that the desired result (21) holds. The last part of the claim in Lemma A.1 follows easily.

We now are in a position to prove Theorem 2.2 via Le Cam’s method (Tsybakov, 2008, Chapter 2), which we
restate as follows.
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Theorem 2.2. Under Assumption 2.1, a lower bound L is given by

inf
θ̂

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂, θT )] ≥
exp

(
− 1

2

)
16

d∑
i=1

1
1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

. (16)

Proof. It is more convenient to work with the reparametrization (11). Note that

inf
β̂

sup
D̃(βS ,βT )≤U2

EPS ,PT [˜̀(β̂, βT )] ≥ inf
β̂

sup
((βS)i−(βT )i)2≤α?iU2∀i

EPS ,PT [˜̀(β̂, βT )]

≥
d∑
i=1

inf
β̂i

sup
((βS)i−(βT )i)2≤α?iU2

EPS ,PT [(β̂i − (βT )i)
2].

Consider the singular value decomposition of WE, for which we obtain

WE = PDQ = P

(
Q
0

)
,

since E>W>WE = I and where P,Q are orthogonal matrices of appropriate dimensions. We therefore have(
E>W>

(0 I)P>

)
WE =

(
Q> 0
0 I

)
P>WE =

(
I
0

)
,

and thus

Ṽ =

(
E>W>

(0 I)P>

)
V =

(
I
0

)
βT + η̃, η̃ ∼ N

(
0, σ2

T

(
I 0
0 Γ

))
, (22)

where Γ is some positive-definite matrix that does not concern us in the following calculations. Similarly,
considering the singular value decomposition of XE, we obtain

XE = P̃ D̃Q̃ = P̃

(
diag(λ

1/2
1 , . . . , λ

1/2
d )Q̃

0

)
,

since E>X>XE = diag(λ1, . . . , λd) and where P̃ , Q̃ are orthogonal matrices of appropriate dimensions. We
therefore have

Ỹ =

(
E>X>

(0 I)P̃>

)
Y =

(
diag(λ1, . . . , λd)

0

)
βS + ε̃, ε̃ ∼ N

(
0, σ2

S

(
diag(λ1, . . . , λd) 0

0 Γ̃

))
, (23)

where Γ̃ is some positive-definite matrix that does not concern us in the following calculations. By Le Cam’s
method (Tsybakov, 2008, Chapter 2), we then obtain

inf
β̂i

sup
((βS)i−(βT )i)2≤α?iU2

EPS ,PT [(β̂i−(βT )i)
2] ≥ ((βT )0

i − (βT )1
i )

2

16
exp

(
− ((βT )0

i − (βT )1
i )

2

2σ2
T

− λi((βS)0
i − (βS)1

i )
2

2σ2
S

)
,

for any

|(βT )0
i − (βS)0

i | = |(β0
T − β0

S)i| ≤
√
α?iU

and

|(βT )1
i − (βS)1

i | = |(β1
T − β1

S)i| ≤
√
α?iU.

From Lemma A.1, upon choosing K = 1, we know there exists (βT )0
i , (βT )1

i , (βS)0
i , (βS)1

i such that

(β0
T − β0

S)2
i ≤ α?iU2, (β1

T − β1
S)2
i ≤ α?iU2, (β0

T − β1
T )2
i =

1
1

α?iU
2+

σ2
S
λi

+ 1
σ2
T
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and

(β0
S − β1

S)2
i ≤

1

α?iU
2+

σ2
S
λi

σ2
S

λi

1

α?iU
2+

σ2
S
λi

+ 1
σ2
T

.

We therefore have

((βT )0
i − (βT )1

i )
2

16
exp

(
− ((βT )0

i − (βT )1
i )

2

2σ2
T

− λi((βS)0
i − (βS)1

i )
2

2σ2
S

)
≥

exp
(
− 1

2

)
16

1
1

α?iU
2+

σ2
S
λi

+ 1
σ2
T

,

and thus conclude the lower bound

inf
β̂

sup
D̃(βS ,βT )≤U2

EPS ,PT [˜̀(β̂, βT )] ≥
exp

(
− 1

2

)
16

d∑
i=1

1
1

α?iU
2+

σ2
S
λi

+ 1
σ2
T

.

A.3 Proof of Remark 2.1

Remark 2.1. Using the channel capacity of a non-Gaussian additive noise channel (Ihara, 1978), we can

improve the uniform constant
exp

(
− 1

2

)
16

to

max

exp
(
− 1

2

)
16

,

 σ2
S

λi

α?iU
2 +

σ2
S

λi

2


for the i-th summand in (16). Note that the second term is 1 if α?i = 0, and it is arbitrarily close to 1 if U is
sufficiently small.

Proof. It is well known that the minimax risk is lower bounded by the Bayesian risk

inf
β̂

sup
D̃(βS ,βT )≤U2

EPS ,PT [˜̀(β̂, βT )] ≥ inf
β̂

E[‖β̂ − βT ‖22],

where the expectation on the right-hand side refers to a fixed design model (i.e., the predictors in the source and
target are given), there is a prior on both βS and βT , and the responses, conditional on the prior, follow the PS
and PT models for source and target environments, respectively. We assume independent priors (βT )i ∼ N (0, σ2),
and further assume (βS)i = (βT )i +

√
α?i∆i where ∆i assigns a probability of 0.5 to −U and a probability of 0.5

to U . By the maximum entropy of the Gaussian distribution and the data processing inequality, we have

inf
β̂

E[‖β̂ − βT ‖22] ≥ 1

2πe

d∑
i=1

e2h((βT )i)−2I(Y,V;(βT )i).

Since mutual information is invariant under invertible transformations, we obtain

I(Y,V; (βT )i) = I(Ṽ, Ỹ; (βT )i) = I(Ṽi, Ỹi; (βT )i),

where Ṽ and Ỹ are invertible transformations of V and Y ; refer to (22) and (23). We also know that

Ṽi = (βT )i + η̃i

and
Ỹi

λi
= (βT )i +

√
α?i∆i +

1

λi
ε̃i.

Noting the decomposition
I(Ṽi, Ỹi; (βT )i) = I(Ṽi; (βT )i) + I(Ỹi; (βT )i|Ṽi),
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then, as σ2 →∞, we have

I(Ṽi; (βT )i) ∼
1

2
(log(σ2)− log(σ2

T )).

For the second term of this decomposition, we obtain

I(Ỹi; (βT )i|Ṽi) = EṼi
[I(Ỹi; (βT )i|Ṽi = ṽi)].

Due to conditional independence, we know that Ỹi|((βT )i, Ṽi = ṽi) has the same distribution as Ỹi|(βT )i.
Hence, we see that

I(Ỹi; (βT )i|Ṽi = ṽi) = I(Ỹi; (β̃T )i),

where

(β̃T )i ∼ N ((1 +
1

σ2
)−1vi, σ

2
T (1 +

1

σ2
)−1).

From the non-Gaussian additive noise channel capacity (Ihara, 1978), we have

I(Ỹi; (β̃T )i) ≤
1

2
log(1 +

σ2
T (1 + σ−2)−1

α?iU
2 +

σ2
S

λi

) + KL(P√
α?i∆i+

1
λi
ε̃i
‖N (0, α?iU

2 +
σ2
S

λi
)),

and by the convexity of KL divergence, we obtain

KL(P√
α?i∆i+

1
λi
ε̃i
‖N (0, α?iU

2 +
σ2
S

λi
))

≤ 1

2
KL(N (

√
α?iU,

σ2
S

λi
)‖N (0, α?iU

2 +
σ2
S

λi
)) +

1

2
KL(N (−

√
α?iU,

σ2
S

λi
)‖N (0, α?iU

2 +
σ2
S

λi
))

≤ log(α?iU
2 +

σ2
S

λi
)− log(

σ2
S

λi
).

We therefore have

lim
σ2→∞

h((βT )i)− I(Ṽi, Ỹi; (βT )i) ≥
1

2

log(2πe)− log(
1

σ2
T

+
1

α?iU
2 +

σ2
S

λi

)

+ log(
σ2
S

λi
)− log(α?iU

2 +
σ2
S

λi
),

and thus conclude the lower bound

inf
β̂

E[‖β̂ − βT ‖22] ≥
d∑
i=1

 σ2
S

λi

α?iU
2 +

σ2
S

λi

2

· 1
1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

.

A.4 Proof of Proposition 2.1

Proposition 2.1.

1. For the LRM based solely on the source dataset, the estimator θ̂S = Eβ̂S satisfies

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂S , θT )] = U2 + σ2
S

d∑
i=1

λ−1
i .

2. For the LRM based solely on the target dataset, the estimator θ̂T = Eβ̂T satisfies

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂T , θT )] = dσ2
T .
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3. Finally, for the LRM based on pooling the source and target datasets, the estimator

θ̂P =

((
X> W>)(X

W

))−1

·
(
X> W>)(Y

V

)
(18)

satisfies

sup
D(θS ,θT )≤U2

EPS ,PT [`(θ̂P , θT )] = U2 max
1≤i≤d

{(
λi

1 + λi

)2
}

+ σ2
T

d∑
i=1

(
1

1 + λi

)2

+ σ2
S

d∑
i=1

λi
(1 + λi)2

.

Proof. It is more convenient to work with the reparametrization (11). Note that

β̂S = (E>X>XE)−1E>X>Y ∼ N (βS , σ
2
Sdiag(λ−1

1 , . . . , λ−1
d )),

β̂T = (E>W>WE)−1E>W>V ∼ N (βT , σ
2
T I).

We then have for the estimator θ̂S

sup
D̃(βS ,βT )≤U2

EPS ,PT [‖β̂S − βT ‖22] = sup
‖βS−βT ‖22≤U2

Tr
(
σ2
S · diag(λ−1

1 , . . . , λ−1
d )
)

+

d∑
i=1

((βS)i − (βT )i)
2

= σ2
S

d∑
i=1

λ−1
i + U2,

and similarly for the estimator θ̂T

sup
D̃(βS ,βT )≤U2

EPS ,PT [‖β̂T − βT ‖22] = sup
‖βS−βT ‖22≤U2

Tr
(
σ2
T · I

)
= σ2

T d.

For the pooling estimator (18), consider its reparametrization

β̂P =

((
E>X> E>W>)(XE

WE

))−1 (
E>X> E>W>)(Y

V

)
,

whose bias we can compute as

EPS ,PT [β̂P ]− βT =
(
E>X>XE + E>W>WE

)−1 (
E>X>XEβS + E>W>WEβT

)
− βT

= diag (1 + λ1, . . . , 1 + λd)
−1

(diag (λ1, . . . , λd)βS + βT )− βT
= diag (λ1/(1 + λ1), . . . , λd/(1 + λd)) (βS − βT ),

and whose variance we can compute as

EPS ,PT [‖β̂P ‖22] = Tr
(

diag (1 + λ1, . . . , 1 + λd)
−1 (

diag (λ1, . . . , λd)σ
2
S + σ2

T I
)

diag (1 + λ1, . . . , 1 + λd)
−1
)

= σ2
T

d∑
i=1

(
1

1 + λi

)2

+ σ2
S

d∑
i=1

λi
(1 + λi)2

.

We therefore obtain

sup
D̃(βS ,βT )≤U2

EPS ,PT [‖β̂P − βT ‖22] = sup
‖βS−βT ‖22≤U2

σ2
T

d∑
i=1

(
1

1 + λi

)2

+ σ2
S

d∑
i=1

λi
(1 + λi)2

+

d∑
i=1

(
λi

1 + λi

)2

(βS − βT )2
i

= U2 max
1≤i≤d

{(
λi

1 + λi

)2
}

+ σ2
T

d∑
i=1

(
1

1 + λi

)2

+ σ2
S

d∑
i=1

λi
(1 + λi)2

,

thus completing the proof.



A Class of Geometric Structures in Transfer Learning

To see that the worst-case risk (14) is also smaller than that of the pooling method, we can compute

1
1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

−σ2
T

(
1

1 + λi

)2

− σ2
S

λi
(1 + λi)2

=

(
λi

1 + λi

)2
λiσ

2
T + (2σ2

T − σ2
S)

λiσ2
T + λiα?iU

2 + σ2
S

α?iU
2 +

λi
(1 + λi)2

2σ2
Sσ

2
T − σ4

S − σ4
T

λiσ2
T + λiα?iU

2 + σ2
S

=

(
λi

1 + λi

)2 λiσ
2
T + (2σ2

T − σ2
S) +

2σ2
Sσ

2
T−σ

4
S−σ

4
T

λiα?iU
2

λiσ2
T + λiα?iU

2 + σ2
S

α?iU
2.

It is then readily verified that

(2σ2
T − σ2

S) +
2σ2

Sσ
2
T − σ4

S − σ4
T

λiα?iU
2

≤ λiα?iU2 + σ2
S ,

as this is equivalent to

2(σ2
T − σ2

S)λiα
?
iU

2 ≤
(
λiα

?
iU

2
)2

+
(
σ2
S − σ2

T

)2
.

Hence, we have the desired inequality

d∑
i=1

1
1
σ2
T

+ 1

α?iU
2+

σ2
S
λi

≤ U2 max
1≤i≤d

{(
λi

1 + λi

)2
}

+ σ2
T

d∑
i=1

(
1

1 + λi

)2

+ σ2
S

d∑
i=1

λi
(1 + λi)2

.

A.5 Proof of Theorem 3.1

Theorem 3.1. A lower bound of the minimax risk corresponding to the GLMs is given by

inf
θ̂

sup
D(θSm ,θT )≤U2

m,∀m
E[`(θ̂, θT )] ≥ e−1

800

d∑M
m=1

1
U2
m
d +

a(m)(σSm
)

CSm
λ
(m)
1

+ CT
b(σT )

.

Proof. First consider the case where d ≤ 100, for which we use Le Cam’s method (Tsybakov, 2008, Chapter 2).
For two pairs of parameters (θ0

S1
, . . . , θ0

SM
, θ0
T ) and (θ1

S1
, . . . , θ1

SM
, θ1
T ), we have

inf
θ̂

sup
D(θSm ,θT )≤U2

m∀m
E[`(θ̂, θT )] ≥ `(θ0

T , θ
1
T )

16
exp

{
−KL((θ0

S1
, . . . , θ0

SM , θ
0
T ); (θ1

S1
, . . . , θ1

SM , θ
1
T ))
}
.

By independence, we note that

KL((θ0
S1
, . . . , θ0

SM , θ
0
T ); (θ1

S1
, . . . , θ1

SM , θ
1
T )) =

M∑
m=1

KL(θ0
Sm ; θ1

Sm) + KL(θ0
T ; θ1

T )

and

KL(θ0
Sm ; θ1

Sm) =
1

a(m)(σSm)

nSm∑
i=1

(
Ψ(m)(〈x(m)

i , θ1
Sm〉)−Ψ(m)(〈x(m)

i , θ0
Sm〉)

− 〈(Ψ(m))
′
(〈x(m)

i , θ0
Sm〉)x

(m)
i , θ1

Sm − θ
0
Sm〉

)
≤ 1

a(m)(σSm)

nSm∑
i=1

1

2
CSm

∑
j,k

x
(m)
ij x

(m)
ik (θ1

Sm − θ
0
Sm)j(θ

1
Sm − θ

0
Sm)k

≤ CSm
2a(m)(σSm)

(θ1
Sm − θ

0
Sm)>(X(m))>X(m)(θ1

Sm − θ
0
Sm)

≤ λ
(m)
1 CSm

2a(m)(σSm)
(θ1
Sm − θ

0
Sm)>W>W(θ1

Sm − θ
0
Sm).
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Similarly, we obtain

KL(θ0
T ; θ1

T ) ≤ CT
2b(σT )

(θ1
T − θ0

T )>W>W(θ1
T − θ0

T ).

Then, by Le Cam’s bound (Tsybakov, 2008, Chapter 2), we have

inf
θ̂

sup
D(θSm ,θT )≤U2

m∀m
E[`(θ̂, θT )] ≥ `(θ0

T , θ
1
T )

16
exp

{
−KL((θ0

S1
, . . . , θ0

SM , θ
0
T ); (θ1

S1
, . . . , θ1

SM , θ
1
T ))
}

≥ (θ1
T − θ0

T )>W>W(θ1
T − θ0

T )

16
exp

{
− CT

2b(σT )
(θ1
T − θ0

T )>W>W(θ1
T − θ0

T )

}
·

exp

{
−

M∑
m=1

λ
(m)
1 CSm

2a(m)(σSm)
(θ1
Sm − θ

0
Sm)>W>W(θ1

Sm − θ
0
Sm)

}

=
‖β1

T − β0
T ‖22

16
exp

{
−

d∑
i=1

(
CT

2b(σT )
(β1
T − β0

T )2
i +

M∑
m=1

λ
(m)
1 CSm

2a(m)(σSm)
(β1
Sm − β

0
Sm)2

i

)}
,

where
θjT = EβjT , θ

j
Sm

= EβjSm

and E ∈ Rd×d is any matrix that satisfies
E>W>WE = I.

By Lemma A.1, for any K ≥ 1
4 , we can choose β0

T , β
1
T , β

0
Sm
, β1
Sm
,m ∈ [M ], such that

(β0
T − β0

Sm)2
i ≤

U2
m

d
, (β1

T − β1
Sm)2

i ≤
U2
m

d
, (β0

T − β1
T )2
i =

1

K

1∑M
k=1

1
U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

and

(β0
Sm − β

1
Sm)2

i ≤
1

K

1
U2
m
d +

a(m)(σSm
)

CSm
λ
(m)
1

a(m)(σSm )

CSmλ
(m)
1∑M

k=1
1

U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

.

We therefore conclude

‖β1
T − β0

T ‖22
16

exp

{
−

d∑
i=1

(
CT

2b(σT )
(β1
T − β0

T )2
i +

M∑
m=1

λ
(m)
1 CSm

2a(m)(σSm)
(β1
Sm − β

0
Sm)2

i

)}

≥
exp

(
− d

2K

)
16K

d∑M
k=1

1
U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

≥
exp

(
− 50
K

)
16K

d∑M
k=1

1
U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

, for d ≤ 100,

≥ e−1

800

d∑M
k=1

1
U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

,

where K = 50 is chosen.

Now, for d ≥ 100, we use Fano’s method (Tsybakov, 2008, Chapter 2). Let

h =

√√√√√√
1

4K

1∑M
k=1

1
U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

,
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and consider the hypercube
C = {β ∈ Rd : βi ∈ {−h, h}, i = 1, . . . , d}.

Then, by the Varshamov-Gilbert Lemma, since d ≥ 8, there exists a pruned hypercube β0
T , . . . , β

J
T ∈ C such that

J ≥ 2d/8 and H(βjT , β
k
T ) ≥ d

8 for 0 ≤ j < k ≤ J , where H denotes the Hamming distance, namely

H(βjT , β
k
T ) =

d∑
i=1

Id{(βjT )i 6=(βkT )i}.

We therefore have

min
j 6=k
‖βjT − β

k
T ‖22 ≥

d

8K

1∑M
k=1

1
U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

.

By Lemma A.1, for any m ∈ [M ], there exists km such that 0 ≤ km ≤ h and

(h− km)2 ≤ U2
m

d
, (2km)2 ≤ 1

K

1
U2
m
d +

a(m)(σSm
)

CSm
λ
(m)
1

a(m)(σSm )

CSmλ
(m)
1∑M

k=1
1

U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

.

Hence, choosing βjSm , j = 0, . . . , J, such that

∀1 ≤ i ≤ d, (βjSm)i =

{
km if (βjT )i = h

−km if (βjT )i = −h
,

we obtain
‖βjT − β

j
Sm
‖22 ≤ U2

m, j = 0, . . . , J, m ∈ [M ],

and

KL((θjS1
, . . . , θjSM , θ

j
T ); (θkS1

, . . . , θkSM , θ
k
T )) ≤ d

2K
, ∀0 ≤ j < k ≤M.

We therefore have, by Fano’s bound (Tsybakov, 2008, Chapter 2),

inf
θ̂

sup
D(θSm ,θT )≤U2

m∀m
E[`(θ̂, θT )] ≥

minj 6=k ‖βjT − βkT ‖22
4

(
1−

d
2K + log 2

log J

)

≥ 1

32K

(
1− 4

K log 2
− 8

d

)
d∑M

k=1
1

U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

≥ 3

3200

d∑M
k=1

1
U2
k
d +

a(k)(σSk
)

CSk
λ
(k)
1

+ CT
b(σT )

,

where K = 50
3 is chosen and recalling that d ≥ 100.

A.6 Proof of Remark 3.1

Remark 3.1. For the non-transfer learning setting considered in Lee and Courtade (2020), our proof method
gives rise to a lower bound of

d · b(σT )/CT

which is sharper than their lower bound of

max

{
‖ΛW‖21
‖ΛW‖22

, λmin(W>W)‖Λ−1
W‖1

}
· b(σT )/CT ,

where ΛW is the vector of eigenvalues of the positive-definite matrix W>W, and Λ−1
W denotes its coordinate-wise

inverse.
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Proof. By Holder’s inequality, we have
‖ΛW‖21 ≤ ‖ΛW‖22d.

It is also readily verified that
λmin(W>W)‖Λ−1

W‖1 ≤ d,
and the desired result follows.

A.7 Proof of Corollary 3.1

Corollary 3.1. When the GLMs considered are Gaussian LRMs, then a lower bound of the minimax risk is

inf
θ̂

sup
D(θSm ,θT )≤U2

m,∀m
E[`(θ̂, θT )] ≥ e−1

800

d∑M
m=1

1
U2
m
d +

σ2
Sm

λ
(m)
1

+ 1
σ2
T

.

Proof. Upon simply noting that, for Gaussian LRMs, we have a(m)(σSm) = σ2
Sm

, b(σT ) = σ2
T and CSm = CT = 1,

the desired result then follows.

A.8 Auxiliary Result on the GLM Upper Bound

We now provide details on the GLM upper bound in equation (20), where we additionally assume that

inf
z

(Ψ(m))
′′
(z) ≥ LSm ∀m, inf

z
Γ

′′
(z) ≥ LT .

Consider the usual MLE estimator θ̂Sm and θ̂T for the source and target domains, and further consider a simplified
interpolator

θ̂t =

M∑
m=1

tmθ̂Sm + tM+1θ̂T ,

M+1∑
m=1

tm = 1, tm ≥ 0.

For any fixed admissible parameters satisfying D(θSm , θT ) ≤ U2
m,∀m, we claim that with probability at least

1− e−c, it holds that

`(θ̂t? , θT ) = (θ̂t? − θT )W>W(θ̂t? − θT ) ≤ d∑M
m=1

1
U2
m
d +

2CSm
a(m)(σSm

)

L2
Sm

λ
(m)
d

(c+log(2dm))
+ 1

2CT b(σT )

L2
T

(c+log(2dm))

,

where t? solves

inf
t=(t1,...,tM+1)≥0,

∑M+1
m=1 tm=1

M∑
m=1

t2m

(
2dCSma

(m)(σSm)

L2
Sm
λ

(m)
d

(c+ log(2dm)) + U2
m

)
+ t2M+1

2dCT b(σT )

L2
T

(c+ log(2dm)).

Given that the dimension and number of sources are fixed, we consider c� log(2dm) and compare against our
lower bound in Theorem 3.1, namely

e−1

800

d∑M
m=1

1
U2
m
d +

a(m)(σSm
)

CSm
λ
(m)
1

+ CT
b(σT )

,

from which we find that there are gaps due to the ratios
CSm
LSm

, CTLT and the eigen gap
λ
(m)
1

λ
(m)
d

.

Proof of Upper Bound. Using the sub-Gaussian concentration bound for GLM noise and the trick in Lemma 8
of Bastani (2021), we have the concentration bounds

P

(
(θ̂Sm − θSm)W>W(θ̂Sm − θSm) ≤ 2dCSma

(m)(σSm)

L2
Sm
λ

(m)
d

(c1 + log(2d))

)
> 1− e−c1 , ∀m ∈ [M ],
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and

P

(
(θ̂T − θT )W>W(θ̂T − θT ) ≤ 2dCT b(σT )

L2
T

(c1 + log(2d))

)
> 1− e−c1 .

Due to independence, the probability of the intersection of the events happening is greater than (1− e−c1)m ≥
1− 2me−c1 for large c1. On the intersection of the events, we solve the problem

inf
t=(t1,...,tM+1)≥0,

∑M+1
m=1 tm=1

M∑
m=1

t2m

(
2dCSma

(m)(σSm)

L2
Sm
λ

(m)
d

(c1 + log(2d)) + U2
m

)
+ t2M+1

2dCT b(σT )

L2
T

(c1 + log(2d)),

with optimal solution t?. We have that the optimal interpolator defined by

θ̂t? =

M∑
m=1

t?mθ̂Sm + t?M+1θ̂T ,

satisfies

(θ̂t? − θT )W>W(θ̂t? − θT ) ≤ d∑M
m=1

1
U2
m
d +

2CSm
a(m)(σSm

)

L2
Sm

λ
(m)
d

(c1+log(2d))
+ 1

2CT b(σT )

L2
T

(c1+log(2d))

.

We choose c1 = c
′

1 + log(2m) so that this event happens with probability at least 1− e−c
′
1 .

A.9 Auxiliary Result on the Comparison with Kalan et al. (2020)

Kalan et al. (2020) study a minimax lower bound for the linear regression setting (albeit under random design)
and involve the spectral gap of the generalized eigenvalue problem we consider, with analogous definitions for
the population distribution of their random design setting. The significance of our geometric perspective is best
illustrated in comparison with their results where, in strong contrast, our analysis (in fixed design) takes care
of the entire spectrum of the generalized eigenvalues. More precisely, our lower bound scaled by 1/nT is lower
bounded by (ignoring the constant exp (−1/2)/16):

1

nT

d∑
i=1

1
1
σ2 + 1

α?iU
2+σ2

λi

“spectral gap”

≥ 1

nT

dσ2

1 + 1
U2

dσ2
+ 1
λ1

≥ 1

nT


c1σ

2d if U2 ≥ c̃1σ2d,

c2U
2 if c̃2

σ2d
1+λ1

≤ U2 ≤ c̃1σ2d,

c3
σ2d

1+λ1
if U2 ≤ c̃2 σ2d

1+λ1
,

where ci, c̃i are universal constants. The last expression essentially amounts to the lower bound in equation (3.1)
in Kalan et al. (2020), adjusting for the random designs and the scaling of U . We emphasize that the spectral
gap may cause the last expression to be arbitrarily suboptimal, e.g., when U = o(1), λ1 → ∞ and λd = O(1),
while our analysis is sharp (i.e., the upper bound and lower bound match).

B Simulation Results

We first describe the choice of the algorithm from Li et al. (2020) used for comparison against our proposed
method. Since the setting is a single source domain from which learning is transferred to a target domain, we only
consider Algorithm 1 from Li et al. (2020), i.e., the (original) Oracle Trans-Lasso algorithm. Algorithm 4 from Li
et al. (2020) uses the l0-norm to quantify the difference between the source and target parameters. However,
for this algorithm, they require that the l0-difference (denoted by h0) is much smaller than the l0 sparsity of
the target parameter (denoted by s) for the learning to be effective, which does not hold in our simulation
settings and in the real-world dataset (where h0 = 8 and s ≈ 8 from Table 4 and Figure 8 in Section B.2). The
Oracle Trans-Lasso algorithm from Appendix C.2 in Li et al. (2020) uses the lq-norm, q ∈ (0, 1), to quantify
the difference between the source and target parameters. However, for this algorithm, they require that the
lq-difference (denoted by hq) is much smaller than

√
s log d/nT for the learning to be effective, which also does

not hold in our simulation settings and in the real-world dataset (refer to Table 4 in Section B.2 and note that√
log d/nT is between 0.018 and 0.2). We therefore choose to compare our proposed method with Algorithm 1

from Li et al. (2020), which uses the l1-norm to quantify the difference.
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B.1 Additional Simulation Comparisons

As part of our additional simulation results related to the misspecification of U , we vary the parameter values
from the baseline in Section 4.1 such that the rows of X are generated independently by a zero-mean Gaussian
with a Toeplitz covariance matrix (Li et al., 2020, Section 5.2), or that both X and W are generated in this
way. The corresponding results are provided in the left plot and right plot of Figure 2, respectively. We observe
from these results that the introduction of correlation, either in only X or in both X and W, does not impact
the performance of either method when compared to the uncorrelated case in the left plot of Figure 1.

Figure 2: Simulation Results with Toeplitz Covariance Matrix for Designs. Solid Lines (Dashed Lines) Represent
the Proposed Method (Basic Pooling Method).

We also consider varying the noise variances. In particular, the noise variances are changed to σ2
S = 1, σ2

T = 5
or σ2

S = 5, σ2
T = 1, the results of which are provided in the left plot and right plot of Figure 3, respectively. The

proposed method handles large variances in the source data much better than the basic pooling method, while
high variance in (smaller sized) target data has no significant impact on either method.

Figure 3: Simulation Results with Unequal Noise Variances. Solid Lines Represent the Proposed Method. Dashed
Lines Represent the Basic Pooling Method.

We further consider varying the different dimensions. In particular, the dimension d is changed to 5 or d = 100
with βT three-sparse; specifically, the first three elements of βT are one and the rest are zero. The corresponding
results are provided in the left plot and right plot of Figure 4, respectively. Lower dimensionality (left) seems to
improve the performance gap between the two methods as compared to the left plot of Figure 1, while this gap
shortens in high-dimensions with extreme sparsity (right).

We additionally consider varying the magnitude (sup-norm) of the ground truth value of the parameter βT from
the baseline in Section 4.1 such that βT is the vector whose component values are all 0.1, or that βT is the vector
whose component values are all 10. The corresponding results are provided in the left plot and right plot of
Figure 5, respectively. We observe that the plots remain exactly the same as the left plot of Figure 1, which is
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Figure 4: Simulation Results with Different Dimensions. Solid Lines Represent the Proposed Method. Dashed
Lines Represent the Basic Pooling Method.

consistent with Theorem 2.1 that the worst-case performance of our method does not depend on the magnitude
of βT , and similarly for the basic pooling method.

Figure 5: Simulation Results with Different Magnitudes of the Ground Truth βT . Solid Lines (Dashed Lines)
Represent the Proposed Method (Basic Pooling Method).

We next investigate the behavior of the performance gap as the sample size increases. In particular, we vary the
sample sizes to be nS = 10000 and nT = 1000, and present the corresponding results in Figure 6. We observe
from these results that the plot remains the same as the left plot of Figure 1, demonstrating the robustness of
the performance gap.

As part of our additional simulation results related to the comparisons against competing methods in the litera-
ture, we consider the same settings in Section 4.2.1 and Section 4.2.2 with a smaller nS/nT ratio. In particular,
we vary the sample sizes to be nS = 200 and nT = 100. For the methods under consideration, we report the
average estimation error of θT in (5), and its standard deviation, over 1000 simulation runs. The results are
summarized in the left-half of Table 3 for moderate-dimensions and the right-half of Table 3 for high-dimensions.
We observe behaviors of our proposed method relative to the competing methods to be consistent with those in
Section 4.2.1 and Section 4.2.2.

B.2 Real-World Dataset Experiments

As part of our final set of empirical results considered in Section 4.2.3, we compare our proposed method
against the other competing methods using the Uber&Lyft dataset (https://www.kaggle.com/brllrb/uber-and-
lyft-dataset-boston-ma) of Uber and Lyft cab rides collected in Boston, MA. Recall that we consider UberX to
be the source model and standard Lyft service to be the target model where the learning problem comprises
prediction of the price using d = 32 numerical features. Given that the focus of our study is on the benefit of
transfer learning, we restrict our experiments to small random subsamples and we summarize in Table 2 the
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Figure 6: Simulation Results with A Larger Sample Size. Solid Lines (Dashed Lines) Represent the Proposed
Method (Basic Pooling Method).

Table 3: Simulation Results Comparing the Proposed Method to Other Competing Methods in Moderate-
Dimensions (Left-Half) and in High-Dimensions (Right-Half). “Basic” Represents the Lowest of the Errors
Attained by the Three Basic Methods in Section 2.2. Numbers in Parentheses Are Standard Deviations.

U Basic Proposed Two-Step Trans-Lasso Basic Proposed Two-Step Trans-Lasso
0.5 6.8(2.1) 7.1(2.2) 10.6(3.6) 1.1(2.4) 33.9(7.2) 30.9(7.6) 61.1(23.7) 34.2(7.5)
1.5 8.4(2.5) 8.5(2.7) 11.4(3.5) 1.7(2.2) 36.3(6.2) 32.6(6.6) 62.9(22.2) 37.4(6.6)
2.5 10.5(2.7) 9.9(2.5) 14.1(4.5) 2.5(2.6) 38.6(5.9) 34.3(6.1) 69.8(22.1) 40.5(6.3)
3.5 13.1(3.2) 11.6(3.1) 15.5(4.6) 4.8(3.4) 44.6(5.6) 38.3(6.4) 77.1(23.7) 47.6(6.0)
4.5 17.5(3.7) 14.5(3.9) 17.6(6.2) 8.7(4.5) 50.8(6.1) 41.5(5.8) 84.8(23.5) 55.2(7.4)
5.5 19.3(5.8) 15.3(4.8) 18.7(7.2) 11.7(4.9) 58.3(7.2) 45.4(8.1) 98.8(24.9) 63.6(8.1)
6.5 19.3(6.4) 17.3(6.0) 19.7(7.7) 16.6(6.6) 55.9(12.5) 49.3(8.7) 115.9(29.4) 74.4(7.5)
7.5 19.4(6.8) 18.3(6.4) 19.3(7.5) 20.4(7.2) 57.1(11.6) 52.9(9.4) 130.3(30.1) 87.3(9.8)
8.5 20.1(5.5) 18.5(6.1) 19.0(6.4) 21.7(9.4) 56.3(12.8) 53.4(10.7) 151.8(28.3) 98.9(9.8)
9.5 21.4(12.4) 18.8(6.9) 20.5(7.6) 23.2(9.0) 57.7(13.9) 56.9(9.6) 167.6(34.5) 112.5(10.8)

results taken over 100 repeated independent experiments.

The Uber&Lyft dataset consists of 55094 observations for the source and 51235 observations for the target, from
which we obtain and present in Figures 7 and 8 the corresponding ground-truth regression parameters as bar
plots for the source and target models, respectively. We observe that the parameters are moderately sparse with
the feature “surge multiplier” having much larger magnitudes in comparison with the other features. Figure 9
plots the difference between these two parameters, from which we again observe that the difference is sparse.
We also compute the lq-distance, q ∈ {0, 0.5, 1}, between the source and target parameters and summarize these
results in Table 4.

The results in Table 2 show that our proposed method attains a better performance on average, by a small margin
relative to the basic methods and by a large margin relative to the two-step estimator and Trans-Lasso. We note
that the lq sparsity, q ∈ [0, 1], required by the last two methods does not reasonably capture the contrast between
the source and target models of the real-world dataset, due to the moderate dimensions and the existence of
one dominating feature In particular, while Bastani (2021) shows that the two-step joint estimator performs
well when the difference of regression parameters is l0 sparse, their result applies to high-dimensions which is in
contrast to the 32 dimensions of the dataset at hand. This helps to explain why their two-step joint estimator does
not yield good performance in Table 2 where the moderate dimensions and a single feature of “surge multiplier”
significantly affects the model. Li et al. (2020) show that their Trans-Lasso method performs well when the
l1-difference of the regression parameters (denoted by h1) satisfies h1 � s

√
log d/nT , where s is the l0 sparsity

of the target regression parameters. However, for the real-world dataset, we observe that s ≈ 8 (see Figure 8),
that the factor

√
log(d)/nT is smaller than 0.2, that hq (i.e., lq-difference of the regression parameters) increases
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as q decreases from 1 toward 0, and that hq presents a discontinuity at q = 0 with h0 = 8, some of which is
illustrated in Table 4. Hence, the l1 (or lq in general) relationship assumed by Li et al. (2020) does not appear
to hold for the dataset at hand. This in turn helps to explain why Trans-Lasso does not yield good performance
in Table 2.

Figure 7: Estimated Regression Parameters of Source Model From the Entire Source Dataset.

Table 4: Results For Distance (under Different Sparsity Norms) between Source and Target Ground-truth
Parameters on Uber&Lyft Data. The l0-distance Has a Threshold of 0.1 to Determine Non-zero Entries.

l0-distance (h0) l0.5-distance (h0.5) l1-distance (h1)
8 189.67 53.65
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Figure 8: Estimated Regression Parameters of Target Model From the Entire Target Dataset.

Figure 9: Difference in Regression Parameters of Target versus Source Model From the Entire Dataset.


